xref: /linux/lib/xarray.c (revision a4c43b8a09805a7b9b39344c1ba304a5641aca77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * XArray implementation
4  * Copyright (c) 2017-2018 Microsoft Corporation
5  * Copyright (c) 2018-2020 Oracle
6  * Author: Matthew Wilcox <willy@infradead.org>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14 
15 #include "radix-tree.h"
16 
17 /*
18  * Coding conventions in this file:
19  *
20  * @xa is used to refer to the entire xarray.
21  * @xas is the 'xarray operation state'.  It may be either a pointer to
22  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
23  * ambiguity.
24  * @index is the index of the entry being operated on
25  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26  * @node refers to an xa_node; usually the primary one being operated on by
27  * this function.
28  * @offset is the index into the slots array inside an xa_node.
29  * @parent refers to the @xa_node closer to the head than @node.
30  * @entry refers to something stored in a slot in the xarray
31  */
32 
33 static inline unsigned int xa_lock_type(const struct xarray *xa)
34 {
35 	return (__force unsigned int)xa->xa_flags & 3;
36 }
37 
38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39 {
40 	if (lock_type == XA_LOCK_IRQ)
41 		xas_lock_irq(xas);
42 	else if (lock_type == XA_LOCK_BH)
43 		xas_lock_bh(xas);
44 	else
45 		xas_lock(xas);
46 }
47 
48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49 {
50 	if (lock_type == XA_LOCK_IRQ)
51 		xas_unlock_irq(xas);
52 	else if (lock_type == XA_LOCK_BH)
53 		xas_unlock_bh(xas);
54 	else
55 		xas_unlock(xas);
56 }
57 
58 static inline bool xa_track_free(const struct xarray *xa)
59 {
60 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61 }
62 
63 static inline bool xa_zero_busy(const struct xarray *xa)
64 {
65 	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66 }
67 
68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69 {
70 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 		xa->xa_flags |= XA_FLAGS_MARK(mark);
72 }
73 
74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75 {
76 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78 }
79 
80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81 {
82 	return node->marks[(__force unsigned)mark];
83 }
84 
85 static inline bool node_get_mark(struct xa_node *node,
86 		unsigned int offset, xa_mark_t mark)
87 {
88 	return test_bit(offset, node_marks(node, mark));
89 }
90 
91 /* returns true if the bit was set */
92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 				xa_mark_t mark)
94 {
95 	return __test_and_set_bit(offset, node_marks(node, mark));
96 }
97 
98 /* returns true if the bit was set */
99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 				xa_mark_t mark)
101 {
102 	return __test_and_clear_bit(offset, node_marks(node, mark));
103 }
104 
105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106 {
107 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108 }
109 
110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111 {
112 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113 }
114 
115 #define mark_inc(mark) do { \
116 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117 } while (0)
118 
119 /*
120  * xas_squash_marks() - Merge all marks to the first entry
121  * @xas: Array operation state.
122  *
123  * Set a mark on the first entry if any entry has it set.  Clear marks on
124  * all sibling entries.
125  */
126 static void xas_squash_marks(const struct xa_state *xas)
127 {
128 	unsigned int mark = 0;
129 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130 
131 	if (!xas->xa_sibs)
132 		return;
133 
134 	do {
135 		unsigned long *marks = xas->xa_node->marks[mark];
136 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 			continue;
138 		__set_bit(xas->xa_offset, marks);
139 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
141 }
142 
143 /* extracts the offset within this node from the index */
144 static unsigned int get_offset(unsigned long index, struct xa_node *node)
145 {
146 	return (index >> node->shift) & XA_CHUNK_MASK;
147 }
148 
149 static void xas_set_offset(struct xa_state *xas)
150 {
151 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152 }
153 
154 /* move the index either forwards (find) or backwards (sibling slot) */
155 static void xas_move_index(struct xa_state *xas, unsigned long offset)
156 {
157 	unsigned int shift = xas->xa_node->shift;
158 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 	xas->xa_index += offset << shift;
160 }
161 
162 static void xas_next_offset(struct xa_state *xas)
163 {
164 	xas->xa_offset++;
165 	xas_move_index(xas, xas->xa_offset);
166 }
167 
168 static void *set_bounds(struct xa_state *xas)
169 {
170 	xas->xa_node = XAS_BOUNDS;
171 	return NULL;
172 }
173 
174 /*
175  * Starts a walk.  If the @xas is already valid, we assume that it's on
176  * the right path and just return where we've got to.  If we're in an
177  * error state, return NULL.  If the index is outside the current scope
178  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
179  * set @xas->xa_node to NULL and return the current head of the array.
180  */
181 static void *xas_start(struct xa_state *xas)
182 {
183 	void *entry;
184 
185 	if (xas_valid(xas))
186 		return xas_reload(xas);
187 	if (xas_error(xas))
188 		return NULL;
189 
190 	entry = xa_head(xas->xa);
191 	if (!xa_is_node(entry)) {
192 		if (xas->xa_index)
193 			return set_bounds(xas);
194 	} else {
195 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 			return set_bounds(xas);
197 	}
198 
199 	xas->xa_node = NULL;
200 	return entry;
201 }
202 
203 static __always_inline void *xas_descend(struct xa_state *xas,
204 					struct xa_node *node)
205 {
206 	unsigned int offset = get_offset(xas->xa_index, node);
207 	void *entry = xa_entry(xas->xa, node, offset);
208 
209 	xas->xa_node = node;
210 	while (xa_is_sibling(entry)) {
211 		offset = xa_to_sibling(entry);
212 		entry = xa_entry(xas->xa, node, offset);
213 		if (node->shift && xa_is_node(entry))
214 			entry = XA_RETRY_ENTRY;
215 	}
216 
217 	xas->xa_offset = offset;
218 	return entry;
219 }
220 
221 /**
222  * xas_load() - Load an entry from the XArray (advanced).
223  * @xas: XArray operation state.
224  *
225  * Usually walks the @xas to the appropriate state to load the entry
226  * stored at xa_index.  However, it will do nothing and return %NULL if
227  * @xas is in an error state.  xas_load() will never expand the tree.
228  *
229  * If the xa_state is set up to operate on a multi-index entry, xas_load()
230  * may return %NULL or an internal entry, even if there are entries
231  * present within the range specified by @xas.
232  *
233  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
234  * Return: Usually an entry in the XArray, but see description for exceptions.
235  */
236 void *xas_load(struct xa_state *xas)
237 {
238 	void *entry = xas_start(xas);
239 
240 	while (xa_is_node(entry)) {
241 		struct xa_node *node = xa_to_node(entry);
242 
243 		if (xas->xa_shift > node->shift)
244 			break;
245 		entry = xas_descend(xas, node);
246 		if (node->shift == 0)
247 			break;
248 	}
249 	return entry;
250 }
251 EXPORT_SYMBOL_GPL(xas_load);
252 
253 #define XA_RCU_FREE	((struct xarray *)1)
254 
255 static void xa_node_free(struct xa_node *node)
256 {
257 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
258 	node->array = XA_RCU_FREE;
259 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
260 }
261 
262 /*
263  * xas_destroy() - Free any resources allocated during the XArray operation.
264  * @xas: XArray operation state.
265  *
266  * Most users will not need to call this function; it is called for you
267  * by xas_nomem().
268  */
269 void xas_destroy(struct xa_state *xas)
270 {
271 	struct xa_node *next, *node = xas->xa_alloc;
272 
273 	while (node) {
274 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
275 		next = rcu_dereference_raw(node->parent);
276 		radix_tree_node_rcu_free(&node->rcu_head);
277 		xas->xa_alloc = node = next;
278 	}
279 }
280 
281 /**
282  * xas_nomem() - Allocate memory if needed.
283  * @xas: XArray operation state.
284  * @gfp: Memory allocation flags.
285  *
286  * If we need to add new nodes to the XArray, we try to allocate memory
287  * with GFP_NOWAIT while holding the lock, which will usually succeed.
288  * If it fails, @xas is flagged as needing memory to continue.  The caller
289  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
290  * the caller should retry the operation.
291  *
292  * Forward progress is guaranteed as one node is allocated here and
293  * stored in the xa_state where it will be found by xas_alloc().  More
294  * nodes will likely be found in the slab allocator, but we do not tie
295  * them up here.
296  *
297  * Return: true if memory was needed, and was successfully allocated.
298  */
299 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
300 {
301 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
302 		xas_destroy(xas);
303 		return false;
304 	}
305 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
306 		gfp |= __GFP_ACCOUNT;
307 	xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
308 	if (!xas->xa_alloc)
309 		return false;
310 	xas->xa_alloc->parent = NULL;
311 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
312 	xas->xa_node = XAS_RESTART;
313 	return true;
314 }
315 EXPORT_SYMBOL_GPL(xas_nomem);
316 
317 /*
318  * __xas_nomem() - Drop locks and allocate memory if needed.
319  * @xas: XArray operation state.
320  * @gfp: Memory allocation flags.
321  *
322  * Internal variant of xas_nomem().
323  *
324  * Return: true if memory was needed, and was successfully allocated.
