xref: /linux/lib/xarray.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * XArray implementation
4  * Copyright (c) 2017-2018 Microsoft Corporation
5  * Copyright (c) 2018-2020 Oracle
6  * Author: Matthew Wilcox <willy@infradead.org>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14 
15 #include "radix-tree.h"
16 
17 /*
18  * Coding conventions in this file:
19  *
20  * @xa is used to refer to the entire xarray.
21  * @xas is the 'xarray operation state'.  It may be either a pointer to
22  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
23  * ambiguity.
24  * @index is the index of the entry being operated on
25  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26  * @node refers to an xa_node; usually the primary one being operated on by
27  * this function.
28  * @offset is the index into the slots array inside an xa_node.
29  * @parent refers to the @xa_node closer to the head than @node.
30  * @entry refers to something stored in a slot in the xarray
31  */
32 
33 static inline unsigned int xa_lock_type(const struct xarray *xa)
34 {
35 	return (__force unsigned int)xa->xa_flags & 3;
36 }
37 
38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39 {
40 	if (lock_type == XA_LOCK_IRQ)
41 		xas_lock_irq(xas);
42 	else if (lock_type == XA_LOCK_BH)
43 		xas_lock_bh(xas);
44 	else
45 		xas_lock(xas);
46 }
47 
48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49 {
50 	if (lock_type == XA_LOCK_IRQ)
51 		xas_unlock_irq(xas);
52 	else if (lock_type == XA_LOCK_BH)
53 		xas_unlock_bh(xas);
54 	else
55 		xas_unlock(xas);
56 }
57 
58 static inline bool xa_track_free(const struct xarray *xa)
59 {
60 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61 }
62 
63 static inline bool xa_zero_busy(const struct xarray *xa)
64 {
65 	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66 }
67 
68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69 {
70 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 		xa->xa_flags |= XA_FLAGS_MARK(mark);
72 }
73 
74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75 {
76 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78 }
79 
80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81 {
82 	return node->marks[(__force unsigned)mark];
83 }
84 
85 static inline bool node_get_mark(struct xa_node *node,
86 		unsigned int offset, xa_mark_t mark)
87 {
88 	return test_bit(offset, node_marks(node, mark));
89 }
90 
91 /* returns true if the bit was set */
92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 				xa_mark_t mark)
94 {
95 	return __test_and_set_bit(offset, node_marks(node, mark));
96 }
97 
98 /* returns true if the bit was set */
99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 				xa_mark_t mark)
101 {
102 	return __test_and_clear_bit(offset, node_marks(node, mark));
103 }
104 
105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106 {
107 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108 }
109 
110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111 {
112 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113 }
114 
115 #define mark_inc(mark) do { \
116 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117 } while (0)
118 
119 /*
120  * xas_squash_marks() - Merge all marks to the first entry
121  * @xas: Array operation state.
122  *
123  * Set a mark on the first entry if any entry has it set.  Clear marks on
124  * all sibling entries.
125  */
126 static void xas_squash_marks(const struct xa_state *xas)
127 {
128 	unsigned int mark = 0;
129 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130 
131 	if (!xas->xa_sibs)
132 		return;
133 
134 	do {
135 		unsigned long *marks = xas->xa_node->marks[mark];
136 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
137 			continue;
138 		__set_bit(xas->xa_offset, marks);
139 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
140 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
141 }
142 
143 /* extracts the offset within this node from the index */
144 static unsigned int get_offset(unsigned long index, struct xa_node *node)
145 {
146 	return (index >> node->shift) & XA_CHUNK_MASK;
147 }
148 
149 static void xas_set_offset(struct xa_state *xas)
150 {
151 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
152 }
153 
154 /* move the index either forwards (find) or backwards (sibling slot) */
155 static void xas_move_index(struct xa_state *xas, unsigned long offset)
156 {
157 	unsigned int shift = xas->xa_node->shift;
158 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
159 	xas->xa_index += offset << shift;
160 }
161 
162 static void xas_next_offset(struct xa_state *xas)
163 {
164 	xas->xa_offset++;
165 	xas_move_index(xas, xas->xa_offset);
166 }
167 
168 static void *set_bounds(struct xa_state *xas)
169 {
170 	xas->xa_node = XAS_BOUNDS;
171 	return NULL;
172 }
173 
174 /*
175  * Starts a walk.  If the @xas is already valid, we assume that it's on
176  * the right path and just return where we've got to.  If we're in an
177  * error state, return NULL.  If the index is outside the current scope
178  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
179  * set @xas->xa_node to NULL and return the current head of the array.
