1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 unsigned int mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 if (!xas->xa_sibs) 132 return; 133 134 do { 135 unsigned long *marks = xas->xa_node->marks[mark]; 136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 137 continue; 138 __set_bit(xas->xa_offset, marks); 139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 140 } while (mark++ != (__force unsigned)XA_MARK_MAX); 141 } 142 143 /* extracts the offset within this node from the index */ 144 static unsigned int get_offset(unsigned long index, struct xa_node *node) 145 { 146 return (index >> node->shift) & XA_CHUNK_MASK; 147 } 148 149 static void xas_set_offset(struct xa_state *xas) 150 { 151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 152 } 153 154 /* move the index either forwards (find) or backwards (sibling slot) */ 155 static void xas_move_index(struct xa_state *xas, unsigned long offset) 156 { 157 unsigned int shift = xas->xa_node->shift; 158 xas->xa_index &= ~XA_CHUNK_MASK << shift; 159 xas->xa_index += offset << shift; 160 } 161 162 static void xas_next_offset(struct xa_state *xas) 163 { 164 xas->xa_offset++; 165 xas_move_index(xas, xas->xa_offset); 166 } 167 168 static void *set_bounds(struct xa_state *xas) 169 { 170 xas->xa_node = XAS_BOUNDS; 171 return NULL; 172 } 173 174 /* 175 * Starts a walk. If the @xas is already valid, we assume that it's on 176 * the right path and just return where we've got to. If we're in an 177 * error state, return NULL. If the index is outside the current scope 178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 179 * set @xas->xa_node to NULL and return the current head of the array. 180 */ 181 static void *xas_start(struct xa_state *xas) 182 { 183 void *entry; 184 185 if (xas_valid(xas)) 186 return xas_reload(xas); 187 if (xas_error(xas)) 188 return NULL; 189 190 entry = xa_head(xas->xa); 191 if (!xa_is_node(entry)) { 192 if (xas->xa_index) 193 return set_bounds(xas); 194 } else { 195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 196 return set_bounds(xas); 197 } 198 199 xas->xa_node = NULL; 200 return entry; 201 } 202 203 static __always_inline void *xas_descend(struct xa_state *xas, 204 struct xa_node *node) 205 { 206 unsigned int offset = get_offset(xas->xa_index, node); 207 void *entry = xa_entry(xas->xa, node, offset); 208 209 xas->xa_node = node; 210 while (xa_is_sibling(entry)) { 211 offset = xa_to_sibling(entry); 212 entry = xa_entry(xas->xa, node, offset); 213 if (node->shift && xa_is_node(entry)) 214 entry = XA_RETRY_ENTRY; 215 } 216 217 xas->xa_offset = offset; 218 return entry; 219 } 220 221 /** 222 * xas_load() - Load an entry from the XArray (advanced). 223 * @xas: XArray operation state. 224 * 225 * Usually walks the @xas to the appropriate state to load the entry 226 * stored at xa_index. However, it will do nothing and return %NULL if 227 * @xas is in an error state. xas_load() will never expand the tree. 228 * 229 * If the xa_state is set up to operate on a multi-index entry, xas_load() 230 * may return %NULL or an internal entry, even if there are entries 231 * present within the range specified by @xas. 232 * 233 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 234 * Return: Usually an entry in the XArray, but see description for exceptions. 235 */ 236 void *xas_load(struct xa_state *xas) 237 { 238 void *entry = xas_start(xas); 239 240 while (xa_is_node(entry)) { 241 struct xa_node *node = xa_to_node(entry); 242 243 if (xas->xa_shift > node->shift) 244 break; 245 entry = xas_descend(xas, node); 246 if (node->shift == 0) 247 break; 248 } 249 return entry; 250 } 251 EXPORT_SYMBOL_GPL(xas_load); 252 253 #define XA_RCU_FREE ((struct xarray *)1) 254 255 static void xa_node_free(struct xa_node *node) 256 { 257 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 258 node->array = XA_RCU_FREE; 259 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 260 } 261 262 /* 263 * xas_destroy() - Free any resources allocated during the XArray operation. 264 * @xas: XArray operation state. 265 * 266 * Most users will not need to call this function; it is called for you 267 * by xas_nomem(). 268 */ 269 void xas_destroy(struct xa_state *xas) 270 { 271 struct xa_node *next, *node = xas->xa_alloc; 272 273 while (node) { 274 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 275 next = rcu_dereference_raw(node->parent); 276 radix_tree_node_rcu_free(&node->rcu_head); 277 xas->xa_alloc = node = next; 278 } 279 } 280 281 /** 282 * xas_nomem() - Allocate memory if needed. 283 * @xas: XArray operation state. 284 * @gfp: Memory allocation flags. 285 * 286 * If we need to add new nodes to the XArray, we try to allocate memory 287 * with GFP_NOWAIT while holding the lock, which will usually succeed. 288 * If it fails, @xas is flagged as needing memory to continue. The caller 289 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 290 * the caller should retry the operation. 291 * 292 * Forward progress is guaranteed as one node is allocated here and 293 * stored in the xa_state where it will be found by xas_alloc(). More 294 * nodes will likely be found in the slab allocator, but we do not tie 295 * them up here. 296 * 297 * Return: true if memory was needed, and was successfully allocated. 298 */ 299 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 300 { 301 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 302 xas_destroy(xas); 303 return false; 304 } 305 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 306 gfp |= __GFP_ACCOUNT; 307 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 308 if (!xas->xa_alloc) 309 return false; 310 xas->xa_alloc->parent = NULL; 311 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 312 xas->xa_node = XAS_RESTART; 313 return true; 314 } 315 EXPORT_SYMBOL_GPL(xas_nomem); 316 317 /* 318 * __xas_nomem() - Drop locks and allocate memory if needed. 319 * @xas: XArray operation state. 320 * @gfp: Memory allocation flags. 321 * 322 * Internal variant of xas_nomem(). 323 * 324 * Return: true if memory was needed, and was successfully allocated. 325 */ 326 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 327 __must_hold(xas->xa->xa_lock) 328 { 329 unsigned int lock_type = xa_lock_type(xas->xa); 330 331 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 332 xas_destroy(xas); 333 return false; 334 } 335 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 336 gfp |= __GFP_ACCOUNT; 337 if (gfpflags_allow_blocking(gfp)) { 338 xas_unlock_type(xas, lock_type); 339 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 340 xas_lock_type(xas, lock_type); 341 } else { 342 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 343 } 344 if (!xas->xa_alloc) 345 return false; 346 xas->xa_alloc->parent = NULL; 347 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 348 xas->xa_node = XAS_RESTART; 349 return true; 350 } 351 352 static void xas_update(struct xa_state *xas, struct xa_node *node) 353 { 354 if (xas->xa_update) 355 xas->xa_update(node); 356 else 357 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 358 } 359 360 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 361 { 362 struct xa_node *parent = xas->xa_node; 363 struct xa_node *node = xas->xa_alloc; 364 365 if (xas_invalid(xas)) 366 return NULL; 367 368 if (node) { 369 xas->xa_alloc = NULL; 370 } else { 371 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 372 373 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 374 gfp |= __GFP_ACCOUNT; 375 376 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 377 if (!node) { 378 xas_set_err(xas, -ENOMEM); 379 return NULL; 380 } 381 } 382 383 if (parent) { 384 node->offset = xas->xa_offset; 385 parent->count++; 386 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 387 xas_update(xas, parent); 388 } 389 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 390 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 391 node->shift = shift; 392 node->count = 0; 393 node->nr_values = 0; 394 RCU_INIT_POINTER(node->parent, xas->xa_node); 395 node->array = xas->xa; 396 397 return node; 398 } 399 400 #ifdef CONFIG_XARRAY_MULTI 401 /* Returns the number of indices covered by a given xa_state */ 402 static unsigned long xas_size(const struct xa_state *xas) 403 { 404 return (xas->xa_sibs + 1UL) << xas->xa_shift; 405 } 406 #endif 407 408 /* 409 * Use this to calculate the maximum index that will need to be created 410 * in order to add the entry described by @xas. Because we cannot store a 411 * multi-index entry at index 0, the calculation is a little more complex 412 * than you might expect. 