325  */
326 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
327 	__must_hold(xas->xa->xa_lock)
328 {
329 	unsigned int lock_type = xa_lock_type(xas->xa);
330 
331 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
332 		xas_destroy(xas);
333 		return false;
334 	}
335 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
336 		gfp |= __GFP_ACCOUNT;
337 	if (gfpflags_allow_blocking(gfp)) {
338 		xas_unlock_type(xas, lock_type);
339 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
340 		xas_lock_type(xas, lock_type);
341 	} else {
342 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
343 	}
344 	if (!xas->xa_alloc)
345 		return false;
346 	xas->xa_alloc->parent = NULL;
347 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
348 	xas->xa_node = XAS_RESTART;
349 	return true;
350 }
351 
352 static void xas_update(struct xa_state *xas, struct xa_node *node)
353 {
354 	if (xas->xa_update)
355 		xas->xa_update(node);
356 	else
357 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
358 }
359 
360 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
361 {
362 	struct xa_node *parent = xas->xa_node;
363 	struct xa_node *node = xas->xa_alloc;
364 
365 	if (xas_invalid(xas))
366 		return NULL;
367 
368 	if (node) {
369 		xas->xa_alloc = NULL;
370 	} else {
371 		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
372 
373 		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
374 			gfp |= __GFP_ACCOUNT;
375 
376 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
377 		if (!node) {
378 			xas_set_err(xas, -ENOMEM);
379 			return NULL;
380 		}
381 	}
382 
383 	if (parent) {
384 		node->offset = xas->xa_offset;
385 		parent->count++;
386 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
387 		xas_update(xas, parent);
388 	}
389 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
390 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
391 	node->shift = shift;
392 	node->count = 0;
393 	node->nr_values = 0;
394 	RCU_INIT_POINTER(node->parent, xas->xa_node);
395 	node->array = xas->xa;
396 
397 	return node;
398 }
399 
400 #ifdef CONFIG_XARRAY_MULTI
401 /* Returns the number of indices covered by a given xa_state */
402 static unsigned long xas_size(const struct xa_state *xas)
403 {
404 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
405 }
406 #endif
407 
408 /*
409  * Use this to calculate the maximum index that will need to be created
410  * in order to add the entry described by @xas.  Because we cannot store a
411  * multi-index entry at index 0, the calculation is a little more complex
412  * than you might expect.
413  */
414 static unsigned long xas_max(struct xa_state *xas)
415 {
416 	unsigned long max = xas->xa_index;
417 
418 #ifdef CONFIG_XARRAY_MULTI
419 	if (xas->xa_shift || xas->xa_sibs) {
420 		unsigned long mask = xas_size(xas) - 1;
421 		max |= mask;
422 		if (mask == max)
423 			max++;
424 	}
425 #endif
426 
427 	return max;
428 }
429 
430 /* The maximum index that can be contained in the array without expanding it */
431 static unsigned long max_index(void *entry)
432 {
433 	if (!xa_is_node(entry))
434 		return 0;
435 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
436 }
437 
438 static void xas_shrink(struct xa_state *xas)
439 {
440 	struct xarray *xa = xas->xa;
441 	struct xa_node *node = xas->xa_node;
442 
443 	for (;;) {
444 		void *entry;
445 
446 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
447 		if (node->count != 1)
448 			break;
449 		entry = xa_entry_locked(xa, node, 0);
450 		if (!entry)
451 			break;
452 		if (!xa_is_node(entry) && node->shift)
453 			break;
454 		if (xa_is_zero(entry) && xa_zero_busy(xa))
455 			entry = NULL;
456 		xas->xa_node = XAS_BOUNDS;
457 
458 		RCU_INIT_POINTER(xa->xa_head, entry);
459 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
460 			xa_mark_clear(xa, XA_FREE_MARK);
461 
462 		node->count = 0;
463 		node->nr_values = 0;
464 		if (!xa_is_node(entry))
465 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
466 		xas_update(xas, node);
467 		xa_node_free(node);
468 		if (!xa_is_node(entry))
469 			break;
470 		node = xa_to_node(entry);
471 		node->parent = NULL;
472 	}
473 }
474 
475 /*
476  * xas_delete_node() - Attempt to delete an xa_node
477  * @xas: Array operation state.
478  *
479  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
480  * a non-zero reference count.
481  */
482 static void xas_delete_node(struct xa_state *xas)
483 {
484 	struct xa_node *node = xas->xa_node;
485 
486 	for (;;) {
487 		struct xa_node *parent;
488 
489 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
490 		if (node->count)
491 			break;
492 
493 		parent = xa_parent_locked(xas->xa, node);
494 		xas->xa_node = parent;
495 		xas->xa_offset = node->offset;
496 		xa_node_free(node);
497 
498 		if (!parent) {
499 			xas->xa->xa_head = NULL;
500 			xas->xa_node = XAS_BOUNDS;
501 			return;
502 		}
503 
504 		parent->slots[xas->xa_offset] = NULL;
505 		parent->count--;
506 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
507 		node = parent;
508 		xas_update(xas, node);
509 	}
510 
511 	if (!node->parent)
512 		xas_shrink(xas);
513 }
514 
515 /**
516  * xas_free_nodes() - Free this node and all nodes that it references
517  * @xas: Array operation state.
518  * @top: Node to free
519  *
520  * This node has been removed from the tree.  We must now free it and all
521  * of its subnodes.  There may be RCU walkers with references into the tree,
522  * so we must replace all entries with retry markers.
523  */
524 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
525 {
526 	unsigned int offset = 0;
527 	struct xa_node *node = top;
528 
529 	for (;;) {
530 		void *entry = xa_entry_locked(xas->xa, node, offset);
531 
532 		if (node->shift && xa_is_node(entry)) {
533 			node = xa_to_node(entry);
534 			offset = 0;
535 			continue;
536 		}
537 		if (entry)
538 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
539 		offset++;
540 		while (offset == XA_CHUNK_SIZE) {
541 			struct xa_node *parent;
542 
543 			parent = xa_parent_locked(xas->xa, node);
544 			offset = node->offset + 1;
545 			node->count = 0;
546 			node->nr_values = 0;
547 			xas_update(xas, node);
548 			xa_node_free(node);
549 			if (node == top)
550 				return;
551 			node = parent;
552 		}
553 	}
554 }
555 
556 /*
557  * xas_expand adds nodes to the head of the tree until it has reached
558  * sufficient height to be able to contain @xas->xa_index
559  */
560 static int xas_expand(struct xa_state *xas, void *head)
561 {
562 	struct xarray *xa = xas->xa;
563 	struct xa_node *node = NULL;
564 	unsigned int shift = 0;
565 	unsigned long max = xas_max(xas);
566 
567 	if (!head) {
568 		if (max == 0)
569 			return 0;
570 		while ((max >> shift) >= XA_CHUNK_SIZE)
571 			shift += XA_CHUNK_SHIFT;
572 		return shift + XA_CHUNK_SHIFT;
573 	} else if (xa_is_node(head)) {
574 		node = xa_to_node(head);
575 		shift = node->shift + XA_CHUNK_SHIFT;
576 	}
577 	xas->xa_node = NULL;
578 
579 	while (max > max_index(head)) {
580 		xa_mark_t mark = 0;
581 
582 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
583 		node = xas_alloc(xas, shift);
584 		if (!node)
585 			return -ENOMEM;
586 
587 		node->count = 1;
588 		if (xa_is_value(head))
589 			node->nr_values = 1;
590 		RCU_INIT_POINTER(node->slots[0], head);
591 
592 		/* Propagate the aggregated mark info to the new child */
593 		for (;;) {
594 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
595 				node_mark_all(node, XA_FREE_MARK);
596 				if (!xa_marked(xa, XA_FREE_MARK)) {
597 					node_clear_mark(node, 0, XA_FREE_MARK);
598 					xa_mark_set(xa, XA_FREE_MARK);
599 				}
600 			} else if (xa_marked(xa, mark)) {
601 				node_set_mark(node, 0, mark);
602 			}
603 			if (mark == XA_MARK_MAX)
604 				break;
605 			mark_inc(mark);
606 		}
607 
608 		/*
609 		 * Now that the new node is fully initialised, we can add
610 		 * it to the tree
611 		 */
612 		if (xa_is_node(head)) {
613 			xa_to_node(head)->offset = 0;
614 			rcu_assign_pointer(xa_to_node(head)->parent, node);
615 		}
616 		head = xa_mk_node(node);
617 		rcu_assign_pointer(xa->xa_head, head);
618 		xas_update(xas, node);
619 
620 		shift += XA_CHUNK_SHIFT;
621 	}
622 
623 	xas->xa_node = node;
624 	return shift;
625 }
626 
627 /*
628  * xas_create() - Create a slot to store an entry in.
629  * @xas: XArray operation state.
630  * @allow_root: %true if we can store the entry in the root directly
631  *
632  * Most users will not need to call this function directly, as it is called
633  * by xas_store().  It is useful for doing conditional store operations
634  * (see the xa_cmpxchg() implementation for an example).
635  *
636  * Return: If the slot already existed, returns the contents of this slot.
637  * If the slot was newly created, returns %NULL.  If it failed to create the
638  * slot, returns %NULL and indicates the error in @xas.
