xref: /linux/lib/xarray.c (revision ccb01374a835ae4ee8c71f801ca20fc669cba6b8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * XArray implementation
4  * Copyright (c) 2017 Microsoft Corporation
5  * Author: Matthew Wilcox <willy@infradead.org>
6  */
7 
8 #include <linux/bitmap.h>
9 #include <linux/export.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/xarray.h>
13 
14 /*
15  * Coding conventions in this file:
16  *
17  * @xa is used to refer to the entire xarray.
18  * @xas is the 'xarray operation state'.  It may be either a pointer to
19  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
20  * ambiguity.
21  * @index is the index of the entry being operated on
22  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23  * @node refers to an xa_node; usually the primary one being operated on by
24  * this function.
25  * @offset is the index into the slots array inside an xa_node.
26  * @parent refers to the @xa_node closer to the head than @node.
27  * @entry refers to something stored in a slot in the xarray
28  */
29 
30 static inline unsigned int xa_lock_type(const struct xarray *xa)
31 {
32 	return (__force unsigned int)xa->xa_flags & 3;
33 }
34 
35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36 {
37 	if (lock_type == XA_LOCK_IRQ)
38 		xas_lock_irq(xas);
39 	else if (lock_type == XA_LOCK_BH)
40 		xas_lock_bh(xas);
41 	else
42 		xas_lock(xas);
43 }
44 
45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46 {
47 	if (lock_type == XA_LOCK_IRQ)
48 		xas_unlock_irq(xas);
49 	else if (lock_type == XA_LOCK_BH)
50 		xas_unlock_bh(xas);
51 	else
52 		xas_unlock(xas);
53 }
54 
55 static inline bool xa_track_free(const struct xarray *xa)
56 {
57 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58 }
59 
60 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
61 {
62 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
63 		xa->xa_flags |= XA_FLAGS_MARK(mark);
64 }
65 
66 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
67 {
68 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
69 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
70 }
71 
72 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
73 {
74 	return node->marks[(__force unsigned)mark];
75 }
76 
77 static inline bool node_get_mark(struct xa_node *node,
78 		unsigned int offset, xa_mark_t mark)
79 {
80 	return test_bit(offset, node_marks(node, mark));
81 }
82 
83 /* returns true if the bit was set */
84 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
85 				xa_mark_t mark)
86 {
87 	return __test_and_set_bit(offset, node_marks(node, mark));
88 }
89 
90 /* returns true if the bit was set */
91 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
92 				xa_mark_t mark)
93 {
94 	return __test_and_clear_bit(offset, node_marks(node, mark));
95 }
96 
97 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
98 {
99 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
100 }
101 
102 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
103 {
104 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
105 }
106 
107 #define mark_inc(mark) do { \
108 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
109 } while (0)
110 
111 /*
112  * xas_squash_marks() - Merge all marks to the first entry
113  * @xas: Array operation state.
114  *
115  * Set a mark on the first entry if any entry has it set.  Clear marks on
116  * all sibling entries.
117  */
118 static void xas_squash_marks(const struct xa_state *xas)
119 {
120 	unsigned int mark = 0;
121 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
122 
123 	if (!xas->xa_sibs)
124 		return;
125 
126 	do {
127 		unsigned long *marks = xas->xa_node->marks[mark];
128 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
129 			continue;
130 		__set_bit(xas->xa_offset, marks);
131 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
132 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
133 }
134 
135 /* extracts the offset within this node from the index */
136 static unsigned int get_offset(unsigned long index, struct xa_node *node)
137 {
138 	return (index >> node->shift) & XA_CHUNK_MASK;
139 }
140 
141 static void xas_set_offset(struct xa_state *xas)
142 {
143 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
144 }
145 
146 /* move the index either forwards (find) or backwards (sibling slot) */
147 static void xas_move_index(struct xa_state *xas, unsigned long offset)
148 {
149 	unsigned int shift = xas->xa_node->shift;
150 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
151 	xas->xa_index += offset << shift;
152 }
153 
154 static void xas_advance(struct xa_state *xas)
155 {
156 	xas->xa_offset++;
157 	xas_move_index(xas, xas->xa_offset);
158 }
159 
160 static void *set_bounds(struct xa_state *xas)
161 {
162 	xas->xa_node = XAS_BOUNDS;
163 	return NULL;
164 }
165 
166 /*
167  * Starts a walk.  If the @xas is already valid, we assume that it's on
168  * the right path and just return where we've got to.  If we're in an
169  * error state, return NULL.  If the index is outside the current scope
170  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
171  * set @xas->xa_node to NULL and return the current head of the array.
172  */
173 static void *xas_start(struct xa_state *xas)
174 {
175 	void *entry;
176 
177 	if (xas_valid(xas))
178 		return xas_reload(xas);
179 	if (xas_error(xas))
180 		return NULL;
181 
182 	entry = xa_head(xas->xa);
183 	if (!xa_is_node(entry)) {
184 		if (xas->xa_index)
185 			return set_bounds(xas);
186 	} else {
187 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
188 			return set_bounds(xas);
189 	}
190 
191 	xas->xa_node = NULL;
192 	return entry;
193 }
194 
195 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
196 {
197 	unsigned int offset = get_offset(xas->xa_index, node);
198 	void *entry = xa_entry(xas->xa, node, offset);
199 
200 	xas->xa_node = node;
201 	if (xa_is_sibling(entry)) {
202 		offset = xa_to_sibling(entry);
203 		entry = xa_entry(xas->xa, node, offset);
204 	}
205 
206 	xas->xa_offset = offset;
207 	return entry;
208 }
209 
210 /**
211  * xas_load() - Load an entry from the XArray (advanced).
212  * @xas: XArray operation state.
213  *
214  * Usually walks the @xas to the appropriate state to load the entry
215  * stored at xa_index.  However, it will do nothing and return %NULL if
216  * @xas is in an error state.  xas_load() will never expand the tree.
217  *
218  * If the xa_state is set up to operate on a multi-index entry, xas_load()
219  * may return %NULL or an internal entry, even if there are entries
220  * present within the range specified by @xas.
221  *
222  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
223  * Return: Usually an entry in the XArray, but see description for exceptions.
224  */
225 void *xas_load(struct xa_state *xas)
226 {
227 	void *entry = xas_start(xas);
228 
229 	while (xa_is_node(entry)) {
230 		struct xa_node *node = xa_to_node(entry);
231 
232 		if (xas->xa_shift > node->shift)
233 			break;
234 		entry = xas_descend(xas, node);
235 	}
236 	return entry;
237 }
238 EXPORT_SYMBOL_GPL(xas_load);
239 
240 /* Move the radix tree node cache here */
241 extern struct kmem_cache *radix_tree_node_cachep;
242 extern void radix_tree_node_rcu_free(struct rcu_head *head);
243 
244 #define XA_RCU_FREE	((struct xarray *)1)
245 
246 static void xa_node_free(struct xa_node *node)
247 {
248 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
249 	node->array = XA_RCU_FREE;
250 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
251 }
252 
253 /*
254  * xas_destroy() - Free any resources allocated during the XArray operation.
255  * @xas: XArray operation state.
256  *
257  * This function is now internal-only.
258  */
259 static void xas_destroy(struct xa_state *xas)
260 {
261 	struct xa_node *node = xas->xa_alloc;
262 
263 	if (!node)
264 		return;
265 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
266 	kmem_cache_free(radix_tree_node_cachep, node);
267 	xas->xa_alloc = NULL;
268 }
269 
270 /**
271  * xas_nomem() - Allocate memory if needed.
272  * @xas: XArray operation state.
273  * @gfp: Memory allocation flags.
274  *
275  * If we need to add new nodes to the XArray, we try to allocate memory
276  * with GFP_NOWAIT while holding the lock, which will usually succeed.
277  * If it fails, @xas is flagged as needing memory to continue.  The caller
278  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
279  * the caller should retry the operation.
280  *
281  * Forward progress is guaranteed as one node is allocated here and
282  * stored in the xa_state where it will be found by xas_alloc().  More
283  * nodes will likely be found in the slab allocator, but we do not tie
284  * them up here.
