xref: /linux/mm/cma.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Contiguous Memory Allocator
3  *
4  * Copyright (c) 2010-2011 by Samsung Electronics.
5  * Copyright IBM Corporation, 2013
6  * Copyright LG Electronics Inc., 2014
7  * Written by:
8  *	Marek Szyprowski <m.szyprowski@samsung.com>
9  *	Michal Nazarewicz <mina86@mina86.com>
10  *	Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
11  *	Joonsoo Kim <iamjoonsoo.kim@lge.com>
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License as
15  * published by the Free Software Foundation; either version 2 of the
16  * License or (at your optional) any later version of the license.
17  */
18 
19 #define pr_fmt(fmt) "cma: " fmt
20 
21 #ifdef CONFIG_CMA_DEBUG
22 #ifndef DEBUG
23 #  define DEBUG
24 #endif
25 #endif
26 
27 #include <linux/memblock.h>
28 #include <linux/err.h>
29 #include <linux/mm.h>
30 #include <linux/mutex.h>
31 #include <linux/sizes.h>
32 #include <linux/slab.h>
33 #include <linux/log2.h>
34 #include <linux/cma.h>
35 #include <linux/highmem.h>
36 #include <linux/io.h>
37 
38 struct cma {
39 	unsigned long	base_pfn;
40 	unsigned long	count;
41 	unsigned long	*bitmap;
42 	unsigned int order_per_bit; /* Order of pages represented by one bit */
43 	struct mutex	lock;
44 };
45 
46 static struct cma cma_areas[MAX_CMA_AREAS];
47 static unsigned cma_area_count;
48 static DEFINE_MUTEX(cma_mutex);
49 
50 phys_addr_t cma_get_base(struct cma *cma)
51 {
52 	return PFN_PHYS(cma->base_pfn);
53 }
54 
55 unsigned long cma_get_size(struct cma *cma)
56 {
57 	return cma->count << PAGE_SHIFT;
58 }
59 
60 static unsigned long cma_bitmap_aligned_mask(struct cma *cma, int align_order)
61 {
62 	if (align_order <= cma->order_per_bit)
63 		return 0;
64 	return (1UL << (align_order - cma->order_per_bit)) - 1;
65 }
66 
67 /*
68  * Find a PFN aligned to the specified order and return an offset represented in
69  * order_per_bits.
70  */
71 static unsigned long cma_bitmap_aligned_offset(struct cma *cma, int align_order)
72 {
73 	if (align_order <= cma->order_per_bit)
74 		return 0;
75 
76 	return (ALIGN(cma->base_pfn, (1UL << align_order))
77 		- cma->base_pfn) >> cma->order_per_bit;
78 }
79 
80 static unsigned long cma_bitmap_maxno(struct cma *cma)
81 {
82 	return cma->count >> cma->order_per_bit;
83 }
84 
85 static unsigned long cma_bitmap_pages_to_bits(struct cma *cma,
86 						unsigned long pages)
87 {
88 	return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
89 }
90 
91 static void cma_clear_bitmap(struct cma *cma, unsigned long pfn, int count)
92 {
93 	unsigned long bitmap_no, bitmap_count;
94 
95 	bitmap_no = (pfn - cma->base_pfn) >> cma->order_per_bit;
96 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
97 
98 	mutex_lock(&cma->lock);
99 	bitmap_clear(cma->bitmap, bitmap_no, bitmap_count);
100 	mutex_unlock(&cma->lock);
101 }
102 
103 static int __init cma_activate_area(struct cma *cma)
104 {
105 	int bitmap_size = BITS_TO_LONGS(cma_bitmap_maxno(cma)) * sizeof(long);
106 	unsigned long base_pfn = cma->base_pfn, pfn = base_pfn;
107 	unsigned i = cma->count >> pageblock_order;
108 	struct zone *zone;
109 
110 	cma->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
111 
112 	if (!cma->bitmap)
113 		return -ENOMEM;
114 
115 	WARN_ON_ONCE(!pfn_valid(pfn));
116 	zone = page_zone(pfn_to_page(pfn));
117 
118 	do {
119 		unsigned j;
120 
121 		base_pfn = pfn;
122 		for (j = pageblock_nr_pages; j; --j, pfn++) {
123 			WARN_ON_ONCE(!pfn_valid(pfn));
124 			/*
125 			 * alloc_contig_range requires the pfn range
126 			 * specified to be in the same zone. Make this
127 			 * simple by forcing the entire CMA resv range
128 			 * to be in the same zone.
