1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 unsigned int mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 if (!xas->xa_sibs) 132 return; 133 134 do { 135 unsigned long *marks = xas->xa_node->marks[mark]; 136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 137 continue; 138 __set_bit(xas->xa_offset, marks); 139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 140 } while (mark++ != (__force unsigned)XA_MARK_MAX); 141 } 142 143 /* extracts the offset within this node from the index */ 144 static unsigned int get_offset(unsigned long index, struct xa_node *node) 145 { 146 return (index >> node->shift) & XA_CHUNK_MASK; 147 } 148 149 static void xas_set_offset(struct xa_state *xas) 150 { 151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 152 } 153 154 /* move the index either forwards (find) or backwards (sibling slot) */ 155 static void xas_move_index(struct xa_state *xas, unsigned long offset) 156 { 157 unsigned int shift = xas->xa_node->shift; 158 xas->xa_index &= ~XA_CHUNK_MASK << shift; 159 xas->xa_index += offset << shift; 160 } 161 162 static void xas_next_offset(struct xa_state *xas) 163 { 164 xas->xa_offset++; 165 xas_move_index(xas, xas->xa_offset); 166 } 167 168 static void *set_bounds(struct xa_state *xas) 169 { 170 xas->xa_node = XAS_BOUNDS; 171 return NULL; 172 } 173 174 /* 175 * Starts a walk. If the @xas is already valid, we assume that it's on 176 * the right path and just return where we've got to. If we're in an 177 * error state, return NULL. If the index is outside the current scope 178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 179 * set @xas->xa_node to NULL and return the current head of the array. 180 */ 181 static void *xas_start(struct xa_state *xas) 182 { 183 void *entry; 184 185 if (xas_valid(xas)) 186 return xas_reload(xas); 187 if (xas_error(xas)) 188 return NULL; 189 190 entry = xa_head(xas->xa); 191 if (!xa_is_node(entry)) { 192 if (xas->xa_index) 193 return set_bounds(xas); 194 } else { 195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 196 return set_bounds(xas); 197 } 198 199 xas->xa_node = NULL; 200 return entry; 201 } 202 203 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 204 { 205 unsigned int offset = get_offset(xas->xa_index, node); 206 void *entry = xa_entry(xas->xa, node, offset); 207 208 xas->xa_node = node; 209 while (xa_is_sibling(entry)) { 210 offset = xa_to_sibling(entry); 211 entry = xa_entry(xas->xa, node, offset); 212 if (node->shift && xa_is_node(entry)) 213 entry = XA_RETRY_ENTRY; 214 } 215 216 xas->xa_offset = offset; 217 return entry; 218 } 219 220 /** 221 * xas_load() - Load an entry from the XArray (advanced). 222 * @xas: XArray operation state. 223 * 224 * Usually walks the @xas to the appropriate state to load the entry 225 * stored at xa_index. However, it will do nothing and return %NULL if 226 * @xas is in an error state. xas_load() will never expand the tree. 227 * 228 * If the xa_state is set up to operate on a multi-index entry, xas_load() 229 * may return %NULL or an internal entry, even if there are entries 230 * present within the range specified by @xas. 231 * 232 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 233 * Return: Usually an entry in the XArray, but see description for exceptions. 234 */ 235 void *xas_load(struct xa_state *xas) 236 { 237 void *entry = xas_start(xas); 238 239 while (xa_is_node(entry)) { 240 struct xa_node *node = xa_to_node(entry); 241 242 if (xas->xa_shift > node->shift) 243 break; 244 entry = xas_descend(xas, node); 245 if (node->shift == 0) 246 break; 247 } 248 return entry; 249 } 250 EXPORT_SYMBOL_GPL(xas_load); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * Most users will not need to call this function; it is called for you 266 * by xas_nomem(). 267 */ 268 void xas_destroy(struct xa_state *xas) 269 { 270 struct xa_node *next, *node = xas->xa_alloc; 271 272 while (node) { 273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 274 next = rcu_dereference_raw(node->parent); 275 radix_tree_node_rcu_free(&node->rcu_head); 276 xas->xa_alloc = node = next; 277 } 278 } 279 280 /** 281 * xas_nomem() - Allocate memory if needed. 282 * @xas: XArray operation state. 283 * @gfp: Memory allocation flags. 284 * 285 * If we need to add new nodes to the XArray, we try to allocate memory 286 * with GFP_NOWAIT while holding the lock, which will usually succeed. 287 * If it fails, @xas is flagged as needing memory to continue. The caller 288 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 289 * the caller should retry the operation. 290 * 291 * Forward progress is guaranteed as one node is allocated here and 292 * stored in the xa_state where it will be found by xas_alloc(). More 293 * nodes will likely be found in the slab allocator, but we do not tie 294 * them up here. 295 * 296 * Return: true if memory was needed, and was successfully allocated. 297 */ 298 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 299 { 300 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 301 xas_destroy(xas); 302 return false; 303 } 304 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 305 gfp |= __GFP_ACCOUNT; 306 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 307 if (!xas->xa_alloc) 308 return false; 309 xas->xa_alloc->parent = NULL; 310 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 311 xas->xa_node = XAS_RESTART; 312 return true; 313 } 314 EXPORT_SYMBOL_GPL(xas_nomem); 315 316 /* 317 * __xas_nomem() - Drop locks and allocate memory if needed. 318 * @xas: XArray operation state. 319 * @gfp: Memory allocation flags. 320 * 321 * Internal variant of xas_nomem(). 322 * 323 * Return: true if memory was needed, and was successfully allocated. 324 */ 325 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 326 __must_hold(xas->xa->xa_lock) 327 { 328 unsigned int lock_type = xa_lock_type(xas->xa); 329 330 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 331 xas_destroy(xas); 332 return false; 333 } 334 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 335 gfp |= __GFP_ACCOUNT; 336 if (gfpflags_allow_blocking(gfp)) { 337 xas_unlock_type(xas, lock_type); 338 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 339 xas_lock_type(xas, lock_type); 340 } else { 341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 342 } 343 if (!xas->xa_alloc) 344 return false; 345 xas->xa_alloc->parent = NULL; 346 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 347 xas->xa_node = XAS_RESTART; 348 return true; 349 } 350 351 static void xas_update(struct xa_state *xas, struct xa_node *node) 352 { 353 if (xas->xa_update) 354 xas->xa_update(node); 355 else 356 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 357 } 358 359 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 360 { 361 struct xa_node *parent = xas->xa_node; 362 struct xa_node *node = xas->xa_alloc; 363 364 if (xas_invalid(xas)) 365 return NULL; 366 367 if (node) { 368 xas->xa_alloc = NULL; 369 } else { 370 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 371 372 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 373 gfp |= __GFP_ACCOUNT; 374 375 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 376 if (!node) { 377 xas_set_err(xas, -ENOMEM); 378 return NULL; 379 } 380 } 381 382 if (parent) { 383 node->offset = xas->xa_offset; 384 parent->count++; 385 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 386 xas_update(xas, parent); 387 } 388 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 389 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 390 node->shift = shift; 391 node->count = 0; 392 node->nr_values = 0; 393 RCU_INIT_POINTER(node->parent, xas->xa_node); 394 node->array = xas->xa; 395 396 return node; 397 } 398 399 #ifdef CONFIG_XARRAY_MULTI 400 /* Returns the number of indices covered by a given xa_state */ 401 static unsigned long xas_size(const struct xa_state *xas) 402 { 403 return (xas->xa_sibs + 1UL) << xas->xa_shift; 404 } 405 #endif 406 407 /* 408 * Use this to calculate the maximum index that will need to be created 409 * in order to add the entry described by @xas. Because we cannot store a 410 * multi-index entry at index 0, the calculation is a little more complex 411 * than you might expect. 