285  *
286  * Return: true if memory was needed, and was successfully allocated.
287  */
288 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
289 {
290 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
291 		xas_destroy(xas);
292 		return false;
293 	}
294 	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
295 	if (!xas->xa_alloc)
296 		return false;
297 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
298 	xas->xa_node = XAS_RESTART;
299 	return true;
300 }
301 EXPORT_SYMBOL_GPL(xas_nomem);
302 
303 /*
304  * __xas_nomem() - Drop locks and allocate memory if needed.
305  * @xas: XArray operation state.
306  * @gfp: Memory allocation flags.
307  *
308  * Internal variant of xas_nomem().
309  *
310  * Return: true if memory was needed, and was successfully allocated.
311  */
312 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
313 	__must_hold(xas->xa->xa_lock)
314 {
315 	unsigned int lock_type = xa_lock_type(xas->xa);
316 
317 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
318 		xas_destroy(xas);
319 		return false;
320 	}
321 	if (gfpflags_allow_blocking(gfp)) {
322 		xas_unlock_type(xas, lock_type);
323 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
324 		xas_lock_type(xas, lock_type);
325 	} else {
326 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
327 	}
328 	if (!xas->xa_alloc)
329 		return false;
330 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
331 	xas->xa_node = XAS_RESTART;
332 	return true;
333 }
334 
335 static void xas_update(struct xa_state *xas, struct xa_node *node)
336 {
337 	if (xas->xa_update)
338 		xas->xa_update(node);
339 	else
340 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
341 }
342 
343 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
344 {
345 	struct xa_node *parent = xas->xa_node;
346 	struct xa_node *node = xas->xa_alloc;
347 
348 	if (xas_invalid(xas))
349 		return NULL;
350 
351 	if (node) {
352 		xas->xa_alloc = NULL;
353 	} else {
354 		node = kmem_cache_alloc(radix_tree_node_cachep,
355 					GFP_NOWAIT | __GFP_NOWARN);
356 		if (!node) {
357 			xas_set_err(xas, -ENOMEM);
358 			return NULL;
359 		}
360 	}
361 
362 	if (parent) {
363 		node->offset = xas->xa_offset;
364 		parent->count++;
365 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
366 		xas_update(xas, parent);
367 	}
368 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
369 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
370 	node->shift = shift;
371 	node->count = 0;
372 	node->nr_values = 0;
373 	RCU_INIT_POINTER(node->parent, xas->xa_node);
374 	node->array = xas->xa;
375 
376 	return node;
377 }
378 
379 #ifdef CONFIG_XARRAY_MULTI
380 /* Returns the number of indices covered by a given xa_state */
381 static unsigned long xas_size(const struct xa_state *xas)
382 {
383 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
384 }
385 #endif
386 
387 /*
388  * Use this to calculate the maximum index that will need to be created
389  * in order to add the entry described by @xas.  Because we cannot store a
390  * multiple-index entry at index 0, the calculation is a little more complex
391  * than you might expect.
392  */
393 static unsigned long xas_max(struct xa_state *xas)
394 {
395 	unsigned long max = xas->xa_index;
396 
397 #ifdef CONFIG_XARRAY_MULTI
398 	if (xas->xa_shift || xas->xa_sibs) {
399 		unsigned long mask = xas_size(xas) - 1;
400 		max |= mask;
401 		if (mask == max)
402 			max++;
403 	}
404 #endif
405 
406 	return max;
407 }
408 
409 /* The maximum index that can be contained in the array without expanding it */
410 static unsigned long max_index(void *entry)
411 {
412 	if (!xa_is_node(entry))
413 		return 0;
414 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
415 }
416 
417 static void xas_shrink(struct xa_state *xas)
418 {
419 	struct xarray *xa = xas->xa;
420 	struct xa_node *node = xas->xa_node;
421 
422 	for (;;) {
423 		void *entry;
424 
425 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
426 		if (node->count != 1)
427 			break;
428 		entry = xa_entry_locked(xa, node, 0);
429 		if (!entry)
430 			break;
431 		if (!xa_is_node(entry) && node->shift)
432 			break;
433 		xas->xa_node = XAS_BOUNDS;
434 
435 		RCU_INIT_POINTER(xa->xa_head, entry);
436 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
437 			xa_mark_clear(xa, XA_FREE_MARK);
438 
439 		node->count = 0;
440 		node->nr_values = 0;
441 		if (!xa_is_node(entry))
442 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
443 		xas_update(xas, node);
444 		xa_node_free(node);
445 		if (!xa_is_node(entry))
446 			break;
447 		node = xa_to_node(entry);
448 		node->parent = NULL;
449 	}
450 }
451 
452 /*
453  * xas_delete_node() - Attempt to delete an xa_node
454  * @xas: Array operation state.
455  *
456  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
457  * a non-zero reference count.
458  */
459 static void xas_delete_node(struct xa_state *xas)
460 {
461 	struct xa_node *node = xas->xa_node;
462 
463 	for (;;) {
464 		struct xa_node *parent;
465 
466 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
467 		if (node->count)
468 			break;
469 
470 		parent = xa_parent_locked(xas->xa, node);
471 		xas->xa_node = parent;
472 		xas->xa_offset = node->offset;
473 		xa_node_free(node);
474 
475 		if (!parent) {
476 			xas->xa->xa_head = NULL;
477 			xas->xa_node = XAS_BOUNDS;
478 			return;
479 		}
480 
481 		parent->slots[xas->xa_offset] = NULL;
482 		parent->count--;
483 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
484 		node = parent;
485 		xas_update(xas, node);
486 	}
487 
488 	if (!node->parent)
489 		xas_shrink(xas);
490 }
491 
492 /**
493  * xas_free_nodes() - Free this node and all nodes that it references
494  * @xas: Array operation state.
495  * @top: Node to free
496  *
497  * This node has been removed from the tree.  We must now free it and all
498  * of its subnodes.  There may be RCU walkers with references into the tree,
499  * so we must replace all entries with retry markers.
500  */
501 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
502 {
503 	unsigned int offset = 0;
504 	struct xa_node *node = top;
505 
506 	for (;;) {
507 		void *entry = xa_entry_locked(xas->xa, node, offset);
508 
509 		if (xa_is_node(entry)) {
510 			node = xa_to_node(entry);
511 			offset = 0;
512 			continue;
513 		}
514 		if (entry)
515 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
516 		offset++;
517 		while (offset == XA_CHUNK_SIZE) {
518 			struct xa_node *parent;
519 
520 			parent = xa_parent_locked(xas->xa, node);
521 			offset = node->offset + 1;
522 			node->count = 0;
523 			node->nr_values = 0;
524 			xas_update(xas, node);
525 			xa_node_free(node);
526 			if (node == top)
527 				return;
528 			node = parent;
529 		}
530 	}
531 }
532 
533 /*
534  * xas_expand adds nodes to the head of the tree until it has reached
535  * sufficient height to be able to contain @xas->xa_index
536  */
537 static int xas_expand(struct xa_state *xas, void *head)
538 {
539 	struct xarray *xa = xas->xa;
540 	struct xa_node *node = NULL;
541 	unsigned int shift = 0;
542 	unsigned long max = xas_max(xas);
543 
544 	if (!head) {
545 		if (max == 0)
546 			return 0;
547 		while ((max >> shift) >= XA_CHUNK_SIZE)
548 			shift += XA_CHUNK_SHIFT;
549 		return shift + XA_CHUNK_SHIFT;
550 	} else if (xa_is_node(head)) {
551 		node = xa_to_node(head);
552 		shift = node->shift + XA_CHUNK_SHIFT;
553 	}
554 	xas->xa_node = NULL;
555 
556 	while (max > max_index(head)) {
557 		xa_mark_t mark = 0;
558 
559 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
560 		node = xas_alloc(xas, shift);
561 		if (!node)
562 			return -ENOMEM;
563 
564 		node->count = 1;
565 		if (xa_is_value(head))
566 			node->nr_values = 1;
567 		RCU_INIT_POINTER(node->slots[0], head);
568 
569 		/* Propagate the aggregated mark info to the new child */
570 		for (;;) {
571 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
572 				node_mark_all(node, XA_FREE_MARK);
573 				if (!xa_marked(xa, XA_FREE_MARK)) {
574 					node_clear_mark(node, 0, XA_FREE_MARK);
575 					xa_mark_set(xa, XA_FREE_MARK);
576 				}
577 			} else if (xa_marked(xa, mark)) {
578 				node_set_mark(node, 0, mark);
579 			}
580 			if (mark == XA_MARK_MAX)
581 				break;
582 			mark_inc(mark);
583 		}
584 
585 		/*
586 		 * Now that the new node is fully initialised, we can add
587 		 * it to the tree
588 		 */
589 		if (xa_is_node(head)) {
590 			xa_to_node(head)->offset = 0;
591 			rcu_assign_pointer(xa_to_node(head)->parent, node);
592 		}
593 		head = xa_mk_node(node);
594 		rcu_assign_pointer(xa->xa_head, head);
595 		xas_update(xas, node);
596 
597 		shift += XA_CHUNK_SHIFT;
598 	}
599 
600 	xas->xa_node = node;
601 	return shift;
602 }
603 
604 /*
605  * xas_create() - Create a slot to store an entry in.
