1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 unsigned int mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 if (!xas->xa_sibs) 132 return; 133 134 do { 135 unsigned long *marks = xas->xa_node->marks[mark]; 136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 137 continue; 138 __set_bit(xas->xa_offset, marks); 139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 140 } while (mark++ != (__force unsigned)XA_MARK_MAX); 141 } 142 143 /* extracts the offset within this node from the index */ 144 static unsigned int get_offset(unsigned long index, struct xa_node *node) 145 { 146 return (index >> node->shift) & XA_CHUNK_MASK; 147 } 148 149 static void xas_set_offset(struct xa_state *xas) 150 { 151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 152 } 153 154 /* move the index either forwards (find) or backwards (sibling slot) */ 155 static void xas_move_index(struct xa_state *xas, unsigned long offset) 156 { 157 unsigned int shift = xas->xa_node->shift; 158 xas->xa_index &= ~XA_CHUNK_MASK << shift; 159 xas->xa_index += offset << shift; 160 } 161 162 static void xas_next_offset(struct xa_state *xas) 163 { 164 xas->xa_offset++; 165 xas_move_index(xas, xas->xa_offset); 166 } 167 168 static void *set_bounds(struct xa_state *xas) 169 { 170 xas->xa_node = XAS_BOUNDS; 171 return NULL; 172 } 173 174 /* 175 * Starts a walk. If the @xas is already valid, we assume that it's on 176 * the right path and just return where we've got to. If we're in an 177 * error state, return NULL. If the index is outside the current scope 178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 179 * set @xas->xa_node to NULL and return the current head of the array. 180 */ 181 static void *xas_start(struct xa_state *xas) 182 { 183 void *entry; 184 185 if (xas_valid(xas)) 186 return xas_reload(xas); 187 if (xas_error(xas)) 188 return NULL; 189 190 entry = xa_head(xas->xa); 191 if (!xa_is_node(entry)) { 192 if (xas->xa_index) 193 return set_bounds(xas); 194 } else { 195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 196 return set_bounds(xas); 197 } 198 199 xas->xa_node = NULL; 200 return entry; 201 } 202 203 static __always_inline void *xas_descend(struct xa_state *xas, 204 struct xa_node *node) 205 { 206 unsigned int offset = get_offset(xas->xa_index, node); 207 void *entry = xa_entry(xas->xa, node, offset); 208 209 xas->xa_node = node; 210 while (xa_is_sibling(entry)) { 211 offset = xa_to_sibling(entry); 212 entry = xa_entry(xas->xa, node, offset); 213 if (node->shift && xa_is_node(entry)) 214 entry = XA_RETRY_ENTRY; 215 } 216 217 xas->xa_offset = offset; 218 return entry; 219 } 220 221 /** 222 * xas_load() - Load an entry from the XArray (advanced). 223 * @xas: XArray operation state. 224 * 225 * Usually walks the @xas to the appropriate state to load the entry 226 * stored at xa_index. However, it will do nothing and return %NULL if 227 * @xas is in an error state. xas_load() will never expand the tree. 228 * 229 * If the xa_state is set up to operate on a multi-index entry, xas_load() 230 * may return %NULL or an internal entry, even if there are entries 231 * present within the range specified by @xas. 232 * 233 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 234 * Return: Usually an entry in the XArray, but see description for exceptions. 235 */ 236 void *xas_load(struct xa_state *xas) 237 { 238 void *entry = xas_start(xas); 239 240 while (xa_is_node(entry)) { 241 struct xa_node *node = xa_to_node(entry); 242 243 if (xas->xa_shift > node->shift) 244 break; 245 entry = xas_descend(xas, node); 246 if (node->shift == 0) 247 break; 248 } 249 return entry; 250 } 251 EXPORT_SYMBOL_GPL(xas_load); 252 253 #define XA_RCU_FREE ((struct xarray *)1) 254 255 static void xa_node_free(struct xa_node *node) 256 { 257 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 258 node->array = XA_RCU_FREE; 259 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 260 } 261 262 /* 263 * xas_destroy() - Free any resources allocated during the XArray operation. 264 * @xas: XArray operation state. 265 * 266 * Most users will not need to call this function; it is called for you 267 * by xas_nomem(). 268 */ 269 void xas_destroy(struct xa_state *xas) 270 { 271 struct xa_node *next, *node = xas->xa_alloc; 272 273 while (node) { 274 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 275 next = rcu_dereference_raw(node->parent); 276 radix_tree_node_rcu_free(&node->rcu_head); 277 xas->xa_alloc = node = next; 278 } 279 } 280 281 /** 282 * xas_nomem() - Allocate memory if needed. 283 * @xas: XArray operation state. 284 * @gfp: Memory allocation flags. 285 * 286 * If we need to add new nodes to the XArray, we try to allocate memory 287 * with GFP_NOWAIT while holding the lock, which will usually succeed. 288 * If it fails, @xas is flagged as needing memory to continue. The caller 289 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 290 * the caller should retry the operation. 291 * 292 * Forward progress is guaranteed as one node is allocated here and 293 * stored in the xa_state where it will be found by xas_alloc(). More 294 * nodes will likely be found in the slab allocator, but we do not tie 295 * them up here. 296 * 297 * Return: true if memory was needed, and was successfully allocated. 298 */ 299 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 300 { 301 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 302 xas_destroy(xas); 303 return false; 304 } 305 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 306 gfp |= __GFP_ACCOUNT; 307 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 308 if (!xas->xa_alloc) 309 return false; 310 xas->xa_alloc->parent = NULL; 311 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 312 xas->xa_node = XAS_RESTART; 313 return true; 314 } 315 EXPORT_SYMBOL_GPL(xas_nomem); 316 317 /* 318 * __xas_nomem() - Drop locks and allocate memory if needed. 319 * @xas: XArray operation state. 320 * @gfp: Memory allocation flags. 321 * 322 * Internal variant of xas_nomem(). 323 * 324 * Return: true if memory was needed, and was successfully allocated. 325 */ 326 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 327 __must_hold(xas->xa->xa_lock) 328 { 329 unsigned int lock_type = xa_lock_type(xas->xa); 330 331 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 332 xas_destroy(xas); 333 return false; 334 } 335 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 336 gfp |= __GFP_ACCOUNT; 337 if (gfpflags_allow_blocking(gfp)) { 338 xas_unlock_type(xas, lock_type); 339 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 340 xas_lock_type(xas, lock_type); 341 } else { 342 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 343 } 344 if (!xas->xa_alloc) 345 return false; 346 xas->xa_alloc->parent = NULL; 347 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 348 xas->xa_node = XAS_RESTART; 349 return true; 350 } 351 352 static void xas_update(struct xa_state *xas, struct xa_node *node) 353 { 354 if (xas->xa_update) 355 xas->xa_update(node); 356 else 357 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 358 } 359 360 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 361 { 362 struct xa_node *parent = xas->xa_node; 363 struct xa_node *node = xas->xa_alloc; 364 365 if (xas_invalid(xas)) 366 return NULL; 367 368 if (node) { 369 xas->xa_alloc = NULL; 370 } else { 371 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 372 373 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 374 gfp |= __GFP_ACCOUNT; 375 376 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 377 if (!node) { 378 xas_set_err(xas, -ENOMEM); 379 return NULL; 380 } 381 } 382 383 if (parent) { 384 node->offset = xas->xa_offset; 385 parent->count++; 386 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 387 xas_update(xas, parent); 388 } 389 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 390 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 391 node->shift = shift; 392 node->count = 0; 393 node->nr_values = 0; 394 RCU_INIT_POINTER(node->parent, xas->xa_node); 395 node->array = xas->xa; 396 397 return node; 398 } 399 400 #ifdef CONFIG_XARRAY_MULTI 401 /* Returns the number of indices covered by a given xa_state */ 402 static unsigned long xas_size(const struct xa_state *xas) 403 { 404 return (xas->xa_sibs + 1UL) << xas->xa_shift; 405 } 406 #endif 407 408 /* 409 * Use this to calculate the maximum index that will need to be created 410 * in order to add the entry described by @xas. Because we cannot store a 411 * multi-index entry at index 0, the calculation is a little more complex 412 * than you might expect. 