xref: /linux/mm/cma.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Contiguous Memory Allocator
4  *
5  * Copyright (c) 2010-2011 by Samsung Electronics.
6  * Copyright IBM Corporation, 2013
7  * Copyright LG Electronics Inc., 2014
8  * Written by:
9  *	Marek Szyprowski <m.szyprowski@samsung.com>
10  *	Michal Nazarewicz <mina86@mina86.com>
11  *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
12  *	Joonsoo Kim <iamjoonsoo.kim@lge.com>
13  */
14 
15 #define pr_fmt(fmt) "cma: " fmt
16 
17 #define CREATE_TRACE_POINTS
18 
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/mm.h>
22 #include <linux/sizes.h>
23 #include <linux/slab.h>
24 #include <linux/log2.h>
25 #include <linux/cma.h>
26 #include <linux/highmem.h>
27 #include <linux/io.h>
28 #include <linux/kmemleak.h>
29 #include <trace/events/cma.h>
30 
31 #include "internal.h"
32 #include "cma.h"
33 
34 struct cma cma_areas[MAX_CMA_AREAS];
35 unsigned cma_area_count;
36 static DEFINE_MUTEX(cma_mutex);
37 
38 phys_addr_t cma_get_base(const struct cma *cma)
39 {
40 	return PFN_PHYS(cma->base_pfn);
41 }
42 
43 unsigned long cma_get_size(const struct cma *cma)
44 {
45 	return cma->count << PAGE_SHIFT;
46 }
47 
48 const char *cma_get_name(const struct cma *cma)
49 {
50 	return cma->name;
51 }
52 
53 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
54 					     unsigned int align_order)
55 {
56 	if (align_order <= cma->order_per_bit)
57 		return 0;
58 	return (1UL << (align_order - cma->order_per_bit)) - 1;
59 }
60 
61 /*
62  * Find the offset of the base PFN from the specified align_order.
63  * The value returned is represented in order_per_bits.
64  */
65 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
66 					       unsigned int align_order)
67 {
68 	return (cma->base_pfn & ((1UL << align_order) - 1))
69 		>> cma->order_per_bit;
70 }
71 
72 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
73 					      unsigned long pages)
74 {
75 	return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
76 }
77 
78 static void cma_clear_bitmap(struct cma *cma, unsigned long pfn,
79 			     unsigned long count)
80 {
81 	unsigned long bitmap_no, bitmap_count;
82 	unsigned long flags;
83 
84 	bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit;
85 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
86 
87 	spin_lock_irqsave(&cma->lock, flags);
88 	bitmap_clear(cma->bitmap, bitmap_no, bitmap_count);
89 	spin_unlock_irqrestore(&cma->lock, flags);
90 }
91 
92 static void __init cma_activate_area(struct cma *cma)
93 {
94 	unsigned long base_pfn = cma->base_pfn, pfn;
95 	struct zone *zone;
96 
97 	cma->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma), GFP_KERNEL);
98 	if (!cma->bitmap)
99 		goto out_error;
100 
101 	/*
102 	 * alloc_contig_range() requires the pfn range specified to be in the
103 	 * same zone. Simplify by forcing the entire CMA resv range to be in the
104 	 * same zone.
