1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contiguous Memory Allocator 4 * 5 * Copyright (c) 2010-2011 by Samsung Electronics. 6 * Copyright IBM Corporation, 2013 7 * Copyright LG Electronics Inc., 2014 8 * Written by: 9 * Marek Szyprowski <m.szyprowski@samsung.com> 10 * Michal Nazarewicz <mina86@mina86.com> 11 * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> 12 * Joonsoo Kim <iamjoonsoo.kim@lge.com> 13 */ 14 15 #define pr_fmt(fmt) "cma: " fmt 16 17 #define CREATE_TRACE_POINTS 18 19 #include <linux/memblock.h> 20 #include <linux/err.h> 21 #include <linux/list.h> 22 #include <linux/mm.h> 23 #include <linux/sizes.h> 24 #include <linux/slab.h> 25 #include <linux/log2.h> 26 #include <linux/cma.h> 27 #include <linux/highmem.h> 28 #include <linux/io.h> 29 #include <linux/kmemleak.h> 30 #include <trace/events/cma.h> 31 32 #include "internal.h" 33 #include "cma.h" 34 35 struct cma cma_areas[MAX_CMA_AREAS]; 36 unsigned int cma_area_count; 37 static DEFINE_MUTEX(cma_mutex); 38 39 static int __init __cma_declare_contiguous_nid(phys_addr_t base, 40 phys_addr_t size, phys_addr_t limit, 41 phys_addr_t alignment, unsigned int order_per_bit, 42 bool fixed, const char *name, struct cma **res_cma, 43 int nid); 44 45 phys_addr_t cma_get_base(const struct cma *cma) 46 { 47 WARN_ON_ONCE(cma->nranges != 1); 48 return PFN_PHYS(cma->ranges[0].base_pfn); 49 } 50 51 unsigned long cma_get_size(const struct cma *cma) 52 { 53 return cma->count << PAGE_SHIFT; 54 } 55 56 const char *cma_get_name(const struct cma *cma) 57 { 58 return cma->name; 59 } 60 61 static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, 62 unsigned int align_order) 63 { 64 if (align_order <= cma->order_per_bit) 65 return 0; 66 return (1UL << (align_order - cma->order_per_bit)) - 1; 67 } 68 69 /* 70 * Find the offset of the base PFN from the specified align_order. 71 * The value returned is represented in order_per_bits. 72 */ 73 static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, 74 const struct cma_memrange *cmr, 75 unsigned int align_order) 76 { 77 return (cmr->base_pfn & ((1UL << align_order) - 1)) 78 >> cma->order_per_bit; 79 } 80 81 static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, 82 unsigned long pages) 83 { 84 return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; 85 } 86 87 static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, 88 unsigned long pfn, unsigned long count) 89 { 90 unsigned long bitmap_no, bitmap_count; 91 unsigned long flags; 92 93 bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; 94 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 95 96 spin_lock_irqsave(&cma->lock, flags); 97 bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); 98 cma->available_count += count; 99 spin_unlock_irqrestore(&cma->lock, flags); 100 } 101 102 /* 103 * Check if a CMA area contains no ranges that intersect with 104 * multiple zones. Store the result in the flags in case 105 * this gets called more than once. 106 */ 107 bool cma_validate_zones(struct cma *cma) 108 { 109 int r; 110 unsigned long base_pfn; 111 struct cma_memrange *cmr; 112 bool valid_bit_set; 113 114 /* 115 * If already validated, return result of previous check. 116 * Either the valid or invalid bit will be set if this 117 * check has already been done. If neither is set, the 118 * check has not been performed yet. 119 */ 120 valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); 121 if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) 122 return valid_bit_set; 123 124 for (r = 0; r < cma->nranges; r++) { 125 cmr = &cma->ranges[r]; 126 base_pfn = cmr->base_pfn; 127 128 /* 129 * alloc_contig_range() requires the pfn range specified 130 * to be in the same zone. Simplify by forcing the entire 131 * CMA resv range to be in the same zone. 132 */ 133 WARN_ON_ONCE(!pfn_valid(base_pfn)); 134 if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { 135 set_bit(CMA_ZONES_INVALID, &cma->flags); 