639  */
640 static void *xas_create(struct xa_state *xas, bool allow_root)
641 {
642 	struct xarray *xa = xas->xa;
643 	void *entry;
644 	void __rcu **slot;
645 	struct xa_node *node = xas->xa_node;
646 	int shift;
647 	unsigned int order = xas->xa_shift;
648 
649 	if (xas_top(node)) {
650 		entry = xa_head_locked(xa);
651 		xas->xa_node = NULL;
652 		if (!entry && xa_zero_busy(xa))
653 			entry = XA_ZERO_ENTRY;
654 		shift = xas_expand(xas, entry);
655 		if (shift < 0)
656 			return NULL;
657 		if (!shift && !allow_root)
658 			shift = XA_CHUNK_SHIFT;
659 		entry = xa_head_locked(xa);
660 		slot = &xa->xa_head;
661 	} else if (xas_error(xas)) {
662 		return NULL;
663 	} else if (node) {
664 		unsigned int offset = xas->xa_offset;
665 
666 		shift = node->shift;
667 		entry = xa_entry_locked(xa, node, offset);
668 		slot = &node->slots[offset];
669 	} else {
670 		shift = 0;
671 		entry = xa_head_locked(xa);
672 		slot = &xa->xa_head;
673 	}
674 
675 	while (shift > order) {
676 		shift -= XA_CHUNK_SHIFT;
677 		if (!entry) {
678 			node = xas_alloc(xas, shift);
679 			if (!node)
680 				break;
681 			if (xa_track_free(xa))
682 				node_mark_all(node, XA_FREE_MARK);
683 			rcu_assign_pointer(*slot, xa_mk_node(node));
684 		} else if (xa_is_node(entry)) {
685 			node = xa_to_node(entry);
686 		} else {
687 			break;
688 		}
689 		entry = xas_descend(xas, node);
690 		slot = &node->slots[xas->xa_offset];
691 	}
692 
693 	return entry;
694 }
695 
696 /**
697  * xas_create_range() - Ensure that stores to this range will succeed
698  * @xas: XArray operation state.
699  *
700  * Creates all of the slots in the range covered by @xas.  Sets @xas to
701  * create single-index entries and positions it at the beginning of the
702  * range.  This is for the benefit of users which have not yet been
703  * converted to use multi-index entries.
704  */
705 void xas_create_range(struct xa_state *xas)
706 {
707 	unsigned long index = xas->xa_index;
708 	unsigned char shift = xas->xa_shift;
709 	unsigned char sibs = xas->xa_sibs;
710 
711 	xas->xa_index |= ((sibs + 1UL) << shift) - 1;
712 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
713 		xas->xa_offset |= sibs;
714 	xas->xa_shift = 0;
715 	xas->xa_sibs = 0;
716 
717 	for (;;) {
718 		xas_create(xas, true);
719 		if (xas_error(xas))
720 			goto restore;
721 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
722 			goto success;
723 		xas->xa_index -= XA_CHUNK_SIZE;
724 
725 		for (;;) {
726 			struct xa_node *node = xas->xa_node;
727 			if (node->shift >= shift)
728 				break;
729 			xas->xa_node = xa_parent_locked(xas->xa, node);
730 			xas->xa_offset = node->offset - 1;
731 			if (node->offset != 0)
732 				break;
733 		}
734 	}
735 
736 restore:
737 	xas->xa_shift = shift;
738 	xas->xa_sibs = sibs;
739 	xas->xa_index = index;
740 	return;
741 success:
742 	xas->xa_index = index;
743 	if (xas->xa_node)
744 		xas_set_offset(xas);
745 }
746 EXPORT_SYMBOL_GPL(xas_create_range);
747 
748 static void update_node(struct xa_state *xas, struct xa_node *node,
749 		int count, int values)
750 {
751 	if (!node || (!count && !values))
752 		return;
753 
754 	node->count += count;
755 	node->nr_values += values;
756 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
757 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
758 	xas_update(xas, node);
759 	if (count < 0)
760 		xas_delete_node(xas);
761 }
762 
763 /**
764  * xas_store() - Store this entry in the XArray.
765  * @xas: XArray operation state.
766  * @entry: New entry.
767  *
768  * If @xas is operating on a multi-index entry, the entry returned by this
769  * function is essentially meaningless (it may be an internal entry or it
770  * may be %NULL, even if there are non-NULL entries at some of the indices
771  * covered by the range).  This is not a problem for any current users,
772  * and can be changed if needed.
773  *
774  * Return: The old entry at this index.
775  */
776 void *xas_store(struct xa_state *xas, void *entry)
777 {
778 	struct xa_node *node;
779 	void __rcu **slot = &xas->xa->xa_head;
780 	unsigned int offset, max;
781 	int count = 0;
782 	int values = 0;
783 	void *first, *next;
784 	bool value = xa_is_value(entry);
785 
786 	if (entry) {
787 		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
788 		first = xas_create(xas, allow_root);
789 	} else {
790 		first = xas_load(xas);
791 	}
792 
793 	if (xas_invalid(xas))
794 		return first;
795 	node = xas->xa_node;
796 	if (node && (xas->xa_shift < node->shift))
797 		xas->xa_sibs = 0;
798 	if ((first == entry) && !xas->xa_sibs)
799 		return first;
800 
801 	next = first;
802 	offset = xas->xa_offset;
803 	max = xas->xa_offset + xas->xa_sibs;
804 	if (node) {
805 		slot = &node->slots[offset];
806 		if (xas->xa_sibs)
807 			xas_squash_marks(xas);
808 	}
809 	if (!entry)
810 		xas_init_marks(xas);
811 
812 	for (;;) {
813 		/*
814 		 * Must clear the marks before setting the entry to NULL,
815 		 * otherwise xas_for_each_marked may find a NULL entry and
816 		 * stop early.  rcu_assign_pointer contains a release barrier
817 		 * so the mark clearing will appear to happen before the
818 		 * entry is set to NULL.
819 		 */
820 		rcu_assign_pointer(*slot, entry);
821 		if (xa_is_node(next) && (!node || node->shift))
822 			xas_free_nodes(xas, xa_to_node(next));
823 		if (!node)
824 			break;
825 		count += !next - !entry;
826 		values += !xa_is_value(first) - !value;
827 		if (entry) {
828 			if (offset == max)
829 				break;
830 			if (!xa_is_sibling(entry))
831 				entry = xa_mk_sibling(xas->xa_offset);
832 		} else {
833 			if (offset == XA_CHUNK_MASK)
834 				break;
835 		}
836 		next = xa_entry_locked(xas->xa, node, ++offset);
837 		if (!xa_is_sibling(next)) {
838 			if (!entry && (offset > max))
839 				break;
840 			first = next;
841 		}
842 		slot++;
843 	}
844 
845 	update_node(xas, node, count, values);
846 	return first;
847 }
848 EXPORT_SYMBOL_GPL(xas_store);
849 
850 /**
851  * xas_get_mark() - Returns the state of this mark.
852  * @xas: XArray operation state.
853  * @mark: Mark number.
854  *
855  * Return: true if the mark is set, false if the mark is clear or @xas
856  * is in an error state.
857  */
858 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
859 {
860 	if (xas_invalid(xas))
861 		return false;
862 	if (!xas->xa_node)
863 		return xa_marked(xas->xa, mark);
864 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
865 }
866 EXPORT_SYMBOL_GPL(xas_get_mark);
867 
868 /**
869  * xas_set_mark() - Sets the mark on this entry and its parents.
870  * @xas: XArray operation state.
871  * @mark: Mark number.
872  *
873  * Sets the specified mark on this entry, and walks up the tree setting it
874  * on all the ancestor entries.  Does nothing if @xas has not been walked to
875  * an entry, or is in an error state.
876  */
877 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
878 {
879 	struct xa_node *node = xas->xa_node;
880 	unsigned int offset = xas->xa_offset;
881 
882 	if (xas_invalid(xas))
883 		return;
884 
885 	while (node) {
886 		if (node_set_mark(node, offset, mark))
887 			return;
888 		offset = node->offset;
889 		node = xa_parent_locked(xas->xa, node);
890 	}
891 
892 	if (!xa_marked(xas->xa, mark))
893 		xa_mark_set(xas->xa, mark);
894 }
895 EXPORT_SYMBOL_GPL(xas_set_mark);
896 
897 /**
898  * xas_clear_mark() - Clears the mark on this entry and its parents.
899  * @xas: XArray operation state.
900  * @mark: Mark number.
901  *
902  * Clears the specified mark on this entry, and walks back to the head
903  * attempting to clear it on all the ancestor entries.  Does nothing if
904  * @xas has not been walked to an entry, or is in an error state.
905  */
906 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
907 {
908 	struct xa_node *node = xas->xa_node;
909 	unsigned int offset = xas->xa_offset;
910 
911 	if (xas_invalid(xas))
912 		return;
913 
914 	while (node) {
915 		if (!node_clear_mark(node, offset, mark))
916 			return;
917 		if (node_any_mark(node, mark))
918 			return;
919 
920 		offset = node->offset;
921 		node = xa_parent_locked(xas->xa, node);
922 	}
923 
924 	if (xa_marked(xas->xa, mark))
925 		xa_mark_clear(xas->xa, mark);
926 }
927 EXPORT_SYMBOL_GPL(xas_clear_mark);
928 
929 /**
930  * xas_init_marks() - Initialise all marks for the entry
931  * @xas: Array operations state.
932  *
933  * Initialise all marks for the entry specified by @xas.  If we're tracking
934  * free entries with a mark, we need to set it on all entries.  All other
935  * marks are cleared.
936  *
937  * This implementation is not as efficient as it could be; we may walk
938  * up the tree multiple times.