105 	 */
106 	WARN_ON_ONCE(!pfn_valid(base_pfn));
107 	zone = page_zone(pfn_to_page(base_pfn));
108 	for (pfn = base_pfn + 1; pfn < base_pfn + cma->count; pfn++) {
109 		WARN_ON_ONCE(!pfn_valid(pfn));
110 		if (page_zone(pfn_to_page(pfn)) != zone)
111 			goto not_in_zone;
112 	}
113 
114 	for (pfn = base_pfn; pfn < base_pfn + cma->count;
115 	     pfn += pageblock_nr_pages)
116 		init_cma_reserved_pageblock(pfn_to_page(pfn));
117 
118 	spin_lock_init(&cma->lock);
119 
120 #ifdef CONFIG_CMA_DEBUGFS
121 	INIT_HLIST_HEAD(&cma->mem_head);
122 	spin_lock_init(&cma->mem_head_lock);
123 #endif
124 
125 	return;
126 
127 not_in_zone:
128 	bitmap_free(cma->bitmap);
129 out_error:
130 	/* Expose all pages to the buddy, they are useless for CMA. */
131 	if (!cma->reserve_pages_on_error) {
132 		for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn++)
133 			free_reserved_page(pfn_to_page(pfn));
134 	}
135 	totalcma_pages -= cma->count;
136 	cma->count = 0;
137 	pr_err("CMA area %s could not be activated\n", cma->name);
138 	return;
139 }
140 
141 static int __init cma_init_reserved_areas(void)
142 {
143 	int i;
144 
145 	for (i = 0; i < cma_area_count; i++)
146 		cma_activate_area(&cma_areas[i]);
147 
148 	return 0;
149 }
150 core_initcall(cma_init_reserved_areas);
151 
152 void __init cma_reserve_pages_on_error(struct cma *cma)
153 {
154 	cma->reserve_pages_on_error = true;
155 }
156 
157 /**
158  * cma_init_reserved_mem() - create custom contiguous area from reserved memory
159  * @base: Base address of the reserved area
160  * @size: Size of the reserved area (in bytes),
161  * @order_per_bit: Order of pages represented by one bit on bitmap.
162  * @name: The name of the area. If this parameter is NULL, the name of
163  *        the area will be set to "cmaN", where N is a running counter of
164  *        used areas.
165  * @res_cma: Pointer to store the created cma region.
166  *
167  * This function creates custom contiguous area from already reserved memory.
168  */
169 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
170 				 unsigned int order_per_bit,
171 				 const char *name,
172 				 struct cma **res_cma)
173 {
174 	struct cma *cma;
175 
176 	/* Sanity checks */
177 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
178 		pr_err("Not enough slots for CMA reserved regions!\n");
179 		return -ENOSPC;
180 	}
181 
182 	if (!size || !memblock_is_region_reserved(base, size))
183 		return -EINVAL;
184 
185 	/* alignment should be aligned with order_per_bit */
186 	if (!IS_ALIGNED(CMA_MIN_ALIGNMENT_PAGES, 1 << order_per_bit))
187 		return -EINVAL;
188 
189 	/* ensure minimal alignment required by mm core */
190 	if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
191 		return -EINVAL;
192 
193 	/*
194 	 * Each reserved area must be initialised later, when more kernel
195 	 * subsystems (like slab allocator) are available.
196 	 */
197 	cma = &cma_areas[cma_area_count];
198 
199 	if (name)
200 		snprintf(cma->name, CMA_MAX_NAME, name);
201 	else
202 		snprintf(cma->name, CMA_MAX_NAME,  "cma%d\n", cma_area_count);
203 
204 	cma->base_pfn = PFN_DOWN(base);
205 	cma->count = size >> PAGE_SHIFT;
206 	cma->order_per_bit = order_per_bit;
207 	*res_cma = cma;
208 	cma_area_count++;
209 	totalcma_pages += (size / PAGE_SIZE);
210 
211 	return 0;
212 }
213 
214 /**
215  * cma_declare_contiguous_nid() - reserve custom contiguous area
216  * @base: Base address of the reserved area optional, use 0 for any
217  * @size: Size of the reserved area (in bytes),
218  * @limit: End address of the reserved memory (optional, 0 for any).
219  * @alignment: Alignment for the CMA area, should be power of 2 or zero
220  * @order_per_bit: Order of pages represented by one bit on bitmap.
221  * @fixed: hint about where to place the reserved area
222  * @name: The name of the area. See function cma_init_reserved_mem()
223  * @res_cma: Pointer to store the created cma region.
224  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
225  *
226  * This function reserves memory from early allocator. It should be
227  * called by arch specific code once the early allocator (memblock or bootmem)
228  * has been activated and all other subsystems have already allocated/reserved
229  * memory. This function allows to create custom reserved areas.