413 */ 414 static unsigned long xas_max(struct xa_state *xas) 415 { 416 unsigned long max = xas->xa_index; 417 418 #ifdef CONFIG_XARRAY_MULTI 419 if (xas->xa_shift || xas->xa_sibs) { 420 unsigned long mask = xas_size(xas) - 1; 421 max |= mask; 422 if (mask == max) 423 max++; 424 } 425 #endif 426 427 return max; 428 } 429 430 /* The maximum index that can be contained in the array without expanding it */ 431 static unsigned long max_index(void *entry) 432 { 433 if (!xa_is_node(entry)) 434 return 0; 435 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 436 } 437 438 static void xas_shrink(struct xa_state *xas) 439 { 440 struct xarray *xa = xas->xa; 441 struct xa_node *node = xas->xa_node; 442 443 for (;;) { 444 void *entry; 445 446 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 447 if (node->count != 1) 448 break; 449 entry = xa_entry_locked(xa, node, 0); 450 if (!entry) 451 break; 452 if (!xa_is_node(entry) && node->shift) 453 break; 454 if (xa_is_zero(entry) && xa_zero_busy(xa)) 455 entry = NULL; 456 xas->xa_node = XAS_BOUNDS; 457 458 RCU_INIT_POINTER(xa->xa_head, entry); 459 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 460 xa_mark_clear(xa, XA_FREE_MARK); 461 462 node->count = 0; 463 node->nr_values = 0; 464 if (!xa_is_node(entry)) 465 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 466 xas_update(xas, node); 467 xa_node_free(node); 468 if (!xa_is_node(entry)) 469 break; 470 node = xa_to_node(entry); 471 node->parent = NULL; 472 } 473 } 474 475 /* 476 * xas_delete_node() - Attempt to delete an xa_node 477 * @xas: Array operation state. 478 * 479 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 480 * a non-zero reference count. 481 */ 482 static void xas_delete_node(struct xa_state *xas) 483 { 484 struct xa_node *node = xas->xa_node; 485 486 for (;;) { 487 struct xa_node *parent; 488 489 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 490 if (node->count) 491 break; 492 493 parent = xa_parent_locked(xas->xa, node); 494 xas->xa_node = parent; 495 xas->xa_offset = node->offset; 496 xa_node_free(node); 497 498 if (!parent) { 499 xas->xa->xa_head = NULL; 500 xas->xa_node = XAS_BOUNDS; 501 return; 502 } 503 504 parent->slots[xas->xa_offset] = NULL; 505 parent->count--; 506 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 507 node = parent; 508 xas_update(xas, node); 509 } 510 511 if (!node->parent) 512 xas_shrink(xas); 513 } 514 515 /** 516 * xas_free_nodes() - Free this node and all nodes that it references 517 * @xas: Array operation state. 518 * @top: Node to free 519 * 520 * This node has been removed from the tree. We must now free it and all 521 * of its subnodes. There may be RCU walkers with references into the tree, 522 * so we must replace all entries with retry markers. 523 */ 524 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 525 { 526 unsigned int offset = 0; 527 struct xa_node *node = top; 528 529 for (;;) { 530 void *entry = xa_entry_locked(xas->xa, node, offset); 531 532 if (node->shift && xa_is_node(entry)) { 533 node = xa_to_node(entry); 534 offset = 0; 535 continue; 536 } 537 if (entry) 538 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 539 offset++; 540 while (offset == XA_CHUNK_SIZE) { 541 struct xa_node *parent; 542 543 parent = xa_parent_locked(xas->xa, node); 544 offset = node->offset + 1; 545 node->count = 0; 546 node->nr_values = 0; 547 xas_update(xas, node); 548 xa_node_free(node); 549 if (node == top) 550 return; 551 node = parent; 552 } 553 } 554 } 555 556 /* 557 * xas_expand adds nodes to the head of the tree until it has reached 558 * sufficient height to be able to contain @xas->xa_index 559 */ 560 static int xas_expand(struct xa_state *xas, void *head) 561 { 562 struct xarray *xa = xas->xa; 563 struct xa_node *node = NULL; 564 unsigned int shift = 0; 565 unsigned long max = xas_max(xas); 566 567 if (!head) { 568 if (max == 0) 569 return 0; 570 while ((max >> shift) >= XA_CHUNK_SIZE) 571 shift += XA_CHUNK_SHIFT; 572 return shift + XA_CHUNK_SHIFT; 573 } else if (xa_is_node(head)) { 574 node = xa_to_node(head); 575 shift = node->shift + XA_CHUNK_SHIFT; 576 } 577 xas->xa_node = NULL; 578 579 while (max > max_index(head)) { 580 xa_mark_t mark = 0; 581 582 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 583 node = xas_alloc(xas, shift); 584 if (!node) 585 return -ENOMEM; 586 587 node->count = 1; 588 if (xa_is_value(head)) 589 node->nr_values = 1; 590 RCU_INIT_POINTER(node->slots[0], head); 591 592 /* Propagate the aggregated mark info to the new child */ 593 for (;;) { 594 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 595 node_mark_all(node, XA_FREE_MARK); 596 if (!xa_marked(xa, XA_FREE_MARK)) { 597 node_clear_mark(node, 0, XA_FREE_MARK); 598 xa_mark_set(xa, XA_FREE_MARK); 599 } 600 } else if (xa_marked(xa, mark)) { 601 node_set_mark(node, 0, mark); 602 } 603 if (mark == XA_MARK_MAX) 604 break; 605 mark_inc(mark); 606 } 607 608 /* 609 * Now that the new node is fully initialised, we can add 610 * it to the tree 611 */ 612 if (xa_is_node(head)) { 613 xa_to_node(head)->offset = 0; 614 rcu_assign_pointer(xa_to_node(head)->parent, node); 615 } 616 head = xa_mk_node(node); 617 rcu_assign_pointer(xa->xa_head, head); 618 xas_update(xas, node); 619 620 shift += XA_CHUNK_SHIFT; 621 } 622 623 xas->xa_node = node; 624 return shift; 625 } 626 627 /* 628 * xas_create() - Create a slot to store an entry in. 629 * @xas: XArray operation state. 630 * @allow_root: %true if we can store the entry in the root directly 631 * 632 * Most users will not need to call this function directly, as it is called 633 * by xas_store(). It is useful for doing conditional store operations 634 * (see the xa_cmpxchg() implementation for an example). 635 * 636 * Return: If the slot already existed, returns the contents of this slot. 637 * If the slot was newly created, returns %NULL. If it failed to create the 638 * slot, returns %NULL and indicates the error in @xas. 639 */ 640 static void *xas_create(struct xa_state *xas, bool allow_root) 641 { 642 struct xarray *xa = xas->xa; 643 void *entry; 644 void __rcu **slot; 645 struct xa_node *node = xas->xa_node; 646 int shift; 647 unsigned int order = xas->xa_shift; 648 649 if (xas_top(node)) { 650 entry = xa_head_locked(xa); 651 xas->xa_node = NULL; 652 if (!entry && xa_zero_busy(xa)) 653 entry = XA_ZERO_ENTRY; 654 shift = xas_expand(xas, entry); 655 if (shift < 0) 656 return NULL; 657 if (!shift && !allow_root) 658 shift = XA_CHUNK_SHIFT; 659 entry = xa_head_locked(xa); 660 slot = &xa->xa_head; 661 } else if (xas_error(xas)) { 662 return NULL; 663 } else if (node) { 664 unsigned int offset = xas->xa_offset; 665 666 shift = node->shift; 667 entry = xa_entry_locked(xa, node, offset); 668 slot = &node->slots[offset]; 669 } else { 670 shift = 0; 671 entry = xa_head_locked(xa); 672 slot = &xa->xa_head; 673 } 674 675 while (shift > order) { 676 shift -= XA_CHUNK_SHIFT; 677 if (!entry) { 678 node = xas_alloc(xas, shift); 679 if (!node) 680 break; 681 if (xa_track_free(xa)) 682 node_mark_all(node, XA_FREE_MARK); 683 rcu_assign_pointer(*slot, xa_mk_node(node)); 684 } else if (xa_is_node(entry)) { 685 node = xa_to_node(entry); 686 } else { 687 break; 688 } 689 entry = xas_descend(xas, node); 690 slot = &node->slots[xas->xa_offset]; 691 } 692 693 return entry; 694 } 695 696 /** 697 * xas_create_range() - Ensure that stores to this range will succeed 698 * @xas: XArray operation state. 