413 */ 414 static unsigned long xas_max(struct xa_state *xas) 415 { 416 unsigned long max = xas->xa_index; 417 418 #ifdef CONFIG_XARRAY_MULTI 419 if (xas->xa_shift || xas->xa_sibs) { 420 unsigned long mask = xas_size(xas) - 1; 421 max |= mask; 422 if (mask == max) 423 max++; 424 } 425 #endif 426 427 return max; 428 } 429 430 /* The maximum index that can be contained in the array without expanding it */ 431 static unsigned long max_index(void *entry) 432 { 433 if (!xa_is_node(entry)) 434 return 0; 435 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 436 } 437 438 static inline void *xa_zero_to_null(void *entry) 439 { 440 return xa_is_zero(entry) ? NULL : entry; 441 } 442 443 static void xas_shrink(struct xa_state *xas) 444 { 445 struct xarray *xa = xas->xa; 446 struct xa_node *node = xas->xa_node; 447 448 for (;;) { 449 void *entry; 450 451 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 452 if (node->count != 1) 453 break; 454 entry = xa_entry_locked(xa, node, 0); 455 if (!entry) 456 break; 457 if (!xa_is_node(entry) && node->shift) 458 break; 459 if (xa_zero_busy(xa)) 460 entry = xa_zero_to_null(entry); 461 xas->xa_node = XAS_BOUNDS; 462 463 RCU_INIT_POINTER(xa->xa_head, entry); 464 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 465 xa_mark_clear(xa, XA_FREE_MARK); 466 467 node->count = 0; 468 node->nr_values = 0; 469 if (!xa_is_node(entry)) 470 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 471 xas_update(xas, node); 472 xa_node_free(node); 473 if (!xa_is_node(entry)) 474 break; 475 node = xa_to_node(entry); 476 node->parent = NULL; 477 } 478 } 479 480 /* 481 * xas_delete_node() - Attempt to delete an xa_node 482 * @xas: Array operation state. 483 * 484 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 485 * a non-zero reference count. 486 */ 487 static void xas_delete_node(struct xa_state *xas) 488 { 489 struct xa_node *node = xas->xa_node; 490 491 for (;;) { 492 struct xa_node *parent; 493 494 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 495 if (node->count) 496 break; 497 498 parent = xa_parent_locked(xas->xa, node); 499 xas->xa_node = parent; 500 xas->xa_offset = node->offset; 501 xa_node_free(node); 502 503 if (!parent) { 504 xas->xa->xa_head = NULL; 505 xas->xa_node = XAS_BOUNDS; 506 return; 507 } 508 509 parent->slots[xas->xa_offset] = NULL; 510 parent->count--; 511 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 512 node = parent; 513 xas_update(xas, node); 514 } 515 516 if (!node->parent) 517 xas_shrink(xas); 518 } 519 520 /** 521 * xas_free_nodes() - Free this node and all nodes that it references 522 * @xas: Array operation state. 523 * @top: Node to free 524 * 525 * This node has been removed from the tree. We must now free it and all 526 * of its subnodes. There may be RCU walkers with references into the tree, 527 * so we must replace all entries with retry markers. 528 */ 529 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 530 { 531 unsigned int offset = 0; 532 struct xa_node *node = top; 533 534 for (;;) { 535 void *entry = xa_entry_locked(xas->xa, node, offset); 536 537 if (node->shift && xa_is_node(entry)) { 538 node = xa_to_node(entry); 539 offset = 0; 540 continue; 541 } 542 if (entry) 543 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 544 offset++; 545 while (offset == XA_CHUNK_SIZE) { 546 struct xa_node *parent; 547 548 parent = xa_parent_locked(xas->xa, node); 549 offset = node->offset + 1; 550 node->count = 0; 551 node->nr_values = 0; 552 xas_update(xas, node); 553 xa_node_free(node); 554 if (node == top) 555 return; 556 node = parent; 557 } 558 } 559 } 560 561 /* 562 * xas_expand adds nodes to the head of the tree until it has reached 563 * sufficient height to be able to contain @xas->xa_index 564 */ 565 static int xas_expand(struct xa_state *xas, void *head) 566 { 567 struct xarray *xa = xas->xa; 568 struct xa_node *node = NULL; 569 unsigned int shift = 0; 570 unsigned long max = xas_max(xas); 571 572 if (!head) { 573 if (max == 0) 574 return 0; 575 while ((max >> shift) >= XA_CHUNK_SIZE) 576 shift += XA_CHUNK_SHIFT; 577 return shift + XA_CHUNK_SHIFT; 578 } else if (xa_is_node(head)) { 579 node = xa_to_node(head); 580 shift = node->shift + XA_CHUNK_SHIFT; 581 } 582 xas->xa_node = NULL; 583 584 while (max > max_index(head)) { 585 xa_mark_t mark = 0; 586 587 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 588 node = xas_alloc(xas, shift); 589 if (!node) 590 return -ENOMEM; 591 592 node->count = 1; 593 if (xa_is_value(head)) 594 node->nr_values = 1; 595 RCU_INIT_POINTER(node->slots[0], head); 596 597 /* Propagate the aggregated mark info to the new child */ 598 for (;;) { 599 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 600 node_mark_all(node, XA_FREE_MARK); 601 if (!xa_marked(xa, XA_FREE_MARK)) { 602 node_clear_mark(node, 0, XA_FREE_MARK); 603 xa_mark_set(xa, XA_FREE_MARK); 604 } 605 } else if (xa_marked(xa, mark)) { 606 node_set_mark(node, 0, mark); 607 } 608 if (mark == XA_MARK_MAX) 609 break; 610 mark_inc(mark); 611 } 612 613 /* 614 * Now that the new node is fully initialised, we can add 615 * it to the tree 616 */ 617 if (xa_is_node(head)) { 618 xa_to_node(head)->offset = 0; 619 rcu_assign_pointer(xa_to_node(head)->parent, node); 620 } 621 head = xa_mk_node(node); 622 rcu_assign_pointer(xa->xa_head, head); 623 xas_update(xas, node); 624 625 shift += XA_CHUNK_SHIFT; 626 } 627 628 xas->xa_node = node; 629 return shift; 630 } 631 632 /* 633 * xas_create() - Create a slot to store an entry in. 634 * @xas: XArray operation state. 635 * @allow_root: %true if we can store the entry in the root directly 636 * 637 * Most users will not need to call this function directly, as it is called 638 * by xas_store(). It is useful for doing conditional store operations 639 * (see the xa_cmpxchg() implementation for an example). 640 * 641 * Return: If the slot already existed, returns the contents of this slot. 642 * If the slot was newly created, returns %NULL. If it failed to create the 643 * slot, returns %NULL and indicates the error in @xas. 644 */ 645 static void *xas_create(struct xa_state *xas, bool allow_root) 646 { 647 struct xarray *xa = xas->xa; 648 void *entry; 649 void __rcu **slot; 650 struct xa_node *node = xas->xa_node; 651 int shift; 652 unsigned int order = xas->xa_shift; 653 654 if (xas_top(node)) { 655 entry = xa_head_locked(xa); 656 xas->xa_node = NULL; 657 if (!entry && xa_zero_busy(xa)) 658 entry = XA_ZERO_ENTRY; 659 shift = xas_expand(xas, entry); 660 if (shift < 0) 661 return NULL; 662 if (!shift && !allow_root) 663 shift = XA_CHUNK_SHIFT; 664 entry = xa_head_locked(xa); 665 slot = &xa->xa_head; 666 } else if (xas_error(xas)) { 667 return NULL; 668 } else if (node) { 669 unsigned int offset = xas->xa_offset; 670 671 shift = node->shift; 672 entry = xa_entry_locked(xa, node, offset); 673 slot = &node->slots[offset]; 674 } else { 675 shift = 0; 676 entry = xa_head_locked(xa); 677 slot = &xa->xa_head; 678 } 679 680 while (shift > order) { 681 shift -= XA_CHUNK_SHIFT; 682 if (!entry) { 683 node = xas_alloc(xas, shift); 684 if (!node) 685 break; 686 if (xa_track_free(xa)) 687 node_mark_all(node, XA_FREE_MARK); 688 rcu_assign_pointer(*slot, xa_mk_node(node)); 689 } else if (xa_is_node(entry)) { 690 node = xa_to_node(entry); 691 } else { 692 break; 693 } 694 entry = xas_descend(xas, node); 695 slot = &node->slots[xas->xa_offset]; 696 } 697 698 return entry; 699 } 700 701 /** 702 * xas_create_range() - Ensure that stores to this range will succeed 703 * @xas: XArray operation state. 