939  */
940 void xas_init_marks(const struct xa_state *xas)
941 {
942 	xa_mark_t mark = 0;
943 
944 	for (;;) {
945 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
946 			xas_set_mark(xas, mark);
947 		else
948 			xas_clear_mark(xas, mark);
949 		if (mark == XA_MARK_MAX)
950 			break;
951 		mark_inc(mark);
952 	}
953 }
954 EXPORT_SYMBOL_GPL(xas_init_marks);
955 
956 #ifdef CONFIG_XARRAY_MULTI
957 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
958 {
959 	unsigned int marks = 0;
960 	xa_mark_t mark = XA_MARK_0;
961 
962 	for (;;) {
963 		if (node_get_mark(node, offset, mark))
964 			marks |= 1 << (__force unsigned int)mark;
965 		if (mark == XA_MARK_MAX)
966 			break;
967 		mark_inc(mark);
968 	}
969 
970 	return marks;
971 }
972 
973 static void node_set_marks(struct xa_node *node, unsigned int offset,
974 			struct xa_node *child, unsigned int marks)
975 {
976 	xa_mark_t mark = XA_MARK_0;
977 
978 	for (;;) {
979 		if (marks & (1 << (__force unsigned int)mark)) {
980 			node_set_mark(node, offset, mark);
981 			if (child)
982 				node_mark_all(child, mark);
983 		}
984 		if (mark == XA_MARK_MAX)
985 			break;
986 		mark_inc(mark);
987 	}
988 }
989 
990 /**
991  * xas_split_alloc() - Allocate memory for splitting an entry.
992  * @xas: XArray operation state.
993  * @entry: New entry which will be stored in the array.
994  * @order: Current entry order.
995  * @gfp: Memory allocation flags.
996  *
997  * This function should be called before calling xas_split().
998  * If necessary, it will allocate new nodes (and fill them with @entry)
999  * to prepare for the upcoming split of an entry of @order size into
1000  * entries of the order stored in the @xas.
1001  *
1002  * Context: May sleep if @gfp flags permit.
1003  */
1004 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1005 		gfp_t gfp)
1006 {
1007 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1008 	unsigned int mask = xas->xa_sibs;
1009 
1010 	/* XXX: no support for splitting really large entries yet */
1011 	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1012 		goto nomem;
1013 	if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1014 		return;
1015 
1016 	do {
1017 		unsigned int i;
1018 		void *sibling = NULL;
1019 		struct xa_node *node;
1020 
1021 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1022 		if (!node)
1023 			goto nomem;
1024 		node->array = xas->xa;
1025 		for (i = 0; i < XA_CHUNK_SIZE; i++) {
1026 			if ((i & mask) == 0) {
1027 				RCU_INIT_POINTER(node->slots[i], entry);
1028 				sibling = xa_mk_sibling(i);
1029 			} else {
1030 				RCU_INIT_POINTER(node->slots[i], sibling);
1031 			}
1032 		}
1033 		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1034 		xas->xa_alloc = node;
1035 	} while (sibs-- > 0);
1036 
1037 	return;
1038 nomem:
1039 	xas_destroy(xas);
1040 	xas_set_err(xas, -ENOMEM);
1041 }
1042 EXPORT_SYMBOL_GPL(xas_split_alloc);
1043 
1044 /**
1045  * xas_split() - Split a multi-index entry into smaller entries.
1046  * @xas: XArray operation state.
1047  * @entry: New entry to store in the array.
1048  * @order: Current entry order.
1049  *
1050  * The size of the new entries is set in @xas.  The value in @entry is
1051  * copied to all the replacement entries.
1052  *
1053  * Context: Any context.  The caller should hold the xa_lock.
1054  */
1055 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1056 {
1057 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1058 	unsigned int offset, marks;
1059 	struct xa_node *node;
1060 	void *curr = xas_load(xas);
1061 	int values = 0;
1062 
1063 	node = xas->xa_node;
1064 	if (xas_top(node))
1065 		return;
1066 
1067 	marks = node_get_marks(node, xas->xa_offset);
1068 
1069 	offset = xas->xa_offset + sibs;
1070 	do {
1071 		if (xas->xa_shift < node->shift) {
1072 			struct xa_node *child = xas->xa_alloc;
1073 
1074 			xas->xa_alloc = rcu_dereference_raw(child->parent);
1075 			child->shift = node->shift - XA_CHUNK_SHIFT;
1076 			child->offset = offset;
1077 			child->count = XA_CHUNK_SIZE;
1078 			child->nr_values = xa_is_value(entry) ?
1079 					XA_CHUNK_SIZE : 0;
1080 			RCU_INIT_POINTER(child->parent, node);
1081 			node_set_marks(node, offset, child, marks);
1082 			rcu_assign_pointer(node->slots[offset],
1083 					xa_mk_node(child));
1084 			if (xa_is_value(curr))
1085 				values--;
1086 			xas_update(xas, child);
1087 		} else {
1088 			unsigned int canon = offset - xas->xa_sibs;
1089 
1090 			node_set_marks(node, canon, NULL, marks);
1091 			rcu_assign_pointer(node->slots[canon], entry);
1092 			while (offset > canon)
1093 				rcu_assign_pointer(node->slots[offset--],
1094 						xa_mk_sibling(canon));
1095 			values += (xa_is_value(entry) - xa_is_value(curr)) *
1096 					(xas->xa_sibs + 1);
1097 		}
1098 	} while (offset-- > xas->xa_offset);
1099 
1100 	node->nr_values += values;
1101 	xas_update(xas, node);
1102 }
1103 EXPORT_SYMBOL_GPL(xas_split);
1104 #endif
1105 
1106 /**
1107  * xas_pause() - Pause a walk to drop a lock.
1108  * @xas: XArray operation state.
1109  *
1110  * Some users need to pause a walk and drop the lock they're holding in
1111  * order to yield to a higher priority thread or carry out an operation
1112  * on an entry.  Those users should call this function before they drop
1113  * the lock.  It resets the @xas to be suitable for the next iteration
1114  * of the loop after the user has reacquired the lock.  If most entries
1115  * found during a walk require you to call xas_pause(), the xa_for_each()
1116  * iterator may be more appropriate.
1117  *
1118  * Note that xas_pause() only works for forward iteration.  If a user needs
1119  * to pause a reverse iteration, we will need a xas_pause_rev().
1120  */
1121 void xas_pause(struct xa_state *xas)
1122 {
1123 	struct xa_node *node = xas->xa_node;
1124 
1125 	if (xas_invalid(xas))
1126 		return;
1127 
1128 	xas->xa_node = XAS_RESTART;
1129 	if (node) {
1130 		unsigned long offset = xas->xa_offset;
1131 		while (++offset < XA_CHUNK_SIZE) {
1132 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1133 				break;
1134 		}
1135 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
1136 		if (xas->xa_index == 0)
1137 			xas->xa_node = XAS_BOUNDS;
1138 	} else {
1139 		xas->xa_index++;
1140 	}
1141 }
1142 EXPORT_SYMBOL_GPL(xas_pause);
1143 
1144 /*
1145  * __xas_prev() - Find the previous entry in the XArray.
1146  * @xas: XArray operation state.
1147  *
1148  * Helper function for xas_prev() which handles all the complex cases
1149  * out of line.
1150  */
1151 void *__xas_prev(struct xa_state *xas)
1152 {
1153 	void *entry;
1154 
1155 	if (!xas_frozen(xas->xa_node))
1156 		xas->xa_index--;
1157 	if (!xas->xa_node)
1158 		return set_bounds(xas);
1159 	if (xas_not_node(xas->xa_node))
1160 		return xas_load(xas);
1161 
1162 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1163 		xas->xa_offset--;
1164 
1165 	while (xas->xa_offset == 255) {
1166 		xas->xa_offset = xas->xa_node->offset - 1;
1167 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1168 		if (!xas->xa_node)
1169 			return set_bounds(xas);
1170 	}
1171 
1172 	for (;;) {
1173 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1174 		if (!xa_is_node(entry))
1175 			return entry;
1176 
1177 		xas->xa_node = xa_to_node(entry);
1178 		xas_set_offset(xas);
1179 	}
1180 }
1181 EXPORT_SYMBOL_GPL(__xas_prev);
1182 
1183 /*
1184  * __xas_next() - Find the next entry in the XArray.
1185  * @xas: XArray operation state.
1186  *
1187  * Helper function for xas_next() which handles all the complex cases
1188  * out of line.
1189  */
1190 void *__xas_next(struct xa_state *xas)
1191 {
1192 	void *entry;
1193 
1194 	if (!xas_frozen(xas->xa_node))
1195 		xas->xa_index++;
1196 	if (!xas->xa_node)
1197 		return set_bounds(xas);
1198 	if (xas_not_node(xas->xa_node))
1199 		return xas_load(xas);
1200 
1201 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1202 		xas->xa_offset++;
1203 
1204 	while (xas->xa_offset == XA_CHUNK_SIZE) {
1205 		xas->xa_offset = xas->xa_node->offset + 1;
1206 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1207 		if (!xas->xa_node)
1208 			return set_bounds(xas);
1209 	}
1210 
1211 	for (;;) {
1212 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1213 		if (!xa_is_node(entry))
1214 			return entry;
1215 
1216 		xas->xa_node = xa_to_node(entry);
1217 		xas_set_offset(xas);
1218 	}
1219 }
1220 EXPORT_SYMBOL_GPL(__xas_next);
1221 
1222 /**
1223  * xas_find() - Find the next present entry in the XArray.