129 			 */
130 			if (page_zone(pfn_to_page(pfn)) != zone)
131 				goto err;
132 		}
133 		init_cma_reserved_pageblock(pfn_to_page(base_pfn));
134 	} while (--i);
135 
136 	mutex_init(&cma->lock);
137 	return 0;
138 
139 err:
140 	kfree(cma->bitmap);
141 	cma->count = 0;
142 	return -EINVAL;
143 }
144 
145 static int __init cma_init_reserved_areas(void)
146 {
147 	int i;
148 
149 	for (i = 0; i < cma_area_count; i++) {
150 		int ret = cma_activate_area(&cma_areas[i]);
151 
152 		if (ret)
153 			return ret;
154 	}
155 
156 	return 0;
157 }
158 core_initcall(cma_init_reserved_areas);
159 
160 /**
161  * cma_init_reserved_mem() - create custom contiguous area from reserved memory
162  * @base: Base address of the reserved area
163  * @size: Size of the reserved area (in bytes),
164  * @order_per_bit: Order of pages represented by one bit on bitmap.
165  * @res_cma: Pointer to store the created cma region.
166  *
167  * This function creates custom contiguous area from already reserved memory.
168  */
169 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
170 				 int order_per_bit, struct cma **res_cma)
171 {
172 	struct cma *cma;
173 	phys_addr_t alignment;
174 
175 	/* Sanity checks */
176 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
177 		pr_err("Not enough slots for CMA reserved regions!\n");
178 		return -ENOSPC;
179 	}
180 
181 	if (!size || !memblock_is_region_reserved(base, size))
182 		return -EINVAL;
183 
184 	/* ensure minimal alignment requied by mm core */
185 	alignment = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order);
186 
187 	/* alignment should be aligned with order_per_bit */
188 	if (!IS_ALIGNED(alignment >> PAGE_SHIFT, 1 << order_per_bit))
189 		return -EINVAL;
190 
191 	if (ALIGN(base, alignment) != base || ALIGN(size, alignment) != size)
192 		return -EINVAL;
193 
194 	/*
195 	 * Each reserved area must be initialised later, when more kernel
196 	 * subsystems (like slab allocator) are available.
197 	 */
198 	cma = &cma_areas[cma_area_count];
199 	cma->base_pfn = PFN_DOWN(base);
200 	cma->count = size >> PAGE_SHIFT;
201 	cma->order_per_bit = order_per_bit;
202 	*res_cma = cma;
203 	cma_area_count++;
204 	totalcma_pages += (size / PAGE_SIZE);
205 
206 	return 0;
207 }
208 
209 /**
210  * cma_declare_contiguous() - reserve custom contiguous area
211  * @base: Base address of the reserved area optional, use 0 for any
212  * @size: Size of the reserved area (in bytes),
213  * @limit: End address of the reserved memory (optional, 0 for any).
214  * @alignment: Alignment for the CMA area, should be power of 2 or zero
215  * @order_per_bit: Order of pages represented by one bit on bitmap.
216  * @fixed: hint about where to place the reserved area
217  * @res_cma: Pointer to store the created cma region.
218  *
219  * This function reserves memory from early allocator. It should be
220  * called by arch specific code once the early allocator (memblock or bootmem)
221  * has been activated and all other subsystems have already allocated/reserved
222  * memory. This function allows to create custom reserved areas.