136 return false; 137 } 138 } 139 140 set_bit(CMA_ZONES_VALID, &cma->flags); 141 142 return true; 143 } 144 145 static void __init cma_activate_area(struct cma *cma) 146 { 147 unsigned long pfn, end_pfn; 148 int allocrange, r; 149 struct cma_memrange *cmr; 150 unsigned long bitmap_count, count; 151 152 for (allocrange = 0; allocrange < cma->nranges; allocrange++) { 153 cmr = &cma->ranges[allocrange]; 154 cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), 155 GFP_KERNEL); 156 if (!cmr->bitmap) 157 goto cleanup; 158 } 159 160 if (!cma_validate_zones(cma)) 161 goto cleanup; 162 163 for (r = 0; r < cma->nranges; r++) { 164 cmr = &cma->ranges[r]; 165 if (cmr->early_pfn != cmr->base_pfn) { 166 count = cmr->early_pfn - cmr->base_pfn; 167 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 168 bitmap_set(cmr->bitmap, 0, bitmap_count); 169 } 170 171 for (pfn = cmr->early_pfn; pfn < cmr->base_pfn + cmr->count; 172 pfn += pageblock_nr_pages) 173 init_cma_reserved_pageblock(pfn_to_page(pfn)); 174 } 175 176 spin_lock_init(&cma->lock); 177 178 #ifdef CONFIG_CMA_DEBUGFS 179 INIT_HLIST_HEAD(&cma->mem_head); 180 spin_lock_init(&cma->mem_head_lock); 181 #endif 182 set_bit(CMA_ACTIVATED, &cma->flags); 183 184 return; 185 186 cleanup: 187 for (r = 0; r < allocrange; r++) 188 bitmap_free(cma->ranges[r].bitmap); 189 190 /* Expose all pages to the buddy, they are useless for CMA. */ 191 if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { 192 for (r = 0; r < allocrange; r++) { 193 cmr = &cma->ranges[r]; 194 end_pfn = cmr->base_pfn + cmr->count; 195 for (pfn = cmr->early_pfn; pfn < end_pfn; pfn++) 196 free_reserved_page(pfn_to_page(pfn)); 197 } 198 } 199 totalcma_pages -= cma->count; 200 cma->available_count = cma->count = 0; 201 pr_err("CMA area %s could not be activated\n", cma->name); 202 } 203 204 static int __init cma_init_reserved_areas(void) 205 { 206 int i; 207 208 for (i = 0; i < cma_area_count; i++) 209 cma_activate_area(&cma_areas[i]); 210 211 return 0; 212 } 213 core_initcall(cma_init_reserved_areas); 214 215 void __init cma_reserve_pages_on_error(struct cma *cma) 216 { 217 set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); 218 } 219 220 static int __init cma_new_area(const char *name, phys_addr_t size, 221 unsigned int order_per_bit, 222 struct cma **res_cma) 223 { 224 struct cma *cma; 225 226 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 227 pr_err("Not enough slots for CMA reserved regions!\n"); 228 return -ENOSPC; 229 } 230 231 /* 232 * Each reserved area must be initialised later, when more kernel 233 * subsystems (like slab allocator) are available. 234 */ 235 cma = &cma_areas[cma_area_count]; 236 cma_area_count++; 237 238 if (name) 239 snprintf(cma->name, CMA_MAX_NAME, "%s", name); 240 else 241 snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); 242 243 cma->available_count = cma->count = size >> PAGE_SHIFT; 244 cma->order_per_bit = order_per_bit; 245 *res_cma = cma; 246 totalcma_pages += cma->count; 247 248 return 0; 249 } 250 251 static void __init cma_drop_area(struct cma *cma) 252 { 253 totalcma_pages -= cma->count; 254 cma_area_count--; 255 } 256 257 /** 258 * cma_init_reserved_mem() - create custom contiguous area from reserved memory 259 * @base: Base address of the reserved area 260 * @size: Size of the reserved area (in bytes), 261 * @order_per_bit: Order of pages represented by one bit on bitmap. 262 * @name: The name of the area. If this parameter is NULL, the name of 263 * the area will be set to "cmaN", where N is a running counter of 264 * used areas. 265 * @res_cma: Pointer to store the created cma region. 266 * 267 * This function creates custom contiguous area from already reserved memory. 