1224  * @xas: XArray operation state.
1225  * @max: Highest index to return.
1226  *
1227  * If the @xas has not yet been walked to an entry, return the entry
1228  * which has an index >= xas.xa_index.  If it has been walked, the entry
1229  * currently being pointed at has been processed, and so we move to the
1230  * next entry.
1231  *
1232  * If no entry is found and the array is smaller than @max, the iterator
1233  * is set to the smallest index not yet in the array.  This allows @xas
1234  * to be immediately passed to xas_store().
1235  *
1236  * Return: The entry, if found, otherwise %NULL.
1237  */
1238 void *xas_find(struct xa_state *xas, unsigned long max)
1239 {
1240 	void *entry;
1241 
1242 	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1243 		return NULL;
1244 	if (xas->xa_index > max)
1245 		return set_bounds(xas);
1246 
1247 	if (!xas->xa_node) {
1248 		xas->xa_index = 1;
1249 		return set_bounds(xas);
1250 	} else if (xas->xa_node == XAS_RESTART) {
1251 		entry = xas_load(xas);
1252 		if (entry || xas_not_node(xas->xa_node))
1253 			return entry;
1254 	} else if (!xas->xa_node->shift &&
1255 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1256 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1257 	}
1258 
1259 	xas_next_offset(xas);
1260 
1261 	while (xas->xa_node && (xas->xa_index <= max)) {
1262 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1263 			xas->xa_offset = xas->xa_node->offset + 1;
1264 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1265 			continue;
1266 		}
1267 
1268 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1269 		if (xa_is_node(entry)) {
1270 			xas->xa_node = xa_to_node(entry);
1271 			xas->xa_offset = 0;
1272 			continue;
1273 		}
1274 		if (entry && !xa_is_sibling(entry))
1275 			return entry;
1276 
1277 		xas_next_offset(xas);
1278 	}
1279 
1280 	if (!xas->xa_node)
1281 		xas->xa_node = XAS_BOUNDS;
1282 	return NULL;
1283 }
1284 EXPORT_SYMBOL_GPL(xas_find);
1285 
1286 /**
1287  * xas_find_marked() - Find the next marked entry in the XArray.
1288  * @xas: XArray operation state.
1289  * @max: Highest index to return.
1290  * @mark: Mark number to search for.
1291  *
1292  * If the @xas has not yet been walked to an entry, return the marked entry
1293  * which has an index >= xas.xa_index.  If it has been walked, the entry
1294  * currently being pointed at has been processed, and so we return the
1295  * first marked entry with an index > xas.xa_index.
1296  *
1297  * If no marked entry is found and the array is smaller than @max, @xas is
1298  * set to the bounds state and xas->xa_index is set to the smallest index
1299  * not yet in the array.  This allows @xas to be immediately passed to
1300  * xas_store().
1301  *
1302  * If no entry is found before @max is reached, @xas is set to the restart
1303  * state.
1304  *
1305  * Return: The entry, if found, otherwise %NULL.
1306  */
1307 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1308 {
1309 	bool advance = true;
1310 	unsigned int offset;
1311 	void *entry;
1312 
1313 	if (xas_error(xas))
1314 		return NULL;
1315 	if (xas->xa_index > max)
1316 		goto max;
1317 
1318 	if (!xas->xa_node) {
1319 		xas->xa_index = 1;
1320 		goto out;
1321 	} else if (xas_top(xas->xa_node)) {
1322 		advance = false;
1323 		entry = xa_head(xas->xa);
1324 		xas->xa_node = NULL;
1325 		if (xas->xa_index > max_index(entry))
1326 			goto out;
1327 		if (!xa_is_node(entry)) {
1328 			if (xa_marked(xas->xa, mark))
1329 				return entry;
1330 			xas->xa_index = 1;
1331 			goto out;
1332 		}
1333 		xas->xa_node = xa_to_node(entry);
1334 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1335 	}
1336 
1337 	while (xas->xa_index <= max) {
1338 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1339 			xas->xa_offset = xas->xa_node->offset + 1;
1340 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1341 			if (!xas->xa_node)
1342 				break;
1343 			advance = false;
1344 			continue;
1345 		}
1346 
1347 		if (!advance) {
1348 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1349 			if (xa_is_sibling(entry)) {
1350 				xas->xa_offset = xa_to_sibling(entry);
1351 				xas_move_index(xas, xas->xa_offset);
1352 			}
1353 		}
1354 
1355 		offset = xas_find_chunk(xas, advance, mark);
1356 		if (offset > xas->xa_offset) {
1357 			advance = false;
1358 			xas_move_index(xas, offset);
1359 			/* Mind the wrap */
1360 			if ((xas->xa_index - 1) >= max)
1361 				goto max;
1362 			xas->xa_offset = offset;
1363 			if (offset == XA_CHUNK_SIZE)
1364 				continue;
1365 		}
1366 
1367 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1368 		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1369 			continue;
1370 		if (!xa_is_node(entry))
1371 			return entry;
1372 		xas->xa_node = xa_to_node(entry);
1373 		xas_set_offset(xas);
1374 	}
1375 
1376 out:
1377 	if (xas->xa_index > max)
1378 		goto max;
1379 	return set_bounds(xas);
1380 max:
1381 	xas->xa_node = XAS_RESTART;
1382 	return NULL;
1383 }
1384 EXPORT_SYMBOL_GPL(xas_find_marked);
1385 
1386 /**
1387  * xas_find_conflict() - Find the next present entry in a range.
1388  * @xas: XArray operation state.
1389  *
1390  * The @xas describes both a range and a position within that range.
1391  *
1392  * Context: Any context.  Expects xa_lock to be held.
1393  * Return: The next entry in the range covered by @xas or %NULL.
1394  */
1395 void *xas_find_conflict(struct xa_state *xas)
1396 {
1397 	void *curr;
1398 
1399 	if (xas_error(xas))
1400 		return NULL;
1401 
1402 	if (!xas->xa_node)
1403 		return NULL;
1404 
1405 	if (xas_top(xas->xa_node)) {
1406 		curr = xas_start(xas);
1407 		if (!curr)
1408 			return NULL;
1409 		while (xa_is_node(curr)) {
1410 			struct xa_node *node = xa_to_node(curr);
1411 			curr = xas_descend(xas, node);
1412 		}
1413 		if (curr)
1414 			return curr;
1415 	}
1416 
1417 	if (xas->xa_node->shift > xas->xa_shift)
1418 		return NULL;
1419 
1420 	for (;;) {
1421 		if (xas->xa_node->shift == xas->xa_shift) {
1422 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1423 				break;
1424 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1425 			xas->xa_offset = xas->xa_node->offset;
1426 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1427 			if (!xas->xa_node)
1428 				break;
1429 			continue;
1430 		}
1431 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1432 		if (xa_is_sibling(curr))
1433 			continue;
1434 		while (xa_is_node(curr)) {
1435 			xas->xa_node = xa_to_node(curr);
1436 			xas->xa_offset = 0;
1437 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1438 		}
1439 		if (curr)
1440 			return curr;
1441 	}
1442 	xas->xa_offset -= xas->xa_sibs;
1443 	return NULL;
1444 }
1445 EXPORT_SYMBOL_GPL(xas_find_conflict);
1446 
1447 /**
1448  * xa_load() - Load an entry from an XArray.
1449  * @xa: XArray.
1450  * @index: index into array.
1451  *
1452  * Context: Any context.  Takes and releases the RCU lock.
1453  * Return: The entry at @index in @xa.
1454  */
1455 void *xa_load(struct xarray *xa, unsigned long index)
1456 {
1457 	XA_STATE(xas, xa, index);
1458 	void *entry;
1459 
1460 	rcu_read_lock();
1461 	do {
1462 		entry = xas_load(&xas);
1463 		if (xa_is_zero(entry))
1464 			entry = NULL;
1465 	} while (xas_retry(&xas, entry));
1466 	rcu_read_unlock();
1467 
1468 	return entry;
1469 }
1470 EXPORT_SYMBOL(xa_load);
1471 
1472 static void *xas_result(struct xa_state *xas, void *curr)
1473 {
1474 	if (xa_is_zero(curr))
1475 		return NULL;
1476 	if (xas_error(xas))
1477 		curr = xas->xa_node;
1478 	return curr;
1479 }
1480 
1481 /**
1482  * __xa_erase() - Erase this entry from the XArray while locked.
1483  * @xa: XArray.
1484  * @index: Index into array.
1485  *
1486  * After this function returns, loading from @index will return %NULL.
1487  * If the index is part of a multi-index entry, all indices will be erased
1488  * and none of the entries will be part of a multi-index entry.
1489  *
1490  * Context: Any context.  Expects xa_lock to be held on entry.
1491  * Return: The entry which used to be at this index.
1492  */
1493 void *__xa_erase(struct xarray *xa, unsigned long index)
1494 {
1495 	XA_STATE(xas, xa, index);
1496 	return xas_result(&xas, xas_store(&xas, NULL));
1497 }
1498 EXPORT_SYMBOL(__xa_erase);
1499 
1500 /**
1501  * xa_erase() - Erase this entry from the XArray.
1502  * @xa: XArray.
1503  * @index: Index of entry.
1504  *
1505  * After this function returns, loading from @index will return %NULL.