606  * @xas: XArray operation state.
607  *
608  * Most users will not need to call this function directly, as it is called
609  * by xas_store().  It is useful for doing conditional store operations
610  * (see the xa_cmpxchg() implementation for an example).
611  *
612  * Return: If the slot already existed, returns the contents of this slot.
613  * If the slot was newly created, returns %NULL.  If it failed to create the
614  * slot, returns %NULL and indicates the error in @xas.
615  */
616 static void *xas_create(struct xa_state *xas)
617 {
618 	struct xarray *xa = xas->xa;
619 	void *entry;
620 	void __rcu **slot;
621 	struct xa_node *node = xas->xa_node;
622 	int shift;
623 	unsigned int order = xas->xa_shift;
624 
625 	if (xas_top(node)) {
626 		entry = xa_head_locked(xa);
627 		xas->xa_node = NULL;
628 		shift = xas_expand(xas, entry);
629 		if (shift < 0)
630 			return NULL;
631 		entry = xa_head_locked(xa);
632 		slot = &xa->xa_head;
633 	} else if (xas_error(xas)) {
634 		return NULL;
635 	} else if (node) {
636 		unsigned int offset = xas->xa_offset;
637 
638 		shift = node->shift;
639 		entry = xa_entry_locked(xa, node, offset);
640 		slot = &node->slots[offset];
641 	} else {
642 		shift = 0;
643 		entry = xa_head_locked(xa);
644 		slot = &xa->xa_head;
645 	}
646 
647 	while (shift > order) {
648 		shift -= XA_CHUNK_SHIFT;
649 		if (!entry) {
650 			node = xas_alloc(xas, shift);
651 			if (!node)
652 				break;
653 			if (xa_track_free(xa))
654 				node_mark_all(node, XA_FREE_MARK);
655 			rcu_assign_pointer(*slot, xa_mk_node(node));
656 		} else if (xa_is_node(entry)) {
657 			node = xa_to_node(entry);
658 		} else {
659 			break;
660 		}
661 		entry = xas_descend(xas, node);
662 		slot = &node->slots[xas->xa_offset];
663 	}
664 
665 	return entry;
666 }
667 
668 /**
669  * xas_create_range() - Ensure that stores to this range will succeed
670  * @xas: XArray operation state.
671  *
672  * Creates all of the slots in the range covered by @xas.  Sets @xas to
673  * create single-index entries and positions it at the beginning of the
674  * range.  This is for the benefit of users which have not yet been
675  * converted to use multi-index entries.
676  */
677 void xas_create_range(struct xa_state *xas)
678 {
679 	unsigned long index = xas->xa_index;
680 	unsigned char shift = xas->xa_shift;
681 	unsigned char sibs = xas->xa_sibs;
682 
683 	xas->xa_index |= ((sibs + 1) << shift) - 1;
684 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
685 		xas->xa_offset |= sibs;
686 	xas->xa_shift = 0;
687 	xas->xa_sibs = 0;
688 
689 	for (;;) {
690 		xas_create(xas);
691 		if (xas_error(xas))
692 			goto restore;
693 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
694 			goto success;
695 		xas->xa_index -= XA_CHUNK_SIZE;
696 
697 		for (;;) {
698 			struct xa_node *node = xas->xa_node;
699 			xas->xa_node = xa_parent_locked(xas->xa, node);
700 			xas->xa_offset = node->offset - 1;
701 			if (node->offset != 0)
702 				break;
703 		}
704 	}
705 
706 restore:
707 	xas->xa_shift = shift;
708 	xas->xa_sibs = sibs;
709 	xas->xa_index = index;
710 	return;
711 success:
712 	xas->xa_index = index;
713 	if (xas->xa_node)
714 		xas_set_offset(xas);
715 }
716 EXPORT_SYMBOL_GPL(xas_create_range);
717 
718 static void update_node(struct xa_state *xas, struct xa_node *node,
719 		int count, int values)
720 {
721 	if (!node || (!count && !values))
722 		return;
723 
724 	node->count += count;
725 	node->nr_values += values;
726 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
727 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
728 	xas_update(xas, node);
729 	if (count < 0)
730 		xas_delete_node(xas);
731 }
732 
733 /**
734  * xas_store() - Store this entry in the XArray.
735  * @xas: XArray operation state.
736  * @entry: New entry.
737  *
738  * If @xas is operating on a multi-index entry, the entry returned by this
739  * function is essentially meaningless (it may be an internal entry or it
740  * may be %NULL, even if there are non-NULL entries at some of the indices
741  * covered by the range).  This is not a problem for any current users,
742  * and can be changed if needed.
743  *
744  * Return: The old entry at this index.
745  */
746 void *xas_store(struct xa_state *xas, void *entry)
747 {
748 	struct xa_node *node;
749 	void __rcu **slot = &xas->xa->xa_head;
750 	unsigned int offset, max;
751 	int count = 0;
752 	int values = 0;
753 	void *first, *next;
754 	bool value = xa_is_value(entry);
755 
756 	if (entry)
757 		first = xas_create(xas);
758 	else
759 		first = xas_load(xas);
760 
761 	if (xas_invalid(xas))
762 		return first;
763 	node = xas->xa_node;
764 	if (node && (xas->xa_shift < node->shift))
765 		xas->xa_sibs = 0;
766 	if ((first == entry) && !xas->xa_sibs)
767 		return first;
768 
769 	next = first;
770 	offset = xas->xa_offset;
771 	max = xas->xa_offset + xas->xa_sibs;
772 	if (node) {
773 		slot = &node->slots[offset];
774 		if (xas->xa_sibs)
775 			xas_squash_marks(xas);
776 	}
777 	if (!entry)
778 		xas_init_marks(xas);
779 
780 	for (;;) {
781 		/*
782 		 * Must clear the marks before setting the entry to NULL,
783 		 * otherwise xas_for_each_marked may find a NULL entry and
784 		 * stop early.  rcu_assign_pointer contains a release barrier
785 		 * so the mark clearing will appear to happen before the
786 		 * entry is set to NULL.
787 		 */
788 		rcu_assign_pointer(*slot, entry);
789 		if (xa_is_node(next))
790 			xas_free_nodes(xas, xa_to_node(next));
791 		if (!node)
792 			break;
793 		count += !next - !entry;
794 		values += !xa_is_value(first) - !value;
795 		if (entry) {
796 			if (offset == max)
797 				break;
798 			if (!xa_is_sibling(entry))
799 				entry = xa_mk_sibling(xas->xa_offset);
800 		} else {
801 			if (offset == XA_CHUNK_MASK)
802 				break;
803 		}
804 		next = xa_entry_locked(xas->xa, node, ++offset);
805 		if (!xa_is_sibling(next)) {
806 			if (!entry && (offset > max))
807 				break;
808 			first = next;
809 		}
810 		slot++;
811 	}
812 
813 	update_node(xas, node, count, values);
814 	return first;
815 }
816 EXPORT_SYMBOL_GPL(xas_store);
817 
818 /**
819  * xas_get_mark() - Returns the state of this mark.