704 * 705 * Creates all of the slots in the range covered by @xas. Sets @xas to 706 * create single-index entries and positions it at the beginning of the 707 * range. This is for the benefit of users which have not yet been 708 * converted to use multi-index entries. 709 */ 710 void xas_create_range(struct xa_state *xas) 711 { 712 unsigned long index = xas->xa_index; 713 unsigned char shift = xas->xa_shift; 714 unsigned char sibs = xas->xa_sibs; 715 716 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 717 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 718 xas->xa_offset |= sibs; 719 xas->xa_shift = 0; 720 xas->xa_sibs = 0; 721 722 for (;;) { 723 xas_create(xas, true); 724 if (xas_error(xas)) 725 goto restore; 726 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 727 goto success; 728 xas->xa_index -= XA_CHUNK_SIZE; 729 730 for (;;) { 731 struct xa_node *node = xas->xa_node; 732 if (node->shift >= shift) 733 break; 734 xas->xa_node = xa_parent_locked(xas->xa, node); 735 xas->xa_offset = node->offset - 1; 736 if (node->offset != 0) 737 break; 738 } 739 } 740 741 restore: 742 xas->xa_shift = shift; 743 xas->xa_sibs = sibs; 744 xas->xa_index = index; 745 return; 746 success: 747 xas->xa_index = index; 748 if (xas->xa_node) 749 xas_set_offset(xas); 750 } 751 EXPORT_SYMBOL_GPL(xas_create_range); 752 753 static void update_node(struct xa_state *xas, struct xa_node *node, 754 int count, int values) 755 { 756 if (!node || (!count && !values)) 757 return; 758 759 node->count += count; 760 node->nr_values += values; 761 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 762 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 763 xas_update(xas, node); 764 if (count < 0) 765 xas_delete_node(xas); 766 } 767 768 /** 769 * xas_store() - Store this entry in the XArray. 770 * @xas: XArray operation state. 771 * @entry: New entry. 772 * 773 * If @xas is operating on a multi-index entry, the entry returned by this 774 * function is essentially meaningless (it may be an internal entry or it 775 * may be %NULL, even if there are non-NULL entries at some of the indices 776 * covered by the range). This is not a problem for any current users, 777 * and can be changed if needed. 778 * 779 * Return: The old entry at this index. 780 */ 781 void *xas_store(struct xa_state *xas, void *entry) 782 { 783 struct xa_node *node; 784 void __rcu **slot = &xas->xa->xa_head; 785 unsigned int offset, max; 786 int count = 0; 787 int values = 0; 788 void *first, *next; 789 bool value = xa_is_value(entry); 790 791 if (entry) { 792 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 793 first = xas_create(xas, allow_root); 794 } else { 795 first = xas_load(xas); 796 } 797 798 if (xas_invalid(xas)) 799 return first; 800 node = xas->xa_node; 801 if (node && (xas->xa_shift < node->shift)) 802 xas->xa_sibs = 0; 803 if ((first == entry) && !xas->xa_sibs) 804 return first; 805 806 next = first; 807 offset = xas->xa_offset; 808 max = xas->xa_offset + xas->xa_sibs; 809 if (node) { 810 slot = &node->slots[offset]; 811 if (xas->xa_sibs) 812 xas_squash_marks(xas); 813 } 814 if (!entry) 815 xas_init_marks(xas); 816 817 for (;;) { 818 /* 819 * Must clear the marks before setting the entry to NULL, 820 * otherwise xas_for_each_marked may find a NULL entry and 821 * stop early. rcu_assign_pointer contains a release barrier 822 * so the mark clearing will appear to happen before the 823 * entry is set to NULL. 824 */ 825 rcu_assign_pointer(*slot, entry); 826 if (xa_is_node(next) && (!node || node->shift)) 827 xas_free_nodes(xas, xa_to_node(next)); 828 if (!node) 829 break; 830 count += !next - !entry; 831 values += !xa_is_value(first) - !value; 832 if (entry) { 833 if (offset == max) 834 break; 835 if (!xa_is_sibling(entry)) 836 entry = xa_mk_sibling(xas->xa_offset); 837 } else { 838 if (offset == XA_CHUNK_MASK) 839 break; 840 } 841 next = xa_entry_locked(xas->xa, node, ++offset); 842 if (!xa_is_sibling(next)) { 843 if (!entry && (offset > max)) 844 break; 845 first = next; 846 } 847 slot++; 848 } 849 850 update_node(xas, node, count, values); 851 return first; 852 } 853 EXPORT_SYMBOL_GPL(xas_store); 854 855 /** 856 * xas_get_mark() - Returns the state of this mark. 857 * @xas: XArray operation state. 858 * @mark: Mark number. 859 * 860 * Return: true if the mark is set, false if the mark is clear or @xas 861 * is in an error state. 862 */ 863 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 864 { 865 if (xas_invalid(xas)) 866 return false; 867 if (!xas->xa_node) 868 return xa_marked(xas->xa, mark); 869 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 870 } 871 EXPORT_SYMBOL_GPL(xas_get_mark); 872 873 /** 874 * xas_set_mark() - Sets the mark on this entry and its parents. 875 * @xas: XArray operation state. 876 * @mark: Mark number. 877 * 878 * Sets the specified mark on this entry, and walks up the tree setting it 879 * on all the ancestor entries. Does nothing if @xas has not been walked to 880 * an entry, or is in an error state. 881 */ 882 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 883 { 884 struct xa_node *node = xas->xa_node; 885 unsigned int offset = xas->xa_offset; 886 887 if (xas_invalid(xas)) 888 return; 889 890 while (node) { 891 if (node_set_mark(node, offset, mark)) 892 return; 893 offset = node->offset; 894 node = xa_parent_locked(xas->xa, node); 895 } 896 897 if (!xa_marked(xas->xa, mark)) 898 xa_mark_set(xas->xa, mark); 899 } 900 EXPORT_SYMBOL_GPL(xas_set_mark); 901 902 /** 903 * xas_clear_mark() - Clears the mark on this entry and its parents. 904 * @xas: XArray operation state. 905 * @mark: Mark number. 906 * 907 * Clears the specified mark on this entry, and walks back to the head 908 * attempting to clear it on all the ancestor entries. Does nothing if 909 * @xas has not been walked to an entry, or is in an error state. 910 */ 911 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 912 { 913 struct xa_node *node = xas->xa_node; 914 unsigned int offset = xas->xa_offset; 915 916 if (xas_invalid(xas)) 917 return; 918 919 while (node) { 920 if (!node_clear_mark(node, offset, mark)) 921 return; 922 if (node_any_mark(node, mark)) 923 return; 924 925 offset = node->offset; 926 node = xa_parent_locked(xas->xa, node); 927 } 928 929 if (xa_marked(xas->xa, mark)) 930 xa_mark_clear(xas->xa, mark); 931 } 932 EXPORT_SYMBOL_GPL(xas_clear_mark); 933 934 /** 935 * xas_init_marks() - Initialise all marks for the entry 936 * @xas: Array operations state. 937 * 938 * Initialise all marks for the entry specified by @xas. If we're tracking 939 * free entries with a mark, we need to set it on all entries. All other 940 * marks are cleared. 941 * 942 * This implementation is not as efficient as it could be; we may walk 943 * up the tree multiple times. 944 */ 945 void xas_init_marks(const struct xa_state *xas) 946 { 947 xa_mark_t mark = 0; 948 949 for (;;) { 950 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 951 xas_set_mark(xas, mark); 952 else 953 xas_clear_mark(xas, mark); 954 if (mark == XA_MARK_MAX) 955 break; 956 mark_inc(mark); 957 } 958 } 959 EXPORT_SYMBOL_GPL(xas_init_marks); 960 961 #ifdef CONFIG_XARRAY_MULTI 962 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 963 { 964 unsigned int marks = 0; 965 xa_mark_t mark = XA_MARK_0; 966 967 for (;;) { 968 if (node_get_mark(node, offset, mark)) 969 marks |= 1 << (__force unsigned int)mark; 970 if (mark == XA_MARK_MAX) 971 break; 972 mark_inc(mark); 973 } 974 975 return marks; 976 } 977 978 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, 979 xa_mark_t mark) 980 { 981 int i; 982 983 if (sibs == 0) 984 node_mark_all(node, mark); 985 else { 986 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) 987 node_set_mark(node, i, mark); 988 } 989 } 990 991 static void node_set_marks(struct xa_node *node, unsigned int offset, 992 struct xa_node *child, unsigned int sibs, 993 unsigned int marks) 994 { 995 xa_mark_t mark = XA_MARK_0; 996 997 for (;;) { 998 if (marks & (1 << (__force unsigned int)mark)) { 999 node_set_mark(node, offset, mark); 1000 if (child) 1001 node_mark_slots(child, sibs, mark); 1002 } 1003 if (mark == XA_MARK_MAX) 1004 break; 1005 mark_inc(mark); 1006 } 1007 } 1008 1009 /** 1010 * xas_split_alloc() - Allocate memory for splitting an entry. 