268 */ 269 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, 270 unsigned int order_per_bit, 271 const char *name, 272 struct cma **res_cma) 273 { 274 struct cma *cma; 275 int ret; 276 277 /* Sanity checks */ 278 if (!size || !memblock_is_region_reserved(base, size)) 279 return -EINVAL; 280 281 /* 282 * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which 283 * needs pageblock_order to be initialized. Let's enforce it. 284 */ 285 if (!pageblock_order) { 286 pr_err("pageblock_order not yet initialized. Called during early boot?\n"); 287 return -EINVAL; 288 } 289 290 /* ensure minimal alignment required by mm core */ 291 if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) 292 return -EINVAL; 293 294 ret = cma_new_area(name, size, order_per_bit, &cma); 295 if (ret != 0) 296 return ret; 297 298 cma->ranges[0].base_pfn = PFN_DOWN(base); 299 cma->ranges[0].early_pfn = PFN_DOWN(base); 300 cma->ranges[0].count = cma->count; 301 cma->nranges = 1; 302 cma->nid = NUMA_NO_NODE; 303 304 *res_cma = cma; 305 306 return 0; 307 } 308 309 /* 310 * Structure used while walking physical memory ranges and finding out 311 * which one(s) to use for a CMA area. 312 */ 313 struct cma_init_memrange { 314 phys_addr_t base; 315 phys_addr_t size; 316 struct list_head list; 317 }; 318 319 /* 320 * Work array used during CMA initialization. 321 */ 322 static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; 323 324 static bool __init revsizecmp(struct cma_init_memrange *mlp, 325 struct cma_init_memrange *mrp) 326 { 327 return mlp->size > mrp->size; 328 } 329 330 static bool __init basecmp(struct cma_init_memrange *mlp, 331 struct cma_init_memrange *mrp) 332 { 333 return mlp->base < mrp->base; 334 } 335 336 /* 337 * Helper function to create sorted lists. 338 */ 339 static void __init list_insert_sorted( 340 struct list_head *ranges, 341 struct cma_init_memrange *mrp, 342 bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) 343 { 344 struct list_head *mp; 345 struct cma_init_memrange *mlp; 346 347 if (list_empty(ranges)) 348 list_add(&mrp->list, ranges); 349 else { 350 list_for_each(mp, ranges) { 351 mlp = list_entry(mp, struct cma_init_memrange, list); 352 if (cmp(mlp, mrp)) 353 break; 354 } 355 __list_add(&mrp->list, mlp->list.prev, &mlp->list); 356 } 357 } 358 359 /* 360 * Create CMA areas with a total size of @total_size. A normal allocation 361 * for one area is tried first. If that fails, the biggest memblock 362 * ranges above 4G are selected, and allocated bottom up. 363 * 364 * The complexity here is not great, but this function will only be 365 * called during boot, and the lists operated on have fewer than 366 * CMA_MAX_RANGES elements (default value: 8). 367 */ 368 int __init cma_declare_contiguous_multi(phys_addr_t total_size, 369 phys_addr_t align, unsigned int order_per_bit, 370 const char *name, struct cma **res_cma, int nid) 371 { 372 phys_addr_t start, end; 373 phys_addr_t size, sizesum, sizeleft; 374 struct cma_init_memrange *mrp, *mlp, *failed; 375 struct cma_memrange *cmrp; 376 LIST_HEAD(ranges); 377 LIST_HEAD(final_ranges); 378 struct list_head *mp, *next; 379 int ret, nr = 1; 380 u64 i; 381 struct cma *cma; 382 383 /* 384 * First, try it the normal way, producing just one range. 385 */ 386 ret = __cma_declare_contiguous_nid(0, total_size, 0, align, 387 order_per_bit, false, name, res_cma, nid); 388 if (ret != -ENOMEM) 389 goto out; 390 391 /* 392 * Couldn't find one range that fits our needs, so try multiple 393 * ranges. 394 * 395 * No need to do the alignment checks here, the call to 396 * cma_declare_contiguous_nid above would have caught 397 * any issues. With the checks, we know that: 398 * 399 * - @align is a power of 2 400 * - @align is >= pageblock alignment 401 * - @size is aligned to @align and to @order_per_bit 402 * 403 * So, as long as we create ranges that have a base 404 * aligned to @align, and a size that is aligned to 405 * both @align and @order_to_bit, things will work out. 406 */ 407 nr = 0; 408 sizesum = 0; 409 failed = NULL; 410 411 ret = cma_new_area(name, total_size, order_per_bit, &cma); 412 if (ret != 0) 413 goto out; 414 415 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); 416 /* 417 * Create a list of ranges above 4G, largest range first. 