820  * @xas: XArray operation state.
821  * @mark: Mark number.
822  *
823  * Return: true if the mark is set, false if the mark is clear or @xas
824  * is in an error state.
825  */
826 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
827 {
828 	if (xas_invalid(xas))
829 		return false;
830 	if (!xas->xa_node)
831 		return xa_marked(xas->xa, mark);
832 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
833 }
834 EXPORT_SYMBOL_GPL(xas_get_mark);
835 
836 /**
837  * xas_set_mark() - Sets the mark on this entry and its parents.
838  * @xas: XArray operation state.
839  * @mark: Mark number.
840  *
841  * Sets the specified mark on this entry, and walks up the tree setting it
842  * on all the ancestor entries.  Does nothing if @xas has not been walked to
843  * an entry, or is in an error state.
844  */
845 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
846 {
847 	struct xa_node *node = xas->xa_node;
848 	unsigned int offset = xas->xa_offset;
849 
850 	if (xas_invalid(xas))
851 		return;
852 
853 	while (node) {
854 		if (node_set_mark(node, offset, mark))
855 			return;
856 		offset = node->offset;
857 		node = xa_parent_locked(xas->xa, node);
858 	}
859 
860 	if (!xa_marked(xas->xa, mark))
861 		xa_mark_set(xas->xa, mark);
862 }
863 EXPORT_SYMBOL_GPL(xas_set_mark);
864 
865 /**
866  * xas_clear_mark() - Clears the mark on this entry and its parents.
867  * @xas: XArray operation state.
868  * @mark: Mark number.
869  *
870  * Clears the specified mark on this entry, and walks back to the head
871  * attempting to clear it on all the ancestor entries.  Does nothing if
872  * @xas has not been walked to an entry, or is in an error state.
873  */
874 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
875 {
876 	struct xa_node *node = xas->xa_node;
877 	unsigned int offset = xas->xa_offset;
878 
879 	if (xas_invalid(xas))
880 		return;
881 
882 	while (node) {
883 		if (!node_clear_mark(node, offset, mark))
884 			return;
885 		if (node_any_mark(node, mark))
886 			return;
887 
888 		offset = node->offset;
889 		node = xa_parent_locked(xas->xa, node);
890 	}
891 
892 	if (xa_marked(xas->xa, mark))
893 		xa_mark_clear(xas->xa, mark);
894 }
895 EXPORT_SYMBOL_GPL(xas_clear_mark);
896 
897 /**
898  * xas_init_marks() - Initialise all marks for the entry
899  * @xas: Array operations state.
900  *
901  * Initialise all marks for the entry specified by @xas.  If we're tracking
902  * free entries with a mark, we need to set it on all entries.  All other
903  * marks are cleared.
904  *
905  * This implementation is not as efficient as it could be; we may walk
906  * up the tree multiple times.
907  */
908 void xas_init_marks(const struct xa_state *xas)
909 {
910 	xa_mark_t mark = 0;
911 
912 	for (;;) {
913 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
914 			xas_set_mark(xas, mark);
915 		else
916 			xas_clear_mark(xas, mark);
917 		if (mark == XA_MARK_MAX)
918 			break;
919 		mark_inc(mark);
920 	}
921 }
922 EXPORT_SYMBOL_GPL(xas_init_marks);
923 
924 /**
925  * xas_pause() - Pause a walk to drop a lock.
926  * @xas: XArray operation state.
927  *
928  * Some users need to pause a walk and drop the lock they're holding in
929  * order to yield to a higher priority thread or carry out an operation
930  * on an entry.  Those users should call this function before they drop
931  * the lock.  It resets the @xas to be suitable for the next iteration
932  * of the loop after the user has reacquired the lock.  If most entries
933  * found during a walk require you to call xas_pause(), the xa_for_each()
934  * iterator may be more appropriate.
935  *
936  * Note that xas_pause() only works for forward iteration.  If a user needs
937  * to pause a reverse iteration, we will need a xas_pause_rev().
938  */
939 void xas_pause(struct xa_state *xas)
940 {
941 	struct xa_node *node = xas->xa_node;
942 
943 	if (xas_invalid(xas))
944 		return;
945 
946 	if (node) {
947 		unsigned int offset = xas->xa_offset;
948 		while (++offset < XA_CHUNK_SIZE) {
949 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
950 				break;
951 		}
952 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
953 	} else {
954 		xas->xa_index++;
955 	}
956 	xas->xa_node = XAS_RESTART;
957 }
958 EXPORT_SYMBOL_GPL(xas_pause);
959 
960 /*
961  * __xas_prev() - Find the previous entry in the XArray.
962  * @xas: XArray operation state.
963  *
964  * Helper function for xas_prev() which handles all the complex cases
965  * out of line.
966  */
967 void *__xas_prev(struct xa_state *xas)
968 {
969 	void *entry;
970 
971 	if (!xas_frozen(xas->xa_node))
972 		xas->xa_index--;
973 	if (xas_not_node(xas->xa_node))
974 		return xas_load(xas);
975 
976 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
977 		xas->xa_offset--;
978 
979 	while (xas->xa_offset == 255) {
980 		xas->xa_offset = xas->xa_node->offset - 1;
981 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
982 		if (!xas->xa_node)
983 			return set_bounds(xas);
984 	}
985 
986 	for (;;) {
987 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
988 		if (!xa_is_node(entry))
989 			return entry;
990 
991 		xas->xa_node = xa_to_node(entry);
992 		xas_set_offset(xas);
993 	}
994 }
995 EXPORT_SYMBOL_GPL(__xas_prev);
996 
997 /*
998  * __xas_next() - Find the next entry in the XArray.
999  * @xas: XArray operation state.
1000  *
1001  * Helper function for xas_next() which handles all the complex cases
1002  * out of line.
1003  */
1004 void *__xas_next(struct xa_state *xas)
1005 {
1006 	void *entry;
1007 
1008 	if (!xas_frozen(xas->xa_node))
1009 		xas->xa_index++;
1010 	if (xas_not_node(xas->xa_node))
1011 		return xas_load(xas);
1012 
1013 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1014 		xas->xa_offset++;
1015 
1016 	while (xas->xa_offset == XA_CHUNK_SIZE) {
1017 		xas->xa_offset = xas->xa_node->offset + 1;
1018 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1019 		if (!xas->xa_node)
1020 			return set_bounds(xas);
1021 	}
1022 
1023 	for (;;) {
1024 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1025 		if (!xa_is_node(entry))
1026 			return entry;
1027 
1028 		xas->xa_node = xa_to_node(entry);
1029 		xas_set_offset(xas);
1030 	}
1031 }
1032 EXPORT_SYMBOL_GPL(__xas_next);
1033 
1034 /**
1035  * xas_find() - Find the next present entry in the XArray.
1036  * @xas: XArray operation state.
1037  * @max: Highest index to return.
1038  *
1039  * If the @xas has not yet been walked to an entry, return the entry
1040  * which has an index >= xas.xa_index.  If it has been walked, the entry
1041  * currently being pointed at has been processed, and so we move to the
1042  * next entry.
1043  *
1044  * If no entry is found and the array is smaller than @max, the iterator
1045  * is set to the smallest index not yet in the array.  This allows @xas
1046  * to be immediately passed to xas_store().
1047  *
1048  * Return: The entry, if found, otherwise %NULL.
1049  */
1050 void *xas_find(struct xa_state *xas, unsigned long max)
1051 {
1052 	void *entry;
1053 
1054 	if (xas_error(xas))
1055 		return NULL;
1056 
1057 	if (!xas->xa_node) {
1058 		xas->xa_index = 1;
1059 		return set_bounds(xas);
1060 	} else if (xas_top(xas->xa_node)) {
1061 		entry = xas_load(xas);
1062 		if (entry || xas_not_node(xas->xa_node))
1063 			return entry;
1064 	} else if (!xas->xa_node->shift &&
1065 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1066 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1067 	}
1068 
1069 	xas_advance(xas);
1070 
1071 	while (xas->xa_node && (xas->xa_index <= max)) {
1072 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1073 			xas->xa_offset = xas->xa_node->offset + 1;
1074 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1075 			continue;
1076 		}
1077 
1078 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1079 		if (xa_is_node(entry)) {
1080 			xas->xa_node = xa_to_node(entry);
1081 			xas->xa_offset = 0;
1082 			continue;
1083 		}
1084 		if (entry && !xa_is_sibling(entry))
1085 			return entry;
1086 
1087 		xas_advance(xas);
1088 	}
1089 
1090 	if (!xas->xa_node)
1091 		xas->xa_node = XAS_BOUNDS;
1092 	return NULL;
1093 }
1094 EXPORT_SYMBOL_GPL(xas_find);
1095 
1096 /**
1097  * xas_find_marked() - Find the next marked entry in the XArray.