412 */ 413 static unsigned long xas_max(struct xa_state *xas) 414 { 415 unsigned long max = xas->xa_index; 416 417 #ifdef CONFIG_XARRAY_MULTI 418 if (xas->xa_shift || xas->xa_sibs) { 419 unsigned long mask = xas_size(xas) - 1; 420 max |= mask; 421 if (mask == max) 422 max++; 423 } 424 #endif 425 426 return max; 427 } 428 429 /* The maximum index that can be contained in the array without expanding it */ 430 static unsigned long max_index(void *entry) 431 { 432 if (!xa_is_node(entry)) 433 return 0; 434 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 435 } 436 437 static void xas_shrink(struct xa_state *xas) 438 { 439 struct xarray *xa = xas->xa; 440 struct xa_node *node = xas->xa_node; 441 442 for (;;) { 443 void *entry; 444 445 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 446 if (node->count != 1) 447 break; 448 entry = xa_entry_locked(xa, node, 0); 449 if (!entry) 450 break; 451 if (!xa_is_node(entry) && node->shift) 452 break; 453 if (xa_is_zero(entry) && xa_zero_busy(xa)) 454 entry = NULL; 455 xas->xa_node = XAS_BOUNDS; 456 457 RCU_INIT_POINTER(xa->xa_head, entry); 458 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 459 xa_mark_clear(xa, XA_FREE_MARK); 460 461 node->count = 0; 462 node->nr_values = 0; 463 if (!xa_is_node(entry)) 464 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 465 xas_update(xas, node); 466 xa_node_free(node); 467 if (!xa_is_node(entry)) 468 break; 469 node = xa_to_node(entry); 470 node->parent = NULL; 471 } 472 } 473 474 /* 475 * xas_delete_node() - Attempt to delete an xa_node 476 * @xas: Array operation state. 477 * 478 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 479 * a non-zero reference count. 480 */ 481 static void xas_delete_node(struct xa_state *xas) 482 { 483 struct xa_node *node = xas->xa_node; 484 485 for (;;) { 486 struct xa_node *parent; 487 488 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 489 if (node->count) 490 break; 491 492 parent = xa_parent_locked(xas->xa, node); 493 xas->xa_node = parent; 494 xas->xa_offset = node->offset; 495 xa_node_free(node); 496 497 if (!parent) { 498 xas->xa->xa_head = NULL; 499 xas->xa_node = XAS_BOUNDS; 500 return; 501 } 502 503 parent->slots[xas->xa_offset] = NULL; 504 parent->count--; 505 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 506 node = parent; 507 xas_update(xas, node); 508 } 509 510 if (!node->parent) 511 xas_shrink(xas); 512 } 513 514 /** 515 * xas_free_nodes() - Free this node and all nodes that it references 516 * @xas: Array operation state. 517 * @top: Node to free 518 * 519 * This node has been removed from the tree. We must now free it and all 520 * of its subnodes. There may be RCU walkers with references into the tree, 521 * so we must replace all entries with retry markers. 522 */ 523 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 524 { 525 unsigned int offset = 0; 526 struct xa_node *node = top; 527 528 for (;;) { 529 void *entry = xa_entry_locked(xas->xa, node, offset); 530 531 if (node->shift && xa_is_node(entry)) { 532 node = xa_to_node(entry); 533 offset = 0; 534 continue; 535 } 536 if (entry) 537 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 538 offset++; 539 while (offset == XA_CHUNK_SIZE) { 540 struct xa_node *parent; 541 542 parent = xa_parent_locked(xas->xa, node); 543 offset = node->offset + 1; 544 node->count = 0; 545 node->nr_values = 0; 546 xas_update(xas, node); 547 xa_node_free(node); 548 if (node == top) 549 return; 550 node = parent; 551 } 552 } 553 } 554 555 /* 556 * xas_expand adds nodes to the head of the tree until it has reached 557 * sufficient height to be able to contain @xas->xa_index 558 */ 559 static int xas_expand(struct xa_state *xas, void *head) 560 { 561 struct xarray *xa = xas->xa; 562 struct xa_node *node = NULL; 563 unsigned int shift = 0; 564 unsigned long max = xas_max(xas); 565 566 if (!head) { 567 if (max == 0) 568 return 0; 569 while ((max >> shift) >= XA_CHUNK_SIZE) 570 shift += XA_CHUNK_SHIFT; 571 return shift + XA_CHUNK_SHIFT; 572 } else if (xa_is_node(head)) { 573 node = xa_to_node(head); 574 shift = node->shift + XA_CHUNK_SHIFT; 575 } 576 xas->xa_node = NULL; 577 578 while (max > max_index(head)) { 579 xa_mark_t mark = 0; 580 581 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 582 node = xas_alloc(xas, shift); 583 if (!node) 584 return -ENOMEM; 585 586 node->count = 1; 587 if (xa_is_value(head)) 588 node->nr_values = 1; 589 RCU_INIT_POINTER(node->slots[0], head); 590 591 /* Propagate the aggregated mark info to the new child */ 592 for (;;) { 593 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 594 node_mark_all(node, XA_FREE_MARK); 595 if (!xa_marked(xa, XA_FREE_MARK)) { 596 node_clear_mark(node, 0, XA_FREE_MARK); 597 xa_mark_set(xa, XA_FREE_MARK); 598 } 599 } else if (xa_marked(xa, mark)) { 600 node_set_mark(node, 0, mark); 601 } 602 if (mark == XA_MARK_MAX) 603 break; 604 mark_inc(mark); 605 } 606 607 /* 608 * Now that the new node is fully initialised, we can add 609 * it to the tree 610 */ 611 if (xa_is_node(head)) { 612 xa_to_node(head)->offset = 0; 613 rcu_assign_pointer(xa_to_node(head)->parent, node); 614 } 615 head = xa_mk_node(node); 616 rcu_assign_pointer(xa->xa_head, head); 617 xas_update(xas, node); 618 619 shift += XA_CHUNK_SHIFT; 620 } 621 622 xas->xa_node = node; 623 return shift; 624 } 625 626 /* 627 * xas_create() - Create a slot to store an entry in. 628 * @xas: XArray operation state. 629 * @allow_root: %true if we can store the entry in the root directly 630 * 631 * Most users will not need to call this function directly, as it is called 632 * by xas_store(). It is useful for doing conditional store operations 633 * (see the xa_cmpxchg() implementation for an example). 634 * 635 * Return: If the slot already existed, returns the contents of this slot. 636 * If the slot was newly created, returns %NULL. If it failed to create the 637 * slot, returns %NULL and indicates the error in @xas. 638 */ 639 static void *xas_create(struct xa_state *xas, bool allow_root) 640 { 641 struct xarray *xa = xas->xa; 642 void *entry; 643 void __rcu **slot; 644 struct xa_node *node = xas->xa_node; 645 int shift; 646 unsigned int order = xas->xa_shift; 647 648 if (xas_top(node)) { 649 entry = xa_head_locked(xa); 650 xas->xa_node = NULL; 651 if (!entry && xa_zero_busy(xa)) 652 entry = XA_ZERO_ENTRY; 653 shift = xas_expand(xas, entry); 654 if (shift < 0) 655 return NULL; 656 if (!shift && !allow_root) 657 shift = XA_CHUNK_SHIFT; 658 entry = xa_head_locked(xa); 659 slot = &xa->xa_head; 660 } else if (xas_error(xas)) { 661 return NULL; 662 } else if (node) { 663 unsigned int offset = xas->xa_offset; 664 665 shift = node->shift; 666 entry = xa_entry_locked(xa, node, offset); 667 slot = &node->slots[offset]; 668 } else { 669 shift = 0; 670 entry = xa_head_locked(xa); 671 slot = &xa->xa_head; 672 } 673 674 while (shift > order) { 675 shift -= XA_CHUNK_SHIFT; 676 if (!entry) { 677 node = xas_alloc(xas, shift); 678 if (!node) 679 break; 680 if (xa_track_free(xa)) 681 node_mark_all(node, XA_FREE_MARK); 682 rcu_assign_pointer(*slot, xa_mk_node(node)); 683 } else if (xa_is_node(entry)) { 684 node = xa_to_node(entry); 685 } else { 686 break; 687 } 688 entry = xas_descend(xas, node); 689 slot = &node->slots[xas->xa_offset]; 690 } 691 692 return entry; 693 } 694 695 /** 696 * xas_create_range() - Ensure that stores to this range will succeed 697 * @xas: XArray operation state. 698 * 699 * Creates all of the slots in the range covered by @xas. Sets @xas to 700 * create single-index entries and positions it at the beginning of the 701 * range. This is for the benefit of users which have not yet been 702 * converted to use multi-index entries. 