699 * 700 * Creates all of the slots in the range covered by @xas. Sets @xas to 701 * create single-index entries and positions it at the beginning of the 702 * range. This is for the benefit of users which have not yet been 703 * converted to use multi-index entries. 704 */ 705 void xas_create_range(struct xa_state *xas) 706 { 707 unsigned long index = xas->xa_index; 708 unsigned char shift = xas->xa_shift; 709 unsigned char sibs = xas->xa_sibs; 710 711 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 712 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 713 xas->xa_offset |= sibs; 714 xas->xa_shift = 0; 715 xas->xa_sibs = 0; 716 717 for (;;) { 718 xas_create(xas, true); 719 if (xas_error(xas)) 720 goto restore; 721 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 722 goto success; 723 xas->xa_index -= XA_CHUNK_SIZE; 724 725 for (;;) { 726 struct xa_node *node = xas->xa_node; 727 if (node->shift >= shift) 728 break; 729 xas->xa_node = xa_parent_locked(xas->xa, node); 730 xas->xa_offset = node->offset - 1; 731 if (node->offset != 0) 732 break; 733 } 734 } 735 736 restore: 737 xas->xa_shift = shift; 738 xas->xa_sibs = sibs; 739 xas->xa_index = index; 740 return; 741 success: 742 xas->xa_index = index; 743 if (xas->xa_node) 744 xas_set_offset(xas); 745 } 746 EXPORT_SYMBOL_GPL(xas_create_range); 747 748 static void update_node(struct xa_state *xas, struct xa_node *node, 749 int count, int values) 750 { 751 if (!node || (!count && !values)) 752 return; 753 754 node->count += count; 755 node->nr_values += values; 756 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 757 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 758 xas_update(xas, node); 759 if (count < 0) 760 xas_delete_node(xas); 761 } 762 763 /** 764 * xas_store() - Store this entry in the XArray. 765 * @xas: XArray operation state. 766 * @entry: New entry. 767 * 768 * If @xas is operating on a multi-index entry, the entry returned by this 769 * function is essentially meaningless (it may be an internal entry or it 770 * may be %NULL, even if there are non-NULL entries at some of the indices 771 * covered by the range). This is not a problem for any current users, 772 * and can be changed if needed. 773 * 774 * Return: The old entry at this index. 775 */ 776 void *xas_store(struct xa_state *xas, void *entry) 777 { 778 struct xa_node *node; 779 void __rcu **slot = &xas->xa->xa_head; 780 unsigned int offset, max; 781 int count = 0; 782 int values = 0; 783 void *first, *next; 784 bool value = xa_is_value(entry); 785 786 if (entry) { 787 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 788 first = xas_create(xas, allow_root); 789 } else { 790 first = xas_load(xas); 791 } 792 793 if (xas_invalid(xas)) 794 return first; 795 node = xas->xa_node; 796 if (node && (xas->xa_shift < node->shift)) 797 xas->xa_sibs = 0; 798 if ((first == entry) && !xas->xa_sibs) 799 return first; 800 801 next = first; 802 offset = xas->xa_offset; 803 max = xas->xa_offset + xas->xa_sibs; 804 if (node) { 805 slot = &node->slots[offset]; 806 if (xas->xa_sibs) 807 xas_squash_marks(xas); 808 } 809 if (!entry) 810 xas_init_marks(xas); 811 812 for (;;) { 813 /* 814 * Must clear the marks before setting the entry to NULL, 815 * otherwise xas_for_each_marked may find a NULL entry and 816 * stop early. rcu_assign_pointer contains a release barrier 817 * so the mark clearing will appear to happen before the 818 * entry is set to NULL. 819 */ 820 rcu_assign_pointer(*slot, entry); 821 if (xa_is_node(next) && (!node || node->shift)) 822 xas_free_nodes(xas, xa_to_node(next)); 823 if (!node) 824 break; 825 count += !next - !entry; 826 values += !xa_is_value(first) - !value; 827 if (entry) { 828 if (offset == max) 829 break; 830 if (!xa_is_sibling(entry)) 831 entry = xa_mk_sibling(xas->xa_offset); 832 } else { 833 if (offset == XA_CHUNK_MASK) 834 break; 835 } 836 next = xa_entry_locked(xas->xa, node, ++offset); 837 if (!xa_is_sibling(next)) { 838 if (!entry && (offset > max)) 839 break; 840 first = next; 841 } 842 slot++; 843 } 844 845 update_node(xas, node, count, values); 846 return first; 847 } 848 EXPORT_SYMBOL_GPL(xas_store); 849 850 /** 851 * xas_get_mark() - Returns the state of this mark. 852 * @xas: XArray operation state. 853 * @mark: Mark number. 854 * 855 * Return: true if the mark is set, false if the mark is clear or @xas 856 * is in an error state. 857 */ 858 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 859 { 860 if (xas_invalid(xas)) 861 return false; 862 if (!xas->xa_node) 863 return xa_marked(xas->xa, mark); 864 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 865 } 866 EXPORT_SYMBOL_GPL(xas_get_mark); 867 868 /** 869 * xas_set_mark() - Sets the mark on this entry and its parents. 870 * @xas: XArray operation state. 871 * @mark: Mark number. 872 * 873 * Sets the specified mark on this entry, and walks up the tree setting it 874 * on all the ancestor entries. Does nothing if @xas has not been walked to 875 * an entry, or is in an error state. 876 */ 877 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 878 { 879 struct xa_node *node = xas->xa_node; 880 unsigned int offset = xas->xa_offset; 881 882 if (xas_invalid(xas)) 883 return; 884 885 while (node) { 886 if (node_set_mark(node, offset, mark)) 887 return; 888 offset = node->offset; 889 node = xa_parent_locked(xas->xa, node); 890 } 891 892 if (!xa_marked(xas->xa, mark)) 893 xa_mark_set(xas->xa, mark); 894 } 895 EXPORT_SYMBOL_GPL(xas_set_mark); 896 897 /** 898 * xas_clear_mark() - Clears the mark on this entry and its parents. 899 * @xas: XArray operation state. 900 * @mark: Mark number. 901 * 902 * Clears the specified mark on this entry, and walks back to the head 903 * attempting to clear it on all the ancestor entries. Does nothing if 904 * @xas has not been walked to an entry, or is in an error state. 905 */ 906 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 907 { 908 struct xa_node *node = xas->xa_node; 909 unsigned int offset = xas->xa_offset; 910 911 if (xas_invalid(xas)) 912 return; 913 914 while (node) { 915 if (!node_clear_mark(node, offset, mark)) 916 return; 917 if (node_any_mark(node, mark)) 918 return; 919 920 offset = node->offset; 921 node = xa_parent_locked(xas->xa, node); 922 } 923 924 if (xa_marked(xas->xa, mark)) 925 xa_mark_clear(xas->xa, mark); 926 } 927 EXPORT_SYMBOL_GPL(xas_clear_mark); 928 929 /** 930 * xas_init_marks() - Initialise all marks for the entry 931 * @xas: Array operations state. 932 * 933 * Initialise all marks for the entry specified by @xas. If we're tracking 934 * free entries with a mark, we need to set it on all entries. All other 935 * marks are cleared. 936 * 937 * This implementation is not as efficient as it could be; we may walk 938 * up the tree multiple times. 939 */ 940 void xas_init_marks(const struct xa_state *xas) 941 { 942 xa_mark_t mark = 0; 943 944 for (;;) { 945 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 946 xas_set_mark(xas, mark); 947 else 948 xas_clear_mark(xas, mark); 949 if (mark == XA_MARK_MAX) 950 break; 951 mark_inc(mark); 952 } 953 } 954 EXPORT_SYMBOL_GPL(xas_init_marks); 955 956 #ifdef CONFIG_XARRAY_MULTI 957 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 958 { 959 unsigned int marks = 0; 960 xa_mark_t mark = XA_MARK_0; 961 962 for (;;) { 963 if (node_get_mark(node, offset, mark)) 964 marks |= 1 << (__force unsigned int)mark; 965 if (mark == XA_MARK_MAX) 966 break; 967 mark_inc(mark); 968 } 969 970 return marks; 971 } 972 973 static void node_set_marks(struct xa_node *node, unsigned int offset, 974 struct xa_node *child, unsigned int marks) 975 { 976 xa_mark_t mark = XA_MARK_0; 977 978 for (;;) { 979 if (marks & (1 << (__force unsigned int)mark)) { 980 node_set_mark(node, offset, mark); 981 if (child) 982 node_mark_all(child, mark); 983 } 984 if (mark == XA_MARK_MAX) 985 break; 986 mark_inc(mark); 987 } 988 } 989 990 /** 991 * xas_split_alloc() - Allocate memory for splitting an entry. 