1098  * @xas: XArray operation state.
1099  * @max: Highest index to return.
1100  * @mark: Mark number to search for.
1101  *
1102  * If the @xas has not yet been walked to an entry, return the marked entry
1103  * which has an index >= xas.xa_index.  If it has been walked, the entry
1104  * currently being pointed at has been processed, and so we return the
1105  * first marked entry with an index > xas.xa_index.
1106  *
1107  * If no marked entry is found and the array is smaller than @max, @xas is
1108  * set to the bounds state and xas->xa_index is set to the smallest index
1109  * not yet in the array.  This allows @xas to be immediately passed to
1110  * xas_store().
1111  *
1112  * If no entry is found before @max is reached, @xas is set to the restart
1113  * state.
1114  *
1115  * Return: The entry, if found, otherwise %NULL.
1116  */
1117 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1118 {
1119 	bool advance = true;
1120 	unsigned int offset;
1121 	void *entry;
1122 
1123 	if (xas_error(xas))
1124 		return NULL;
1125 
1126 	if (!xas->xa_node) {
1127 		xas->xa_index = 1;
1128 		goto out;
1129 	} else if (xas_top(xas->xa_node)) {
1130 		advance = false;
1131 		entry = xa_head(xas->xa);
1132 		xas->xa_node = NULL;
1133 		if (xas->xa_index > max_index(entry))
1134 			goto out;
1135 		if (!xa_is_node(entry)) {
1136 			if (xa_marked(xas->xa, mark))
1137 				return entry;
1138 			xas->xa_index = 1;
1139 			goto out;
1140 		}
1141 		xas->xa_node = xa_to_node(entry);
1142 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1143 	}
1144 
1145 	while (xas->xa_index <= max) {
1146 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1147 			xas->xa_offset = xas->xa_node->offset + 1;
1148 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1149 			if (!xas->xa_node)
1150 				break;
1151 			advance = false;
1152 			continue;
1153 		}
1154 
1155 		if (!advance) {
1156 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1157 			if (xa_is_sibling(entry)) {
1158 				xas->xa_offset = xa_to_sibling(entry);
1159 				xas_move_index(xas, xas->xa_offset);
1160 			}
1161 		}
1162 
1163 		offset = xas_find_chunk(xas, advance, mark);
1164 		if (offset > xas->xa_offset) {
1165 			advance = false;
1166 			xas_move_index(xas, offset);
1167 			/* Mind the wrap */
1168 			if ((xas->xa_index - 1) >= max)
1169 				goto max;
1170 			xas->xa_offset = offset;
1171 			if (offset == XA_CHUNK_SIZE)
1172 				continue;
1173 		}
1174 
1175 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1176 		if (!xa_is_node(entry))
1177 			return entry;
1178 		xas->xa_node = xa_to_node(entry);
1179 		xas_set_offset(xas);
1180 	}
1181 
1182 out:
1183 	if (xas->xa_index > max)
1184 		goto max;
1185 	return set_bounds(xas);
1186 max:
1187 	xas->xa_node = XAS_RESTART;
1188 	return NULL;
1189 }
1190 EXPORT_SYMBOL_GPL(xas_find_marked);
1191 
1192 /**
1193  * xas_find_conflict() - Find the next present entry in a range.
1194  * @xas: XArray operation state.
1195  *
1196  * The @xas describes both a range and a position within that range.
1197  *
1198  * Context: Any context.  Expects xa_lock to be held.
1199  * Return: The next entry in the range covered by @xas or %NULL.
1200  */
1201 void *xas_find_conflict(struct xa_state *xas)
1202 {
1203 	void *curr;
1204 
1205 	if (xas_error(xas))
1206 		return NULL;
1207 
1208 	if (!xas->xa_node)
1209 		return NULL;
1210 
1211 	if (xas_top(xas->xa_node)) {
1212 		curr = xas_start(xas);
1213 		if (!curr)
1214 			return NULL;
1215 		while (xa_is_node(curr)) {
1216 			struct xa_node *node = xa_to_node(curr);
1217 			curr = xas_descend(xas, node);
1218 		}
1219 		if (curr)
1220 			return curr;
1221 	}
1222 
1223 	if (xas->xa_node->shift > xas->xa_shift)
1224 		return NULL;
1225 
1226 	for (;;) {
1227 		if (xas->xa_node->shift == xas->xa_shift) {
1228 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1229 				break;
1230 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1231 			xas->xa_offset = xas->xa_node->offset;
1232 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1233 			if (!xas->xa_node)
1234 				break;
1235 			continue;
1236 		}
1237 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1238 		if (xa_is_sibling(curr))
1239 			continue;
1240 		while (xa_is_node(curr)) {
1241 			xas->xa_node = xa_to_node(curr);
1242 			xas->xa_offset = 0;
1243 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1244 		}
1245 		if (curr)
1246 			return curr;
1247 	}
1248 	xas->xa_offset -= xas->xa_sibs;
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL_GPL(xas_find_conflict);
1252 
1253 /**
1254  * xa_init_flags() - Initialise an empty XArray with flags.
1255  * @xa: XArray.
1256  * @flags: XA_FLAG values.
1257  *
1258  * If you need to initialise an XArray with special flags (eg you need
1259  * to take the lock from interrupt context), use this function instead
1260  * of xa_init().
1261  *
1262  * Context: Any context.
1263  */
1264 void xa_init_flags(struct xarray *xa, gfp_t flags)
1265 {
1266 	unsigned int lock_type;
1267 	static struct lock_class_key xa_lock_irq;
1268 	static struct lock_class_key xa_lock_bh;
1269 
1270 	spin_lock_init(&xa->xa_lock);
1271 	xa->xa_flags = flags;
1272 	xa->xa_head = NULL;
1273 
1274 	lock_type = xa_lock_type(xa);
1275 	if (lock_type == XA_LOCK_IRQ)
1276 		lockdep_set_class(&xa->xa_lock, &xa_lock_irq);
1277 	else if (lock_type == XA_LOCK_BH)
1278 		lockdep_set_class(&xa->xa_lock, &xa_lock_bh);
1279 }
1280 EXPORT_SYMBOL(xa_init_flags);
1281 
1282 /**
1283  * xa_load() - Load an entry from an XArray.
1284  * @xa: XArray.
1285  * @index: index into array.
1286  *
1287  * Context: Any context.  Takes and releases the RCU lock.
1288  * Return: The entry at @index in @xa.
1289  */
1290 void *xa_load(struct xarray *xa, unsigned long index)
1291 {
1292 	XA_STATE(xas, xa, index);
1293 	void *entry;
1294 
1295 	rcu_read_lock();
1296 	do {
1297 		entry = xas_load(&xas);
1298 		if (xa_is_zero(entry))
1299 			entry = NULL;
1300 	} while (xas_retry(&xas, entry));
1301 	rcu_read_unlock();
1302 
1303 	return entry;
1304 }
1305 EXPORT_SYMBOL(xa_load);
1306 
1307 static void *xas_result(struct xa_state *xas, void *curr)
1308 {
1309 	if (xa_is_zero(curr))
1310 		return NULL;
1311 	XA_NODE_BUG_ON(xas->xa_node, xa_is_internal(curr));
1312 	if (xas_error(xas))
1313 		curr = xas->xa_node;
1314 	return curr;
1315 }
1316 
1317 /**
1318  * __xa_erase() - Erase this entry from the XArray while locked.
1319  * @xa: XArray.
1320  * @index: Index into array.