703 */ 704 void xas_create_range(struct xa_state *xas) 705 { 706 unsigned long index = xas->xa_index; 707 unsigned char shift = xas->xa_shift; 708 unsigned char sibs = xas->xa_sibs; 709 710 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 711 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 712 xas->xa_offset |= sibs; 713 xas->xa_shift = 0; 714 xas->xa_sibs = 0; 715 716 for (;;) { 717 xas_create(xas, true); 718 if (xas_error(xas)) 719 goto restore; 720 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 721 goto success; 722 xas->xa_index -= XA_CHUNK_SIZE; 723 724 for (;;) { 725 struct xa_node *node = xas->xa_node; 726 if (node->shift >= shift) 727 break; 728 xas->xa_node = xa_parent_locked(xas->xa, node); 729 xas->xa_offset = node->offset - 1; 730 if (node->offset != 0) 731 break; 732 } 733 } 734 735 restore: 736 xas->xa_shift = shift; 737 xas->xa_sibs = sibs; 738 xas->xa_index = index; 739 return; 740 success: 741 xas->xa_index = index; 742 if (xas->xa_node) 743 xas_set_offset(xas); 744 } 745 EXPORT_SYMBOL_GPL(xas_create_range); 746 747 static void update_node(struct xa_state *xas, struct xa_node *node, 748 int count, int values) 749 { 750 if (!node || (!count && !values)) 751 return; 752 753 node->count += count; 754 node->nr_values += values; 755 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 756 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 757 xas_update(xas, node); 758 if (count < 0) 759 xas_delete_node(xas); 760 } 761 762 /** 763 * xas_store() - Store this entry in the XArray. 764 * @xas: XArray operation state. 765 * @entry: New entry. 766 * 767 * If @xas is operating on a multi-index entry, the entry returned by this 768 * function is essentially meaningless (it may be an internal entry or it 769 * may be %NULL, even if there are non-NULL entries at some of the indices 770 * covered by the range). This is not a problem for any current users, 771 * and can be changed if needed. 772 * 773 * Return: The old entry at this index. 774 */ 775 void *xas_store(struct xa_state *xas, void *entry) 776 { 777 struct xa_node *node; 778 void __rcu **slot = &xas->xa->xa_head; 779 unsigned int offset, max; 780 int count = 0; 781 int values = 0; 782 void *first, *next; 783 bool value = xa_is_value(entry); 784 785 if (entry) { 786 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 787 first = xas_create(xas, allow_root); 788 } else { 789 first = xas_load(xas); 790 } 791 792 if (xas_invalid(xas)) 793 return first; 794 node = xas->xa_node; 795 if (node && (xas->xa_shift < node->shift)) 796 xas->xa_sibs = 0; 797 if ((first == entry) && !xas->xa_sibs) 798 return first; 799 800 next = first; 801 offset = xas->xa_offset; 802 max = xas->xa_offset + xas->xa_sibs; 803 if (node) { 804 slot = &node->slots[offset]; 805 if (xas->xa_sibs) 806 xas_squash_marks(xas); 807 } 808 if (!entry) 809 xas_init_marks(xas); 810 811 for (;;) { 812 /* 813 * Must clear the marks before setting the entry to NULL, 814 * otherwise xas_for_each_marked may find a NULL entry and 815 * stop early. rcu_assign_pointer contains a release barrier 816 * so the mark clearing will appear to happen before the 817 * entry is set to NULL. 818 */ 819 rcu_assign_pointer(*slot, entry); 820 if (xa_is_node(next) && (!node || node->shift)) 821 xas_free_nodes(xas, xa_to_node(next)); 822 if (!node) 823 break; 824 count += !next - !entry; 825 values += !xa_is_value(first) - !value; 826 if (entry) { 827 if (offset == max) 828 break; 829 if (!xa_is_sibling(entry)) 830 entry = xa_mk_sibling(xas->xa_offset); 831 } else { 832 if (offset == XA_CHUNK_MASK) 833 break; 834 } 835 next = xa_entry_locked(xas->xa, node, ++offset); 836 if (!xa_is_sibling(next)) { 837 if (!entry && (offset > max)) 838 break; 839 first = next; 840 } 841 slot++; 842 } 843 844 update_node(xas, node, count, values); 845 return first; 846 } 847 EXPORT_SYMBOL_GPL(xas_store); 848 849 /** 850 * xas_get_mark() - Returns the state of this mark. 851 * @xas: XArray operation state. 852 * @mark: Mark number. 853 * 854 * Return: true if the mark is set, false if the mark is clear or @xas 855 * is in an error state. 856 */ 857 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 858 { 859 if (xas_invalid(xas)) 860 return false; 861 if (!xas->xa_node) 862 return xa_marked(xas->xa, mark); 863 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 864 } 865 EXPORT_SYMBOL_GPL(xas_get_mark); 866 867 /** 868 * xas_set_mark() - Sets the mark on this entry and its parents. 869 * @xas: XArray operation state. 870 * @mark: Mark number. 871 * 872 * Sets the specified mark on this entry, and walks up the tree setting it 873 * on all the ancestor entries. Does nothing if @xas has not been walked to 874 * an entry, or is in an error state. 875 */ 876 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 877 { 878 struct xa_node *node = xas->xa_node; 879 unsigned int offset = xas->xa_offset; 880 881 if (xas_invalid(xas)) 882 return; 883 884 while (node) { 885 if (node_set_mark(node, offset, mark)) 886 return; 887 offset = node->offset; 888 node = xa_parent_locked(xas->xa, node); 889 } 890 891 if (!xa_marked(xas->xa, mark)) 892 xa_mark_set(xas->xa, mark); 893 } 894 EXPORT_SYMBOL_GPL(xas_set_mark); 895 896 /** 897 * xas_clear_mark() - Clears the mark on this entry and its parents. 898 * @xas: XArray operation state. 899 * @mark: Mark number. 900 * 901 * Clears the specified mark on this entry, and walks back to the head 902 * attempting to clear it on all the ancestor entries. Does nothing if 903 * @xas has not been walked to an entry, or is in an error state. 904 */ 905 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 906 { 907 struct xa_node *node = xas->xa_node; 908 unsigned int offset = xas->xa_offset; 909 910 if (xas_invalid(xas)) 911 return; 912 913 while (node) { 914 if (!node_clear_mark(node, offset, mark)) 915 return; 916 if (node_any_mark(node, mark)) 917 return; 918 919 offset = node->offset; 920 node = xa_parent_locked(xas->xa, node); 921 } 922 923 if (xa_marked(xas->xa, mark)) 924 xa_mark_clear(xas->xa, mark); 925 } 926 EXPORT_SYMBOL_GPL(xas_clear_mark); 927 928 /** 929 * xas_init_marks() - Initialise all marks for the entry 930 * @xas: Array operations state. 931 * 932 * Initialise all marks for the entry specified by @xas. If we're tracking 933 * free entries with a mark, we need to set it on all entries. All other 934 * marks are cleared. 935 * 936 * This implementation is not as efficient as it could be; we may walk 937 * up the tree multiple times. 938 */ 939 void xas_init_marks(const struct xa_state *xas) 940 { 941 xa_mark_t mark = 0; 942 943 for (;;) { 944 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 945 xas_set_mark(xas, mark); 946 else 947 xas_clear_mark(xas, mark); 948 if (mark == XA_MARK_MAX) 949 break; 950 mark_inc(mark); 951 } 952 } 953 EXPORT_SYMBOL_GPL(xas_init_marks); 954 955 #ifdef CONFIG_XARRAY_MULTI 956 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 957 { 958 unsigned int marks = 0; 959 xa_mark_t mark = XA_MARK_0; 960 961 for (;;) { 962 if (node_get_mark(node, offset, mark)) 963 marks |= 1 << (__force unsigned int)mark; 964 if (mark == XA_MARK_MAX) 965 break; 966 mark_inc(mark); 967 } 968 969 return marks; 970 } 971 972 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, 973 xa_mark_t mark) 974 { 975 int i; 976 977 if (sibs == 0) 978 node_mark_all(node, mark); 979 else { 980 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) 981 node_set_mark(node, i, mark); 982 } 983 } 984 985 static void node_set_marks(struct xa_node *node, unsigned int offset, 986 struct xa_node *child, unsigned int sibs, 987 unsigned int marks) 988 { 989 xa_mark_t mark = XA_MARK_0; 990 991 for (;;) { 992 if (marks & (1 << (__force unsigned int)mark)) { 993 node_set_mark(node, offset, mark); 994 if (child) 995 node_mark_slots(child, sibs, mark); 996 } 997 if (mark == XA_MARK_MAX) 998 break; 999 mark_inc(mark); 1000 } 1001 } 1002 1003 /** 1004 * xas_split_alloc() - Allocate memory for splitting an entry. 