230  *
231  * If @fixed is true, reserve contiguous area at exactly @base.  If false,
232  * reserve in range from @base to @limit.
233  */
234 int __init cma_declare_contiguous_nid(phys_addr_t base,
235 			phys_addr_t size, phys_addr_t limit,
236 			phys_addr_t alignment, unsigned int order_per_bit,
237 			bool fixed, const char *name, struct cma **res_cma,
238 			int nid)
239 {
240 	phys_addr_t memblock_end = memblock_end_of_DRAM();
241 	phys_addr_t highmem_start;
242 	int ret;
243 
244 	/*
245 	 * We can't use __pa(high_memory) directly, since high_memory
246 	 * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
247 	 * complain. Find the boundary by adding one to the last valid
248 	 * address.
249 	 */
250 	highmem_start = __pa(high_memory - 1) + 1;
251 	pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
252 		__func__, &size, &base, &limit, &alignment);
253 
254 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
255 		pr_err("Not enough slots for CMA reserved regions!\n");
256 		return -ENOSPC;
257 	}
258 
259 	if (!size)
260 		return -EINVAL;
261 
262 	if (alignment && !is_power_of_2(alignment))
263 		return -EINVAL;
264 
265 	if (!IS_ENABLED(CONFIG_NUMA))
266 		nid = NUMA_NO_NODE;
267 
268 	/* Sanitise input arguments. */
269 	alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
270 	if (fixed && base & (alignment - 1)) {
271 		ret = -EINVAL;
272 		pr_err("Region at %pa must be aligned to %pa bytes\n",
273 			&base, &alignment);
274 		goto err;
275 	}
276 	base = ALIGN(base, alignment);
277 	size = ALIGN(size, alignment);
278 	limit &= ~(alignment - 1);
279 
280 	if (!base)
281 		fixed = false;
282 
283 	/* size should be aligned with order_per_bit */
284 	if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
285 		return -EINVAL;
286 
287 	/*
288 	 * If allocating at a fixed base the request region must not cross the
289 	 * low/high memory boundary.
290 	 */
291 	if (fixed && base < highmem_start && base + size > highmem_start) {
292 		ret = -EINVAL;
293 		pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
294 			&base, &highmem_start);
295 		goto err;
296 	}
297 
298 	/*
299 	 * If the limit is unspecified or above the memblock end, its effective
300 	 * value will be the memblock end. Set it explicitly to simplify further
301 	 * checks.
302 	 */
303 	if (limit == 0 || limit > memblock_end)
304 		limit = memblock_end;
305 
306 	if (base + size > limit) {
307 		ret = -EINVAL;
308 		pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
309 			&size, &base, &limit);
310 		goto err;
311 	}
312 
313 	/* Reserve memory */
314 	if (fixed) {
315 		if (memblock_is_region_reserved(base, size) ||
316 		    memblock_reserve(base, size) < 0) {
317 			ret = -EBUSY;
318 			goto err;
319 		}
320 	} else {
321 		phys_addr_t addr = 0;
322 
323 		/*
324 		 * If there is enough memory, try a bottom-up allocation first.
325 		 * It will place the new cma area close to the start of the node
326 		 * and guarantee that the compaction is moving pages out of the
327 		 * cma area and not into it.
328 		 * Avoid using first 4GB to not interfere with constrained zones
329 		 * like DMA/DMA32.
330 		 */
331 #ifdef CONFIG_PHYS_ADDR_T_64BIT
332 		if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
333 			memblock_set_bottom_up(true);
334 			addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
335 							limit, nid, true);
336 			memblock_set_bottom_up(false);
337 		}
338 #endif
339 
340 		/*
341 		 * All pages in the reserved area must come from the same zone.
342 		 * If the requested region crosses the low/high memory boundary,
343 		 * try allocating from high memory first and fall back to low
344 		 * memory in case of failure.