1321  *
1322  * If the entry at this index is a multi-index entry then all indices will
1323  * be erased, and the entry will no longer be a multi-index entry.
1324  * This function expects the xa_lock to be held on entry.
1325  *
1326  * Context: Any context.  Expects xa_lock to be held on entry.  May
1327  * release and reacquire xa_lock if @gfp flags permit.
1328  * Return: The old entry at this index.
1329  */
1330 void *__xa_erase(struct xarray *xa, unsigned long index)
1331 {
1332 	XA_STATE(xas, xa, index);
1333 	return xas_result(&xas, xas_store(&xas, NULL));
1334 }
1335 EXPORT_SYMBOL(__xa_erase);
1336 
1337 /**
1338  * xa_erase() - Erase this entry from the XArray.
1339  * @xa: XArray.
1340  * @index: Index of entry.
1341  *
1342  * This function is the equivalent of calling xa_store() with %NULL as
1343  * the third argument.  The XArray does not need to allocate memory, so
1344  * the user does not need to provide GFP flags.
1345  *
1346  * Context: Any context.  Takes and releases the xa_lock.
1347  * Return: The entry which used to be at this index.
1348  */
1349 void *xa_erase(struct xarray *xa, unsigned long index)
1350 {
1351 	void *entry;
1352 
1353 	xa_lock(xa);
1354 	entry = __xa_erase(xa, index);
1355 	xa_unlock(xa);
1356 
1357 	return entry;
1358 }
1359 EXPORT_SYMBOL(xa_erase);
1360 
1361 /**
1362  * __xa_store() - Store this entry in the XArray.
1363  * @xa: XArray.
1364  * @index: Index into array.
1365  * @entry: New entry.
1366  * @gfp: Memory allocation flags.
1367  *
1368  * You must already be holding the xa_lock when calling this function.
1369  * It will drop the lock if needed to allocate memory, and then reacquire
1370  * it afterwards.
1371  *
1372  * Context: Any context.  Expects xa_lock to be held on entry.  May
1373  * release and reacquire xa_lock if @gfp flags permit.
1374  * Return: The old entry at this index or xa_err() if an error happened.
1375  */
1376 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1377 {
1378 	XA_STATE(xas, xa, index);
1379 	void *curr;
1380 
1381 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1382 		return XA_ERROR(-EINVAL);
1383 	if (xa_track_free(xa) && !entry)
1384 		entry = XA_ZERO_ENTRY;
1385 
1386 	do {
1387 		curr = xas_store(&xas, entry);
1388 		if (xa_track_free(xa))
1389 			xas_clear_mark(&xas, XA_FREE_MARK);
1390 	} while (__xas_nomem(&xas, gfp));
1391 
1392 	return xas_result(&xas, curr);
1393 }
1394 EXPORT_SYMBOL(__xa_store);
1395 
1396 /**
1397  * xa_store() - Store this entry in the XArray.
1398  * @xa: XArray.
1399  * @index: Index into array.
1400  * @entry: New entry.
1401  * @gfp: Memory allocation flags.
1402  *
1403  * After this function returns, loads from this index will return @entry.
1404  * Storing into an existing multislot entry updates the entry of every index.
1405  * The marks associated with @index are unaffected unless @entry is %NULL.
1406  *
1407  * Context: Any context.  Takes and releases the xa_lock.
1408  * May sleep if the @gfp flags permit.
1409  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1410  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1411  * failed.
1412  */
1413 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1414 {
1415 	void *curr;
1416 
1417 	xa_lock(xa);
1418 	curr = __xa_store(xa, index, entry, gfp);
1419 	xa_unlock(xa);
1420 
1421 	return curr;
1422 }
1423 EXPORT_SYMBOL(xa_store);
1424 
1425 /**
1426  * __xa_cmpxchg() - Store this entry in the XArray.
1427  * @xa: XArray.
1428  * @index: Index into array.
1429  * @old: Old value to test against.
1430  * @entry: New entry.
1431  * @gfp: Memory allocation flags.
1432  *
1433  * You must already be holding the xa_lock when calling this function.
1434  * It will drop the lock if needed to allocate memory, and then reacquire
1435  * it afterwards.
1436  *
1437  * Context: Any context.  Expects xa_lock to be held on entry.  May
1438  * release and reacquire xa_lock if @gfp flags permit.
1439  * Return: The old entry at this index or xa_err() if an error happened.
1440  */
1441 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1442 			void *old, void *entry, gfp_t gfp)
1443 {
1444 	XA_STATE(xas, xa, index);
1445 	void *curr;
1446 
1447 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1448 		return XA_ERROR(-EINVAL);
1449 	if (xa_track_free(xa) && !entry)
1450 		entry = XA_ZERO_ENTRY;
1451 
1452 	do {
1453 		curr = xas_load(&xas);
1454 		if (curr == XA_ZERO_ENTRY)
1455 			curr = NULL;
1456 		if (curr == old) {
1457 			xas_store(&xas, entry);
1458 			if (xa_track_free(xa))
1459 				xas_clear_mark(&xas, XA_FREE_MARK);
1460 		}
1461 	} while (__xas_nomem(&xas, gfp));
1462 
1463 	return xas_result(&xas, curr);
1464 }
1465 EXPORT_SYMBOL(__xa_cmpxchg);
1466 
1467 /**
1468  * __xa_reserve() - Reserve this index in the XArray.
1469  * @xa: XArray.
1470  * @index: Index into array.
1471  * @gfp: Memory allocation flags.
1472  *
1473  * Ensures there is somewhere to store an entry at @index in the array.
1474  * If there is already something stored at @index, this function does
1475  * nothing.  If there was nothing there, the entry is marked as reserved.
1476  * Loading from a reserved entry returns a %NULL pointer.
1477  *
1478  * If you do not use the entry that you have reserved, call xa_release()
1479  * or xa_erase() to free any unnecessary memory.
1480  *
1481  * Context: Any context.  Expects the xa_lock to be held on entry.  May
1482  * release the lock, sleep and reacquire the lock if the @gfp flags permit.
1483  * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1484  */
1485 int __xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1486 {
1487 	XA_STATE(xas, xa, index);
1488 	void *curr;
1489 
1490 	do {
1491 		curr = xas_load(&xas);
1492 		if (!curr) {
1493 			xas_store(&xas, XA_ZERO_ENTRY);
1494 			if (xa_track_free(xa))
1495 				xas_clear_mark(&xas, XA_FREE_MARK);
1496 		}
1497 	} while (__xas_nomem(&xas, gfp));
1498 
1499 	return xas_error(&xas);
1500 }
1501 EXPORT_SYMBOL(__xa_reserve);
1502 
1503 #ifdef CONFIG_XARRAY_MULTI
1504 static void xas_set_range(struct xa_state *xas, unsigned long first,
1505 		unsigned long last)
1506 {
1507 	unsigned int shift = 0;
1508 	unsigned long sibs = last - first;
1509 	unsigned int offset = XA_CHUNK_MASK;
1510 
1511 	xas_set(xas, first);
1512 
1513 	while ((first & XA_CHUNK_MASK) == 0) {
1514 		if (sibs < XA_CHUNK_MASK)
1515 			break;
1516 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1517 			break;
1518 		shift += XA_CHUNK_SHIFT;
1519 		if (offset == XA_CHUNK_MASK)
1520 			offset = sibs & XA_CHUNK_MASK;
1521 		sibs >>= XA_CHUNK_SHIFT;
1522 		first >>= XA_CHUNK_SHIFT;
1523 	}
1524 
1525 	offset = first & XA_CHUNK_MASK;
1526 	if (offset + sibs > XA_CHUNK_MASK)
1527 		sibs = XA_CHUNK_MASK - offset;
1528 	if ((((first + sibs + 1) << shift) - 1) > last)
1529 		sibs -= 1;
1530 
1531 	xas->xa_shift = shift;
1532 	xas->xa_sibs = sibs;
1533 }
1534 
1535 /**
1536  * xa_store_range() - Store this entry at a range of indices in the XArray.
1537  * @xa: XArray.
1538  * @first: First index to affect.
1539  * @last: Last index to affect.
1540  * @entry: New entry.
1541  * @gfp: Memory allocation flags.