1005 * @xas: XArray operation state. 1006 * @entry: New entry which will be stored in the array. 1007 * @order: Current entry order. 1008 * @gfp: Memory allocation flags. 1009 * 1010 * This function should be called before calling xas_split(). 1011 * If necessary, it will allocate new nodes (and fill them with @entry) 1012 * to prepare for the upcoming split of an entry of @order size into 1013 * entries of the order stored in the @xas. 1014 * 1015 * Context: May sleep if @gfp flags permit. 1016 */ 1017 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1018 gfp_t gfp) 1019 { 1020 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1021 unsigned int mask = xas->xa_sibs; 1022 1023 /* XXX: no support for splitting really large entries yet */ 1024 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1025 goto nomem; 1026 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1027 return; 1028 1029 do { 1030 unsigned int i; 1031 void *sibling = NULL; 1032 struct xa_node *node; 1033 1034 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1035 if (!node) 1036 goto nomem; 1037 node->array = xas->xa; 1038 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1039 if ((i & mask) == 0) { 1040 RCU_INIT_POINTER(node->slots[i], entry); 1041 sibling = xa_mk_sibling(i); 1042 } else { 1043 RCU_INIT_POINTER(node->slots[i], sibling); 1044 } 1045 } 1046 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1047 xas->xa_alloc = node; 1048 } while (sibs-- > 0); 1049 1050 return; 1051 nomem: 1052 xas_destroy(xas); 1053 xas_set_err(xas, -ENOMEM); 1054 } 1055 EXPORT_SYMBOL_GPL(xas_split_alloc); 1056 1057 /** 1058 * xas_split() - Split a multi-index entry into smaller entries. 1059 * @xas: XArray operation state. 1060 * @entry: New entry to store in the array. 1061 * @order: Current entry order. 1062 * 1063 * The size of the new entries is set in @xas. The value in @entry is 1064 * copied to all the replacement entries. 1065 * 1066 * Context: Any context. The caller should hold the xa_lock. 1067 */ 1068 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1069 { 1070 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1071 unsigned int offset, marks; 1072 struct xa_node *node; 1073 void *curr = xas_load(xas); 1074 int values = 0; 1075 1076 node = xas->xa_node; 1077 if (xas_top(node)) 1078 return; 1079 1080 marks = node_get_marks(node, xas->xa_offset); 1081 1082 offset = xas->xa_offset + sibs; 1083 do { 1084 if (xas->xa_shift < node->shift) { 1085 struct xa_node *child = xas->xa_alloc; 1086 1087 xas->xa_alloc = rcu_dereference_raw(child->parent); 1088 child->shift = node->shift - XA_CHUNK_SHIFT; 1089 child->offset = offset; 1090 child->count = XA_CHUNK_SIZE; 1091 child->nr_values = xa_is_value(entry) ? 1092 XA_CHUNK_SIZE : 0; 1093 RCU_INIT_POINTER(child->parent, node); 1094 node_set_marks(node, offset, child, xas->xa_sibs, 1095 marks); 1096 rcu_assign_pointer(node->slots[offset], 1097 xa_mk_node(child)); 1098 if (xa_is_value(curr)) 1099 values--; 1100 xas_update(xas, child); 1101 } else { 1102 unsigned int canon = offset - xas->xa_sibs; 1103 1104 node_set_marks(node, canon, NULL, 0, marks); 1105 rcu_assign_pointer(node->slots[canon], entry); 1106 while (offset > canon) 1107 rcu_assign_pointer(node->slots[offset--], 1108 xa_mk_sibling(canon)); 1109 values += (xa_is_value(entry) - xa_is_value(curr)) * 1110 (xas->xa_sibs + 1); 1111 } 1112 } while (offset-- > xas->xa_offset); 1113 1114 node->nr_values += values; 1115 xas_update(xas, node); 1116 } 1117 EXPORT_SYMBOL_GPL(xas_split); 1118 #endif 1119 1120 /** 1121 * xas_pause() - Pause a walk to drop a lock. 1122 * @xas: XArray operation state. 1123 * 1124 * Some users need to pause a walk and drop the lock they're holding in 1125 * order to yield to a higher priority thread or carry out an operation 1126 * on an entry. Those users should call this function before they drop 1127 * the lock. It resets the @xas to be suitable for the next iteration 1128 * of the loop after the user has reacquired the lock. If most entries 1129 * found during a walk require you to call xas_pause(), the xa_for_each() 1130 * iterator may be more appropriate. 1131 * 1132 * Note that xas_pause() only works for forward iteration. If a user needs 1133 * to pause a reverse iteration, we will need a xas_pause_rev(). 1134 */ 1135 void xas_pause(struct xa_state *xas) 1136 { 1137 struct xa_node *node = xas->xa_node; 1138 1139 if (xas_invalid(xas)) 1140 return; 1141 1142 xas->xa_node = XAS_RESTART; 1143 if (node) { 1144 unsigned long offset = xas->xa_offset; 1145 while (++offset < XA_CHUNK_SIZE) { 1146 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1147 break; 1148 } 1149 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1150 if (xas->xa_index == 0) 1151 xas->xa_node = XAS_BOUNDS; 1152 } else { 1153 xas->xa_index++; 1154 } 1155 } 1156 EXPORT_SYMBOL_GPL(xas_pause); 1157 1158 /* 1159 * __xas_prev() - Find the previous entry in the XArray. 1160 * @xas: XArray operation state. 1161 * 1162 * Helper function for xas_prev() which handles all the complex cases 1163 * out of line. 1164 */ 1165 void *__xas_prev(struct xa_state *xas) 1166 { 1167 void *entry; 1168 1169 if (!xas_frozen(xas->xa_node)) 1170 xas->xa_index--; 1171 if (!xas->xa_node) 1172 return set_bounds(xas); 1173 if (xas_not_node(xas->xa_node)) 1174 return xas_load(xas); 1175 1176 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1177 xas->xa_offset--; 1178 1179 while (xas->xa_offset == 255) { 1180 xas->xa_offset = xas->xa_node->offset - 1; 1181 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1182 if (!xas->xa_node) 1183 return set_bounds(xas); 1184 } 1185 1186 for (;;) { 1187 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1188 if (!xa_is_node(entry)) 1189 return entry; 1190 1191 xas->xa_node = xa_to_node(entry); 1192 xas_set_offset(xas); 1193 } 1194 } 1195 EXPORT_SYMBOL_GPL(__xas_prev); 1196 1197 /* 1198 * __xas_next() - Find the next entry in the XArray. 1199 * @xas: XArray operation state. 1200 * 1201 * Helper function for xas_next() which handles all the complex cases 1202 * out of line. 1203 */ 1204 void *__xas_next(struct xa_state *xas) 1205 { 1206 void *entry; 1207 1208 if (!xas_frozen(xas->xa_node)) 1209 xas->xa_index++; 1210 if (!xas->xa_node) 1211 return set_bounds(xas); 1212 if (xas_not_node(xas->xa_node)) 1213 return xas_load(xas); 1214 1215 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1216 xas->xa_offset++; 1217 1218 while (xas->xa_offset == XA_CHUNK_SIZE) { 1219 xas->xa_offset = xas->xa_node->offset + 1; 1220 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1221 if (!xas->xa_node) 1222 return set_bounds(xas); 1223 } 1224 1225 for (;;) { 1226 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1227 if (!xa_is_node(entry)) 1228 return entry; 1229 1230 xas->xa_node = xa_to_node(entry); 1231 xas_set_offset(xas); 1232 } 1233 } 1234 EXPORT_SYMBOL_GPL(__xas_next); 1235 1236 /** 1237 * xas_find() - Find the next present entry in the XArray. 1238 * @xas: XArray operation state. 1239 * @max: Highest index to return. 1240 * 1241 * If the @xas has not yet been walked to an entry, return the entry 1242 * which has an index >= xas.xa_index. If it has been walked, the entry 1243 * currently being pointed at has been processed, and so we move to the 1244 * next entry. 1245 * 1246 * If no entry is found and the array is smaller than @max, the iterator 1247 * is set to the smallest index not yet in the array. This allows @xas 1248 * to be immediately passed to xas_store(). 