992 * @xas: XArray operation state. 993 * @entry: New entry which will be stored in the array. 994 * @order: Current entry order. 995 * @gfp: Memory allocation flags. 996 * 997 * This function should be called before calling xas_split(). 998 * If necessary, it will allocate new nodes (and fill them with @entry) 999 * to prepare for the upcoming split of an entry of @order size into 1000 * entries of the order stored in the @xas. 1001 * 1002 * Context: May sleep if @gfp flags permit. 1003 */ 1004 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1005 gfp_t gfp) 1006 { 1007 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1008 unsigned int mask = xas->xa_sibs; 1009 1010 /* XXX: no support for splitting really large entries yet */ 1011 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1012 goto nomem; 1013 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1014 return; 1015 1016 do { 1017 unsigned int i; 1018 void *sibling = NULL; 1019 struct xa_node *node; 1020 1021 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1022 if (!node) 1023 goto nomem; 1024 node->array = xas->xa; 1025 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1026 if ((i & mask) == 0) { 1027 RCU_INIT_POINTER(node->slots[i], entry); 1028 sibling = xa_mk_sibling(i); 1029 } else { 1030 RCU_INIT_POINTER(node->slots[i], sibling); 1031 } 1032 } 1033 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1034 xas->xa_alloc = node; 1035 } while (sibs-- > 0); 1036 1037 return; 1038 nomem: 1039 xas_destroy(xas); 1040 xas_set_err(xas, -ENOMEM); 1041 } 1042 EXPORT_SYMBOL_GPL(xas_split_alloc); 1043 1044 /** 1045 * xas_split() - Split a multi-index entry into smaller entries. 1046 * @xas: XArray operation state. 1047 * @entry: New entry to store in the array. 1048 * @order: Current entry order. 1049 * 1050 * The size of the new entries is set in @xas. The value in @entry is 1051 * copied to all the replacement entries. 1052 * 1053 * Context: Any context. The caller should hold the xa_lock. 1054 */ 1055 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1056 { 1057 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1058 unsigned int offset, marks; 1059 struct xa_node *node; 1060 void *curr = xas_load(xas); 1061 int values = 0; 1062 1063 node = xas->xa_node; 1064 if (xas_top(node)) 1065 return; 1066 1067 marks = node_get_marks(node, xas->xa_offset); 1068 1069 offset = xas->xa_offset + sibs; 1070 do { 1071 if (xas->xa_shift < node->shift) { 1072 struct xa_node *child = xas->xa_alloc; 1073 1074 xas->xa_alloc = rcu_dereference_raw(child->parent); 1075 child->shift = node->shift - XA_CHUNK_SHIFT; 1076 child->offset = offset; 1077 child->count = XA_CHUNK_SIZE; 1078 child->nr_values = xa_is_value(entry) ? 1079 XA_CHUNK_SIZE : 0; 1080 RCU_INIT_POINTER(child->parent, node); 1081 node_set_marks(node, offset, child, marks); 1082 rcu_assign_pointer(node->slots[offset], 1083 xa_mk_node(child)); 1084 if (xa_is_value(curr)) 1085 values--; 1086 xas_update(xas, child); 1087 } else { 1088 unsigned int canon = offset - xas->xa_sibs; 1089 1090 node_set_marks(node, canon, NULL, marks); 1091 rcu_assign_pointer(node->slots[canon], entry); 1092 while (offset > canon) 1093 rcu_assign_pointer(node->slots[offset--], 1094 xa_mk_sibling(canon)); 1095 values += (xa_is_value(entry) - xa_is_value(curr)) * 1096 (xas->xa_sibs + 1); 1097 } 1098 } while (offset-- > xas->xa_offset); 1099 1100 node->nr_values += values; 1101 xas_update(xas, node); 1102 } 1103 EXPORT_SYMBOL_GPL(xas_split); 1104 #endif 1105 1106 /** 1107 * xas_pause() - Pause a walk to drop a lock. 1108 * @xas: XArray operation state. 1109 * 1110 * Some users need to pause a walk and drop the lock they're holding in 1111 * order to yield to a higher priority thread or carry out an operation 1112 * on an entry. Those users should call this function before they drop 1113 * the lock. It resets the @xas to be suitable for the next iteration 1114 * of the loop after the user has reacquired the lock. If most entries 1115 * found during a walk require you to call xas_pause(), the xa_for_each() 1116 * iterator may be more appropriate. 1117 * 1118 * Note that xas_pause() only works for forward iteration. If a user needs 1119 * to pause a reverse iteration, we will need a xas_pause_rev(). 1120 */ 1121 void xas_pause(struct xa_state *xas) 1122 { 1123 struct xa_node *node = xas->xa_node; 1124 1125 if (xas_invalid(xas)) 1126 return; 1127 1128 xas->xa_node = XAS_RESTART; 1129 if (node) { 1130 unsigned long offset = xas->xa_offset; 1131 while (++offset < XA_CHUNK_SIZE) { 1132 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1133 break; 1134 } 1135 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1136 if (xas->xa_index == 0) 1137 xas->xa_node = XAS_BOUNDS; 1138 } else { 1139 xas->xa_index++; 1140 } 1141 } 1142 EXPORT_SYMBOL_GPL(xas_pause); 1143 1144 /* 1145 * __xas_prev() - Find the previous entry in the XArray. 1146 * @xas: XArray operation state. 1147 * 1148 * Helper function for xas_prev() which handles all the complex cases 1149 * out of line. 1150 */ 1151 void *__xas_prev(struct xa_state *xas) 1152 { 1153 void *entry; 1154 1155 if (!xas_frozen(xas->xa_node)) 1156 xas->xa_index--; 1157 if (!xas->xa_node) 1158 return set_bounds(xas); 1159 if (xas_not_node(xas->xa_node)) 1160 return xas_load(xas); 1161 1162 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1163 xas->xa_offset--; 1164 1165 while (xas->xa_offset == 255) { 1166 xas->xa_offset = xas->xa_node->offset - 1; 1167 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1168 if (!xas->xa_node) 1169 return set_bounds(xas); 1170 } 1171 1172 for (;;) { 1173 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1174 if (!xa_is_node(entry)) 1175 return entry; 1176 1177 xas->xa_node = xa_to_node(entry); 1178 xas_set_offset(xas); 1179 } 1180 } 1181 EXPORT_SYMBOL_GPL(__xas_prev); 1182 1183 /* 1184 * __xas_next() - Find the next entry in the XArray. 1185 * @xas: XArray operation state. 1186 * 1187 * Helper function for xas_next() which handles all the complex cases 1188 * out of line. 1189 */ 1190 void *__xas_next(struct xa_state *xas) 1191 { 1192 void *entry; 1193 1194 if (!xas_frozen(xas->xa_node)) 1195 xas->xa_index++; 1196 if (!xas->xa_node) 1197 return set_bounds(xas); 1198 if (xas_not_node(xas->xa_node)) 1199 return xas_load(xas); 1200 1201 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1202 xas->xa_offset++; 1203 1204 while (xas->xa_offset == XA_CHUNK_SIZE) { 1205 xas->xa_offset = xas->xa_node->offset + 1; 1206 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1207 if (!xas->xa_node) 1208 return set_bounds(xas); 1209 } 1210 1211 for (;;) { 1212 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1213 if (!xa_is_node(entry)) 1214 return entry; 1215 1216 xas->xa_node = xa_to_node(entry); 1217 xas_set_offset(xas); 1218 } 1219 } 1220 EXPORT_SYMBOL_GPL(__xas_next); 1221 1222 /** 1223 * xas_find() - Find the next present entry in the XArray. 1224 * @xas: XArray operation state. 1225 * @max: Highest index to return. 1226 * 1227 * If the @xas has not yet been walked to an entry, return the entry 1228 * which has an index >= xas.xa_index. If it has been walked, the entry 1229 * currently being pointed at has been processed, and so we move to the 1230 * next entry. 1231 * 1232 * If no entry is found and the array is smaller than @max, the iterator 1233 * is set to the smallest index not yet in the array. This allows @xas 1234 * to be immediately passed to xas_store(). 