1542  *
1543  * After this function returns, loads from any index between @first and @last,
1544  * inclusive will return @entry.
1545  * Storing into an existing multislot entry updates the entry of every index.
1546  * The marks associated with @index are unaffected unless @entry is %NULL.
1547  *
1548  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1549  * if the @gfp flags permit.
1550  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1551  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1552  */
1553 void *xa_store_range(struct xarray *xa, unsigned long first,
1554 		unsigned long last, void *entry, gfp_t gfp)
1555 {
1556 	XA_STATE(xas, xa, 0);
1557 
1558 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1559 		return XA_ERROR(-EINVAL);
1560 	if (last < first)
1561 		return XA_ERROR(-EINVAL);
1562 
1563 	do {
1564 		xas_lock(&xas);
1565 		if (entry) {
1566 			unsigned int order = BITS_PER_LONG;
1567 			if (last + 1)
1568 				order = __ffs(last + 1);
1569 			xas_set_order(&xas, last, order);
1570 			xas_create(&xas);
1571 			if (xas_error(&xas))
1572 				goto unlock;
1573 		}
1574 		do {
1575 			xas_set_range(&xas, first, last);
1576 			xas_store(&xas, entry);
1577 			if (xas_error(&xas))
1578 				goto unlock;
1579 			first += xas_size(&xas);
1580 		} while (first <= last);
1581 unlock:
1582 		xas_unlock(&xas);
1583 	} while (xas_nomem(&xas, gfp));
1584 
1585 	return xas_result(&xas, NULL);
1586 }
1587 EXPORT_SYMBOL(xa_store_range);
1588 #endif /* CONFIG_XARRAY_MULTI */
1589 
1590 /**
1591  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1592  * @xa: XArray.
1593  * @id: Pointer to ID.
1594  * @max: Maximum ID to allocate (inclusive).
1595  * @entry: New entry.
1596  * @gfp: Memory allocation flags.
1597  *
1598  * Allocates an unused ID in the range specified by @id and @max.
1599  * Updates the @id pointer with the index, then stores the entry at that
1600  * index.  A concurrent lookup will not see an uninitialised @id.
1601  *
1602  * Context: Any context.  Expects xa_lock to be held on entry.  May
1603  * release and reacquire xa_lock if @gfp flags permit.
1604  * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
1605  * there is no more space in the XArray.
1606  */
1607 int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp)
1608 {
1609 	XA_STATE(xas, xa, 0);
1610 	int err;
1611 
1612 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1613 		return -EINVAL;
1614 	if (WARN_ON_ONCE(!xa_track_free(xa)))
1615 		return -EINVAL;
1616 
1617 	if (!entry)
1618 		entry = XA_ZERO_ENTRY;
1619 
1620 	do {
1621 		xas.xa_index = *id;
1622 		xas_find_marked(&xas, max, XA_FREE_MARK);
1623 		if (xas.xa_node == XAS_RESTART)
1624 			xas_set_err(&xas, -ENOSPC);
1625 		xas_store(&xas, entry);
1626 		xas_clear_mark(&xas, XA_FREE_MARK);
1627 	} while (__xas_nomem(&xas, gfp));
1628 
1629 	err = xas_error(&xas);
1630 	if (!err)
1631 		*id = xas.xa_index;
1632 	return err;
1633 }
1634 EXPORT_SYMBOL(__xa_alloc);
1635 
1636 /**
1637  * __xa_set_mark() - Set this mark on this entry while locked.
1638  * @xa: XArray.
1639  * @index: Index of entry.
1640  * @mark: Mark number.
1641  *
1642  * Attempting to set a mark on a %NULL entry does not succeed.
1643  *
1644  * Context: Any context.  Expects xa_lock to be held on entry.
1645  */
1646 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1647 {
1648 	XA_STATE(xas, xa, index);
1649 	void *entry = xas_load(&xas);
1650 
1651 	if (entry)
1652 		xas_set_mark(&xas, mark);
1653 }
1654 EXPORT_SYMBOL(__xa_set_mark);
1655 
1656 /**
1657  * __xa_clear_mark() - Clear this mark on this entry while locked.
1658  * @xa: XArray.
1659  * @index: Index of entry.
1660  * @mark: Mark number.
1661  *
1662  * Context: Any context.  Expects xa_lock to be held on entry.
1663  */
1664 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1665 {
1666 	XA_STATE(xas, xa, index);
1667 	void *entry = xas_load(&xas);
1668 
1669 	if (entry)
1670 		xas_clear_mark(&xas, mark);
1671 }
1672 EXPORT_SYMBOL(__xa_clear_mark);
1673 
1674 /**
1675  * xa_get_mark() - Inquire whether this mark is set on this entry.
1676  * @xa: XArray.
1677  * @index: Index of entry.
1678  * @mark: Mark number.
1679  *
1680  * This function uses the RCU read lock, so the result may be out of date
1681  * by the time it returns.  If you need the result to be stable, use a lock.
1682  *
1683  * Context: Any context.  Takes and releases the RCU lock.
1684  * Return: True if the entry at @index has this mark set, false if it doesn't.
1685  */
1686 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1687 {
1688 	XA_STATE(xas, xa, index);
1689 	void *entry;
1690 
1691 	rcu_read_lock();
1692 	entry = xas_start(&xas);
1693 	while (xas_get_mark(&xas, mark)) {
1694 		if (!xa_is_node(entry))
1695 			goto found;
1696 		entry = xas_descend(&xas, xa_to_node(entry));
1697 	}
1698 	rcu_read_unlock();
1699 	return false;
1700  found:
1701 	rcu_read_unlock();
1702 	return true;
1703 }
1704 EXPORT_SYMBOL(xa_get_mark);
1705 
1706 /**
1707  * xa_set_mark() - Set this mark on this entry.
1708  * @xa: XArray.
1709  * @index: Index of entry.
1710  * @mark: Mark number.
1711  *
1712  * Attempting to set a mark on a %NULL entry does not succeed.
1713  *
1714  * Context: Process context.  Takes and releases the xa_lock.
1715  */
1716 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1717 {
1718 	xa_lock(xa);
1719 	__xa_set_mark(xa, index, mark);
1720 	xa_unlock(xa);
1721 }
1722 EXPORT_SYMBOL(xa_set_mark);
1723 
1724 /**
1725  * xa_clear_mark() - Clear this mark on this entry.
1726  * @xa: XArray.
1727  * @index: Index of entry.
1728  * @mark: Mark number.
1729  *
1730  * Clearing a mark always succeeds.
1731  *
1732  * Context: Process context.  Takes and releases the xa_lock.
1733  */
1734 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1735 {
1736 	xa_lock(xa);
1737 	__xa_clear_mark(xa, index, mark);
1738 	xa_unlock(xa);
1739 }
1740 EXPORT_SYMBOL(xa_clear_mark);
1741 
1742 /**
1743  * xa_find() - Search the XArray for an entry.
1744  * @xa: XArray.
1745  * @indexp: Pointer to an index.
1746  * @max: Maximum index to search to.
1747  * @filter: Selection criterion.
1748  *
1749  * Finds the entry in @xa which matches the @filter, and has the lowest
1750  * index that is at least @indexp and no more than @max.
1751  * If an entry is found, @indexp is updated to be the index of the entry.
1752  * This function is protected by the RCU read lock, so it may not find
1753  * entries which are being simultaneously added.  It will not return an
1754  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1755  *
1756  * Context: Any context.  Takes and releases the RCU lock.
1757  * Return: The entry, if found, otherwise %NULL.
1758  */
1759 void *xa_find(struct xarray *xa, unsigned long *indexp,
1760 			unsigned long max, xa_mark_t filter)
1761 {
1762 	XA_STATE(xas, xa, *indexp);
1763 	void *entry;
1764 
1765 	rcu_read_lock();
1766 	do {
1767 		if ((__force unsigned int)filter < XA_MAX_MARKS)
1768 			entry = xas_find_marked(&xas, max, filter);
1769 		else
1770 			entry = xas_find(&xas, max);
1771 	} while (xas_retry(&xas, entry));
1772 	rcu_read_unlock();
1773 
1774 	if (entry)
1775 		*indexp = xas.xa_index;
1776 	return entry;
1777 }
1778 EXPORT_SYMBOL(xa_find);
1779 
1780 /**
1781  * xa_find_after() - Search the XArray for a present entry.