1249 * 1250 * Return: The entry, if found, otherwise %NULL. 1251 */ 1252 void *xas_find(struct xa_state *xas, unsigned long max) 1253 { 1254 void *entry; 1255 1256 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1257 return NULL; 1258 if (xas->xa_index > max) 1259 return set_bounds(xas); 1260 1261 if (!xas->xa_node) { 1262 xas->xa_index = 1; 1263 return set_bounds(xas); 1264 } else if (xas->xa_node == XAS_RESTART) { 1265 entry = xas_load(xas); 1266 if (entry || xas_not_node(xas->xa_node)) 1267 return entry; 1268 } else if (!xas->xa_node->shift && 1269 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1270 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1271 } 1272 1273 xas_next_offset(xas); 1274 1275 while (xas->xa_node && (xas->xa_index <= max)) { 1276 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1277 xas->xa_offset = xas->xa_node->offset + 1; 1278 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1279 continue; 1280 } 1281 1282 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1283 if (xa_is_node(entry)) { 1284 xas->xa_node = xa_to_node(entry); 1285 xas->xa_offset = 0; 1286 continue; 1287 } 1288 if (entry && !xa_is_sibling(entry)) 1289 return entry; 1290 1291 xas_next_offset(xas); 1292 } 1293 1294 if (!xas->xa_node) 1295 xas->xa_node = XAS_BOUNDS; 1296 return NULL; 1297 } 1298 EXPORT_SYMBOL_GPL(xas_find); 1299 1300 /** 1301 * xas_find_marked() - Find the next marked entry in the XArray. 1302 * @xas: XArray operation state. 1303 * @max: Highest index to return. 1304 * @mark: Mark number to search for. 1305 * 1306 * If the @xas has not yet been walked to an entry, return the marked entry 1307 * which has an index >= xas.xa_index. If it has been walked, the entry 1308 * currently being pointed at has been processed, and so we return the 1309 * first marked entry with an index > xas.xa_index. 1310 * 1311 * If no marked entry is found and the array is smaller than @max, @xas is 1312 * set to the bounds state and xas->xa_index is set to the smallest index 1313 * not yet in the array. This allows @xas to be immediately passed to 1314 * xas_store(). 1315 * 1316 * If no entry is found before @max is reached, @xas is set to the restart 1317 * state. 1318 * 1319 * Return: The entry, if found, otherwise %NULL. 1320 */ 1321 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1322 { 1323 bool advance = true; 1324 unsigned int offset; 1325 void *entry; 1326 1327 if (xas_error(xas)) 1328 return NULL; 1329 if (xas->xa_index > max) 1330 goto max; 1331 1332 if (!xas->xa_node) { 1333 xas->xa_index = 1; 1334 goto out; 1335 } else if (xas_top(xas->xa_node)) { 1336 advance = false; 1337 entry = xa_head(xas->xa); 1338 xas->xa_node = NULL; 1339 if (xas->xa_index > max_index(entry)) 1340 goto out; 1341 if (!xa_is_node(entry)) { 1342 if (xa_marked(xas->xa, mark)) 1343 return entry; 1344 xas->xa_index = 1; 1345 goto out; 1346 } 1347 xas->xa_node = xa_to_node(entry); 1348 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1349 } 1350 1351 while (xas->xa_index <= max) { 1352 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1353 xas->xa_offset = xas->xa_node->offset + 1; 1354 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1355 if (!xas->xa_node) 1356 break; 1357 advance = false; 1358 continue; 1359 } 1360 1361 if (!advance) { 1362 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1363 if (xa_is_sibling(entry)) { 1364 xas->xa_offset = xa_to_sibling(entry); 1365 xas_move_index(xas, xas->xa_offset); 1366 } 1367 } 1368 1369 offset = xas_find_chunk(xas, advance, mark); 1370 if (offset > xas->xa_offset) { 1371 advance = false; 1372 xas_move_index(xas, offset); 1373 /* Mind the wrap */ 1374 if ((xas->xa_index - 1) >= max) 1375 goto max; 1376 xas->xa_offset = offset; 1377 if (offset == XA_CHUNK_SIZE) 1378 continue; 1379 } 1380 1381 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1382 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1383 continue; 1384 if (!xa_is_node(entry)) 1385 return entry; 1386 xas->xa_node = xa_to_node(entry); 1387 xas_set_offset(xas); 1388 } 1389 1390 out: 1391 if (xas->xa_index > max) 1392 goto max; 1393 return set_bounds(xas); 1394 max: 1395 xas->xa_node = XAS_RESTART; 1396 return NULL; 1397 } 1398 EXPORT_SYMBOL_GPL(xas_find_marked); 1399 1400 /** 1401 * xas_find_conflict() - Find the next present entry in a range. 1402 * @xas: XArray operation state. 1403 * 1404 * The @xas describes both a range and a position within that range. 1405 * 1406 * Context: Any context. Expects xa_lock to be held. 1407 * Return: The next entry in the range covered by @xas or %NULL. 1408 */ 1409 void *xas_find_conflict(struct xa_state *xas) 1410 { 1411 void *curr; 1412 1413 if (xas_error(xas)) 1414 return NULL; 1415 1416 if (!xas->xa_node) 1417 return NULL; 1418 1419 if (xas_top(xas->xa_node)) { 1420 curr = xas_start(xas); 1421 if (!curr) 1422 return NULL; 1423 while (xa_is_node(curr)) { 1424 struct xa_node *node = xa_to_node(curr); 1425 curr = xas_descend(xas, node); 1426 } 1427 if (curr) 1428 return curr; 1429 } 1430 1431 if (xas->xa_node->shift > xas->xa_shift) 1432 return NULL; 1433 1434 for (;;) { 1435 if (xas->xa_node->shift == xas->xa_shift) { 1436 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1437 break; 1438 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1439 xas->xa_offset = xas->xa_node->offset; 1440 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1441 if (!xas->xa_node) 1442 break; 1443 continue; 1444 } 1445 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1446 if (xa_is_sibling(curr)) 1447 continue; 1448 while (xa_is_node(curr)) { 1449 xas->xa_node = xa_to_node(curr); 1450 xas->xa_offset = 0; 1451 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1452 } 1453 if (curr) 1454 return curr; 1455 } 1456 xas->xa_offset -= xas->xa_sibs; 1457 return NULL; 1458 } 1459 EXPORT_SYMBOL_GPL(xas_find_conflict); 1460 1461 /** 1462 * xa_load() - Load an entry from an XArray. 1463 * @xa: XArray. 1464 * @index: index into array. 1465 * 1466 * Context: Any context. Takes and releases the RCU lock. 1467 * Return: The entry at @index in @xa. 1468 */ 1469 void *xa_load(struct xarray *xa, unsigned long index) 1470 { 1471 XA_STATE(xas, xa, index); 1472 void *entry; 1473 1474 rcu_read_lock(); 1475 do { 1476 entry = xas_load(&xas); 1477 if (xa_is_zero(entry)) 1478 entry = NULL; 1479 } while (xas_retry(&xas, entry)); 1480 rcu_read_unlock(); 1481 1482 return entry; 1483 } 1484 EXPORT_SYMBOL(xa_load); 1485 1486 static void *xas_result(struct xa_state *xas, void *curr) 1487 { 1488 if (xa_is_zero(curr)) 1489 return NULL; 1490 if (xas_error(xas)) 1491 curr = xas->xa_node; 1492 return curr; 1493 } 1494 1495 /** 1496 * __xa_erase() - Erase this entry from the XArray while locked. 1497 * @xa: XArray. 1498 * @index: Index into array. 1499 * 1500 * After this function returns, loading from @index will return %NULL. 1501 * If the index is part of a multi-index entry, all indices will be erased 1502 * and none of the entries will be part of a multi-index entry. 1503 * 1504 * Context: Any context. Expects xa_lock to be held on entry. 1505 * Return: The entry which used to be at this index. 1506 */ 1507 void *__xa_erase(struct xarray *xa, unsigned long index) 1508 { 1509 XA_STATE(xas, xa, index); 1510 return xas_result(&xas, xas_store(&xas, NULL)); 1511 } 1512 EXPORT_SYMBOL(__xa_erase); 1513 1514 /** 1515 * xa_erase() - Erase this entry from the XArray. 1516 * @xa: XArray. 1517 * @index: Index of entry. 1518 * 1519 * After this function returns, loading from @index will return %NULL. 1520 * If the index is part of a multi-index entry, all indices will be erased 1521 * and none of the entries will be part of a multi-index entry. 1522 * 1523 * Context: Any context. Takes and releases the xa_lock. 1524 * Return: The entry which used to be at this index. 1525 */ 1526 void *xa_erase(struct xarray *xa, unsigned long index) 1527 { 1528 void *entry; 1529 1530 xa_lock(xa); 1531 entry = __xa_erase(xa, index); 1532 xa_unlock(xa); 1533 1534 return entry; 1535 } 1536 EXPORT_SYMBOL(xa_erase); 1537 1538 /** 1539 * __xa_store() - Store this entry in the XArray. 