345 		 */
346 		if (!addr && base < highmem_start && limit > highmem_start) {
347 			addr = memblock_alloc_range_nid(size, alignment,
348 					highmem_start, limit, nid, true);
349 			limit = highmem_start;
350 		}
351 
352 		if (!addr) {
353 			addr = memblock_alloc_range_nid(size, alignment, base,
354 					limit, nid, true);
355 			if (!addr) {
356 				ret = -ENOMEM;
357 				goto err;
358 			}
359 		}
360 
361 		/*
362 		 * kmemleak scans/reads tracked objects for pointers to other
363 		 * objects but this address isn't mapped and accessible
364 		 */
365 		kmemleak_ignore_phys(addr);
366 		base = addr;
367 	}
368 
369 	ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
370 	if (ret)
371 		goto free_mem;
372 
373 	pr_info("Reserved %ld MiB at %pa on node %d\n", (unsigned long)size / SZ_1M,
374 		&base, nid);
375 	return 0;
376 
377 free_mem:
378 	memblock_phys_free(base, size);
379 err:
380 	pr_err("Failed to reserve %ld MiB on node %d\n", (unsigned long)size / SZ_1M,
381 	       nid);
382 	return ret;
383 }
384 
385 static void cma_debug_show_areas(struct cma *cma)
386 {
387 	unsigned long next_zero_bit, next_set_bit, nr_zero;
388 	unsigned long start = 0;
389 	unsigned long nr_part, nr_total = 0;
390 	unsigned long nbits = cma_bitmap_maxno(cma);
391 
392 	spin_lock_irq(&cma->lock);
393 	pr_info("number of available pages: ");
394 	for (;;) {
395 		next_zero_bit = find_next_zero_bit(cma->bitmap, nbits, start);
396 		if (next_zero_bit >= nbits)
397 			break;
398 		next_set_bit = find_next_bit(cma->bitmap, nbits, next_zero_bit);
399 		nr_zero = next_set_bit - next_zero_bit;
400 		nr_part = nr_zero << cma->order_per_bit;
401 		pr_cont("%s%lu@%lu", nr_total ? "+" : "", nr_part,
402 			next_zero_bit);
403 		nr_total += nr_part;
404 		start = next_zero_bit + nr_zero;
405 	}
406 	pr_cont("=> %lu free of %lu total pages\n", nr_total, cma->count);
407 	spin_unlock_irq(&cma->lock);
408 }
409 
410 /**
411  * cma_alloc() - allocate pages from contiguous area
412  * @cma:   Contiguous memory region for which the allocation is performed.
413  * @count: Requested number of pages.
414  * @align: Requested alignment of pages (in PAGE_SIZE order).
415  * @no_warn: Avoid printing message about failed allocation
416  *
417  * This function allocates part of contiguous memory on specific
418  * contiguous memory area.
419  */
420 struct page *cma_alloc(struct cma *cma, unsigned long count,
421 		       unsigned int align, bool no_warn)
422 {
423 	unsigned long mask, offset;
424 	unsigned long pfn = -1;
425 	unsigned long start = 0;
426 	unsigned long bitmap_maxno, bitmap_no, bitmap_count;
427 	unsigned long i;
428 	struct page *page = NULL;
429 	int ret = -ENOMEM;
430 	const char *name = cma ? cma->name : NULL;
431 
432 	trace_cma_alloc_start(name, count, align);
433 
434 	if (!cma || !cma->count || !cma->bitmap)
435 		return page;
436 
437 	pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
438 		(void *)cma, cma->name, count, align);
439 
440 	if (!count)
441 		return page;
442 
443 	mask = cma_bitmap_aligned_mask(cma, align);
444 	offset = cma_bitmap_aligned_offset(cma, align);
445 	bitmap_maxno = cma_bitmap_maxno(cma);
446 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
447 
448 	if (bitmap_count > bitmap_maxno)
449 		return page;
450 
451 	for (;;) {
452 		spin_lock_irq(&cma->lock);
453 		bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap,
454 				bitmap_maxno, start, bitmap_count, mask,
455 				offset);
456 		if (bitmap_no >= bitmap_maxno) {
457 			spin_unlock_irq(&cma->lock);
458 			break;
459 		}
460 		bitmap_set(cma->bitmap, bitmap_no, bitmap_count);
461 		/*
462 		 * It's safe to drop the lock here. We've marked this region for
463 		 * our exclusive use. If the migration fails we will take the
464 		 * lock again and unmark it.