1011 * @xas: XArray operation state. 1012 * @entry: New entry which will be stored in the array. 1013 * @order: Current entry order. 1014 * @gfp: Memory allocation flags. 1015 * 1016 * This function should be called before calling xas_split(). 1017 * If necessary, it will allocate new nodes (and fill them with @entry) 1018 * to prepare for the upcoming split of an entry of @order size into 1019 * entries of the order stored in the @xas. 1020 * 1021 * Context: May sleep if @gfp flags permit. 1022 */ 1023 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1024 gfp_t gfp) 1025 { 1026 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1027 unsigned int mask = xas->xa_sibs; 1028 1029 /* XXX: no support for splitting really large entries yet */ 1030 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1031 goto nomem; 1032 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1033 return; 1034 1035 do { 1036 unsigned int i; 1037 void *sibling = NULL; 1038 struct xa_node *node; 1039 1040 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1041 if (!node) 1042 goto nomem; 1043 node->array = xas->xa; 1044 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1045 if ((i & mask) == 0) { 1046 RCU_INIT_POINTER(node->slots[i], entry); 1047 sibling = xa_mk_sibling(i); 1048 } else { 1049 RCU_INIT_POINTER(node->slots[i], sibling); 1050 } 1051 } 1052 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1053 xas->xa_alloc = node; 1054 } while (sibs-- > 0); 1055 1056 return; 1057 nomem: 1058 xas_destroy(xas); 1059 xas_set_err(xas, -ENOMEM); 1060 } 1061 EXPORT_SYMBOL_GPL(xas_split_alloc); 1062 1063 /** 1064 * xas_split() - Split a multi-index entry into smaller entries. 1065 * @xas: XArray operation state. 1066 * @entry: New entry to store in the array. 1067 * @order: Current entry order. 1068 * 1069 * The size of the new entries is set in @xas. The value in @entry is 1070 * copied to all the replacement entries. 1071 * 1072 * Context: Any context. The caller should hold the xa_lock. 1073 */ 1074 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1075 { 1076 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1077 unsigned int offset, marks; 1078 struct xa_node *node; 1079 void *curr = xas_load(xas); 1080 int values = 0; 1081 1082 node = xas->xa_node; 1083 if (xas_top(node)) 1084 return; 1085 1086 marks = node_get_marks(node, xas->xa_offset); 1087 1088 offset = xas->xa_offset + sibs; 1089 do { 1090 if (xas->xa_shift < node->shift) { 1091 struct xa_node *child = xas->xa_alloc; 1092 1093 xas->xa_alloc = rcu_dereference_raw(child->parent); 1094 child->shift = node->shift - XA_CHUNK_SHIFT; 1095 child->offset = offset; 1096 child->count = XA_CHUNK_SIZE; 1097 child->nr_values = xa_is_value(entry) ? 1098 XA_CHUNK_SIZE : 0; 1099 RCU_INIT_POINTER(child->parent, node); 1100 node_set_marks(node, offset, child, xas->xa_sibs, 1101 marks); 1102 rcu_assign_pointer(node->slots[offset], 1103 xa_mk_node(child)); 1104 if (xa_is_value(curr)) 1105 values--; 1106 xas_update(xas, child); 1107 } else { 1108 unsigned int canon = offset - xas->xa_sibs; 1109 1110 node_set_marks(node, canon, NULL, 0, marks); 1111 rcu_assign_pointer(node->slots[canon], entry); 1112 while (offset > canon) 1113 rcu_assign_pointer(node->slots[offset--], 1114 xa_mk_sibling(canon)); 1115 values += (xa_is_value(entry) - xa_is_value(curr)) * 1116 (xas->xa_sibs + 1); 1117 } 1118 } while (offset-- > xas->xa_offset); 1119 1120 node->nr_values += values; 1121 xas_update(xas, node); 1122 } 1123 EXPORT_SYMBOL_GPL(xas_split); 1124 #endif 1125 1126 /** 1127 * xas_pause() - Pause a walk to drop a lock. 1128 * @xas: XArray operation state. 1129 * 1130 * Some users need to pause a walk and drop the lock they're holding in 1131 * order to yield to a higher priority thread or carry out an operation 1132 * on an entry. Those users should call this function before they drop 1133 * the lock. It resets the @xas to be suitable for the next iteration 1134 * of the loop after the user has reacquired the lock. If most entries 1135 * found during a walk require you to call xas_pause(), the xa_for_each() 1136 * iterator may be more appropriate. 1137 * 1138 * Note that xas_pause() only works for forward iteration. If a user needs 1139 * to pause a reverse iteration, we will need a xas_pause_rev(). 1140 */ 1141 void xas_pause(struct xa_state *xas) 1142 { 1143 struct xa_node *node = xas->xa_node; 1144 1145 if (xas_invalid(xas)) 1146 return; 1147 1148 xas->xa_node = XAS_RESTART; 1149 if (node) { 1150 unsigned long offset = xas->xa_offset; 1151 while (++offset < XA_CHUNK_SIZE) { 1152 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1153 break; 1154 } 1155 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1156 if (xas->xa_index == 0) 1157 xas->xa_node = XAS_BOUNDS; 1158 } else { 1159 xas->xa_index++; 1160 } 1161 } 1162 EXPORT_SYMBOL_GPL(xas_pause); 1163 1164 /* 1165 * __xas_prev() - Find the previous entry in the XArray. 1166 * @xas: XArray operation state. 1167 * 1168 * Helper function for xas_prev() which handles all the complex cases 1169 * out of line. 1170 */ 1171 void *__xas_prev(struct xa_state *xas) 1172 { 1173 void *entry; 1174 1175 if (!xas_frozen(xas->xa_node)) 1176 xas->xa_index--; 1177 if (!xas->xa_node) 1178 return set_bounds(xas); 1179 if (xas_not_node(xas->xa_node)) 1180 return xas_load(xas); 1181 1182 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1183 xas->xa_offset--; 1184 1185 while (xas->xa_offset == 255) { 1186 xas->xa_offset = xas->xa_node->offset - 1; 1187 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1188 if (!xas->xa_node) 1189 return set_bounds(xas); 1190 } 1191 1192 for (;;) { 1193 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1194 if (!xa_is_node(entry)) 1195 return entry; 1196 1197 xas->xa_node = xa_to_node(entry); 1198 xas_set_offset(xas); 1199 } 1200 } 1201 EXPORT_SYMBOL_GPL(__xas_prev); 1202 1203 /* 1204 * __xas_next() - Find the next entry in the XArray. 1205 * @xas: XArray operation state. 1206 * 1207 * Helper function for xas_next() which handles all the complex cases 1208 * out of line. 1209 */ 1210 void *__xas_next(struct xa_state *xas) 1211 { 1212 void *entry; 1213 1214 if (!xas_frozen(xas->xa_node)) 1215 xas->xa_index++; 1216 if (!xas->xa_node) 1217 return set_bounds(xas); 1218 if (xas_not_node(xas->xa_node)) 1219 return xas_load(xas); 1220 1221 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1222 xas->xa_offset++; 1223 1224 while (xas->xa_offset == XA_CHUNK_SIZE) { 1225 xas->xa_offset = xas->xa_node->offset + 1; 1226 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1227 if (!xas->xa_node) 1228 return set_bounds(xas); 1229 } 1230 1231 for (;;) { 1232 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1233 if (!xa_is_node(entry)) 1234 return entry; 1235 1236 xas->xa_node = xa_to_node(entry); 1237 xas_set_offset(xas); 1238 } 1239 } 1240 EXPORT_SYMBOL_GPL(__xas_next); 1241 1242 /** 1243 * xas_find() - Find the next present entry in the XArray. 1244 * @xas: XArray operation state. 1245 * @max: Highest index to return. 1246 * 1247 * If the @xas has not yet been walked to an entry, return the entry 1248 * which has an index >= xas.xa_index. If it has been walked, the entry 1249 * currently being pointed at has been processed, and so we move to the 1250 * next entry. 1251 * 1252 * If no entry is found and the array is smaller than @max, the iterator 1253 * is set to the smallest index not yet in the array. This allows @xas 1254 * to be immediately passed to xas_store(). 