1235 * 1236 * Return: The entry, if found, otherwise %NULL. 1237 */ 1238 void *xas_find(struct xa_state *xas, unsigned long max) 1239 { 1240 void *entry; 1241 1242 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1243 return NULL; 1244 if (xas->xa_index > max) 1245 return set_bounds(xas); 1246 1247 if (!xas->xa_node) { 1248 xas->xa_index = 1; 1249 return set_bounds(xas); 1250 } else if (xas->xa_node == XAS_RESTART) { 1251 entry = xas_load(xas); 1252 if (entry || xas_not_node(xas->xa_node)) 1253 return entry; 1254 } else if (!xas->xa_node->shift && 1255 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1256 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1257 } 1258 1259 xas_next_offset(xas); 1260 1261 while (xas->xa_node && (xas->xa_index <= max)) { 1262 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1263 xas->xa_offset = xas->xa_node->offset + 1; 1264 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1265 continue; 1266 } 1267 1268 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1269 if (xa_is_node(entry)) { 1270 xas->xa_node = xa_to_node(entry); 1271 xas->xa_offset = 0; 1272 continue; 1273 } 1274 if (entry && !xa_is_sibling(entry)) 1275 return entry; 1276 1277 xas_next_offset(xas); 1278 } 1279 1280 if (!xas->xa_node) 1281 xas->xa_node = XAS_BOUNDS; 1282 return NULL; 1283 } 1284 EXPORT_SYMBOL_GPL(xas_find); 1285 1286 /** 1287 * xas_find_marked() - Find the next marked entry in the XArray. 1288 * @xas: XArray operation state. 1289 * @max: Highest index to return. 1290 * @mark: Mark number to search for. 1291 * 1292 * If the @xas has not yet been walked to an entry, return the marked entry 1293 * which has an index >= xas.xa_index. If it has been walked, the entry 1294 * currently being pointed at has been processed, and so we return the 1295 * first marked entry with an index > xas.xa_index. 1296 * 1297 * If no marked entry is found and the array is smaller than @max, @xas is 1298 * set to the bounds state and xas->xa_index is set to the smallest index 1299 * not yet in the array. This allows @xas to be immediately passed to 1300 * xas_store(). 1301 * 1302 * If no entry is found before @max is reached, @xas is set to the restart 1303 * state. 1304 * 1305 * Return: The entry, if found, otherwise %NULL. 1306 */ 1307 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1308 { 1309 bool advance = true; 1310 unsigned int offset; 1311 void *entry; 1312 1313 if (xas_error(xas)) 1314 return NULL; 1315 if (xas->xa_index > max) 1316 goto max; 1317 1318 if (!xas->xa_node) { 1319 xas->xa_index = 1; 1320 goto out; 1321 } else if (xas_top(xas->xa_node)) { 1322 advance = false; 1323 entry = xa_head(xas->xa); 1324 xas->xa_node = NULL; 1325 if (xas->xa_index > max_index(entry)) 1326 goto out; 1327 if (!xa_is_node(entry)) { 1328 if (xa_marked(xas->xa, mark)) 1329 return entry; 1330 xas->xa_index = 1; 1331 goto out; 1332 } 1333 xas->xa_node = xa_to_node(entry); 1334 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1335 } 1336 1337 while (xas->xa_index <= max) { 1338 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1339 xas->xa_offset = xas->xa_node->offset + 1; 1340 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1341 if (!xas->xa_node) 1342 break; 1343 advance = false; 1344 continue; 1345 } 1346 1347 if (!advance) { 1348 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1349 if (xa_is_sibling(entry)) { 1350 xas->xa_offset = xa_to_sibling(entry); 1351 xas_move_index(xas, xas->xa_offset); 1352 } 1353 } 1354 1355 offset = xas_find_chunk(xas, advance, mark); 1356 if (offset > xas->xa_offset) { 1357 advance = false; 1358 xas_move_index(xas, offset); 1359 /* Mind the wrap */ 1360 if ((xas->xa_index - 1) >= max) 1361 goto max; 1362 xas->xa_offset = offset; 1363 if (offset == XA_CHUNK_SIZE) 1364 continue; 1365 } 1366 1367 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1368 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1369 continue; 1370 if (!xa_is_node(entry)) 1371 return entry; 1372 xas->xa_node = xa_to_node(entry); 1373 xas_set_offset(xas); 1374 } 1375 1376 out: 1377 if (xas->xa_index > max) 1378 goto max; 1379 return set_bounds(xas); 1380 max: 1381 xas->xa_node = XAS_RESTART; 1382 return NULL; 1383 } 1384 EXPORT_SYMBOL_GPL(xas_find_marked); 1385 1386 /** 1387 * xas_find_conflict() - Find the next present entry in a range. 1388 * @xas: XArray operation state. 1389 * 1390 * The @xas describes both a range and a position within that range. 1391 * 1392 * Context: Any context. Expects xa_lock to be held. 1393 * Return: The next entry in the range covered by @xas or %NULL. 1394 */ 1395 void *xas_find_conflict(struct xa_state *xas) 1396 { 1397 void *curr; 1398 1399 if (xas_error(xas)) 1400 return NULL; 1401 1402 if (!xas->xa_node) 1403 return NULL; 1404 1405 if (xas_top(xas->xa_node)) { 1406 curr = xas_start(xas); 1407 if (!curr) 1408 return NULL; 1409 while (xa_is_node(curr)) { 1410 struct xa_node *node = xa_to_node(curr); 1411 curr = xas_descend(xas, node); 1412 } 1413 if (curr) 1414 return curr; 1415 } 1416 1417 if (xas->xa_node->shift > xas->xa_shift) 1418 return NULL; 1419 1420 for (;;) { 1421 if (xas->xa_node->shift == xas->xa_shift) { 1422 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1423 break; 1424 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1425 xas->xa_offset = xas->xa_node->offset; 1426 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1427 if (!xas->xa_node) 1428 break; 1429 continue; 1430 } 1431 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1432 if (xa_is_sibling(curr)) 1433 continue; 1434 while (xa_is_node(curr)) { 1435 xas->xa_node = xa_to_node(curr); 1436 xas->xa_offset = 0; 1437 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1438 } 1439 if (curr) 1440 return curr; 1441 } 1442 xas->xa_offset -= xas->xa_sibs; 1443 return NULL; 1444 } 1445 EXPORT_SYMBOL_GPL(xas_find_conflict); 1446 1447 /** 1448 * xa_load() - Load an entry from an XArray. 1449 * @xa: XArray. 1450 * @index: index into array. 1451 * 1452 * Context: Any context. Takes and releases the RCU lock. 1453 * Return: The entry at @index in @xa. 1454 */ 1455 void *xa_load(struct xarray *xa, unsigned long index) 1456 { 1457 XA_STATE(xas, xa, index); 1458 void *entry; 1459 1460 rcu_read_lock(); 1461 do { 1462 entry = xas_load(&xas); 1463 if (xa_is_zero(entry)) 1464 entry = NULL; 1465 } while (xas_retry(&xas, entry)); 1466 rcu_read_unlock(); 1467 1468 return entry; 1469 } 1470 EXPORT_SYMBOL(xa_load); 1471 1472 static void *xas_result(struct xa_state *xas, void *curr) 1473 { 1474 if (xa_is_zero(curr)) 1475 return NULL; 1476 if (xas_error(xas)) 1477 curr = xas->xa_node; 1478 return curr; 1479 } 1480 1481 /** 1482 * __xa_erase() - Erase this entry from the XArray while locked. 1483 * @xa: XArray. 1484 * @index: Index into array. 1485 * 1486 * After this function returns, loading from @index will return %NULL. 1487 * If the index is part of a multi-index entry, all indices will be erased 1488 * and none of the entries will be part of a multi-index entry. 1489 * 1490 * Context: Any context. Expects xa_lock to be held on entry. 1491 * Return: The entry which used to be at this index. 1492 */ 1493 void *__xa_erase(struct xarray *xa, unsigned long index) 1494 { 1495 XA_STATE(xas, xa, index); 1496 return xas_result(&xas, xas_store(&xas, NULL)); 1497 } 1498 EXPORT_SYMBOL(__xa_erase); 1499 1500 /** 1501 * xa_erase() - Erase this entry from the XArray. 1502 * @xa: XArray. 1503 * @index: Index of entry. 1504 * 1505 * After this function returns, loading from @index will return %NULL. 1506 * If the index is part of a multi-index entry, all indices will be erased 1507 * and none of the entries will be part of a multi-index entry. 1508 * 1509 * Context: Any context. Takes and releases the xa_lock. 1510 * Return: The entry which used to be at this index. 1511 */ 1512 void *xa_erase(struct xarray *xa, unsigned long index) 1513 { 1514 void *entry; 1515 1516 xa_lock(xa); 1517 entry = __xa_erase(xa, index); 1518 xa_unlock(xa); 1519 1520 return entry; 1521 } 1522 EXPORT_SYMBOL(xa_erase); 1523 1524 /** 1525 * __xa_store() - Store this entry in the XArray. 1526 * @xa: XArray. 1527 * @index: Index into array. 1528 * @entry: New entry. 1529 * @gfp: Memory allocation flags. 1530 * 1531 * You must already be holding the xa_lock when calling this function. 