465 		 */
466 		spin_unlock_irq(&cma->lock);
467 
468 		pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit);
469 		mutex_lock(&cma_mutex);
470 		ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA,
471 				     GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
472 		mutex_unlock(&cma_mutex);
473 		if (ret == 0) {
474 			page = pfn_to_page(pfn);
475 			break;
476 		}
477 
478 		cma_clear_bitmap(cma, pfn, count);
479 		if (ret != -EBUSY)
480 			break;
481 
482 		pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
483 			 __func__, pfn, pfn_to_page(pfn));
484 
485 		trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
486 					   count, align);
487 		/* try again with a bit different memory target */
488 		start = bitmap_no + mask + 1;
489 	}
490 
491 	/*
492 	 * CMA can allocate multiple page blocks, which results in different
493 	 * blocks being marked with different tags. Reset the tags to ignore
494 	 * those page blocks.
495 	 */
496 	if (page) {
497 		for (i = 0; i < count; i++)
498 			page_kasan_tag_reset(nth_page(page, i));
499 	}
500 
501 	if (ret && !no_warn) {
502 		pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
503 				   __func__, cma->name, count, ret);
504 		cma_debug_show_areas(cma);
505 	}
506 
507 	pr_debug("%s(): returned %p\n", __func__, page);
508 	trace_cma_alloc_finish(name, pfn, page, count, align, ret);
509 	if (page) {
510 		count_vm_event(CMA_ALLOC_SUCCESS);
511 		cma_sysfs_account_success_pages(cma, count);
512 	} else {
513 		count_vm_event(CMA_ALLOC_FAIL);
514 		cma_sysfs_account_fail_pages(cma, count);
515 	}
516 
517 	return page;
518 }
519 
520 bool cma_pages_valid(struct cma *cma, const struct page *pages,
521 		     unsigned long count)
522 {
523 	unsigned long pfn;
524 
525 	if (!cma || !pages)
526 		return false;
527 
528 	pfn = page_to_pfn(pages);
529 
530 	if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count) {
531 		pr_debug("%s(page %p, count %lu)\n", __func__,
532 						(void *)pages, count);
533 		return false;
534 	}
535 
536 	return true;
537 }
538 
539 /**
540  * cma_release() - release allocated pages
541  * @cma:   Contiguous memory region for which the allocation is performed.
542  * @pages: Allocated pages.
543  * @count: Number of allocated pages.
544  *
545  * This function releases memory allocated by cma_alloc().
546  * It returns false when provided pages do not belong to contiguous area and
547  * true otherwise.
548  */
549 bool cma_release(struct cma *cma, const struct page *pages,
550 		 unsigned long count)
551 {
552 	unsigned long pfn;
553 
554 	if (!cma_pages_valid(cma, pages, count))
555 		return false;
556 
557 	pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
558 
559 	pfn = page_to_pfn(pages);
560 
561 	VM_BUG_ON(pfn + count > cma->base_pfn + cma->count);
562 
563 	free_contig_range(pfn, count);
564 	cma_clear_bitmap(cma, pfn, count);
565 	cma_sysfs_account_release_pages(cma, count);
566 	trace_cma_release(cma->name, pfn, pages, count);
567 
568 	return true;
569 }
570 
571 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
572 {
573 	int i;
574 
575 	for (i = 0; i < cma_area_count; i++) {
576 		int ret = it(&cma_areas[i], data);
577 
578 		if (ret)
579 			return ret;
580 	}
581 
582 	return 0;
583 }
584