1506  * If the index is part of a multi-index entry, all indices will be erased
1507  * and none of the entries will be part of a multi-index entry.
1508  *
1509  * Context: Any context.  Takes and releases the xa_lock.
1510  * Return: The entry which used to be at this index.
1511  */
1512 void *xa_erase(struct xarray *xa, unsigned long index)
1513 {
1514 	void *entry;
1515 
1516 	xa_lock(xa);
1517 	entry = __xa_erase(xa, index);
1518 	xa_unlock(xa);
1519 
1520 	return entry;
1521 }
1522 EXPORT_SYMBOL(xa_erase);
1523 
1524 /**
1525  * __xa_store() - Store this entry in the XArray.
1526  * @xa: XArray.
1527  * @index: Index into array.
1528  * @entry: New entry.
1529  * @gfp: Memory allocation flags.
1530  *
1531  * You must already be holding the xa_lock when calling this function.
1532  * It will drop the lock if needed to allocate memory, and then reacquire
1533  * it afterwards.
1534  *
1535  * Context: Any context.  Expects xa_lock to be held on entry.  May
1536  * release and reacquire xa_lock if @gfp flags permit.
1537  * Return: The old entry at this index or xa_err() if an error happened.
1538  */
1539 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1540 {
1541 	XA_STATE(xas, xa, index);
1542 	void *curr;
1543 
1544 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1545 		return XA_ERROR(-EINVAL);
1546 	if (xa_track_free(xa) && !entry)
1547 		entry = XA_ZERO_ENTRY;
1548 
1549 	do {
1550 		curr = xas_store(&xas, entry);
1551 		if (xa_track_free(xa))
1552 			xas_clear_mark(&xas, XA_FREE_MARK);
1553 	} while (__xas_nomem(&xas, gfp));
1554 
1555 	return xas_result(&xas, curr);
1556 }
1557 EXPORT_SYMBOL(__xa_store);
1558 
1559 /**
1560  * xa_store() - Store this entry in the XArray.
1561  * @xa: XArray.
1562  * @index: Index into array.
1563  * @entry: New entry.
1564  * @gfp: Memory allocation flags.
1565  *
1566  * After this function returns, loads from this index will return @entry.
1567  * Storing into an existing multi-index entry updates the entry of every index.
1568  * The marks associated with @index are unaffected unless @entry is %NULL.
1569  *
1570  * Context: Any context.  Takes and releases the xa_lock.
1571  * May sleep if the @gfp flags permit.
1572  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1573  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1574  * failed.
1575  */
1576 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1577 {
1578 	void *curr;
1579 
1580 	xa_lock(xa);
1581 	curr = __xa_store(xa, index, entry, gfp);
1582 	xa_unlock(xa);
1583 
1584 	return curr;
1585 }
1586 EXPORT_SYMBOL(xa_store);
1587 
1588 /**
1589  * __xa_cmpxchg() - Store this entry in the XArray.
1590  * @xa: XArray.
1591  * @index: Index into array.
1592  * @old: Old value to test against.
1593  * @entry: New entry.
1594  * @gfp: Memory allocation flags.
1595  *
1596  * You must already be holding the xa_lock when calling this function.
1597  * It will drop the lock if needed to allocate memory, and then reacquire
1598  * it afterwards.
1599  *
1600  * Context: Any context.  Expects xa_lock to be held on entry.  May
1601  * release and reacquire xa_lock if @gfp flags permit.
1602  * Return: The old entry at this index or xa_err() if an error happened.
1603  */
1604 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1605 			void *old, void *entry, gfp_t gfp)
1606 {
1607 	XA_STATE(xas, xa, index);
1608 	void *curr;
1609 
1610 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1611 		return XA_ERROR(-EINVAL);
1612 
1613 	do {
1614 		curr = xas_load(&xas);
1615 		if (curr == old) {
1616 			xas_store(&xas, entry);
1617 			if (xa_track_free(xa) && entry && !curr)
1618 				xas_clear_mark(&xas, XA_FREE_MARK);
1619 		}
1620 	} while (__xas_nomem(&xas, gfp));
1621 
1622 	return xas_result(&xas, curr);
1623 }
1624 EXPORT_SYMBOL(__xa_cmpxchg);
1625 
1626 /**
1627  * __xa_insert() - Store this entry in the XArray if no entry is present.
1628  * @xa: XArray.
1629  * @index: Index into array.
1630  * @entry: New entry.
1631  * @gfp: Memory allocation flags.
1632  *
1633  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1634  * if no entry is present.  Inserting will fail if a reserved entry is
1635  * present, even though loading from this index will return NULL.
1636  *
1637  * Context: Any context.  Expects xa_lock to be held on entry.  May
1638  * release and reacquire xa_lock if @gfp flags permit.
1639  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1640  * -ENOMEM if memory could not be allocated.
1641  */
1642 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1643 {
1644 	XA_STATE(xas, xa, index);
1645 	void *curr;
1646 
1647 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1648 		return -EINVAL;
1649 	if (!entry)
1650 		entry = XA_ZERO_ENTRY;
1651 
1652 	do {
1653 		curr = xas_load(&xas);
1654 		if (!curr) {
1655 			xas_store(&xas, entry);
1656 			if (xa_track_free(xa))
1657 				xas_clear_mark(&xas, XA_FREE_MARK);
1658 		} else {
1659 			xas_set_err(&xas, -EBUSY);
1660 		}
1661 	} while (__xas_nomem(&xas, gfp));
1662 
1663 	return xas_error(&xas);
1664 }
1665 EXPORT_SYMBOL(__xa_insert);
1666 
1667 #ifdef CONFIG_XARRAY_MULTI
1668 static void xas_set_range(struct xa_state *xas, unsigned long first,
1669 		unsigned long last)
1670 {
1671 	unsigned int shift = 0;
1672 	unsigned long sibs = last - first;
1673 	unsigned int offset = XA_CHUNK_MASK;
1674 
1675 	xas_set(xas, first);
1676 
1677 	while ((first & XA_CHUNK_MASK) == 0) {
1678 		if (sibs < XA_CHUNK_MASK)
1679 			break;
1680 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1681 			break;
1682 		shift += XA_CHUNK_SHIFT;
1683 		if (offset == XA_CHUNK_MASK)
1684 			offset = sibs & XA_CHUNK_MASK;
1685 		sibs >>= XA_CHUNK_SHIFT;
1686 		first >>= XA_CHUNK_SHIFT;
1687 	}
1688 
1689 	offset = first & XA_CHUNK_MASK;
1690 	if (offset + sibs > XA_CHUNK_MASK)
1691 		sibs = XA_CHUNK_MASK - offset;
1692 	if ((((first + sibs + 1) << shift) - 1) > last)
1693 		sibs -= 1;
1694 
1695 	xas->xa_shift = shift;
1696 	xas->xa_sibs = sibs;
1697 }
1698 
1699 /**
1700  * xa_store_range() - Store this entry at a range of indices in the XArray.
1701  * @xa: XArray.
1702  * @first: First index to affect.
1703  * @last: Last index to affect.
1704  * @entry: New entry.
1705  * @gfp: Memory allocation flags.
1706  *
1707  * After this function returns, loads from any index between @first and @last,
1708  * inclusive will return @entry.
1709  * Storing into an existing multi-index entry updates the entry of every index.
1710  * The marks associated with @index are unaffected unless @entry is %NULL.
1711  *
1712  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1713  * if the @gfp flags permit.
1714  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1715  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1716  */
1717 void *xa_store_range(struct xarray *xa, unsigned long first,
1718 		unsigned long last, void *entry, gfp_t gfp)
1719 {
1720 	XA_STATE(xas, xa, 0);
1721 
1722 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1723 		return XA_ERROR(-EINVAL);
1724 	if (last < first)
1725 		return XA_ERROR(-EINVAL);
1726 
1727 	do {
1728 		xas_lock(&xas);
1729 		if (entry) {
1730 			unsigned int order = BITS_PER_LONG;
1731 			if (last + 1)
1732 				order = __ffs(last + 1);
1733 			xas_set_order(&xas, last, order);
1734 			xas_create(&xas, true);
1735 			if (xas_error(&xas))
1736 				goto unlock;
1737 		}
1738 		do {
1739 			xas_set_range(&xas, first, last);
1740 			xas_store(&xas, entry);
1741 			if (xas_error(&xas))
1742 				goto unlock;
1743 			first += xas_size(&xas);
1744 		} while (first <= last);
1745 unlock:
1746 		xas_unlock(&xas);
1747 	} while (xas_nomem(&xas, gfp));
1748 
1749 	return xas_result(&xas, NULL);
1750 }
1751 EXPORT_SYMBOL(xa_store_range);
1752 
1753 /**
1754  * xas_get_order() - Get the order of an entry.
1755  * @xas: XArray operation state.
1756  *
1757  * Called after xas_load, the xas should not be in an error state.
1758  *
1759  * Return: A number between 0 and 63 indicating the order of the entry.
1760  */
1761 int xas_get_order(struct xa_state *xas)
1762 {
1763 	int order = 0;
1764 
1765 	if (!xas->xa_node)
1766 		return 0;
1767 
1768 	for (;;) {
1769 		unsigned int slot = xas->xa_offset + (1 << order);
1770 
1771 		if (slot >= XA_CHUNK_SIZE)
1772 			break;
1773 		if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1774 			break;
1775 		order++;
1776 	}
1777 
1778 	order += xas->xa_node->shift;
1779 	return order;
1780 }
1781 EXPORT_SYMBOL_GPL(xas_get_order);
1782 
1783 /**
1784  * xa_get_order() - Get the order of an entry.