1532 * It will drop the lock if needed to allocate memory, and then reacquire 1533 * it afterwards. 1534 * 1535 * Context: Any context. Expects xa_lock to be held on entry. May 1536 * release and reacquire xa_lock if @gfp flags permit. 1537 * Return: The old entry at this index or xa_err() if an error happened. 1538 */ 1539 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1540 { 1541 XA_STATE(xas, xa, index); 1542 void *curr; 1543 1544 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1545 return XA_ERROR(-EINVAL); 1546 if (xa_track_free(xa) && !entry) 1547 entry = XA_ZERO_ENTRY; 1548 1549 do { 1550 curr = xas_store(&xas, entry); 1551 if (xa_track_free(xa)) 1552 xas_clear_mark(&xas, XA_FREE_MARK); 1553 } while (__xas_nomem(&xas, gfp)); 1554 1555 return xas_result(&xas, curr); 1556 } 1557 EXPORT_SYMBOL(__xa_store); 1558 1559 /** 1560 * xa_store() - Store this entry in the XArray. 1561 * @xa: XArray. 1562 * @index: Index into array. 1563 * @entry: New entry. 1564 * @gfp: Memory allocation flags. 1565 * 1566 * After this function returns, loads from this index will return @entry. 1567 * Storing into an existing multi-index entry updates the entry of every index. 1568 * The marks associated with @index are unaffected unless @entry is %NULL. 1569 * 1570 * Context: Any context. Takes and releases the xa_lock. 1571 * May sleep if the @gfp flags permit. 1572 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1573 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1574 * failed. 1575 */ 1576 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1577 { 1578 void *curr; 1579 1580 xa_lock(xa); 1581 curr = __xa_store(xa, index, entry, gfp); 1582 xa_unlock(xa); 1583 1584 return curr; 1585 } 1586 EXPORT_SYMBOL(xa_store); 1587 1588 /** 1589 * __xa_cmpxchg() - Store this entry in the XArray. 1590 * @xa: XArray. 1591 * @index: Index into array. 1592 * @old: Old value to test against. 1593 * @entry: New entry. 1594 * @gfp: Memory allocation flags. 1595 * 1596 * You must already be holding the xa_lock when calling this function. 1597 * It will drop the lock if needed to allocate memory, and then reacquire 1598 * it afterwards. 1599 * 1600 * Context: Any context. Expects xa_lock to be held on entry. May 1601 * release and reacquire xa_lock if @gfp flags permit. 1602 * Return: The old entry at this index or xa_err() if an error happened. 1603 */ 1604 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1605 void *old, void *entry, gfp_t gfp) 1606 { 1607 XA_STATE(xas, xa, index); 1608 void *curr; 1609 1610 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1611 return XA_ERROR(-EINVAL); 1612 1613 do { 1614 curr = xas_load(&xas); 1615 if (curr == old) { 1616 xas_store(&xas, entry); 1617 if (xa_track_free(xa) && entry && !curr) 1618 xas_clear_mark(&xas, XA_FREE_MARK); 1619 } 1620 } while (__xas_nomem(&xas, gfp)); 1621 1622 return xas_result(&xas, curr); 1623 } 1624 EXPORT_SYMBOL(__xa_cmpxchg); 1625 1626 /** 1627 * __xa_insert() - Store this entry in the XArray if no entry is present. 1628 * @xa: XArray. 1629 * @index: Index into array. 1630 * @entry: New entry. 1631 * @gfp: Memory allocation flags. 1632 * 1633 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1634 * if no entry is present. Inserting will fail if a reserved entry is 1635 * present, even though loading from this index will return NULL. 1636 * 1637 * Context: Any context. Expects xa_lock to be held on entry. May 1638 * release and reacquire xa_lock if @gfp flags permit. 1639 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1640 * -ENOMEM if memory could not be allocated. 1641 */ 1642 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1643 { 1644 XA_STATE(xas, xa, index); 1645 void *curr; 1646 1647 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1648 return -EINVAL; 1649 if (!entry) 1650 entry = XA_ZERO_ENTRY; 1651 1652 do { 1653 curr = xas_load(&xas); 1654 if (!curr) { 1655 xas_store(&xas, entry); 1656 if (xa_track_free(xa)) 1657 xas_clear_mark(&xas, XA_FREE_MARK); 1658 } else { 1659 xas_set_err(&xas, -EBUSY); 1660 } 1661 } while (__xas_nomem(&xas, gfp)); 1662 1663 return xas_error(&xas); 1664 } 1665 EXPORT_SYMBOL(__xa_insert); 1666 1667 #ifdef CONFIG_XARRAY_MULTI 1668 static void xas_set_range(struct xa_state *xas, unsigned long first, 1669 unsigned long last) 1670 { 1671 unsigned int shift = 0; 1672 unsigned long sibs = last - first; 1673 unsigned int offset = XA_CHUNK_MASK; 1674 1675 xas_set(xas, first); 1676 1677 while ((first & XA_CHUNK_MASK) == 0) { 1678 if (sibs < XA_CHUNK_MASK) 1679 break; 1680 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1681 break; 1682 shift += XA_CHUNK_SHIFT; 1683 if (offset == XA_CHUNK_MASK) 1684 offset = sibs & XA_CHUNK_MASK; 1685 sibs >>= XA_CHUNK_SHIFT; 1686 first >>= XA_CHUNK_SHIFT; 1687 } 1688 1689 offset = first & XA_CHUNK_MASK; 1690 if (offset + sibs > XA_CHUNK_MASK) 1691 sibs = XA_CHUNK_MASK - offset; 1692 if ((((first + sibs + 1) << shift) - 1) > last) 1693 sibs -= 1; 1694 1695 xas->xa_shift = shift; 1696 xas->xa_sibs = sibs; 1697 } 1698 1699 /** 1700 * xa_store_range() - Store this entry at a range of indices in the XArray. 1701 * @xa: XArray. 1702 * @first: First index to affect. 1703 * @last: Last index to affect. 1704 * @entry: New entry. 1705 * @gfp: Memory allocation flags. 1706 * 1707 * After this function returns, loads from any index between @first and @last, 1708 * inclusive will return @entry. 1709 * Storing into an existing multi-index entry updates the entry of every index. 1710 * The marks associated with @index are unaffected unless @entry is %NULL. 1711 * 1712 * Context: Process context. Takes and releases the xa_lock. May sleep 1713 * if the @gfp flags permit. 1714 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1715 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1716 */ 1717 void *xa_store_range(struct xarray *xa, unsigned long first, 1718 unsigned long last, void *entry, gfp_t gfp) 1719 { 1720 XA_STATE(xas, xa, 0); 1721 1722 if (WARN_ON_ONCE(xa_is_internal(entry))) 1723 return XA_ERROR(-EINVAL); 1724 if (last < first) 1725 return XA_ERROR(-EINVAL); 1726 1727 do { 1728 xas_lock(&xas); 1729 if (entry) { 1730 unsigned int order = BITS_PER_LONG; 1731 if (last + 1) 1732 order = __ffs(last + 1); 1733 xas_set_order(&xas, last, order); 1734 xas_create(&xas, true); 1735 if (xas_error(&xas)) 1736 goto unlock; 1737 } 1738 do { 1739 xas_set_range(&xas, first, last); 1740 xas_store(&xas, entry); 1741 if (xas_error(&xas)) 1742 goto unlock; 1743 first += xas_size(&xas); 1744 } while (first <= last); 1745 unlock: 1746 xas_unlock(&xas); 1747 } while (xas_nomem(&xas, gfp)); 1748 1749 return xas_result(&xas, NULL); 1750 } 1751 EXPORT_SYMBOL(xa_store_range); 1752 1753 /** 1754 * xas_get_order() - Get the order of an entry. 1755 * @xas: XArray operation state. 1756 * 1757 * Called after xas_load, the xas should not be in an error state. 1758 * 1759 * Return: A number between 0 and 63 indicating the order of the entry. 1760 */ 1761 int xas_get_order(struct xa_state *xas) 1762 { 1763 int order = 0; 1764 1765 if (!xas->xa_node) 1766 return 0; 1767 1768 for (;;) { 1769 unsigned int slot = xas->xa_offset + (1 << order); 1770 1771 if (slot >= XA_CHUNK_SIZE) 1772 break; 1773 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) 1774 break; 1775 order++; 1776 } 1777 1778 order += xas->xa_node->shift; 1779 return order; 1780 } 1781 EXPORT_SYMBOL_GPL(xas_get_order); 1782 1783 /** 1784 * xa_get_order() - Get the order of an entry. 1785 * @xa: XArray. 1786 * @index: Index of the entry. 1787 * 1788 * Return: A number between 0 and 63 indicating the order of the entry. 1789 */ 1790 int xa_get_order(struct xarray *xa, unsigned long index) 1791 { 1792 XA_STATE(xas, xa, index); 1793 int order = 0; 1794 void *entry; 1795 1796 rcu_read_lock(); 1797 entry = xas_load(&xas); 1798 if (entry) 1799 order = xas_get_order(&xas); 1800 rcu_read_unlock(); 1801 1802 return order; 1803 } 1804 EXPORT_SYMBOL(xa_get_order); 1805 #endif /* CONFIG_XARRAY_MULTI */ 1806 1807 /** 1808 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1809 * @xa: XArray. 