1540 * @xa: XArray. 1541 * @index: Index into array. 1542 * @entry: New entry. 1543 * @gfp: Memory allocation flags. 1544 * 1545 * You must already be holding the xa_lock when calling this function. 1546 * It will drop the lock if needed to allocate memory, and then reacquire 1547 * it afterwards. 1548 * 1549 * Context: Any context. Expects xa_lock to be held on entry. May 1550 * release and reacquire xa_lock if @gfp flags permit. 1551 * Return: The old entry at this index or xa_err() if an error happened. 1552 */ 1553 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1554 { 1555 XA_STATE(xas, xa, index); 1556 void *curr; 1557 1558 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1559 return XA_ERROR(-EINVAL); 1560 if (xa_track_free(xa) && !entry) 1561 entry = XA_ZERO_ENTRY; 1562 1563 do { 1564 curr = xas_store(&xas, entry); 1565 if (xa_track_free(xa)) 1566 xas_clear_mark(&xas, XA_FREE_MARK); 1567 } while (__xas_nomem(&xas, gfp)); 1568 1569 return xas_result(&xas, curr); 1570 } 1571 EXPORT_SYMBOL(__xa_store); 1572 1573 /** 1574 * xa_store() - Store this entry in the XArray. 1575 * @xa: XArray. 1576 * @index: Index into array. 1577 * @entry: New entry. 1578 * @gfp: Memory allocation flags. 1579 * 1580 * After this function returns, loads from this index will return @entry. 1581 * Storing into an existing multi-index entry updates the entry of every index. 1582 * The marks associated with @index are unaffected unless @entry is %NULL. 1583 * 1584 * Context: Any context. Takes and releases the xa_lock. 1585 * May sleep if the @gfp flags permit. 1586 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1587 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1588 * failed. 1589 */ 1590 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1591 { 1592 void *curr; 1593 1594 xa_lock(xa); 1595 curr = __xa_store(xa, index, entry, gfp); 1596 xa_unlock(xa); 1597 1598 return curr; 1599 } 1600 EXPORT_SYMBOL(xa_store); 1601 1602 /** 1603 * __xa_cmpxchg() - Store this entry in the XArray. 1604 * @xa: XArray. 1605 * @index: Index into array. 1606 * @old: Old value to test against. 1607 * @entry: New entry. 1608 * @gfp: Memory allocation flags. 1609 * 1610 * You must already be holding the xa_lock when calling this function. 1611 * It will drop the lock if needed to allocate memory, and then reacquire 1612 * it afterwards. 1613 * 1614 * Context: Any context. Expects xa_lock to be held on entry. May 1615 * release and reacquire xa_lock if @gfp flags permit. 1616 * Return: The old entry at this index or xa_err() if an error happened. 1617 */ 1618 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1619 void *old, void *entry, gfp_t gfp) 1620 { 1621 XA_STATE(xas, xa, index); 1622 void *curr; 1623 1624 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1625 return XA_ERROR(-EINVAL); 1626 1627 do { 1628 curr = xas_load(&xas); 1629 if (curr == old) { 1630 xas_store(&xas, entry); 1631 if (xa_track_free(xa) && entry && !curr) 1632 xas_clear_mark(&xas, XA_FREE_MARK); 1633 } 1634 } while (__xas_nomem(&xas, gfp)); 1635 1636 return xas_result(&xas, curr); 1637 } 1638 EXPORT_SYMBOL(__xa_cmpxchg); 1639 1640 /** 1641 * __xa_insert() - Store this entry in the XArray if no entry is present. 1642 * @xa: XArray. 1643 * @index: Index into array. 1644 * @entry: New entry. 1645 * @gfp: Memory allocation flags. 1646 * 1647 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1648 * if no entry is present. Inserting will fail if a reserved entry is 1649 * present, even though loading from this index will return NULL. 1650 * 1651 * Context: Any context. Expects xa_lock to be held on entry. May 1652 * release and reacquire xa_lock if @gfp flags permit. 1653 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1654 * -ENOMEM if memory could not be allocated. 1655 */ 1656 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1657 { 1658 XA_STATE(xas, xa, index); 1659 void *curr; 1660 1661 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1662 return -EINVAL; 1663 if (!entry) 1664 entry = XA_ZERO_ENTRY; 1665 1666 do { 1667 curr = xas_load(&xas); 1668 if (!curr) { 1669 xas_store(&xas, entry); 1670 if (xa_track_free(xa)) 1671 xas_clear_mark(&xas, XA_FREE_MARK); 1672 } else { 1673 xas_set_err(&xas, -EBUSY); 1674 } 1675 } while (__xas_nomem(&xas, gfp)); 1676 1677 return xas_error(&xas); 1678 } 1679 EXPORT_SYMBOL(__xa_insert); 1680 1681 #ifdef CONFIG_XARRAY_MULTI 1682 static void xas_set_range(struct xa_state *xas, unsigned long first, 1683 unsigned long last) 1684 { 1685 unsigned int shift = 0; 1686 unsigned long sibs = last - first; 1687 unsigned int offset = XA_CHUNK_MASK; 1688 1689 xas_set(xas, first); 1690 1691 while ((first & XA_CHUNK_MASK) == 0) { 1692 if (sibs < XA_CHUNK_MASK) 1693 break; 1694 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1695 break; 1696 shift += XA_CHUNK_SHIFT; 1697 if (offset == XA_CHUNK_MASK) 1698 offset = sibs & XA_CHUNK_MASK; 1699 sibs >>= XA_CHUNK_SHIFT; 1700 first >>= XA_CHUNK_SHIFT; 1701 } 1702 1703 offset = first & XA_CHUNK_MASK; 1704 if (offset + sibs > XA_CHUNK_MASK) 1705 sibs = XA_CHUNK_MASK - offset; 1706 if ((((first + sibs + 1) << shift) - 1) > last) 1707 sibs -= 1; 1708 1709 xas->xa_shift = shift; 1710 xas->xa_sibs = sibs; 1711 } 1712 1713 /** 1714 * xa_store_range() - Store this entry at a range of indices in the XArray. 1715 * @xa: XArray. 1716 * @first: First index to affect. 1717 * @last: Last index to affect. 1718 * @entry: New entry. 1719 * @gfp: Memory allocation flags. 1720 * 1721 * After this function returns, loads from any index between @first and @last, 1722 * inclusive will return @entry. 1723 * Storing into an existing multi-index entry updates the entry of every index. 1724 * The marks associated with @index are unaffected unless @entry is %NULL. 1725 * 1726 * Context: Process context. Takes and releases the xa_lock. May sleep 1727 * if the @gfp flags permit. 1728 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1729 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1730 */ 1731 void *xa_store_range(struct xarray *xa, unsigned long first, 1732 unsigned long last, void *entry, gfp_t gfp) 1733 { 1734 XA_STATE(xas, xa, 0); 1735 1736 if (WARN_ON_ONCE(xa_is_internal(entry))) 1737 return XA_ERROR(-EINVAL); 1738 if (last < first) 1739 return XA_ERROR(-EINVAL); 1740 1741 do { 1742 xas_lock(&xas); 1743 if (entry) { 1744 unsigned int order = BITS_PER_LONG; 1745 if (last + 1) 1746 order = __ffs(last + 1); 1747 xas_set_order(&xas, last, order); 1748 xas_create(&xas, true); 1749 if (xas_error(&xas)) 1750 goto unlock; 1751 } 1752 do { 1753 xas_set_range(&xas, first, last); 1754 xas_store(&xas, entry); 1755 if (xas_error(&xas)) 1756 goto unlock; 1757 first += xas_size(&xas); 1758 } while (first <= last); 1759 unlock: 1760 xas_unlock(&xas); 1761 } while (xas_nomem(&xas, gfp)); 1762 1763 return xas_result(&xas, NULL); 1764 } 1765 EXPORT_SYMBOL(xa_store_range); 1766 1767 /** 1768 * xa_get_order() - Get the order of an entry. 1769 * @xa: XArray. 1770 * @index: Index of the entry. 1771 * 1772 * Return: A number between 0 and 63 indicating the order of the entry. 1773 */ 1774 int xa_get_order(struct xarray *xa, unsigned long index) 1775 { 1776 XA_STATE(xas, xa, index); 1777 void *entry; 1778 int order = 0; 1779 1780 rcu_read_lock(); 1781 entry = xas_load(&xas); 1782 1783 if (!entry) 1784 goto unlock; 1785 1786 if (!xas.xa_node) 1787 goto unlock; 1788 1789 for (;;) { 1790 unsigned int slot = xas.xa_offset + (1 << order); 1791 1792 if (slot >= XA_CHUNK_SIZE) 1793 break; 1794 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1795 break; 1796 order++; 1797 } 1798 1799 order += xas.xa_node->shift; 1800 unlock: 1801 rcu_read_unlock(); 1802 1803 return order; 1804 } 1805 EXPORT_SYMBOL(xa_get_order); 1806 #endif /* CONFIG_XARRAY_MULTI */ 1807 1808 /** 1809 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1810 * @xa: XArray. 