1782  * @xa: XArray.
1783  * @indexp: Pointer to an index.
1784  * @max: Maximum index to search to.
1785  * @filter: Selection criterion.
1786  *
1787  * Finds the entry in @xa which matches the @filter and has the lowest
1788  * index that is above @indexp and no more than @max.
1789  * If an entry is found, @indexp is updated to be the index of the entry.
1790  * This function is protected by the RCU read lock, so it may miss entries
1791  * which are being simultaneously added.  It will not return an
1792  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1793  *
1794  * Context: Any context.  Takes and releases the RCU lock.
1795  * Return: The pointer, if found, otherwise %NULL.
1796  */
1797 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1798 			unsigned long max, xa_mark_t filter)
1799 {
1800 	XA_STATE(xas, xa, *indexp + 1);
1801 	void *entry;
1802 
1803 	rcu_read_lock();
1804 	for (;;) {
1805 		if ((__force unsigned int)filter < XA_MAX_MARKS)
1806 			entry = xas_find_marked(&xas, max, filter);
1807 		else
1808 			entry = xas_find(&xas, max);
1809 		if (xas.xa_node == XAS_BOUNDS)
1810 			break;
1811 		if (xas.xa_shift) {
1812 			if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1813 				continue;
1814 		} else {
1815 			if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1816 				continue;
1817 		}
1818 		if (!xas_retry(&xas, entry))
1819 			break;
1820 	}
1821 	rcu_read_unlock();
1822 
1823 	if (entry)
1824 		*indexp = xas.xa_index;
1825 	return entry;
1826 }
1827 EXPORT_SYMBOL(xa_find_after);
1828 
1829 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1830 			unsigned long max, unsigned int n)
1831 {
1832 	void *entry;
1833 	unsigned int i = 0;
1834 
1835 	rcu_read_lock();
1836 	xas_for_each(xas, entry, max) {
1837 		if (xas_retry(xas, entry))
1838 			continue;
1839 		dst[i++] = entry;
1840 		if (i == n)
1841 			break;
1842 	}
1843 	rcu_read_unlock();
1844 
1845 	return i;
1846 }
1847 
1848 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1849 			unsigned long max, unsigned int n, xa_mark_t mark)
1850 {
1851 	void *entry;
1852 	unsigned int i = 0;
1853 
1854 	rcu_read_lock();
1855 	xas_for_each_marked(xas, entry, max, mark) {
1856 		if (xas_retry(xas, entry))
1857 			continue;
1858 		dst[i++] = entry;
1859 		if (i == n)
1860 			break;
1861 	}
1862 	rcu_read_unlock();
1863 
1864 	return i;
1865 }
1866 
1867 /**
1868  * xa_extract() - Copy selected entries from the XArray into a normal array.
1869  * @xa: The source XArray to copy from.
1870  * @dst: The buffer to copy entries into.
1871  * @start: The first index in the XArray eligible to be selected.
1872  * @max: The last index in the XArray eligible to be selected.
1873  * @n: The maximum number of entries to copy.
1874  * @filter: Selection criterion.
1875  *
1876  * Copies up to @n entries that match @filter from the XArray.  The
1877  * copied entries will have indices between @start and @max, inclusive.
1878  *
1879  * The @filter may be an XArray mark value, in which case entries which are
1880  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
1881  * which case all entries which are not %NULL will be copied.
1882  *
1883  * The entries returned may not represent a snapshot of the XArray at a
1884  * moment in time.  For example, if another thread stores to index 5, then
1885  * index 10, calling xa_extract() may return the old contents of index 5
1886  * and the new contents of index 10.  Indices not modified while this
1887  * function is running will not be skipped.
1888  *
1889  * If you need stronger guarantees, holding the xa_lock across calls to this
1890  * function will prevent concurrent modification.
1891  *
1892  * Context: Any context.  Takes and releases the RCU lock.
1893  * Return: The number of entries copied.
1894  */
1895 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1896 			unsigned long max, unsigned int n, xa_mark_t filter)
1897 {
1898 	XA_STATE(xas, xa, start);
1899 
1900 	if (!n)
1901 		return 0;
1902 
1903 	if ((__force unsigned int)filter < XA_MAX_MARKS)
1904 		return xas_extract_marked(&xas, dst, max, n, filter);
1905 	return xas_extract_present(&xas, dst, max, n);
1906 }
1907 EXPORT_SYMBOL(xa_extract);
1908 
1909 /**
1910  * xa_destroy() - Free all internal data structures.
1911  * @xa: XArray.
1912  *
1913  * After calling this function, the XArray is empty and has freed all memory
1914  * allocated for its internal data structures.  You are responsible for
1915  * freeing the objects referenced by the XArray.
1916  *
1917  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
1918  */
1919 void xa_destroy(struct xarray *xa)
1920 {
1921 	XA_STATE(xas, xa, 0);
1922 	unsigned long flags;
1923 	void *entry;
1924 
1925 	xas.xa_node = NULL;
1926 	xas_lock_irqsave(&xas, flags);
1927 	entry = xa_head_locked(xa);
1928 	RCU_INIT_POINTER(xa->xa_head, NULL);
1929 	xas_init_marks(&xas);
1930 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
1931 	if (xa_is_node(entry))
1932 		xas_free_nodes(&xas, xa_to_node(entry));
1933 	xas_unlock_irqrestore(&xas, flags);
1934 }
1935 EXPORT_SYMBOL(xa_destroy);
1936 
1937 #ifdef XA_DEBUG
1938 void xa_dump_node(const struct xa_node *node)
1939 {
1940 	unsigned i, j;
1941 
1942 	if (!node)
1943 		return;
1944 	if ((unsigned long)node & 3) {
1945 		pr_cont("node %px\n", node);
1946 		return;
1947 	}
1948 
1949 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1950 		"array %px list %px %px marks",
1951 		node, node->parent ? "offset" : "max", node->offset,
1952 		node->parent, node->shift, node->count, node->nr_values,
1953 		node->array, node->private_list.prev, node->private_list.next);
1954 	for (i = 0; i < XA_MAX_MARKS; i++)
1955 		for (j = 0; j < XA_MARK_LONGS; j++)
1956 			pr_cont(" %lx", node->marks[i][j]);
1957 	pr_cont("\n");
1958 }
1959 
1960 void xa_dump_index(unsigned long index, unsigned int shift)
1961 {
1962 	if (!shift)
1963 		pr_info("%lu: ", index);
1964 	else if (shift >= BITS_PER_LONG)
1965 		pr_info("0-%lu: ", ~0UL);
1966 	else
1967 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
1968 }
1969 
1970 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
1971 {
1972 	if (!entry)
1973 		return;
1974 
1975 	xa_dump_index(index, shift);
1976 
1977 	if (xa_is_node(entry)) {
1978 		if (shift == 0) {
1979 			pr_cont("%px\n", entry);
1980 		} else {
1981 			unsigned long i;
1982 			struct xa_node *node = xa_to_node(entry);
1983 			xa_dump_node(node);
1984 			for (i = 0; i < XA_CHUNK_SIZE; i++)
1985 				xa_dump_entry(node->slots[i],
1986 				      index + (i << node->shift), node->shift);
1987 		}
1988 	} else if (xa_is_value(entry))
1989 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
1990 						xa_to_value(entry), entry);
1991 	else if (!xa_is_internal(entry))
1992 		pr_cont("%px\n", entry);
1993 	else if (xa_is_retry(entry))
1994 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
1995 	else if (xa_is_sibling(entry))
1996 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
1997 	else if (xa_is_zero(entry))
1998 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
1999 	else
2000 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2001 }
2002 
2003 void xa_dump(const struct xarray *xa)
2004 {
2005 	void *entry = xa->xa_head;
2006 	unsigned int shift = 0;
2007 
2008 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2009 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2010 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2011 	if (xa_is_node(entry))
2012 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2013 	xa_dump_entry(entry, 0, shift);
2014 }
2015 #endif
2016