1810 * @id: Pointer to ID. 1811 * @limit: Range for allocated ID. 1812 * @entry: New entry. 1813 * @gfp: Memory allocation flags. 1814 * 1815 * Finds an empty entry in @xa between @limit.min and @limit.max, 1816 * stores the index into the @id pointer, then stores the entry at 1817 * that index. A concurrent lookup will not see an uninitialised @id. 1818 * 1819 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1820 * in xa_init_flags(). 1821 * 1822 * Context: Any context. Expects xa_lock to be held on entry. May 1823 * release and reacquire xa_lock if @gfp flags permit. 1824 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1825 * -EBUSY if there are no free entries in @limit. 1826 */ 1827 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1828 struct xa_limit limit, gfp_t gfp) 1829 { 1830 XA_STATE(xas, xa, 0); 1831 1832 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1833 return -EINVAL; 1834 if (WARN_ON_ONCE(!xa_track_free(xa))) 1835 return -EINVAL; 1836 1837 if (!entry) 1838 entry = XA_ZERO_ENTRY; 1839 1840 do { 1841 xas.xa_index = limit.min; 1842 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1843 if (xas.xa_node == XAS_RESTART) 1844 xas_set_err(&xas, -EBUSY); 1845 else 1846 *id = xas.xa_index; 1847 xas_store(&xas, entry); 1848 xas_clear_mark(&xas, XA_FREE_MARK); 1849 } while (__xas_nomem(&xas, gfp)); 1850 1851 return xas_error(&xas); 1852 } 1853 EXPORT_SYMBOL(__xa_alloc); 1854 1855 /** 1856 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1857 * @xa: XArray. 1858 * @id: Pointer to ID. 1859 * @entry: New entry. 1860 * @limit: Range of allocated ID. 1861 * @next: Pointer to next ID to allocate. 1862 * @gfp: Memory allocation flags. 1863 * 1864 * Finds an empty entry in @xa between @limit.min and @limit.max, 1865 * stores the index into the @id pointer, then stores the entry at 1866 * that index. A concurrent lookup will not see an uninitialised @id. 1867 * The search for an empty entry will start at @next and will wrap 1868 * around if necessary. 1869 * 1870 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1871 * in xa_init_flags(). 1872 * 1873 * Context: Any context. Expects xa_lock to be held on entry. May 1874 * release and reacquire xa_lock if @gfp flags permit. 1875 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1876 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1877 * allocated or -EBUSY if there are no free entries in @limit. 1878 */ 1879 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1880 struct xa_limit limit, u32 *next, gfp_t gfp) 1881 { 1882 u32 min = limit.min; 1883 int ret; 1884 1885 limit.min = max(min, *next); 1886 ret = __xa_alloc(xa, id, entry, limit, gfp); 1887 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1888 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1889 ret = 1; 1890 } 1891 1892 if (ret < 0 && limit.min > min) { 1893 limit.min = min; 1894 ret = __xa_alloc(xa, id, entry, limit, gfp); 1895 if (ret == 0) 1896 ret = 1; 1897 } 1898 1899 if (ret >= 0) { 1900 *next = *id + 1; 1901 if (*next == 0) 1902 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1903 } 1904 return ret; 1905 } 1906 EXPORT_SYMBOL(__xa_alloc_cyclic); 1907 1908 /** 1909 * __xa_set_mark() - Set this mark on this entry while locked. 1910 * @xa: XArray. 1911 * @index: Index of entry. 1912 * @mark: Mark number. 1913 * 1914 * Attempting to set a mark on a %NULL entry does not succeed. 1915 * 1916 * Context: Any context. Expects xa_lock to be held on entry. 1917 */ 1918 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1919 { 1920 XA_STATE(xas, xa, index); 1921 void *entry = xas_load(&xas); 1922 1923 if (entry) 1924 xas_set_mark(&xas, mark); 1925 } 1926 EXPORT_SYMBOL(__xa_set_mark); 1927 1928 /** 1929 * __xa_clear_mark() - Clear this mark on this entry while locked. 1930 * @xa: XArray. 1931 * @index: Index of entry. 1932 * @mark: Mark number. 1933 * 1934 * Context: Any context. Expects xa_lock to be held on entry. 1935 */ 1936 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1937 { 1938 XA_STATE(xas, xa, index); 1939 void *entry = xas_load(&xas); 1940 1941 if (entry) 1942 xas_clear_mark(&xas, mark); 1943 } 1944 EXPORT_SYMBOL(__xa_clear_mark); 1945 1946 /** 1947 * xa_get_mark() - Inquire whether this mark is set on this entry. 1948 * @xa: XArray. 1949 * @index: Index of entry. 1950 * @mark: Mark number. 1951 * 1952 * This function uses the RCU read lock, so the result may be out of date 1953 * by the time it returns. If you need the result to be stable, use a lock. 1954 * 1955 * Context: Any context. Takes and releases the RCU lock. 1956 * Return: True if the entry at @index has this mark set, false if it doesn't. 1957 */ 1958 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1959 { 1960 XA_STATE(xas, xa, index); 1961 void *entry; 1962 1963 rcu_read_lock(); 1964 entry = xas_start(&xas); 1965 while (xas_get_mark(&xas, mark)) { 1966 if (!xa_is_node(entry)) 1967 goto found; 1968 entry = xas_descend(&xas, xa_to_node(entry)); 1969 } 1970 rcu_read_unlock(); 1971 return false; 1972 found: 1973 rcu_read_unlock(); 1974 return true; 1975 } 1976 EXPORT_SYMBOL(xa_get_mark); 1977 1978 /** 1979 * xa_set_mark() - Set this mark on this entry. 1980 * @xa: XArray. 1981 * @index: Index of entry. 1982 * @mark: Mark number. 1983 * 1984 * Attempting to set a mark on a %NULL entry does not succeed. 1985 * 1986 * Context: Process context. Takes and releases the xa_lock. 1987 */ 1988 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1989 { 1990 xa_lock(xa); 1991 __xa_set_mark(xa, index, mark); 1992 xa_unlock(xa); 1993 } 1994 EXPORT_SYMBOL(xa_set_mark); 1995 1996 /** 1997 * xa_clear_mark() - Clear this mark on this entry. 1998 * @xa: XArray. 1999 * @index: Index of entry. 2000 * @mark: Mark number. 2001 * 2002 * Clearing a mark always succeeds. 2003 * 2004 * Context: Process context. Takes and releases the xa_lock. 2005 */ 2006 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2007 { 2008 xa_lock(xa); 2009 __xa_clear_mark(xa, index, mark); 2010 xa_unlock(xa); 2011 } 2012 EXPORT_SYMBOL(xa_clear_mark); 2013 2014 /** 2015 * xa_find() - Search the XArray for an entry. 2016 * @xa: XArray. 2017 * @indexp: Pointer to an index. 2018 * @max: Maximum index to search to. 2019 * @filter: Selection criterion. 2020 * 2021 * Finds the entry in @xa which matches the @filter, and has the lowest 2022 * index that is at least @indexp and no more than @max. 2023 * If an entry is found, @indexp is updated to be the index of the entry. 2024 * This function is protected by the RCU read lock, so it may not find 2025 * entries which are being simultaneously added. It will not return an 2026 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2027 * 2028 * Context: Any context. Takes and releases the RCU lock. 2029 * Return: The entry, if found, otherwise %NULL. 2030 */ 2031 void *xa_find(struct xarray *xa, unsigned long *indexp, 2032 unsigned long max, xa_mark_t filter) 2033 { 2034 XA_STATE(xas, xa, *indexp); 2035 void *entry; 2036 2037 rcu_read_lock(); 2038 do { 2039 if ((__force unsigned int)filter < XA_MAX_MARKS) 2040 entry = xas_find_marked(&xas, max, filter); 2041 else 2042 entry = xas_find(&xas, max); 2043 } while (xas_retry(&xas, entry)); 2044 rcu_read_unlock(); 2045 2046 if (entry) 2047 *indexp = xas.xa_index; 2048 return entry; 2049 } 2050 EXPORT_SYMBOL(xa_find); 2051 2052 static bool xas_sibling(struct xa_state *xas) 2053 { 2054 struct xa_node *node = xas->xa_node; 2055 unsigned long mask; 2056 2057 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2058 return false; 2059 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2060 return (xas->xa_index & mask) > 2061 ((unsigned long)xas->xa_offset << node->shift); 2062 } 2063 2064 /** 2065 * xa_find_after() - Search the XArray for a present entry. 2066 * @xa: XArray. 2067 * @indexp: Pointer to an index. 