1255 * 1256 * Return: The entry, if found, otherwise %NULL. 1257 */ 1258 void *xas_find(struct xa_state *xas, unsigned long max) 1259 { 1260 void *entry; 1261 1262 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1263 return NULL; 1264 if (xas->xa_index > max) 1265 return set_bounds(xas); 1266 1267 if (!xas->xa_node) { 1268 xas->xa_index = 1; 1269 return set_bounds(xas); 1270 } else if (xas->xa_node == XAS_RESTART) { 1271 entry = xas_load(xas); 1272 if (entry || xas_not_node(xas->xa_node)) 1273 return entry; 1274 } else if (!xas->xa_node->shift && 1275 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1276 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1277 } 1278 1279 xas_next_offset(xas); 1280 1281 while (xas->xa_node && (xas->xa_index <= max)) { 1282 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1283 xas->xa_offset = xas->xa_node->offset + 1; 1284 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1285 continue; 1286 } 1287 1288 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1289 if (xa_is_node(entry)) { 1290 xas->xa_node = xa_to_node(entry); 1291 xas->xa_offset = 0; 1292 continue; 1293 } 1294 if (entry && !xa_is_sibling(entry)) 1295 return entry; 1296 1297 xas_next_offset(xas); 1298 } 1299 1300 if (!xas->xa_node) 1301 xas->xa_node = XAS_BOUNDS; 1302 return NULL; 1303 } 1304 EXPORT_SYMBOL_GPL(xas_find); 1305 1306 /** 1307 * xas_find_marked() - Find the next marked entry in the XArray. 1308 * @xas: XArray operation state. 1309 * @max: Highest index to return. 1310 * @mark: Mark number to search for. 1311 * 1312 * If the @xas has not yet been walked to an entry, return the marked entry 1313 * which has an index >= xas.xa_index. If it has been walked, the entry 1314 * currently being pointed at has been processed, and so we return the 1315 * first marked entry with an index > xas.xa_index. 1316 * 1317 * If no marked entry is found and the array is smaller than @max, @xas is 1318 * set to the bounds state and xas->xa_index is set to the smallest index 1319 * not yet in the array. This allows @xas to be immediately passed to 1320 * xas_store(). 1321 * 1322 * If no entry is found before @max is reached, @xas is set to the restart 1323 * state. 1324 * 1325 * Return: The entry, if found, otherwise %NULL. 1326 */ 1327 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1328 { 1329 bool advance = true; 1330 unsigned int offset; 1331 void *entry; 1332 1333 if (xas_error(xas)) 1334 return NULL; 1335 if (xas->xa_index > max) 1336 goto max; 1337 1338 if (!xas->xa_node) { 1339 xas->xa_index = 1; 1340 goto out; 1341 } else if (xas_top(xas->xa_node)) { 1342 advance = false; 1343 entry = xa_head(xas->xa); 1344 xas->xa_node = NULL; 1345 if (xas->xa_index > max_index(entry)) 1346 goto out; 1347 if (!xa_is_node(entry)) { 1348 if (xa_marked(xas->xa, mark)) 1349 return entry; 1350 xas->xa_index = 1; 1351 goto out; 1352 } 1353 xas->xa_node = xa_to_node(entry); 1354 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1355 } 1356 1357 while (xas->xa_index <= max) { 1358 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1359 xas->xa_offset = xas->xa_node->offset + 1; 1360 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1361 if (!xas->xa_node) 1362 break; 1363 advance = false; 1364 continue; 1365 } 1366 1367 if (!advance) { 1368 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1369 if (xa_is_sibling(entry)) { 1370 xas->xa_offset = xa_to_sibling(entry); 1371 xas_move_index(xas, xas->xa_offset); 1372 } 1373 } 1374 1375 offset = xas_find_chunk(xas, advance, mark); 1376 if (offset > xas->xa_offset) { 1377 advance = false; 1378 xas_move_index(xas, offset); 1379 /* Mind the wrap */ 1380 if ((xas->xa_index - 1) >= max) 1381 goto max; 1382 xas->xa_offset = offset; 1383 if (offset == XA_CHUNK_SIZE) 1384 continue; 1385 } 1386 1387 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1388 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1389 continue; 1390 if (!xa_is_node(entry)) 1391 return entry; 1392 xas->xa_node = xa_to_node(entry); 1393 xas_set_offset(xas); 1394 } 1395 1396 out: 1397 if (xas->xa_index > max) 1398 goto max; 1399 return set_bounds(xas); 1400 max: 1401 xas->xa_node = XAS_RESTART; 1402 return NULL; 1403 } 1404 EXPORT_SYMBOL_GPL(xas_find_marked); 1405 1406 /** 1407 * xas_find_conflict() - Find the next present entry in a range. 1408 * @xas: XArray operation state. 1409 * 1410 * The @xas describes both a range and a position within that range. 1411 * 1412 * Context: Any context. Expects xa_lock to be held. 1413 * Return: The next entry in the range covered by @xas or %NULL. 1414 */ 1415 void *xas_find_conflict(struct xa_state *xas) 1416 { 1417 void *curr; 1418 1419 if (xas_error(xas)) 1420 return NULL; 1421 1422 if (!xas->xa_node) 1423 return NULL; 1424 1425 if (xas_top(xas->xa_node)) { 1426 curr = xas_start(xas); 1427 if (!curr) 1428 return NULL; 1429 while (xa_is_node(curr)) { 1430 struct xa_node *node = xa_to_node(curr); 1431 curr = xas_descend(xas, node); 1432 } 1433 if (curr) 1434 return curr; 1435 } 1436 1437 if (xas->xa_node->shift > xas->xa_shift) 1438 return NULL; 1439 1440 for (;;) { 1441 if (xas->xa_node->shift == xas->xa_shift) { 1442 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1443 break; 1444 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1445 xas->xa_offset = xas->xa_node->offset; 1446 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1447 if (!xas->xa_node) 1448 break; 1449 continue; 1450 } 1451 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1452 if (xa_is_sibling(curr)) 1453 continue; 1454 while (xa_is_node(curr)) { 1455 xas->xa_node = xa_to_node(curr); 1456 xas->xa_offset = 0; 1457 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1458 } 1459 if (curr) 1460 return curr; 1461 } 1462 xas->xa_offset -= xas->xa_sibs; 1463 return NULL; 1464 } 1465 EXPORT_SYMBOL_GPL(xas_find_conflict); 1466 1467 /** 1468 * xa_load() - Load an entry from an XArray. 1469 * @xa: XArray. 1470 * @index: index into array. 1471 * 1472 * Context: Any context. Takes and releases the RCU lock. 1473 * Return: The entry at @index in @xa. 1474 */ 1475 void *xa_load(struct xarray *xa, unsigned long index) 1476 { 1477 XA_STATE(xas, xa, index); 1478 void *entry; 1479 1480 rcu_read_lock(); 1481 do { 1482 entry = xa_zero_to_null(xas_load(&xas)); 1483 } while (xas_retry(&xas, entry)); 1484 rcu_read_unlock(); 1485 1486 return entry; 1487 } 1488 EXPORT_SYMBOL(xa_load); 1489 1490 static void *xas_result(struct xa_state *xas, void *curr) 1491 { 1492 if (xas_error(xas)) 1493 curr = xas->xa_node; 1494 return curr; 1495 } 1496 1497 /** 1498 * __xa_erase() - Erase this entry from the XArray while locked. 1499 * @xa: XArray. 1500 * @index: Index into array. 1501 * 1502 * After this function returns, loading from @index will return %NULL. 1503 * If the index is part of a multi-index entry, all indices will be erased 1504 * and none of the entries will be part of a multi-index entry. 1505 * 1506 * Context: Any context. Expects xa_lock to be held on entry. 1507 * Return: The entry which used to be at this index. 1508 */ 1509 void *__xa_erase(struct xarray *xa, unsigned long index) 1510 { 1511 XA_STATE(xas, xa, index); 1512 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL))); 1513 } 1514 EXPORT_SYMBOL(__xa_erase); 1515 1516 /** 1517 * xa_erase() - Erase this entry from the XArray. 1518 * @xa: XArray. 1519 * @index: Index of entry. 1520 * 1521 * After this function returns, loading from @index will return %NULL. 1522 * If the index is part of a multi-index entry, all indices will be erased 1523 * and none of the entries will be part of a multi-index entry. 1524 * 1525 * Context: Any context. Takes and releases the xa_lock. 1526 * Return: The entry which used to be at this index. 1527 */ 1528 void *xa_erase(struct xarray *xa, unsigned long index) 1529 { 1530 void *entry; 1531 1532 xa_lock(xa); 1533 entry = __xa_erase(xa, index); 1534 xa_unlock(xa); 1535 1536 return entry; 1537 } 1538 EXPORT_SYMBOL(xa_erase); 1539 1540 /** 1541 * __xa_store() - Store this entry in the XArray. 1542 * @xa: XArray. 1543 * @index: Index into array. 1544 * @entry: New entry. 1545 * @gfp: Memory allocation flags. 