180  */
181 static void *xas_start(struct xa_state *xas)
182 {
183 	void *entry;
184 
185 	if (xas_valid(xas))
186 		return xas_reload(xas);
187 	if (xas_error(xas))
188 		return NULL;
189 
190 	entry = xa_head(xas->xa);
191 	if (!xa_is_node(entry)) {
192 		if (xas->xa_index)
193 			return set_bounds(xas);
194 	} else {
195 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
196 			return set_bounds(xas);
197 	}
198 
199 	xas->xa_node = NULL;
200 	return entry;
201 }
202 
203 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
204 {
205 	unsigned int offset = get_offset(xas->xa_index, node);
206 	void *entry = xa_entry(xas->xa, node, offset);
207 
208 	xas->xa_node = node;
209 	while (xa_is_sibling(entry)) {
210 		offset = xa_to_sibling(entry);
211 		entry = xa_entry(xas->xa, node, offset);
212 		if (node->shift && xa_is_node(entry))
213 			entry = XA_RETRY_ENTRY;
214 	}
215 
216 	xas->xa_offset = offset;
217 	return entry;
218 }
219 
220 /**
221  * xas_load() - Load an entry from the XArray (advanced).
222  * @xas: XArray operation state.
223  *
224  * Usually walks the @xas to the appropriate state to load the entry
225  * stored at xa_index.  However, it will do nothing and return %NULL if
226  * @xas is in an error state.  xas_load() will never expand the tree.
227  *
228  * If the xa_state is set up to operate on a multi-index entry, xas_load()
229  * may return %NULL or an internal entry, even if there are entries
230  * present within the range specified by @xas.
231  *
232  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
233  * Return: Usually an entry in the XArray, but see description for exceptions.
234  */
235 void *xas_load(struct xa_state *xas)
236 {
237 	void *entry = xas_start(xas);
238 
239 	while (xa_is_node(entry)) {
240 		struct xa_node *node = xa_to_node(entry);
241 
242 		if (xas->xa_shift > node->shift)
243 			break;
244 		entry = xas_descend(xas, node);
245 		if (node->shift == 0)
246 			break;
247 	}
248 	return entry;
249 }
250 EXPORT_SYMBOL_GPL(xas_load);
251 
252 #define XA_RCU_FREE	((struct xarray *)1)
253 
254 static void xa_node_free(struct xa_node *node)
255 {
256 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 	node->array = XA_RCU_FREE;
258 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259 }
260 
261 /*
262  * xas_destroy() - Free any resources allocated during the XArray operation.
263  * @xas: XArray operation state.
264  *
265  * Most users will not need to call this function; it is called for you
266  * by xas_nomem().
267  */
268 void xas_destroy(struct xa_state *xas)
269 {
270 	struct xa_node *next, *node = xas->xa_alloc;
271 
272 	while (node) {
273 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 		next = rcu_dereference_raw(node->parent);
275 		radix_tree_node_rcu_free(&node->rcu_head);
276 		xas->xa_alloc = node = next;
277 	}
278 }
279 
280 /**
281  * xas_nomem() - Allocate memory if needed.
282  * @xas: XArray operation state.
283  * @gfp: Memory allocation flags.
284  *
285  * If we need to add new nodes to the XArray, we try to allocate memory
286  * with GFP_NOWAIT while holding the lock, which will usually succeed.
287  * If it fails, @xas is flagged as needing memory to continue.  The caller
288  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
289  * the caller should retry the operation.
290  *
291  * Forward progress is guaranteed as one node is allocated here and
292  * stored in the xa_state where it will be found by xas_alloc().  More
293  * nodes will likely be found in the slab allocator, but we do not tie
294  * them up here.
295  *
296  * Return: true if memory was needed, and was successfully allocated.
297  */
298 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
299 {
300 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
301 		xas_destroy(xas);
302 		return false;
303 	}
304 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
305 		gfp |= __GFP_ACCOUNT;
306 	xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
307 	if (!xas->xa_alloc)
308 		return false;
309 	xas->xa_alloc->parent = NULL;
310 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
311 	xas->xa_node = XAS_RESTART;
312 	return true;
313 }
314 EXPORT_SYMBOL_GPL(xas_nomem);
315 
316 /*
317  * __xas_nomem() - Drop locks and allocate memory if needed.
318  * @xas: XArray operation state.
319  * @gfp: Memory allocation flags.
320  *
321  * Internal variant of xas_nomem().
322  *
323  * Return: true if memory was needed, and was successfully allocated.