1785  * @xa: XArray.
1786  * @index: Index of the entry.
1787  *
1788  * Return: A number between 0 and 63 indicating the order of the entry.
1789  */
1790 int xa_get_order(struct xarray *xa, unsigned long index)
1791 {
1792 	XA_STATE(xas, xa, index);
1793 	int order = 0;
1794 	void *entry;
1795 
1796 	rcu_read_lock();
1797 	entry = xas_load(&xas);
1798 	if (entry)
1799 		order = xas_get_order(&xas);
1800 	rcu_read_unlock();
1801 
1802 	return order;
1803 }
1804 EXPORT_SYMBOL(xa_get_order);
1805 #endif /* CONFIG_XARRAY_MULTI */
1806 
1807 /**
1808  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1809  * @xa: XArray.
1810  * @id: Pointer to ID.
1811  * @limit: Range for allocated ID.
1812  * @entry: New entry.
1813  * @gfp: Memory allocation flags.
1814  *
1815  * Finds an empty entry in @xa between @limit.min and @limit.max,
1816  * stores the index into the @id pointer, then stores the entry at
1817  * that index.  A concurrent lookup will not see an uninitialised @id.
1818  *
1819  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1820  * in xa_init_flags().
1821  *
1822  * Context: Any context.  Expects xa_lock to be held on entry.  May
1823  * release and reacquire xa_lock if @gfp flags permit.
1824  * Return: 0 on success, -ENOMEM if memory could not be allocated or
1825  * -EBUSY if there are no free entries in @limit.
1826  */
1827 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1828 		struct xa_limit limit, gfp_t gfp)
1829 {
1830 	XA_STATE(xas, xa, 0);
1831 
1832 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1833 		return -EINVAL;
1834 	if (WARN_ON_ONCE(!xa_track_free(xa)))
1835 		return -EINVAL;
1836 
1837 	if (!entry)
1838 		entry = XA_ZERO_ENTRY;
1839 
1840 	do {
1841 		xas.xa_index = limit.min;
1842 		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1843 		if (xas.xa_node == XAS_RESTART)
1844 			xas_set_err(&xas, -EBUSY);
1845 		else
1846 			*id = xas.xa_index;
1847 		xas_store(&xas, entry);
1848 		xas_clear_mark(&xas, XA_FREE_MARK);
1849 	} while (__xas_nomem(&xas, gfp));
1850 
1851 	return xas_error(&xas);
1852 }
1853 EXPORT_SYMBOL(__xa_alloc);
1854 
1855 /**
1856  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1857  * @xa: XArray.
1858  * @id: Pointer to ID.
1859  * @entry: New entry.
1860  * @limit: Range of allocated ID.
1861  * @next: Pointer to next ID to allocate.
1862  * @gfp: Memory allocation flags.
1863  *
1864  * Finds an empty entry in @xa between @limit.min and @limit.max,
1865  * stores the index into the @id pointer, then stores the entry at
1866  * that index.  A concurrent lookup will not see an uninitialised @id.
1867  * The search for an empty entry will start at @next and will wrap
1868  * around if necessary.
1869  *
1870  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1871  * in xa_init_flags().
1872  *
1873  * Context: Any context.  Expects xa_lock to be held on entry.  May
1874  * release and reacquire xa_lock if @gfp flags permit.
1875  * Return: 0 if the allocation succeeded without wrapping.  1 if the
1876  * allocation succeeded after wrapping, -ENOMEM if memory could not be
1877  * allocated or -EBUSY if there are no free entries in @limit.
1878  */
1879 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1880 		struct xa_limit limit, u32 *next, gfp_t gfp)
1881 {
1882 	u32 min = limit.min;
1883 	int ret;
1884 
1885 	limit.min = max(min, *next);
1886 	ret = __xa_alloc(xa, id, entry, limit, gfp);
1887 	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1888 		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1889 		ret = 1;
1890 	}
1891 
1892 	if (ret < 0 && limit.min > min) {
1893 		limit.min = min;
1894 		ret = __xa_alloc(xa, id, entry, limit, gfp);
1895 		if (ret == 0)
1896 			ret = 1;
1897 	}
1898 
1899 	if (ret >= 0) {
1900 		*next = *id + 1;
1901 		if (*next == 0)
1902 			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1903 	}
1904 	return ret;
1905 }
1906 EXPORT_SYMBOL(__xa_alloc_cyclic);
1907 
1908 /**
1909  * __xa_set_mark() - Set this mark on this entry while locked.
1910  * @xa: XArray.
1911  * @index: Index of entry.
1912  * @mark: Mark number.
1913  *
1914  * Attempting to set a mark on a %NULL entry does not succeed.
1915  *
1916  * Context: Any context.  Expects xa_lock to be held on entry.
1917  */
1918 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1919 {
1920 	XA_STATE(xas, xa, index);
1921 	void *entry = xas_load(&xas);
1922 
1923 	if (entry)
1924 		xas_set_mark(&xas, mark);
1925 }
1926 EXPORT_SYMBOL(__xa_set_mark);
1927 
1928 /**
1929  * __xa_clear_mark() - Clear this mark on this entry while locked.
1930  * @xa: XArray.
1931  * @index: Index of entry.
1932  * @mark: Mark number.
1933  *
1934  * Context: Any context.  Expects xa_lock to be held on entry.
1935  */
1936 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1937 {
1938 	XA_STATE(xas, xa, index);
1939 	void *entry = xas_load(&xas);
1940 
1941 	if (entry)
1942 		xas_clear_mark(&xas, mark);
1943 }
1944 EXPORT_SYMBOL(__xa_clear_mark);
1945 
1946 /**
1947  * xa_get_mark() - Inquire whether this mark is set on this entry.
1948  * @xa: XArray.
1949  * @index: Index of entry.
1950  * @mark: Mark number.
1951  *
1952  * This function uses the RCU read lock, so the result may be out of date
1953  * by the time it returns.  If you need the result to be stable, use a lock.
1954  *
1955  * Context: Any context.  Takes and releases the RCU lock.
1956  * Return: True if the entry at @index has this mark set, false if it doesn't.
1957  */
1958 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1959 {
1960 	XA_STATE(xas, xa, index);
1961 	void *entry;
1962 
1963 	rcu_read_lock();
1964 	entry = xas_start(&xas);
1965 	while (xas_get_mark(&xas, mark)) {
1966 		if (!xa_is_node(entry))
1967 			goto found;
1968 		entry = xas_descend(&xas, xa_to_node(entry));
1969 	}
1970 	rcu_read_unlock();
1971 	return false;
1972  found:
1973 	rcu_read_unlock();
1974 	return true;
1975 }
1976 EXPORT_SYMBOL(xa_get_mark);
1977 
1978 /**
1979  * xa_set_mark() - Set this mark on this entry.
1980  * @xa: XArray.
1981  * @index: Index of entry.
1982  * @mark: Mark number.
1983  *
1984  * Attempting to set a mark on a %NULL entry does not succeed.
1985  *
1986  * Context: Process context.  Takes and releases the xa_lock.
1987  */
1988 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1989 {
1990 	xa_lock(xa);
1991 	__xa_set_mark(xa, index, mark);
1992 	xa_unlock(xa);
1993 }
1994 EXPORT_SYMBOL(xa_set_mark);
1995 
1996 /**
1997  * xa_clear_mark() - Clear this mark on this entry.
1998  * @xa: XArray.
1999  * @index: Index of entry.
2000  * @mark: Mark number.
2001  *
2002  * Clearing a mark always succeeds.
2003  *
2004  * Context: Process context.  Takes and releases the xa_lock.
2005  */
2006 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2007 {
2008 	xa_lock(xa);
2009 	__xa_clear_mark(xa, index, mark);
2010 	xa_unlock(xa);
2011 }
2012 EXPORT_SYMBOL(xa_clear_mark);
2013 
2014 /**
2015  * xa_find() - Search the XArray for an entry.
2016  * @xa: XArray.
2017  * @indexp: Pointer to an index.
2018  * @max: Maximum index to search to.
2019  * @filter: Selection criterion.
2020  *
2021  * Finds the entry in @xa which matches the @filter, and has the lowest
2022  * index that is at least @indexp and no more than @max.
2023  * If an entry is found, @indexp is updated to be the index of the entry.
2024  * This function is protected by the RCU read lock, so it may not find
2025  * entries which are being simultaneously added.  It will not return an
2026  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2027  *
2028  * Context: Any context.  Takes and releases the RCU lock.
2029  * Return: The entry, if found, otherwise %NULL.
2030  */
2031 void *xa_find(struct xarray *xa, unsigned long *indexp,
2032 			unsigned long max, xa_mark_t filter)
2033 {
2034 	XA_STATE(xas, xa, *indexp);
2035 	void *entry;
2036 
2037 	rcu_read_lock();
2038 	do {
2039 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2040 			entry = xas_find_marked(&xas, max, filter);
2041 		else
2042 			entry = xas_find(&xas, max);
2043 	} while (xas_retry(&xas, entry));
2044 	rcu_read_unlock();
2045 
2046 	if (entry)
2047 		*indexp = xas.xa_index;
2048 	return entry;
2049 }
2050 EXPORT_SYMBOL(xa_find);
2051 
2052 static bool xas_sibling(struct xa_state *xas)
2053 {
2054 	struct xa_node *node = xas->xa_node;
2055 	unsigned long mask;
2056 
2057 	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2058 		return false;
2059 	mask = (XA_CHUNK_SIZE << node->shift) - 1;
2060 	return (xas->xa_index & mask) >
2061 		((unsigned long)xas->xa_offset << node->shift);
2062 }
2063 
2064 /**
2065  * xa_find_after() - Search the XArray for a present entry.