1546 * 1547 * You must already be holding the xa_lock when calling this function. 1548 * It will drop the lock if needed to allocate memory, and then reacquire 1549 * it afterwards. 1550 * 1551 * Context: Any context. Expects xa_lock to be held on entry. May 1552 * release and reacquire xa_lock if @gfp flags permit. 1553 * Return: The old entry at this index or xa_err() if an error happened. 1554 */ 1555 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1556 { 1557 XA_STATE(xas, xa, index); 1558 void *curr; 1559 1560 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1561 return XA_ERROR(-EINVAL); 1562 if (xa_track_free(xa) && !entry) 1563 entry = XA_ZERO_ENTRY; 1564 1565 do { 1566 curr = xas_store(&xas, entry); 1567 if (xa_track_free(xa)) 1568 xas_clear_mark(&xas, XA_FREE_MARK); 1569 } while (__xas_nomem(&xas, gfp)); 1570 1571 return xas_result(&xas, xa_zero_to_null(curr)); 1572 } 1573 EXPORT_SYMBOL(__xa_store); 1574 1575 /** 1576 * xa_store() - Store this entry in the XArray. 1577 * @xa: XArray. 1578 * @index: Index into array. 1579 * @entry: New entry. 1580 * @gfp: Memory allocation flags. 1581 * 1582 * After this function returns, loads from this index will return @entry. 1583 * Storing into an existing multi-index entry updates the entry of every index. 1584 * The marks associated with @index are unaffected unless @entry is %NULL. 1585 * 1586 * Context: Any context. Takes and releases the xa_lock. 1587 * May sleep if the @gfp flags permit. 1588 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1589 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1590 * failed. 1591 */ 1592 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1593 { 1594 void *curr; 1595 1596 xa_lock(xa); 1597 curr = __xa_store(xa, index, entry, gfp); 1598 xa_unlock(xa); 1599 1600 return curr; 1601 } 1602 EXPORT_SYMBOL(xa_store); 1603 1604 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1605 void *old, void *entry, gfp_t gfp); 1606 1607 /** 1608 * __xa_cmpxchg() - Store this entry in the XArray. 1609 * @xa: XArray. 1610 * @index: Index into array. 1611 * @old: Old value to test against. 1612 * @entry: New entry. 1613 * @gfp: Memory allocation flags. 1614 * 1615 * You must already be holding the xa_lock when calling this function. 1616 * It will drop the lock if needed to allocate memory, and then reacquire 1617 * it afterwards. 1618 * 1619 * Context: Any context. Expects xa_lock to be held on entry. May 1620 * release and reacquire xa_lock if @gfp flags permit. 1621 * Return: The old entry at this index or xa_err() if an error happened. 1622 */ 1623 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1624 void *old, void *entry, gfp_t gfp) 1625 { 1626 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp)); 1627 } 1628 EXPORT_SYMBOL(__xa_cmpxchg); 1629 1630 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1631 void *old, void *entry, gfp_t gfp) 1632 { 1633 XA_STATE(xas, xa, index); 1634 void *curr; 1635 1636 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1637 return XA_ERROR(-EINVAL); 1638 1639 do { 1640 curr = xas_load(&xas); 1641 if (curr == old) { 1642 xas_store(&xas, entry); 1643 if (xa_track_free(xa) && entry && !curr) 1644 xas_clear_mark(&xas, XA_FREE_MARK); 1645 } 1646 } while (__xas_nomem(&xas, gfp)); 1647 1648 return xas_result(&xas, curr); 1649 } 1650 1651 /** 1652 * __xa_insert() - Store this entry in the XArray if no entry is present. 1653 * @xa: XArray. 1654 * @index: Index into array. 1655 * @entry: New entry. 1656 * @gfp: Memory allocation flags. 1657 * 1658 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1659 * if no entry is present. Inserting will fail if a reserved entry is 1660 * present, even though loading from this index will return NULL. 1661 * 1662 * Context: Any context. Expects xa_lock to be held on entry. May 1663 * release and reacquire xa_lock if @gfp flags permit. 1664 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1665 * -ENOMEM if memory could not be allocated. 1666 */ 1667 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1668 { 1669 void *curr; 1670 int errno; 1671 1672 if (!entry) 1673 entry = XA_ZERO_ENTRY; 1674 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp); 1675 errno = xa_err(curr); 1676 if (errno) 1677 return errno; 1678 return (curr != NULL) ? -EBUSY : 0; 1679 } 1680 EXPORT_SYMBOL(__xa_insert); 1681 1682 #ifdef CONFIG_XARRAY_MULTI 1683 static void xas_set_range(struct xa_state *xas, unsigned long first, 1684 unsigned long last) 1685 { 1686 unsigned int shift = 0; 1687 unsigned long sibs = last - first; 1688 unsigned int offset = XA_CHUNK_MASK; 1689 1690 xas_set(xas, first); 1691 1692 while ((first & XA_CHUNK_MASK) == 0) { 1693 if (sibs < XA_CHUNK_MASK) 1694 break; 1695 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1696 break; 1697 shift += XA_CHUNK_SHIFT; 1698 if (offset == XA_CHUNK_MASK) 1699 offset = sibs & XA_CHUNK_MASK; 1700 sibs >>= XA_CHUNK_SHIFT; 1701 first >>= XA_CHUNK_SHIFT; 1702 } 1703 1704 offset = first & XA_CHUNK_MASK; 1705 if (offset + sibs > XA_CHUNK_MASK) 1706 sibs = XA_CHUNK_MASK - offset; 1707 if ((((first + sibs + 1) << shift) - 1) > last) 1708 sibs -= 1; 1709 1710 xas->xa_shift = shift; 1711 xas->xa_sibs = sibs; 1712 } 1713 1714 /** 1715 * xa_store_range() - Store this entry at a range of indices in the XArray. 1716 * @xa: XArray. 1717 * @first: First index to affect. 1718 * @last: Last index to affect. 1719 * @entry: New entry. 1720 * @gfp: Memory allocation flags. 1721 * 1722 * After this function returns, loads from any index between @first and @last, 1723 * inclusive will return @entry. 1724 * Storing into an existing multi-index entry updates the entry of every index. 1725 * The marks associated with @index are unaffected unless @entry is %NULL. 1726 * 1727 * Context: Process context. Takes and releases the xa_lock. May sleep 1728 * if the @gfp flags permit. 1729 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1730 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1731 */ 1732 void *xa_store_range(struct xarray *xa, unsigned long first, 1733 unsigned long last, void *entry, gfp_t gfp) 1734 { 1735 XA_STATE(xas, xa, 0); 1736 1737 if (WARN_ON_ONCE(xa_is_internal(entry))) 1738 return XA_ERROR(-EINVAL); 1739 if (last < first) 1740 return XA_ERROR(-EINVAL); 1741 1742 do { 1743 xas_lock(&xas); 1744 if (entry) { 1745 unsigned int order = BITS_PER_LONG; 1746 if (last + 1) 1747 order = __ffs(last + 1); 1748 xas_set_order(&xas, last, order); 1749 xas_create(&xas, true); 1750 if (xas_error(&xas)) 1751 goto unlock; 1752 } 1753 do { 1754 xas_set_range(&xas, first, last); 1755 xas_store(&xas, entry); 1756 if (xas_error(&xas)) 1757 goto unlock; 1758 first += xas_size(&xas); 1759 } while (first <= last); 1760 unlock: 1761 xas_unlock(&xas); 1762 } while (xas_nomem(&xas, gfp)); 1763 1764 return xas_result(&xas, NULL); 1765 } 1766 EXPORT_SYMBOL(xa_store_range); 1767 1768 /** 1769 * xas_get_order() - Get the order of an entry. 1770 * @xas: XArray operation state. 1771 * 1772 * Called after xas_load, the xas should not be in an error state. 1773 * 1774 * Return: A number between 0 and 63 indicating the order of the entry. 1775 */ 1776 int xas_get_order(struct xa_state *xas) 1777 { 1778 int order = 0; 1779 1780 if (!xas->xa_node) 1781 return 0; 1782 1783 for (;;) { 1784 unsigned int slot = xas->xa_offset + (1 << order); 1785 1786 if (slot >= XA_CHUNK_SIZE) 1787 break; 1788 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) 1789 break; 1790 order++; 1791 } 1792 1793 order += xas->xa_node->shift; 1794 return order; 1795 } 1796 EXPORT_SYMBOL_GPL(xas_get_order); 1797 1798 /** 1799 * xa_get_order() - Get the order of an entry. 1800 * @xa: XArray. 1801 * @index: Index of the entry. 1802 * 1803 * Return: A number between 0 and 63 indicating the order of the entry. 1804 */ 1805 int xa_get_order(struct xarray *xa, unsigned long index) 1806 { 1807 XA_STATE(xas, xa, index); 1808 int order = 0; 1809 void *entry; 1810 1811 rcu_read_lock(); 1812 entry = xas_load(&xas); 1813 if (entry) 1814 order = xas_get_order(&xas); 1815 rcu_read_unlock(); 1816 1817 return order; 1818 } 1819 EXPORT_SYMBOL(xa_get_order); 1820 #endif /* CONFIG_XARRAY_MULTI */ 1821 1822 /** 1823 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1824 * @xa: XArray. 