223  *
224  * If @fixed is true, reserve contiguous area at exactly @base.  If false,
225  * reserve in range from @base to @limit.
226  */
227 int __init cma_declare_contiguous(phys_addr_t base,
228 			phys_addr_t size, phys_addr_t limit,
229 			phys_addr_t alignment, unsigned int order_per_bit,
230 			bool fixed, struct cma **res_cma)
231 {
232 	phys_addr_t memblock_end = memblock_end_of_DRAM();
233 	phys_addr_t highmem_start;
234 	int ret = 0;
235 
236 #ifdef CONFIG_X86
237 	/*
238 	 * high_memory isn't direct mapped memory so retrieving its physical
239 	 * address isn't appropriate.  But it would be useful to check the
240 	 * physical address of the highmem boundary so it's justfiable to get
241 	 * the physical address from it.  On x86 there is a validation check for
242 	 * this case, so the following workaround is needed to avoid it.
243 	 */
244 	highmem_start = __pa_nodebug(high_memory);
245 #else
246 	highmem_start = __pa(high_memory);
247 #endif
248 	pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
249 		__func__, &size, &base, &limit, &alignment);
250 
251 	if (cma_area_count == ARRAY_SIZE(cma_areas)) {
252 		pr_err("Not enough slots for CMA reserved regions!\n");
253 		return -ENOSPC;
254 	}
255 
256 	if (!size)
257 		return -EINVAL;
258 
259 	if (alignment && !is_power_of_2(alignment))
260 		return -EINVAL;
261 
262 	/*
263 	 * Sanitise input arguments.
264 	 * Pages both ends in CMA area could be merged into adjacent unmovable
265 	 * migratetype page by page allocator's buddy algorithm. In the case,
266 	 * you couldn't get a contiguous memory, which is not what we want.
267 	 */
268 	alignment = max(alignment,
269 		(phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
270 	base = ALIGN(base, alignment);
271 	size = ALIGN(size, alignment);
272 	limit &= ~(alignment - 1);
273 
274 	if (!base)
275 		fixed = false;
276 
277 	/* size should be aligned with order_per_bit */
278 	if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
279 		return -EINVAL;
280 
281 	/*
282 	 * If allocating at a fixed base the request region must not cross the
283 	 * low/high memory boundary.
284 	 */
285 	if (fixed && base < highmem_start && base + size > highmem_start) {
286 		ret = -EINVAL;
287 		pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
288 			&base, &highmem_start);
289 		goto err;
290 	}
291 
292 	/*
293 	 * If the limit is unspecified or above the memblock end, its effective
294 	 * value will be the memblock end. Set it explicitly to simplify further
295 	 * checks.
296 	 */
297 	if (limit == 0 || limit > memblock_end)
298 		limit = memblock_end;
299 
300 	/* Reserve memory */
301 	if (fixed) {
302 		if (memblock_is_region_reserved(base, size) ||
303 		    memblock_reserve(base, size) < 0) {
304 			ret = -EBUSY;
305 			goto err;
306 		}
307 	} else {
308 		phys_addr_t addr = 0;
309 
310 		/*
311 		 * All pages in the reserved area must come from the same zone.
312 		 * If the requested region crosses the low/high memory boundary,
313 		 * try allocating from high memory first and fall back to low
314 		 * memory in case of failure.
315 		 */
316 		if (base < highmem_start && limit > highmem_start) {
317 			addr = memblock_alloc_range(size, alignment,
318 						    highmem_start, limit);
319 			limit = highmem_start;
320 		}
321 
322 		if (!addr) {
323 			addr = memblock_alloc_range(size, alignment, base,
324 						    limit);
325 			if (!addr) {
326 				ret = -ENOMEM;
327 				goto err;
328 			}
329 		}
330 
331 		/*
332 		 * kmemleak scans/reads tracked objects for pointers to other
333 		 * objects but this address isn't mapped and accessible
334 		 */
335 		kmemleak_ignore(phys_to_virt(addr));
336 		base = addr;
337 	}
338 
339 	ret = cma_init_reserved_mem(base, size, order_per_bit, res_cma);
340 	if (ret)
341 		goto err;
342 
343 	pr_info("Reserved %ld MiB at %pa\n", (unsigned long)size / SZ_1M,
344 		&base);
345 	return 0;
346 
347 err:
348 	pr_err("Failed to reserve %ld MiB\n", (unsigned long)size / SZ_1M);
349 	return ret;
350 }
351 
352 /**
353  * cma_alloc() - allocate pages from contiguous area
354  * @cma:   Contiguous memory region for which the allocation is performed.