1811 * @id: Pointer to ID. 1812 * @limit: Range for allocated ID. 1813 * @entry: New entry. 1814 * @gfp: Memory allocation flags. 1815 * 1816 * Finds an empty entry in @xa between @limit.min and @limit.max, 1817 * stores the index into the @id pointer, then stores the entry at 1818 * that index. A concurrent lookup will not see an uninitialised @id. 1819 * 1820 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1821 * in xa_init_flags(). 1822 * 1823 * Context: Any context. Expects xa_lock to be held on entry. May 1824 * release and reacquire xa_lock if @gfp flags permit. 1825 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1826 * -EBUSY if there are no free entries in @limit. 1827 */ 1828 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1829 struct xa_limit limit, gfp_t gfp) 1830 { 1831 XA_STATE(xas, xa, 0); 1832 1833 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1834 return -EINVAL; 1835 if (WARN_ON_ONCE(!xa_track_free(xa))) 1836 return -EINVAL; 1837 1838 if (!entry) 1839 entry = XA_ZERO_ENTRY; 1840 1841 do { 1842 xas.xa_index = limit.min; 1843 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1844 if (xas.xa_node == XAS_RESTART) 1845 xas_set_err(&xas, -EBUSY); 1846 else 1847 *id = xas.xa_index; 1848 xas_store(&xas, entry); 1849 xas_clear_mark(&xas, XA_FREE_MARK); 1850 } while (__xas_nomem(&xas, gfp)); 1851 1852 return xas_error(&xas); 1853 } 1854 EXPORT_SYMBOL(__xa_alloc); 1855 1856 /** 1857 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1858 * @xa: XArray. 1859 * @id: Pointer to ID. 1860 * @entry: New entry. 1861 * @limit: Range of allocated ID. 1862 * @next: Pointer to next ID to allocate. 1863 * @gfp: Memory allocation flags. 1864 * 1865 * Finds an empty entry in @xa between @limit.min and @limit.max, 1866 * stores the index into the @id pointer, then stores the entry at 1867 * that index. A concurrent lookup will not see an uninitialised @id. 1868 * The search for an empty entry will start at @next and will wrap 1869 * around if necessary. 1870 * 1871 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1872 * in xa_init_flags(). 1873 * 1874 * Context: Any context. Expects xa_lock to be held on entry. May 1875 * release and reacquire xa_lock if @gfp flags permit. 1876 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1877 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1878 * allocated or -EBUSY if there are no free entries in @limit. 1879 */ 1880 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1881 struct xa_limit limit, u32 *next, gfp_t gfp) 1882 { 1883 u32 min = limit.min; 1884 int ret; 1885 1886 limit.min = max(min, *next); 1887 ret = __xa_alloc(xa, id, entry, limit, gfp); 1888 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1889 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1890 ret = 1; 1891 } 1892 1893 if (ret < 0 && limit.min > min) { 1894 limit.min = min; 1895 ret = __xa_alloc(xa, id, entry, limit, gfp); 1896 if (ret == 0) 1897 ret = 1; 1898 } 1899 1900 if (ret >= 0) { 1901 *next = *id + 1; 1902 if (*next == 0) 1903 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1904 } 1905 return ret; 1906 } 1907 EXPORT_SYMBOL(__xa_alloc_cyclic); 1908 1909 /** 1910 * __xa_set_mark() - Set this mark on this entry while locked. 1911 * @xa: XArray. 1912 * @index: Index of entry. 1913 * @mark: Mark number. 1914 * 1915 * Attempting to set a mark on a %NULL entry does not succeed. 1916 * 1917 * Context: Any context. Expects xa_lock to be held on entry. 1918 */ 1919 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1920 { 1921 XA_STATE(xas, xa, index); 1922 void *entry = xas_load(&xas); 1923 1924 if (entry) 1925 xas_set_mark(&xas, mark); 1926 } 1927 EXPORT_SYMBOL(__xa_set_mark); 1928 1929 /** 1930 * __xa_clear_mark() - Clear this mark on this entry while locked. 1931 * @xa: XArray. 1932 * @index: Index of entry. 1933 * @mark: Mark number. 1934 * 1935 * Context: Any context. Expects xa_lock to be held on entry. 1936 */ 1937 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1938 { 1939 XA_STATE(xas, xa, index); 1940 void *entry = xas_load(&xas); 1941 1942 if (entry) 1943 xas_clear_mark(&xas, mark); 1944 } 1945 EXPORT_SYMBOL(__xa_clear_mark); 1946 1947 /** 1948 * xa_get_mark() - Inquire whether this mark is set on this entry. 1949 * @xa: XArray. 1950 * @index: Index of entry. 1951 * @mark: Mark number. 1952 * 1953 * This function uses the RCU read lock, so the result may be out of date 1954 * by the time it returns. If you need the result to be stable, use a lock. 1955 * 1956 * Context: Any context. Takes and releases the RCU lock. 1957 * Return: True if the entry at @index has this mark set, false if it doesn't. 1958 */ 1959 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1960 { 1961 XA_STATE(xas, xa, index); 1962 void *entry; 1963 1964 rcu_read_lock(); 1965 entry = xas_start(&xas); 1966 while (xas_get_mark(&xas, mark)) { 1967 if (!xa_is_node(entry)) 1968 goto found; 1969 entry = xas_descend(&xas, xa_to_node(entry)); 1970 } 1971 rcu_read_unlock(); 1972 return false; 1973 found: 1974 rcu_read_unlock(); 1975 return true; 1976 } 1977 EXPORT_SYMBOL(xa_get_mark); 1978 1979 /** 1980 * xa_set_mark() - Set this mark on this entry. 1981 * @xa: XArray. 1982 * @index: Index of entry. 1983 * @mark: Mark number. 1984 * 1985 * Attempting to set a mark on a %NULL entry does not succeed. 1986 * 1987 * Context: Process context. Takes and releases the xa_lock. 1988 */ 1989 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1990 { 1991 xa_lock(xa); 1992 __xa_set_mark(xa, index, mark); 1993 xa_unlock(xa); 1994 } 1995 EXPORT_SYMBOL(xa_set_mark); 1996 1997 /** 1998 * xa_clear_mark() - Clear this mark on this entry. 1999 * @xa: XArray. 2000 * @index: Index of entry. 2001 * @mark: Mark number. 2002 * 2003 * Clearing a mark always succeeds. 2004 * 2005 * Context: Process context. Takes and releases the xa_lock. 2006 */ 2007 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2008 { 2009 xa_lock(xa); 2010 __xa_clear_mark(xa, index, mark); 2011 xa_unlock(xa); 2012 } 2013 EXPORT_SYMBOL(xa_clear_mark); 2014 2015 /** 2016 * xa_find() - Search the XArray for an entry. 2017 * @xa: XArray. 2018 * @indexp: Pointer to an index. 2019 * @max: Maximum index to search to. 2020 * @filter: Selection criterion. 2021 * 2022 * Finds the entry in @xa which matches the @filter, and has the lowest 2023 * index that is at least @indexp and no more than @max. 2024 * If an entry is found, @indexp is updated to be the index of the entry. 2025 * This function is protected by the RCU read lock, so it may not find 2026 * entries which are being simultaneously added. It will not return an 2027 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2028 * 2029 * Context: Any context. Takes and releases the RCU lock. 2030 * Return: The entry, if found, otherwise %NULL. 2031 */ 2032 void *xa_find(struct xarray *xa, unsigned long *indexp, 2033 unsigned long max, xa_mark_t filter) 2034 { 2035 XA_STATE(xas, xa, *indexp); 2036 void *entry; 2037 2038 rcu_read_lock(); 2039 do { 2040 if ((__force unsigned int)filter < XA_MAX_MARKS) 2041 entry = xas_find_marked(&xas, max, filter); 2042 else 2043 entry = xas_find(&xas, max); 2044 } while (xas_retry(&xas, entry)); 2045 rcu_read_unlock(); 2046 2047 if (entry) 2048 *indexp = xas.xa_index; 2049 return entry; 2050 } 2051 EXPORT_SYMBOL(xa_find); 2052 2053 static bool xas_sibling(struct xa_state *xas) 2054 { 2055 struct xa_node *node = xas->xa_node; 2056 unsigned long mask; 2057 2058 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2059 return false; 2060 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2061 return (xas->xa_index & mask) > 2062 ((unsigned long)xas->xa_offset << node->shift); 2063 } 2064 2065 /** 2066 * xa_find_after() - Search the XArray for a present entry. 2067 * @xa: XArray. 2068 * @indexp: Pointer to an index. 2069 * @max: Maximum index to search to. 2070 * @filter: Selection criterion. 