1825 * @id: Pointer to ID. 1826 * @limit: Range for allocated ID. 1827 * @entry: New entry. 1828 * @gfp: Memory allocation flags. 1829 * 1830 * Finds an empty entry in @xa between @limit.min and @limit.max, 1831 * stores the index into the @id pointer, then stores the entry at 1832 * that index. A concurrent lookup will not see an uninitialised @id. 1833 * 1834 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1835 * in xa_init_flags(). 1836 * 1837 * Context: Any context. Expects xa_lock to be held on entry. May 1838 * release and reacquire xa_lock if @gfp flags permit. 1839 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1840 * -EBUSY if there are no free entries in @limit. 1841 */ 1842 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1843 struct xa_limit limit, gfp_t gfp) 1844 { 1845 XA_STATE(xas, xa, 0); 1846 1847 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1848 return -EINVAL; 1849 if (WARN_ON_ONCE(!xa_track_free(xa))) 1850 return -EINVAL; 1851 1852 if (!entry) 1853 entry = XA_ZERO_ENTRY; 1854 1855 do { 1856 xas.xa_index = limit.min; 1857 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1858 if (xas.xa_node == XAS_RESTART) 1859 xas_set_err(&xas, -EBUSY); 1860 else 1861 *id = xas.xa_index; 1862 xas_store(&xas, entry); 1863 xas_clear_mark(&xas, XA_FREE_MARK); 1864 } while (__xas_nomem(&xas, gfp)); 1865 1866 return xas_error(&xas); 1867 } 1868 EXPORT_SYMBOL(__xa_alloc); 1869 1870 /** 1871 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1872 * @xa: XArray. 1873 * @id: Pointer to ID. 1874 * @entry: New entry. 1875 * @limit: Range of allocated ID. 1876 * @next: Pointer to next ID to allocate. 1877 * @gfp: Memory allocation flags. 1878 * 1879 * Finds an empty entry in @xa between @limit.min and @limit.max, 1880 * stores the index into the @id pointer, then stores the entry at 1881 * that index. A concurrent lookup will not see an uninitialised @id. 1882 * The search for an empty entry will start at @next and will wrap 1883 * around if necessary. 1884 * 1885 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1886 * in xa_init_flags(). 1887 * 1888 * Context: Any context. Expects xa_lock to be held on entry. May 1889 * release and reacquire xa_lock if @gfp flags permit. 1890 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1891 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1892 * allocated or -EBUSY if there are no free entries in @limit. 1893 */ 1894 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1895 struct xa_limit limit, u32 *next, gfp_t gfp) 1896 { 1897 u32 min = limit.min; 1898 int ret; 1899 1900 limit.min = max(min, *next); 1901 ret = __xa_alloc(xa, id, entry, limit, gfp); 1902 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1903 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1904 ret = 1; 1905 } 1906 1907 if (ret < 0 && limit.min > min) { 1908 limit.min = min; 1909 ret = __xa_alloc(xa, id, entry, limit, gfp); 1910 if (ret == 0) 1911 ret = 1; 1912 } 1913 1914 if (ret >= 0) { 1915 *next = *id + 1; 1916 if (*next == 0) 1917 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1918 } 1919 return ret; 1920 } 1921 EXPORT_SYMBOL(__xa_alloc_cyclic); 1922 1923 /** 1924 * __xa_set_mark() - Set this mark on this entry while locked. 1925 * @xa: XArray. 1926 * @index: Index of entry. 1927 * @mark: Mark number. 1928 * 1929 * Attempting to set a mark on a %NULL entry does not succeed. 1930 * 1931 * Context: Any context. Expects xa_lock to be held on entry. 1932 */ 1933 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1934 { 1935 XA_STATE(xas, xa, index); 1936 void *entry = xas_load(&xas); 1937 1938 if (entry) 1939 xas_set_mark(&xas, mark); 1940 } 1941 EXPORT_SYMBOL(__xa_set_mark); 1942 1943 /** 1944 * __xa_clear_mark() - Clear this mark on this entry while locked. 1945 * @xa: XArray. 1946 * @index: Index of entry. 1947 * @mark: Mark number. 1948 * 1949 * Context: Any context. Expects xa_lock to be held on entry. 1950 */ 1951 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1952 { 1953 XA_STATE(xas, xa, index); 1954 void *entry = xas_load(&xas); 1955 1956 if (entry) 1957 xas_clear_mark(&xas, mark); 1958 } 1959 EXPORT_SYMBOL(__xa_clear_mark); 1960 1961 /** 1962 * xa_get_mark() - Inquire whether this mark is set on this entry. 1963 * @xa: XArray. 1964 * @index: Index of entry. 1965 * @mark: Mark number. 1966 * 1967 * This function uses the RCU read lock, so the result may be out of date 1968 * by the time it returns. If you need the result to be stable, use a lock. 1969 * 1970 * Context: Any context. Takes and releases the RCU lock. 1971 * Return: True if the entry at @index has this mark set, false if it doesn't. 1972 */ 1973 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1974 { 1975 XA_STATE(xas, xa, index); 1976 void *entry; 1977 1978 rcu_read_lock(); 1979 entry = xas_start(&xas); 1980 while (xas_get_mark(&xas, mark)) { 1981 if (!xa_is_node(entry)) 1982 goto found; 1983 entry = xas_descend(&xas, xa_to_node(entry)); 1984 } 1985 rcu_read_unlock(); 1986 return false; 1987 found: 1988 rcu_read_unlock(); 1989 return true; 1990 } 1991 EXPORT_SYMBOL(xa_get_mark); 1992 1993 /** 1994 * xa_set_mark() - Set this mark on this entry. 1995 * @xa: XArray. 1996 * @index: Index of entry. 1997 * @mark: Mark number. 1998 * 1999 * Attempting to set a mark on a %NULL entry does not succeed. 2000 * 2001 * Context: Process context. Takes and releases the xa_lock. 2002 */ 2003 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2004 { 2005 xa_lock(xa); 2006 __xa_set_mark(xa, index, mark); 2007 xa_unlock(xa); 2008 } 2009 EXPORT_SYMBOL(xa_set_mark); 2010 2011 /** 2012 * xa_clear_mark() - Clear this mark on this entry. 2013 * @xa: XArray. 2014 * @index: Index of entry. 2015 * @mark: Mark number. 2016 * 2017 * Clearing a mark always succeeds. 2018 * 2019 * Context: Process context. Takes and releases the xa_lock. 2020 */ 2021 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2022 { 2023 xa_lock(xa); 2024 __xa_clear_mark(xa, index, mark); 2025 xa_unlock(xa); 2026 } 2027 EXPORT_SYMBOL(xa_clear_mark); 2028 2029 /** 2030 * xa_find() - Search the XArray for an entry. 2031 * @xa: XArray. 2032 * @indexp: Pointer to an index. 2033 * @max: Maximum index to search to. 2034 * @filter: Selection criterion. 2035 * 2036 * Finds the entry in @xa which matches the @filter, and has the lowest 2037 * index that is at least @indexp and no more than @max. 2038 * If an entry is found, @indexp is updated to be the index of the entry. 2039 * This function is protected by the RCU read lock, so it may not find 2040 * entries which are being simultaneously added. It will not return an 2041 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2042 * 2043 * Context: Any context. Takes and releases the RCU lock. 2044 * Return: The entry, if found, otherwise %NULL. 2045 */ 2046 void *xa_find(struct xarray *xa, unsigned long *indexp, 2047 unsigned long max, xa_mark_t filter) 2048 { 2049 XA_STATE(xas, xa, *indexp); 2050 void *entry; 2051 2052 rcu_read_lock(); 2053 do { 2054 if ((__force unsigned int)filter < XA_MAX_MARKS) 2055 entry = xas_find_marked(&xas, max, filter); 2056 else 2057 entry = xas_find(&xas, max); 2058 } while (xas_retry(&xas, entry)); 2059 rcu_read_unlock(); 2060 2061 if (entry) 2062 *indexp = xas.xa_index; 2063 return entry; 2064 } 2065 EXPORT_SYMBOL(xa_find); 2066 2067 static bool xas_sibling(struct xa_state *xas) 2068 { 2069 struct xa_node *node = xas->xa_node; 2070 unsigned long mask; 2071 2072 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2073 return false; 2074 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2075 return (xas->xa_index & mask) > 2076 ((unsigned long)xas->xa_offset << node->shift); 2077 } 2078 2079 /** 2080 * xa_find_after() - Search the XArray for a present entry. 