418 */ 419 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { 420 if (upper_32_bits(start) == 0) 421 continue; 422 423 start = ALIGN(start, align); 424 if (start >= end) 425 continue; 426 427 end = ALIGN_DOWN(end, align); 428 if (end <= start) 429 continue; 430 431 size = end - start; 432 size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); 433 if (!size) 434 continue; 435 sizesum += size; 436 437 pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); 438 439 /* 440 * If we don't yet have used the maximum number of 441 * areas, grab a new one. 442 * 443 * If we can't use anymore, see if this range is not 444 * smaller than the smallest one already recorded. If 445 * not, re-use the smallest element. 446 */ 447 if (nr < CMA_MAX_RANGES) 448 mrp = &memranges[nr++]; 449 else { 450 mrp = list_last_entry(&ranges, 451 struct cma_init_memrange, list); 452 if (size < mrp->size) 453 continue; 454 list_del(&mrp->list); 455 sizesum -= mrp->size; 456 pr_debug("deleted %016llx - %016llx from the list\n", 457 (u64)mrp->base, (u64)mrp->base + size); 458 } 459 mrp->base = start; 460 mrp->size = size; 461 462 /* 463 * Now do a sorted insert. 464 */ 465 list_insert_sorted(&ranges, mrp, revsizecmp); 466 pr_debug("added %016llx - %016llx to the list\n", 467 (u64)mrp->base, (u64)mrp->base + size); 468 pr_debug("total size now %llu\n", (u64)sizesum); 469 } 470 471 /* 472 * There is not enough room in the CMA_MAX_RANGES largest 473 * ranges, so bail out. 474 */ 475 if (sizesum < total_size) { 476 cma_drop_area(cma); 477 ret = -ENOMEM; 478 goto out; 479 } 480 481 /* 482 * Found ranges that provide enough combined space. 483 * Now, sorted them by address, smallest first, because we 484 * want to mimic a bottom-up memblock allocation. 485 */ 486 sizesum = 0; 487 list_for_each_safe(mp, next, &ranges) { 488 mlp = list_entry(mp, struct cma_init_memrange, list); 489 list_del(mp); 490 list_insert_sorted(&final_ranges, mlp, basecmp); 491 sizesum += mlp->size; 492 if (sizesum >= total_size) 493 break; 494 } 495 496 /* 497 * Walk the final list, and add a CMA range for 498 * each range, possibly not using the last one fully. 499 */ 500 nr = 0; 501 sizeleft = total_size; 502 list_for_each(mp, &final_ranges) { 503 mlp = list_entry(mp, struct cma_init_memrange, list); 504 size = min(sizeleft, mlp->size); 505 if (memblock_reserve(mlp->base, size)) { 506 /* 507 * Unexpected error. Could go on to 508 * the next one, but just abort to 509 * be safe. 510 */ 511 failed = mlp; 512 break; 513 } 514 515 pr_debug("created region %d: %016llx - %016llx\n", 516 nr, (u64)mlp->base, (u64)mlp->base + size); 517 cmrp = &cma->ranges[nr++]; 518 cmrp->base_pfn = PHYS_PFN(mlp->base); 519 cmrp->early_pfn = cmrp->base_pfn; 520 cmrp->count = size >> PAGE_SHIFT; 521 522 sizeleft -= size; 523 if (sizeleft == 0) 524 break; 525 } 526 527 if (failed) { 528 list_for_each(mp, &final_ranges) { 529 mlp = list_entry(mp, struct cma_init_memrange, list); 530 if (mlp == failed) 531 break; 532 memblock_phys_free(mlp->base, mlp->size); 533 } 534 cma_drop_area(cma); 535 ret = -ENOMEM; 536 goto out; 537 } 538 539 cma->nranges = nr; 540 cma->nid = nid; 541 *res_cma = cma; 542 543 out: 544 if (ret != 0) 545 pr_err("Failed to reserve %lu MiB\n", 546 (unsigned long)total_size / SZ_1M); 547 else 548 pr_info("Reserved %lu MiB in %d range%s\n", 549 (unsigned long)total_size / SZ_1M, nr, 550 nr > 1 ? "s" : ""); 551 return ret; 552 } 553 554 /** 555 * cma_declare_contiguous_nid() - reserve custom contiguous area 556 * @base: Base address of the reserved area optional, use 0 for any 557 * @size: Size of the reserved area (in bytes), 558 * @limit: End address of the reserved memory (optional, 0 for any). 559 * @alignment: Alignment for the CMA area, should be power of 2 or zero 560 * @order_per_bit: Order of pages represented by one bit on bitmap. 