324  */
325 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
326 	__must_hold(xas->xa->xa_lock)
327 {
328 	unsigned int lock_type = xa_lock_type(xas->xa);
329 
330 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
331 		xas_destroy(xas);
332 		return false;
333 	}
334 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
335 		gfp |= __GFP_ACCOUNT;
336 	if (gfpflags_allow_blocking(gfp)) {
337 		xas_unlock_type(xas, lock_type);
338 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
339 		xas_lock_type(xas, lock_type);
340 	} else {
341 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
342 	}
343 	if (!xas->xa_alloc)
344 		return false;
345 	xas->xa_alloc->parent = NULL;
346 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
347 	xas->xa_node = XAS_RESTART;
348 	return true;
349 }
350 
351 static void xas_update(struct xa_state *xas, struct xa_node *node)
352 {
353 	if (xas->xa_update)
354 		xas->xa_update(node);
355 	else
356 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
357 }
358 
359 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
360 {
361 	struct xa_node *parent = xas->xa_node;
362 	struct xa_node *node = xas->xa_alloc;
363 
364 	if (xas_invalid(xas))
365 		return NULL;
366 
367 	if (node) {
368 		xas->xa_alloc = NULL;
369 	} else {
370 		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
371 
372 		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
373 			gfp |= __GFP_ACCOUNT;
374 
375 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
376 		if (!node) {
377 			xas_set_err(xas, -ENOMEM);
378 			return NULL;
379 		}
380 	}
381 
382 	if (parent) {
383 		node->offset = xas->xa_offset;
384 		parent->count++;
385 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
386 		xas_update(xas, parent);
387 	}
388 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
389 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
390 	node->shift = shift;
391 	node->count = 0;
392 	node->nr_values = 0;
393 	RCU_INIT_POINTER(node->parent, xas->xa_node);
394 	node->array = xas->xa;
395 
396 	return node;
397 }
398 
399 #ifdef CONFIG_XARRAY_MULTI
400 /* Returns the number of indices covered by a given xa_state */
401 static unsigned long xas_size(const struct xa_state *xas)
402 {
403 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
404 }
405 #endif
406 
407 /*
408  * Use this to calculate the maximum index that will need to be created
409  * in order to add the entry described by @xas.  Because we cannot store a
410  * multi-index entry at index 0, the calculation is a little more complex
411  * than you might expect.
412  */
413 static unsigned long xas_max(struct xa_state *xas)
414 {
415 	unsigned long max = xas->xa_index;
416 
417 #ifdef CONFIG_XARRAY_MULTI
418 	if (xas->xa_shift || xas->xa_sibs) {
419 		unsigned long mask = xas_size(xas) - 1;
420 		max |= mask;
421 		if (mask == max)
422 			max++;
423 	}
424 #endif
425 
426 	return max;
427 }
428 
429 /* The maximum index that can be contained in the array without expanding it */
430 static unsigned long max_index(void *entry)
431 {
432 	if (!xa_is_node(entry))
433 		return 0;
434 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
435 }
436 
437 static void xas_shrink(struct xa_state *xas)
438 {
439 	struct xarray *xa = xas->xa;
440 	struct xa_node *node = xas->xa_node;
441 
442 	for (;;) {
443 		void *entry;
444 
445 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
446 		if (node->count != 1)
447 			break;
448 		entry = xa_entry_locked(xa, node, 0);
449 		if (!entry)
450 			break;
451 		if (!xa_is_node(entry) && node->shift)
452 			break;
453 		if (xa_is_zero(entry) && xa_zero_busy(xa))
454 			entry = NULL;
455 		xas->xa_node = XAS_BOUNDS;
456 
457 		RCU_INIT_POINTER(xa->xa_head, entry);
458 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
459 			xa_mark_clear(xa, XA_FREE_MARK);
460 
461 		node->count = 0;
462 		node->nr_values = 0;
463 		if (!xa_is_node(entry))
464 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
465 		xas_update(xas, node);
466 		xa_node_free(node);
467 		if (!xa_is_node(entry))
468 			break;
469 		node = xa_to_node(entry);
470 		node->parent = NULL;
471 	}
472 }
473 
474 /*
475  * xas_delete_node() - Attempt to delete an xa_node
476  * @xas: Array operation state.
477  *
478  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
479  * a non-zero reference count.