2066  * @xa: XArray.
2067  * @indexp: Pointer to an index.
2068  * @max: Maximum index to search to.
2069  * @filter: Selection criterion.
2070  *
2071  * Finds the entry in @xa which matches the @filter and has the lowest
2072  * index that is above @indexp and no more than @max.
2073  * If an entry is found, @indexp is updated to be the index of the entry.
2074  * This function is protected by the RCU read lock, so it may miss entries
2075  * which are being simultaneously added.  It will not return an
2076  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2077  *
2078  * Context: Any context.  Takes and releases the RCU lock.
2079  * Return: The pointer, if found, otherwise %NULL.
2080  */
2081 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2082 			unsigned long max, xa_mark_t filter)
2083 {
2084 	XA_STATE(xas, xa, *indexp + 1);
2085 	void *entry;
2086 
2087 	if (xas.xa_index == 0)
2088 		return NULL;
2089 
2090 	rcu_read_lock();
2091 	for (;;) {
2092 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2093 			entry = xas_find_marked(&xas, max, filter);
2094 		else
2095 			entry = xas_find(&xas, max);
2096 
2097 		if (xas_invalid(&xas))
2098 			break;
2099 		if (xas_sibling(&xas))
2100 			continue;
2101 		if (!xas_retry(&xas, entry))
2102 			break;
2103 	}
2104 	rcu_read_unlock();
2105 
2106 	if (entry)
2107 		*indexp = xas.xa_index;
2108 	return entry;
2109 }
2110 EXPORT_SYMBOL(xa_find_after);
2111 
2112 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2113 			unsigned long max, unsigned int n)
2114 {
2115 	void *entry;
2116 	unsigned int i = 0;
2117 
2118 	rcu_read_lock();
2119 	xas_for_each(xas, entry, max) {
2120 		if (xas_retry(xas, entry))
2121 			continue;
2122 		dst[i++] = entry;
2123 		if (i == n)
2124 			break;
2125 	}
2126 	rcu_read_unlock();
2127 
2128 	return i;
2129 }
2130 
2131 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2132 			unsigned long max, unsigned int n, xa_mark_t mark)
2133 {
2134 	void *entry;
2135 	unsigned int i = 0;
2136 
2137 	rcu_read_lock();
2138 	xas_for_each_marked(xas, entry, max, mark) {
2139 		if (xas_retry(xas, entry))
2140 			continue;
2141 		dst[i++] = entry;
2142 		if (i == n)
2143 			break;
2144 	}
2145 	rcu_read_unlock();
2146 
2147 	return i;
2148 }
2149 
2150 /**
2151  * xa_extract() - Copy selected entries from the XArray into a normal array.
2152  * @xa: The source XArray to copy from.
2153  * @dst: The buffer to copy entries into.
2154  * @start: The first index in the XArray eligible to be selected.
2155  * @max: The last index in the XArray eligible to be selected.
2156  * @n: The maximum number of entries to copy.
2157  * @filter: Selection criterion.
2158  *
2159  * Copies up to @n entries that match @filter from the XArray.  The
2160  * copied entries will have indices between @start and @max, inclusive.
2161  *
2162  * The @filter may be an XArray mark value, in which case entries which are
2163  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
2164  * which case all entries which are not %NULL will be copied.
2165  *
2166  * The entries returned may not represent a snapshot of the XArray at a
2167  * moment in time.  For example, if another thread stores to index 5, then
2168  * index 10, calling xa_extract() may return the old contents of index 5
2169  * and the new contents of index 10.  Indices not modified while this
2170  * function is running will not be skipped.
2171  *
2172  * If you need stronger guarantees, holding the xa_lock across calls to this
2173  * function will prevent concurrent modification.
2174  *
2175  * Context: Any context.  Takes and releases the RCU lock.
2176  * Return: The number of entries copied.
2177  */
2178 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2179 			unsigned long max, unsigned int n, xa_mark_t filter)
2180 {
2181 	XA_STATE(xas, xa, start);
2182 
2183 	if (!n)
2184 		return 0;
2185 
2186 	if ((__force unsigned int)filter < XA_MAX_MARKS)
2187 		return xas_extract_marked(&xas, dst, max, n, filter);
2188 	return xas_extract_present(&xas, dst, max, n);
2189 }
2190 EXPORT_SYMBOL(xa_extract);
2191 
2192 /**
2193  * xa_delete_node() - Private interface for workingset code.
2194  * @node: Node to be removed from the tree.
2195  * @update: Function to call to update ancestor nodes.
2196  *
2197  * Context: xa_lock must be held on entry and will not be released.
2198  */
2199 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2200 {
2201 	struct xa_state xas = {
2202 		.xa = node->array,
2203 		.xa_index = (unsigned long)node->offset <<
2204 				(node->shift + XA_CHUNK_SHIFT),
2205 		.xa_shift = node->shift + XA_CHUNK_SHIFT,
2206 		.xa_offset = node->offset,
2207 		.xa_node = xa_parent_locked(node->array, node),
2208 		.xa_update = update,
2209 	};
2210 
2211 	xas_store(&xas, NULL);
2212 }
2213 EXPORT_SYMBOL_GPL(xa_delete_node);	/* For the benefit of the test suite */
2214 
2215 /**
2216  * xa_destroy() - Free all internal data structures.
2217  * @xa: XArray.
2218  *
2219  * After calling this function, the XArray is empty and has freed all memory
2220  * allocated for its internal data structures.  You are responsible for
2221  * freeing the objects referenced by the XArray.
2222  *
2223  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
2224  */
2225 void xa_destroy(struct xarray *xa)
2226 {
2227 	XA_STATE(xas, xa, 0);
2228 	unsigned long flags;
2229 	void *entry;
2230 
2231 	xas.xa_node = NULL;
2232 	xas_lock_irqsave(&xas, flags);
2233 	entry = xa_head_locked(xa);
2234 	RCU_INIT_POINTER(xa->xa_head, NULL);
2235 	xas_init_marks(&xas);
2236 	if (xa_zero_busy(xa))
2237 		xa_mark_clear(xa, XA_FREE_MARK);
2238 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
2239 	if (xa_is_node(entry))
2240 		xas_free_nodes(&xas, xa_to_node(entry));
2241 	xas_unlock_irqrestore(&xas, flags);
2242 }
2243 EXPORT_SYMBOL(xa_destroy);
2244 
2245 #ifdef XA_DEBUG
2246 void xa_dump_node(const struct xa_node *node)
2247 {
2248 	unsigned i, j;
2249 
2250 	if (!node)
2251 		return;
2252 	if ((unsigned long)node & 3) {
2253 		pr_cont("node %px\n", node);
2254 		return;
2255 	}
2256 
2257 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2258 		"array %px list %px %px marks",
2259 		node, node->parent ? "offset" : "max", node->offset,
2260 		node->parent, node->shift, node->count, node->nr_values,
2261 		node->array, node->private_list.prev, node->private_list.next);
2262 	for (i = 0; i < XA_MAX_MARKS; i++)
2263 		for (j = 0; j < XA_MARK_LONGS; j++)
2264 			pr_cont(" %lx", node->marks[i][j]);
2265 	pr_cont("\n");
2266 }
2267 
2268 void xa_dump_index(unsigned long index, unsigned int shift)
2269 {
2270 	if (!shift)
2271 		pr_info("%lu: ", index);
2272 	else if (shift >= BITS_PER_LONG)
2273 		pr_info("0-%lu: ", ~0UL);
2274 	else
2275 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2276 }
2277 
2278 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2279 {
2280 	if (!entry)
2281 		return;
2282 
2283 	xa_dump_index(index, shift);
2284 
2285 	if (xa_is_node(entry)) {
2286 		if (shift == 0) {
2287 			pr_cont("%px\n", entry);
2288 		} else {
2289 			unsigned long i;
2290 			struct xa_node *node = xa_to_node(entry);
2291 			xa_dump_node(node);
2292 			for (i = 0; i < XA_CHUNK_SIZE; i++)
2293 				xa_dump_entry(node->slots[i],
2294 				      index + (i << node->shift), node->shift);
2295 		}
2296 	} else if (xa_is_value(entry))
2297 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2298 						xa_to_value(entry), entry);
2299 	else if (!xa_is_internal(entry))
2300 		pr_cont("%px\n", entry);
2301 	else if (xa_is_retry(entry))
2302 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2303 	else if (xa_is_sibling(entry))
2304 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2305 	else if (xa_is_zero(entry))
2306 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2307 	else
2308 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2309 }
2310 
2311 void xa_dump(const struct xarray *xa)
2312 {
2313 	void *entry = xa->xa_head;
2314 	unsigned int shift = 0;
2315 
2316 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2317 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2318 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2319 	if (xa_is_node(entry))
2320 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2321 	xa_dump_entry(entry, 0, shift);
2322 }
2323 #endif
2324