561 * @fixed: hint about where to place the reserved area 562 * @name: The name of the area. See function cma_init_reserved_mem() 563 * @res_cma: Pointer to store the created cma region. 564 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 565 * 566 * This function reserves memory from early allocator. It should be 567 * called by arch specific code once the early allocator (memblock or bootmem) 568 * has been activated and all other subsystems have already allocated/reserved 569 * memory. This function allows to create custom reserved areas. 570 * 571 * If @fixed is true, reserve contiguous area at exactly @base. If false, 572 * reserve in range from @base to @limit. 573 */ 574 int __init cma_declare_contiguous_nid(phys_addr_t base, 575 phys_addr_t size, phys_addr_t limit, 576 phys_addr_t alignment, unsigned int order_per_bit, 577 bool fixed, const char *name, struct cma **res_cma, 578 int nid) 579 { 580 int ret; 581 582 ret = __cma_declare_contiguous_nid(base, size, limit, alignment, 583 order_per_bit, fixed, name, res_cma, nid); 584 if (ret != 0) 585 pr_err("Failed to reserve %ld MiB\n", 586 (unsigned long)size / SZ_1M); 587 else 588 pr_info("Reserved %ld MiB at %pa\n", 589 (unsigned long)size / SZ_1M, &base); 590 591 return ret; 592 } 593 594 static int __init __cma_declare_contiguous_nid(phys_addr_t base, 595 phys_addr_t size, phys_addr_t limit, 596 phys_addr_t alignment, unsigned int order_per_bit, 597 bool fixed, const char *name, struct cma **res_cma, 598 int nid) 599 { 600 phys_addr_t memblock_end = memblock_end_of_DRAM(); 601 phys_addr_t highmem_start; 602 int ret; 603 604 /* 605 * We can't use __pa(high_memory) directly, since high_memory 606 * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly) 607 * complain. Find the boundary by adding one to the last valid 608 * address. 609 */ 610 highmem_start = __pa(high_memory - 1) + 1; 611 pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", 612 __func__, &size, &base, &limit, &alignment); 613 614 if (cma_area_count == ARRAY_SIZE(cma_areas)) { 615 pr_err("Not enough slots for CMA reserved regions!\n"); 616 return -ENOSPC; 617 } 618 619 if (!size) 620 return -EINVAL; 621 622 if (alignment && !is_power_of_2(alignment)) 623 return -EINVAL; 624 625 if (!IS_ENABLED(CONFIG_NUMA)) 626 nid = NUMA_NO_NODE; 627 628 /* Sanitise input arguments. */ 629 alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); 630 if (fixed && base & (alignment - 1)) { 631 pr_err("Region at %pa must be aligned to %pa bytes\n", 632 &base, &alignment); 633 return -EINVAL; 634 } 635 base = ALIGN(base, alignment); 636 size = ALIGN(size, alignment); 637 limit &= ~(alignment - 1); 638 639 if (!base) 640 fixed = false; 641 642 /* size should be aligned with order_per_bit */ 643 if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) 644 return -EINVAL; 645 646 /* 647 * If allocating at a fixed base the request region must not cross the 648 * low/high memory boundary. 649 */ 650 if (fixed && base < highmem_start && base + size > highmem_start) { 651 pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", 652 &base, &highmem_start); 653 return -EINVAL; 654 } 655 656 /* 657 * If the limit is unspecified or above the memblock end, its effective 658 * value will be the memblock end. Set it explicitly to simplify further 659 * checks. 660 */ 661 if (limit == 0 || limit > memblock_end) 662 limit = memblock_end; 663 664 if (base + size > limit) { 665 pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", 666 &size, &base, &limit); 667 return -EINVAL; 668 } 669 670 /* Reserve memory */ 671 if (fixed) { 672 if (memblock_is_region_reserved(base, size) || 673 memblock_reserve(base, size) < 0) { 674 return -EBUSY; 675 } 676 } else { 677 phys_addr_t addr = 0; 678 679 /* 680 * If there is enough memory, try a bottom-up allocation first. 