2068 * @max: Maximum index to search to. 2069 * @filter: Selection criterion. 2070 * 2071 * Finds the entry in @xa which matches the @filter and has the lowest 2072 * index that is above @indexp and no more than @max. 2073 * If an entry is found, @indexp is updated to be the index of the entry. 2074 * This function is protected by the RCU read lock, so it may miss entries 2075 * which are being simultaneously added. It will not return an 2076 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2077 * 2078 * Context: Any context. Takes and releases the RCU lock. 2079 * Return: The pointer, if found, otherwise %NULL. 2080 */ 2081 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2082 unsigned long max, xa_mark_t filter) 2083 { 2084 XA_STATE(xas, xa, *indexp + 1); 2085 void *entry; 2086 2087 if (xas.xa_index == 0) 2088 return NULL; 2089 2090 rcu_read_lock(); 2091 for (;;) { 2092 if ((__force unsigned int)filter < XA_MAX_MARKS) 2093 entry = xas_find_marked(&xas, max, filter); 2094 else 2095 entry = xas_find(&xas, max); 2096 2097 if (xas_invalid(&xas)) 2098 break; 2099 if (xas_sibling(&xas)) 2100 continue; 2101 if (!xas_retry(&xas, entry)) 2102 break; 2103 } 2104 rcu_read_unlock(); 2105 2106 if (entry) 2107 *indexp = xas.xa_index; 2108 return entry; 2109 } 2110 EXPORT_SYMBOL(xa_find_after); 2111 2112 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2113 unsigned long max, unsigned int n) 2114 { 2115 void *entry; 2116 unsigned int i = 0; 2117 2118 rcu_read_lock(); 2119 xas_for_each(xas, entry, max) { 2120 if (xas_retry(xas, entry)) 2121 continue; 2122 dst[i++] = entry; 2123 if (i == n) 2124 break; 2125 } 2126 rcu_read_unlock(); 2127 2128 return i; 2129 } 2130 2131 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2132 unsigned long max, unsigned int n, xa_mark_t mark) 2133 { 2134 void *entry; 2135 unsigned int i = 0; 2136 2137 rcu_read_lock(); 2138 xas_for_each_marked(xas, entry, max, mark) { 2139 if (xas_retry(xas, entry)) 2140 continue; 2141 dst[i++] = entry; 2142 if (i == n) 2143 break; 2144 } 2145 rcu_read_unlock(); 2146 2147 return i; 2148 } 2149 2150 /** 2151 * xa_extract() - Copy selected entries from the XArray into a normal array. 2152 * @xa: The source XArray to copy from. 2153 * @dst: The buffer to copy entries into. 2154 * @start: The first index in the XArray eligible to be selected. 2155 * @max: The last index in the XArray eligible to be selected. 2156 * @n: The maximum number of entries to copy. 2157 * @filter: Selection criterion. 2158 * 2159 * Copies up to @n entries that match @filter from the XArray. The 2160 * copied entries will have indices between @start and @max, inclusive. 2161 * 2162 * The @filter may be an XArray mark value, in which case entries which are 2163 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2164 * which case all entries which are not %NULL will be copied. 2165 * 2166 * The entries returned may not represent a snapshot of the XArray at a 2167 * moment in time. For example, if another thread stores to index 5, then 2168 * index 10, calling xa_extract() may return the old contents of index 5 2169 * and the new contents of index 10. Indices not modified while this 2170 * function is running will not be skipped. 2171 * 2172 * If you need stronger guarantees, holding the xa_lock across calls to this 2173 * function will prevent concurrent modification. 2174 * 2175 * Context: Any context. Takes and releases the RCU lock. 2176 * Return: The number of entries copied. 2177 */ 2178 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2179 unsigned long max, unsigned int n, xa_mark_t filter) 2180 { 2181 XA_STATE(xas, xa, start); 2182 2183 if (!n) 2184 return 0; 2185 2186 if ((__force unsigned int)filter < XA_MAX_MARKS) 2187 return xas_extract_marked(&xas, dst, max, n, filter); 2188 return xas_extract_present(&xas, dst, max, n); 2189 } 2190 EXPORT_SYMBOL(xa_extract); 2191 2192 /** 2193 * xa_delete_node() - Private interface for workingset code. 2194 * @node: Node to be removed from the tree. 2195 * @update: Function to call to update ancestor nodes. 2196 * 2197 * Context: xa_lock must be held on entry and will not be released. 2198 */ 2199 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2200 { 2201 struct xa_state xas = { 2202 .xa = node->array, 2203 .xa_index = (unsigned long)node->offset << 2204 (node->shift + XA_CHUNK_SHIFT), 2205 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2206 .xa_offset = node->offset, 2207 .xa_node = xa_parent_locked(node->array, node), 2208 .xa_update = update, 2209 }; 2210 2211 xas_store(&xas, NULL); 2212 } 2213 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2214 2215 /** 2216 * xa_destroy() - Free all internal data structures. 2217 * @xa: XArray. 2218 * 2219 * After calling this function, the XArray is empty and has freed all memory 2220 * allocated for its internal data structures. You are responsible for 2221 * freeing the objects referenced by the XArray. 2222 * 2223 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2224 */ 2225 void xa_destroy(struct xarray *xa) 2226 { 2227 XA_STATE(xas, xa, 0); 2228 unsigned long flags; 2229 void *entry; 2230 2231 xas.xa_node = NULL; 2232 xas_lock_irqsave(&xas, flags); 2233 entry = xa_head_locked(xa); 2234 RCU_INIT_POINTER(xa->xa_head, NULL); 2235 xas_init_marks(&xas); 2236 if (xa_zero_busy(xa)) 2237 xa_mark_clear(xa, XA_FREE_MARK); 2238 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2239 if (xa_is_node(entry)) 2240 xas_free_nodes(&xas, xa_to_node(entry)); 2241 xas_unlock_irqrestore(&xas, flags); 2242 } 2243 EXPORT_SYMBOL(xa_destroy); 2244 2245 #ifdef XA_DEBUG 2246 void xa_dump_node(const struct xa_node *node) 2247 { 2248 unsigned i, j; 2249 2250 if (!node) 2251 return; 2252 if ((unsigned long)node & 3) { 2253 pr_cont("node %px\n", node); 2254 return; 2255 } 2256 2257 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2258 "array %px list %px %px marks", 2259 node, node->parent ? "offset" : "max", node->offset, 2260 node->parent, node->shift, node->count, node->nr_values, 2261 node->array, node->private_list.prev, node->private_list.next); 2262 for (i = 0; i < XA_MAX_MARKS; i++) 2263 for (j = 0; j < XA_MARK_LONGS; j++) 2264 pr_cont(" %lx", node->marks[i][j]); 2265 pr_cont("\n"); 2266 } 2267 2268 void xa_dump_index(unsigned long index, unsigned int shift) 2269 { 2270 if (!shift) 2271 pr_info("%lu: ", index); 2272 else if (shift >= BITS_PER_LONG) 2273 pr_info("0-%lu: ", ~0UL); 2274 else 2275 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2276 } 2277 2278 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2279 { 2280 if (!entry) 2281 return; 2282 2283 xa_dump_index(index, shift); 2284 2285 if (xa_is_node(entry)) { 2286 if (shift == 0) { 2287 pr_cont("%px\n", entry); 2288 } else { 2289 unsigned long i; 2290 struct xa_node *node = xa_to_node(entry); 2291 xa_dump_node(node); 2292 for (i = 0; i < XA_CHUNK_SIZE; i++) 2293 xa_dump_entry(node->slots[i], 2294 index + (i << node->shift), node->shift); 2295 } 2296 } else if (xa_is_value(entry)) 2297 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2298 xa_to_value(entry), entry); 2299 else if (!xa_is_internal(entry)) 2300 pr_cont("%px\n", entry); 2301 else if (xa_is_retry(entry)) 2302 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2303 else if (xa_is_sibling(entry)) 2304 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2305 else if (xa_is_zero(entry)) 2306 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2307 else 2308 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2309 } 2310 2311 void xa_dump(const struct xarray *xa) 2312 { 2313 void *entry = xa->xa_head; 2314 unsigned int shift = 0; 2315 2316 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2317 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2318 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2319 if (xa_is_node(entry)) 2320 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2321 xa_dump_entry(entry, 0, shift); 2322 } 2323 #endif 2324