2071 * 2072 * Finds the entry in @xa which matches the @filter and has the lowest 2073 * index that is above @indexp and no more than @max. 2074 * If an entry is found, @indexp is updated to be the index of the entry. 2075 * This function is protected by the RCU read lock, so it may miss entries 2076 * which are being simultaneously added. It will not return an 2077 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2078 * 2079 * Context: Any context. Takes and releases the RCU lock. 2080 * Return: The pointer, if found, otherwise %NULL. 2081 */ 2082 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2083 unsigned long max, xa_mark_t filter) 2084 { 2085 XA_STATE(xas, xa, *indexp + 1); 2086 void *entry; 2087 2088 if (xas.xa_index == 0) 2089 return NULL; 2090 2091 rcu_read_lock(); 2092 for (;;) { 2093 if ((__force unsigned int)filter < XA_MAX_MARKS) 2094 entry = xas_find_marked(&xas, max, filter); 2095 else 2096 entry = xas_find(&xas, max); 2097 2098 if (xas_invalid(&xas)) 2099 break; 2100 if (xas_sibling(&xas)) 2101 continue; 2102 if (!xas_retry(&xas, entry)) 2103 break; 2104 } 2105 rcu_read_unlock(); 2106 2107 if (entry) 2108 *indexp = xas.xa_index; 2109 return entry; 2110 } 2111 EXPORT_SYMBOL(xa_find_after); 2112 2113 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2114 unsigned long max, unsigned int n) 2115 { 2116 void *entry; 2117 unsigned int i = 0; 2118 2119 rcu_read_lock(); 2120 xas_for_each(xas, entry, max) { 2121 if (xas_retry(xas, entry)) 2122 continue; 2123 dst[i++] = entry; 2124 if (i == n) 2125 break; 2126 } 2127 rcu_read_unlock(); 2128 2129 return i; 2130 } 2131 2132 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2133 unsigned long max, unsigned int n, xa_mark_t mark) 2134 { 2135 void *entry; 2136 unsigned int i = 0; 2137 2138 rcu_read_lock(); 2139 xas_for_each_marked(xas, entry, max, mark) { 2140 if (xas_retry(xas, entry)) 2141 continue; 2142 dst[i++] = entry; 2143 if (i == n) 2144 break; 2145 } 2146 rcu_read_unlock(); 2147 2148 return i; 2149 } 2150 2151 /** 2152 * xa_extract() - Copy selected entries from the XArray into a normal array. 2153 * @xa: The source XArray to copy from. 2154 * @dst: The buffer to copy entries into. 2155 * @start: The first index in the XArray eligible to be selected. 2156 * @max: The last index in the XArray eligible to be selected. 2157 * @n: The maximum number of entries to copy. 2158 * @filter: Selection criterion. 2159 * 2160 * Copies up to @n entries that match @filter from the XArray. The 2161 * copied entries will have indices between @start and @max, inclusive. 2162 * 2163 * The @filter may be an XArray mark value, in which case entries which are 2164 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2165 * which case all entries which are not %NULL will be copied. 2166 * 2167 * The entries returned may not represent a snapshot of the XArray at a 2168 * moment in time. For example, if another thread stores to index 5, then 2169 * index 10, calling xa_extract() may return the old contents of index 5 2170 * and the new contents of index 10. Indices not modified while this 2171 * function is running will not be skipped. 2172 * 2173 * If you need stronger guarantees, holding the xa_lock across calls to this 2174 * function will prevent concurrent modification. 2175 * 2176 * Context: Any context. Takes and releases the RCU lock. 2177 * Return: The number of entries copied. 2178 */ 2179 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2180 unsigned long max, unsigned int n, xa_mark_t filter) 2181 { 2182 XA_STATE(xas, xa, start); 2183 2184 if (!n) 2185 return 0; 2186 2187 if ((__force unsigned int)filter < XA_MAX_MARKS) 2188 return xas_extract_marked(&xas, dst, max, n, filter); 2189 return xas_extract_present(&xas, dst, max, n); 2190 } 2191 EXPORT_SYMBOL(xa_extract); 2192 2193 /** 2194 * xa_delete_node() - Private interface for workingset code. 2195 * @node: Node to be removed from the tree. 2196 * @update: Function to call to update ancestor nodes. 2197 * 2198 * Context: xa_lock must be held on entry and will not be released. 2199 */ 2200 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2201 { 2202 struct xa_state xas = { 2203 .xa = node->array, 2204 .xa_index = (unsigned long)node->offset << 2205 (node->shift + XA_CHUNK_SHIFT), 2206 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2207 .xa_offset = node->offset, 2208 .xa_node = xa_parent_locked(node->array, node), 2209 .xa_update = update, 2210 }; 2211 2212 xas_store(&xas, NULL); 2213 } 2214 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2215 2216 /** 2217 * xa_destroy() - Free all internal data structures. 2218 * @xa: XArray. 2219 * 2220 * After calling this function, the XArray is empty and has freed all memory 2221 * allocated for its internal data structures. You are responsible for 2222 * freeing the objects referenced by the XArray. 2223 * 2224 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2225 */ 2226 void xa_destroy(struct xarray *xa) 2227 { 2228 XA_STATE(xas, xa, 0); 2229 unsigned long flags; 2230 void *entry; 2231 2232 xas.xa_node = NULL; 2233 xas_lock_irqsave(&xas, flags); 2234 entry = xa_head_locked(xa); 2235 RCU_INIT_POINTER(xa->xa_head, NULL); 2236 xas_init_marks(&xas); 2237 if (xa_zero_busy(xa)) 2238 xa_mark_clear(xa, XA_FREE_MARK); 2239 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2240 if (xa_is_node(entry)) 2241 xas_free_nodes(&xas, xa_to_node(entry)); 2242 xas_unlock_irqrestore(&xas, flags); 2243 } 2244 EXPORT_SYMBOL(xa_destroy); 2245 2246 #ifdef XA_DEBUG 2247 void xa_dump_node(const struct xa_node *node) 2248 { 2249 unsigned i, j; 2250 2251 if (!node) 2252 return; 2253 if ((unsigned long)node & 3) { 2254 pr_cont("node %px\n", node); 2255 return; 2256 } 2257 2258 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2259 "array %px list %px %px marks", 2260 node, node->parent ? "offset" : "max", node->offset, 2261 node->parent, node->shift, node->count, node->nr_values, 2262 node->array, node->private_list.prev, node->private_list.next); 2263 for (i = 0; i < XA_MAX_MARKS; i++) 2264 for (j = 0; j < XA_MARK_LONGS; j++) 2265 pr_cont(" %lx", node->marks[i][j]); 2266 pr_cont("\n"); 2267 } 2268 2269 void xa_dump_index(unsigned long index, unsigned int shift) 2270 { 2271 if (!shift) 2272 pr_info("%lu: ", index); 2273 else if (shift >= BITS_PER_LONG) 2274 pr_info("0-%lu: ", ~0UL); 2275 else 2276 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2277 } 2278 2279 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2280 { 2281 if (!entry) 2282 return; 2283 2284 xa_dump_index(index, shift); 2285 2286 if (xa_is_node(entry)) { 2287 if (shift == 0) { 2288 pr_cont("%px\n", entry); 2289 } else { 2290 unsigned long i; 2291 struct xa_node *node = xa_to_node(entry); 2292 xa_dump_node(node); 2293 for (i = 0; i < XA_CHUNK_SIZE; i++) 2294 xa_dump_entry(node->slots[i], 2295 index + (i << node->shift), node->shift); 2296 } 2297 } else if (xa_is_value(entry)) 2298 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2299 xa_to_value(entry), entry); 2300 else if (!xa_is_internal(entry)) 2301 pr_cont("%px\n", entry); 2302 else if (xa_is_retry(entry)) 2303 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2304 else if (xa_is_sibling(entry)) 2305 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2306 else if (xa_is_zero(entry)) 2307 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2308 else 2309 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2310 } 2311 2312 void xa_dump(const struct xarray *xa) 2313 { 2314 void *entry = xa->xa_head; 2315 unsigned int shift = 0; 2316 2317 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2318 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2319 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2320 if (xa_is_node(entry)) 2321 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2322 xa_dump_entry(entry, 0, shift); 2323 } 2324 #endif 2325