681 * It will place the new cma area close to the start of the node 682 * and guarantee that the compaction is moving pages out of the 683 * cma area and not into it. 684 * Avoid using first 4GB to not interfere with constrained zones 685 * like DMA/DMA32. 686 */ 687 #ifdef CONFIG_PHYS_ADDR_T_64BIT 688 if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) { 689 memblock_set_bottom_up(true); 690 addr = memblock_alloc_range_nid(size, alignment, SZ_4G, 691 limit, nid, true); 692 memblock_set_bottom_up(false); 693 } 694 #endif 695 696 /* 697 * All pages in the reserved area must come from the same zone. 698 * If the requested region crosses the low/high memory boundary, 699 * try allocating from high memory first and fall back to low 700 * memory in case of failure. 701 */ 702 if (!addr && base < highmem_start && limit > highmem_start) { 703 addr = memblock_alloc_range_nid(size, alignment, 704 highmem_start, limit, nid, true); 705 limit = highmem_start; 706 } 707 708 if (!addr) { 709 addr = memblock_alloc_range_nid(size, alignment, base, 710 limit, nid, true); 711 if (!addr) 712 return -ENOMEM; 713 } 714 715 /* 716 * kmemleak scans/reads tracked objects for pointers to other 717 * objects but this address isn't mapped and accessible 718 */ 719 kmemleak_ignore_phys(addr); 720 base = addr; 721 } 722 723 ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); 724 if (ret) 725 memblock_phys_free(base, size); 726 727 (*res_cma)->nid = nid; 728 729 return ret; 730 } 731 732 static void cma_debug_show_areas(struct cma *cma) 733 { 734 unsigned long next_zero_bit, next_set_bit, nr_zero; 735 unsigned long start; 736 unsigned long nr_part; 737 unsigned long nbits; 738 int r; 739 struct cma_memrange *cmr; 740 741 spin_lock_irq(&cma->lock); 742 pr_info("number of available pages: "); 743 for (r = 0; r < cma->nranges; r++) { 744 cmr = &cma->ranges[r]; 745 746 start = 0; 747 nbits = cma_bitmap_maxno(cma, cmr); 748 749 pr_info("range %d: ", r); 750 for (;;) { 751 next_zero_bit = find_next_zero_bit(cmr->bitmap, 752 nbits, start); 753 if (next_zero_bit >= nbits) 754 break; 755 next_set_bit = find_next_bit(cmr->bitmap, nbits, 756 next_zero_bit); 757 nr_zero = next_set_bit - next_zero_bit; 758 nr_part = nr_zero << cma->order_per_bit; 759 pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, 760 next_zero_bit); 761 start = next_zero_bit + nr_zero; 762 } 763 pr_info("\n"); 764 } 765 pr_cont("=> %lu free of %lu total pages\n", cma->available_count, 766 cma->count); 767 spin_unlock_irq(&cma->lock); 768 } 769 770 static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, 771 unsigned long count, unsigned int align, 772 struct page **pagep, gfp_t gfp) 773 { 774 unsigned long mask, offset; 775 unsigned long pfn = -1; 776 unsigned long start = 0; 777 unsigned long bitmap_maxno, bitmap_no, bitmap_count; 778 int ret = -EBUSY; 779 struct page *page = NULL; 780 781 mask = cma_bitmap_aligned_mask(cma, align); 782 offset = cma_bitmap_aligned_offset(cma, cmr, align); 783 bitmap_maxno = cma_bitmap_maxno(cma, cmr); 784 bitmap_count = cma_bitmap_pages_to_bits(cma, count); 785 786 if (bitmap_count > bitmap_maxno) 787 goto out; 788 789 for (;;) { 790 spin_lock_irq(&cma->lock); 791 /* 792 * If the request is larger than the available number 793 * of pages, stop right away. 794 */ 795 if (count > cma->available_count) { 796 spin_unlock_irq(&cma->lock); 797 break; 798 } 799 bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, 800 bitmap_maxno, start, bitmap_count, mask, 801 offset); 802 if (bitmap_no >= bitmap_maxno) { 803 spin_unlock_irq(&cma->lock); 804 break; 805 } 806 bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); 807 cma->available_count -= count; 808 /* 809 * It's safe to drop the lock here. We've marked this region for 810 * our exclusive use. If the migration fails we will take the 811 * lock again and unmark it. 812 */ 813 spin_unlock_irq(&cma->lock); 814 815 pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); 816 mutex_lock(&cma_mutex); 817 ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp); 