355  * @count: Requested number of pages.
356  * @align: Requested alignment of pages (in PAGE_SIZE order).
357  *
358  * This function allocates part of contiguous memory on specific
359  * contiguous memory area.
360  */
361 struct page *cma_alloc(struct cma *cma, int count, unsigned int align)
362 {
363 	unsigned long mask, offset, pfn, start = 0;
364 	unsigned long bitmap_maxno, bitmap_no, bitmap_count;
365 	struct page *page = NULL;
366 	int ret;
367 
368 	if (!cma || !cma->count)
369 		return NULL;
370 
371 	pr_debug("%s(cma %p, count %d, align %d)\n", __func__, (void *)cma,
372 		 count, align);
373 
374 	if (!count)
375 		return NULL;
376 
377 	mask = cma_bitmap_aligned_mask(cma, align);
378 	offset = cma_bitmap_aligned_offset(cma, align);
379 	bitmap_maxno = cma_bitmap_maxno(cma);
380 	bitmap_count = cma_bitmap_pages_to_bits(cma, count);
381 
382 	for (;;) {
383 		mutex_lock(&cma->lock);
384 		bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap,
385 				bitmap_maxno, start, bitmap_count, mask,
386 				offset);
387 		if (bitmap_no >= bitmap_maxno) {
388 			mutex_unlock(&cma->lock);
389 			break;
390 		}
391 		bitmap_set(cma->bitmap, bitmap_no, bitmap_count);
392 		/*
393 		 * It's safe to drop the lock here. We've marked this region for
394 		 * our exclusive use. If the migration fails we will take the
395 		 * lock again and unmark it.
396 		 */
397 		mutex_unlock(&cma->lock);
398 
399 		pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit);
400 		mutex_lock(&cma_mutex);
401 		ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA);
402 		mutex_unlock(&cma_mutex);
403 		if (ret == 0) {
404 			page = pfn_to_page(pfn);
405 			break;
406 		}
407 
408 		cma_clear_bitmap(cma, pfn, count);
409 		if (ret != -EBUSY)
410 			break;
411 
412 		pr_debug("%s(): memory range at %p is busy, retrying\n",
413 			 __func__, pfn_to_page(pfn));
414 		/* try again with a bit different memory target */
415 		start = bitmap_no + mask + 1;
416 	}
417 
418 	pr_debug("%s(): returned %p\n", __func__, page);
419 	return page;
420 }
421 
422 /**
423  * cma_release() - release allocated pages
424  * @cma:   Contiguous memory region for which the allocation is performed.
425  * @pages: Allocated pages.
426  * @count: Number of allocated pages.
427  *
428  * This function releases memory allocated by alloc_cma().
429  * It returns false when provided pages do not belong to contiguous area and
430  * true otherwise.
431  */
432 bool cma_release(struct cma *cma, struct page *pages, int count)
433 {
434 	unsigned long pfn;
435 
436 	if (!cma || !pages)
437 		return false;
438 
439 	pr_debug("%s(page %p)\n", __func__, (void *)pages);
440 
441 	pfn = page_to_pfn(pages);
442 
443 	if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count)
444 		return false;
445 
446 	VM_BUG_ON(pfn + count > cma->base_pfn + cma->count);
447 
448 	free_contig_range(pfn, count);
449 	cma_clear_bitmap(cma, pfn, count);
450 
451 	return true;
452 }
453