2081 * @xa: XArray. 2082 * @indexp: Pointer to an index. 2083 * @max: Maximum index to search to. 2084 * @filter: Selection criterion. 2085 * 2086 * Finds the entry in @xa which matches the @filter and has the lowest 2087 * index that is above @indexp and no more than @max. 2088 * If an entry is found, @indexp is updated to be the index of the entry. 2089 * This function is protected by the RCU read lock, so it may miss entries 2090 * which are being simultaneously added. It will not return an 2091 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2092 * 2093 * Context: Any context. Takes and releases the RCU lock. 2094 * Return: The pointer, if found, otherwise %NULL. 2095 */ 2096 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2097 unsigned long max, xa_mark_t filter) 2098 { 2099 XA_STATE(xas, xa, *indexp + 1); 2100 void *entry; 2101 2102 if (xas.xa_index == 0) 2103 return NULL; 2104 2105 rcu_read_lock(); 2106 for (;;) { 2107 if ((__force unsigned int)filter < XA_MAX_MARKS) 2108 entry = xas_find_marked(&xas, max, filter); 2109 else 2110 entry = xas_find(&xas, max); 2111 2112 if (xas_invalid(&xas)) 2113 break; 2114 if (xas_sibling(&xas)) 2115 continue; 2116 if (!xas_retry(&xas, entry)) 2117 break; 2118 } 2119 rcu_read_unlock(); 2120 2121 if (entry) 2122 *indexp = xas.xa_index; 2123 return entry; 2124 } 2125 EXPORT_SYMBOL(xa_find_after); 2126 2127 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2128 unsigned long max, unsigned int n) 2129 { 2130 void *entry; 2131 unsigned int i = 0; 2132 2133 rcu_read_lock(); 2134 xas_for_each(xas, entry, max) { 2135 if (xas_retry(xas, entry)) 2136 continue; 2137 dst[i++] = entry; 2138 if (i == n) 2139 break; 2140 } 2141 rcu_read_unlock(); 2142 2143 return i; 2144 } 2145 2146 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2147 unsigned long max, unsigned int n, xa_mark_t mark) 2148 { 2149 void *entry; 2150 unsigned int i = 0; 2151 2152 rcu_read_lock(); 2153 xas_for_each_marked(xas, entry, max, mark) { 2154 if (xas_retry(xas, entry)) 2155 continue; 2156 dst[i++] = entry; 2157 if (i == n) 2158 break; 2159 } 2160 rcu_read_unlock(); 2161 2162 return i; 2163 } 2164 2165 /** 2166 * xa_extract() - Copy selected entries from the XArray into a normal array. 2167 * @xa: The source XArray to copy from. 2168 * @dst: The buffer to copy entries into. 2169 * @start: The first index in the XArray eligible to be selected. 2170 * @max: The last index in the XArray eligible to be selected. 2171 * @n: The maximum number of entries to copy. 2172 * @filter: Selection criterion. 2173 * 2174 * Copies up to @n entries that match @filter from the XArray. The 2175 * copied entries will have indices between @start and @max, inclusive. 2176 * 2177 * The @filter may be an XArray mark value, in which case entries which are 2178 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2179 * which case all entries which are not %NULL will be copied. 2180 * 2181 * The entries returned may not represent a snapshot of the XArray at a 2182 * moment in time. For example, if another thread stores to index 5, then 2183 * index 10, calling xa_extract() may return the old contents of index 5 2184 * and the new contents of index 10. Indices not modified while this 2185 * function is running will not be skipped. 2186 * 2187 * If you need stronger guarantees, holding the xa_lock across calls to this 2188 * function will prevent concurrent modification. 2189 * 2190 * Context: Any context. Takes and releases the RCU lock. 2191 * Return: The number of entries copied. 2192 */ 2193 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2194 unsigned long max, unsigned int n, xa_mark_t filter) 2195 { 2196 XA_STATE(xas, xa, start); 2197 2198 if (!n) 2199 return 0; 2200 2201 if ((__force unsigned int)filter < XA_MAX_MARKS) 2202 return xas_extract_marked(&xas, dst, max, n, filter); 2203 return xas_extract_present(&xas, dst, max, n); 2204 } 2205 EXPORT_SYMBOL(xa_extract); 2206 2207 /** 2208 * xa_delete_node() - Private interface for workingset code. 2209 * @node: Node to be removed from the tree. 2210 * @update: Function to call to update ancestor nodes. 2211 * 2212 * Context: xa_lock must be held on entry and will not be released. 2213 */ 2214 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2215 { 2216 struct xa_state xas = { 2217 .xa = node->array, 2218 .xa_index = (unsigned long)node->offset << 2219 (node->shift + XA_CHUNK_SHIFT), 2220 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2221 .xa_offset = node->offset, 2222 .xa_node = xa_parent_locked(node->array, node), 2223 .xa_update = update, 2224 }; 2225 2226 xas_store(&xas, NULL); 2227 } 2228 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2229 2230 /** 2231 * xa_destroy() - Free all internal data structures. 2232 * @xa: XArray. 2233 * 2234 * After calling this function, the XArray is empty and has freed all memory 2235 * allocated for its internal data structures. You are responsible for 2236 * freeing the objects referenced by the XArray. 2237 * 2238 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2239 */ 2240 void xa_destroy(struct xarray *xa) 2241 { 2242 XA_STATE(xas, xa, 0); 2243 unsigned long flags; 2244 void *entry; 2245 2246 xas.xa_node = NULL; 2247 xas_lock_irqsave(&xas, flags); 2248 entry = xa_head_locked(xa); 2249 RCU_INIT_POINTER(xa->xa_head, NULL); 2250 xas_init_marks(&xas); 2251 if (xa_zero_busy(xa)) 2252 xa_mark_clear(xa, XA_FREE_MARK); 2253 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2254 if (xa_is_node(entry)) 2255 xas_free_nodes(&xas, xa_to_node(entry)); 2256 xas_unlock_irqrestore(&xas, flags); 2257 } 2258 EXPORT_SYMBOL(xa_destroy); 2259 2260 #ifdef XA_DEBUG 2261 void xa_dump_node(const struct xa_node *node) 2262 { 2263 unsigned i, j; 2264 2265 if (!node) 2266 return; 2267 if ((unsigned long)node & 3) { 2268 pr_cont("node %px\n", node); 2269 return; 2270 } 2271 2272 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2273 "array %px list %px %px marks", 2274 node, node->parent ? "offset" : "max", node->offset, 2275 node->parent, node->shift, node->count, node->nr_values, 2276 node->array, node->private_list.prev, node->private_list.next); 2277 for (i = 0; i < XA_MAX_MARKS; i++) 2278 for (j = 0; j < XA_MARK_LONGS; j++) 2279 pr_cont(" %lx", node->marks[i][j]); 2280 pr_cont("\n"); 2281 } 2282 2283 void xa_dump_index(unsigned long index, unsigned int shift) 2284 { 2285 if (!shift) 2286 pr_info("%lu: ", index); 2287 else if (shift >= BITS_PER_LONG) 2288 pr_info("0-%lu: ", ~0UL); 2289 else 2290 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2291 } 2292 2293 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2294 { 2295 if (!entry) 2296 return; 2297 2298 xa_dump_index(index, shift); 2299 2300 if (xa_is_node(entry)) { 2301 if (shift == 0) { 2302 pr_cont("%px\n", entry); 2303 } else { 2304 unsigned long i; 2305 struct xa_node *node = xa_to_node(entry); 2306 xa_dump_node(node); 2307 for (i = 0; i < XA_CHUNK_SIZE; i++) 2308 xa_dump_entry(node->slots[i], 2309 index + (i << node->shift), node->shift); 2310 } 2311 } else if (xa_is_value(entry)) 2312 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2313 xa_to_value(entry), entry); 2314 else if (!xa_is_internal(entry)) 2315 pr_cont("%px\n", entry); 2316 else if (xa_is_retry(entry)) 2317 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2318 else if (xa_is_sibling(entry)) 2319 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2320 else if (xa_is_zero(entry)) 2321 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2322 else 2323 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2324 } 2325 2326 void xa_dump(const struct xarray *xa) 2327 { 2328 void *entry = xa->xa_head; 2329 unsigned int shift = 0; 2330 2331 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2332 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2333 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2334 if (xa_is_node(entry)) 2335 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2336 xa_dump_entry(entry, 0, shift); 2337 } 2338 #endif 2339