818 mutex_unlock(&cma_mutex); 819 if (ret == 0) { 820 page = pfn_to_page(pfn); 821 break; 822 } 823 824 cma_clear_bitmap(cma, cmr, pfn, count); 825 if (ret != -EBUSY) 826 break; 827 828 pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", 829 __func__, pfn, pfn_to_page(pfn)); 830 831 trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), 832 count, align); 833 /* try again with a bit different memory target */ 834 start = bitmap_no + mask + 1; 835 } 836 out: 837 *pagep = page; 838 return ret; 839 } 840 841 static struct page *__cma_alloc(struct cma *cma, unsigned long count, 842 unsigned int align, gfp_t gfp) 843 { 844 struct page *page = NULL; 845 int ret = -ENOMEM, r; 846 unsigned long i; 847 const char *name = cma ? cma->name : NULL; 848 849 trace_cma_alloc_start(name, count, align); 850 851 if (!cma || !cma->count) 852 return page; 853 854 pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, 855 (void *)cma, cma->name, count, align); 856 857 if (!count) 858 return page; 859 860 for (r = 0; r < cma->nranges; r++) { 861 page = NULL; 862 863 ret = cma_range_alloc(cma, &cma->ranges[r], count, align, 864 &page, gfp); 865 if (ret != -EBUSY || page) 866 break; 867 } 868 869 /* 870 * CMA can allocate multiple page blocks, which results in different 871 * blocks being marked with different tags. Reset the tags to ignore 872 * those page blocks. 873 */ 874 if (page) { 875 for (i = 0; i < count; i++) 876 page_kasan_tag_reset(nth_page(page, i)); 877 } 878 879 if (ret && !(gfp & __GFP_NOWARN)) { 880 pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", 881 __func__, cma->name, count, ret); 882 cma_debug_show_areas(cma); 883 } 884 885 pr_debug("%s(): returned %p\n", __func__, page); 886 trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, 887 page, count, align, ret); 888 if (page) { 889 count_vm_event(CMA_ALLOC_SUCCESS); 890 cma_sysfs_account_success_pages(cma, count); 891 } else { 892 count_vm_event(CMA_ALLOC_FAIL); 893 cma_sysfs_account_fail_pages(cma, count); 894 } 895 896 return page; 897 } 898 899 /** 900 * cma_alloc() - allocate pages from contiguous area 901 * @cma: Contiguous memory region for which the allocation is performed. 902 * @count: Requested number of pages. 903 * @align: Requested alignment of pages (in PAGE_SIZE order). 904 * @no_warn: Avoid printing message about failed allocation 905 * 906 * This function allocates part of contiguous memory on specific 907 * contiguous memory area. 908 */ 909 struct page *cma_alloc(struct cma *cma, unsigned long count, 910 unsigned int align, bool no_warn) 911 { 912 return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); 913 } 914 915 struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) 916 { 917 struct page *page; 918 919 if (WARN_ON(!order || !(gfp & __GFP_COMP))) 920 return NULL; 921 922 page = __cma_alloc(cma, 1 << order, order, gfp); 923 924 return page ? page_folio(page) : NULL; 925 } 926 927 bool cma_pages_valid(struct cma *cma, const struct page *pages, 928 unsigned long count) 929 { 930 unsigned long pfn, end; 931 int r; 932 struct cma_memrange *cmr; 933 bool ret; 934 935 if (!cma || !pages || count > cma->count) 936 return false; 937 938 pfn = page_to_pfn(pages); 939 ret = false; 940 941 for (r = 0; r < cma->nranges; r++) { 942 cmr = &cma->ranges[r]; 943 end = cmr->base_pfn + cmr->count; 944 if (pfn >= cmr->base_pfn && pfn < end) { 945 ret = pfn + count <= end; 946 break; 947 } 948 } 949 950 if (!ret) 951 pr_debug("%s(page %p, count %lu)\n", 952 __func__, (void *)pages, count); 953 954 return ret; 955 } 956 957 /** 958 * cma_release() - release allocated pages 959 * @cma: Contiguous memory region for which the allocation is performed. 960 * @pages: Allocated pages. 961 * @count: Number of allocated pages. 962 * 963 * This function releases memory allocated by cma_alloc(). 964 * It returns false when provided pages do not belong to contiguous area and 965 * true otherwise. 966 */ 967 bool cma_release(struct cma *cma, const struct page *pages, 968 unsigned long count) 969 { 970 struct cma_memrange *cmr; 971 unsigned long pfn, end_pfn; 972 int r; 973 974 pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); 975 976 if (!cma_pages_valid(cma, pages, count)) 977 return false; 978 979 pfn = page_to_pfn(pages); 980 end_pfn = pfn + count; 981 982 for (r = 0; r < cma->nranges; r++) { 983 cmr = &cma->ranges[r]; 984 if (pfn >= cmr->base_pfn && 985 pfn < (cmr->base_pfn + cmr->count)) { 986 VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); 987 break; 988 } 989 } 990 991 if (r == cma->nranges) 992 return false; 993 994 free_contig_range(pfn, count); 995 cma_clear_bitmap(cma, cmr, pfn, count); 996 cma_sysfs_account_release_pages(cma, count); 997 trace_cma_release(cma->name, pfn, pages, count); 998 999 return true; 1000 } 1001 1002 bool cma_free_folio(struct cma *cma, const struct folio *folio) 1003 { 1004 if (WARN_ON(!folio_test_large(folio))) 1005 return false; 1006 1007 return cma_release(cma, &folio->page, folio_nr_pages(folio)); 1008 } 1009 1010 int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) 1011 { 1012 int i; 1013 1014 for (i = 0; i < cma_area_count; i++) { 1015 int ret = it(&cma_areas[i], data); 1016 1017 if (ret) 1018 return ret; 1019 } 1020 1021 return 0; 1022 } 1023 1024 bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) 1025 { 1026 int r; 1027 struct cma_memrange *cmr; 1028 unsigned long rstart, rend; 1029 1030 for (r = 0; r < cma->nranges; r++) { 1031 cmr = &cma->ranges[r]; 1032 1033 rstart = PFN_PHYS(cmr->base_pfn); 1034 rend = PFN_PHYS(cmr->base_pfn + cmr->count); 1035 if (end < rstart) 1036 continue; 1037 if (start >= rend) 1038 continue; 1039 return true; 1040 } 1041 1042 return false; 1043 } 1044 1045 /* 1046 * Very basic function to reserve memory from a CMA area that has not 1047 * yet been activated. This is expected to be called early, when the 1048 * system is single-threaded, so there is no locking. The alignment 1049 * checking is restrictive - only pageblock-aligned areas 1050 * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. 1051 * This keeps things simple, and is enough for the current use case. 1052 * 1053 * The CMA bitmaps have not yet been allocated, so just start 1054 * reserving from the bottom up, using a PFN to keep track 1055 * of what has been reserved. Unreserving is not possible. 1056 * 1057 * The caller is responsible for initializing the page structures 1058 * in the area properly, since this just points to memblock-allocated 1059 * memory. The caller should subsequently use init_cma_pageblock to 1060 * set the migrate type and CMA stats the pageblocks that were reserved. 1061 * 1062 * If the CMA area fails to activate later, memory obtained through 1063 * this interface is not handed to the page allocator, this is 1064 * the responsibility of the caller (e.g. like normal memblock-allocated 1065 * memory). 1066 */ 1067 void __init *cma_reserve_early(struct cma *cma, unsigned long size) 1068 { 1069 int r; 1070 struct cma_memrange *cmr; 1071 unsigned long available; 1072 void *ret = NULL; 1073 1074 if (!cma || !cma->count) 1075 return NULL; 1076 /* 1077 * Can only be called early in init. 1078 */ 1079 if (test_bit(CMA_ACTIVATED, &cma->flags)) 1080 return NULL; 1081 1082 if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) 1083 return NULL; 1084 1085 if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) 1086 return NULL; 1087 1088 size >>= PAGE_SHIFT; 1089 1090 if (size > cma->available_count) 1091 return NULL; 1092 1093 for (r = 0; r < cma->nranges; r++) { 1094 cmr = &cma->ranges[r]; 1095 available = cmr->count - (cmr->early_pfn - cmr->base_pfn); 1096 if (size <= available) { 1097 ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); 1098 cmr->early_pfn += size; 1099 cma->available_count -= size; 1100 return ret; 1101 } 1102 } 1103 1104 return ret; 1105 } 1106