480  */
481 static void xas_delete_node(struct xa_state *xas)
482 {
483 	struct xa_node *node = xas->xa_node;
484 
485 	for (;;) {
486 		struct xa_node *parent;
487 
488 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
489 		if (node->count)
490 			break;
491 
492 		parent = xa_parent_locked(xas->xa, node);
493 		xas->xa_node = parent;
494 		xas->xa_offset = node->offset;
495 		xa_node_free(node);
496 
497 		if (!parent) {
498 			xas->xa->xa_head = NULL;
499 			xas->xa_node = XAS_BOUNDS;
500 			return;
501 		}
502 
503 		parent->slots[xas->xa_offset] = NULL;
504 		parent->count--;
505 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
506 		node = parent;
507 		xas_update(xas, node);
508 	}
509 
510 	if (!node->parent)
511 		xas_shrink(xas);
512 }
513 
514 /**
515  * xas_free_nodes() - Free this node and all nodes that it references
516  * @xas: Array operation state.
517  * @top: Node to free
518  *
519  * This node has been removed from the tree.  We must now free it and all
520  * of its subnodes.  There may be RCU walkers with references into the tree,
521  * so we must replace all entries with retry markers.
522  */
523 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
524 {
525 	unsigned int offset = 0;
526 	struct xa_node *node = top;
527 
528 	for (;;) {
529 		void *entry = xa_entry_locked(xas->xa, node, offset);
530 
531 		if (node->shift && xa_is_node(entry)) {
532 			node = xa_to_node(entry);
533 			offset = 0;
534 			continue;
535 		}
536 		if (entry)
537 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
538 		offset++;
539 		while (offset == XA_CHUNK_SIZE) {
540 			struct xa_node *parent;
541 
542 			parent = xa_parent_locked(xas->xa, node);
543 			offset = node->offset + 1;
544 			node->count = 0;
545 			node->nr_values = 0;
546 			xas_update(xas, node);
547 			xa_node_free(node);
548 			if (node == top)
549 				return;
550 			node = parent;
551 		}
552 	}
553 }
554 
555 /*
556  * xas_expand adds nodes to the head of the tree until it has reached
557  * sufficient height to be able to contain @xas->xa_index
558  */
559 static int xas_expand(struct xa_state *xas, void *head)
560 {
561 	struct xarray *xa = xas->xa;
562 	struct xa_node *node = NULL;
563 	unsigned int shift = 0;
564 	unsigned long max = xas_max(xas);
565 
566 	if (!head) {
567 		if (max == 0)
568 			return 0;
569 		while ((max >> shift) >= XA_CHUNK_SIZE)
570 			shift += XA_CHUNK_SHIFT;
571 		return shift + XA_CHUNK_SHIFT;
572 	} else if (xa_is_node(head)) {
573 		node = xa_to_node(head);
574 		shift = node->shift + XA_CHUNK_SHIFT;
575 	}
576 	xas->xa_node = NULL;
577 
578 	while (max > max_index(head)) {
579 		xa_mark_t mark = 0;
580 
581 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
582 		node = xas_alloc(xas, shift);
583 		if (!node)
584 			return -ENOMEM;
585 
586 		node->count = 1;
587 		if (xa_is_value(head))
588 			node->nr_values = 1;
589 		RCU_INIT_POINTER(node->slots[0], head);
590 
591 		/* Propagate the aggregated mark info to the new child */
592 		for (;;) {
593 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
594 				node_mark_all(node, XA_FREE_MARK);
595 				if (!xa_marked(xa, XA_FREE_MARK)) {
596 					node_clear_mark(node, 0, XA_FREE_MARK);
597 					xa_mark_set(xa, XA_FREE_MARK);
598 				}
599 			} else if (xa_marked(xa, mark)) {
600 				node_set_mark(node, 0, mark);
601 			}
602 			if (mark == XA_MARK_MAX)
603 				break;
604 			mark_inc(mark);
605 		}
606 
607 		/*
608 		 * Now that the new node is fully initialised, we can add
609 		 * it to the tree
610 		 */
611 		if (xa_is_node(head)) {
612 			xa_to_node(head)->offset = 0;
613 			rcu_assign_pointer(xa_to_node(head)->parent, node);
614 		}
615 		head = xa_mk_node(node);
616 		rcu_assign_pointer(xa->xa_head, head);
617 		xas_update(xas, node);
618 
619 		shift += XA_CHUNK_SHIFT;
620 	}
621 
622 	xas->xa_node = node;
623 	return shift;
624 }
625 
626 /*
627  * xas_create() - Create a slot to store an entry in.
628  * @xas: XArray operation state.
629  * @allow_root: %true if we can store the entry in the root directly
630  *
631  * Most users will not need to call this function directly, as it is called
632  * by xas_store().  It is useful for doing conditional store operations
633  * (see the xa_cmpxchg() implementation for an example).
634  *
635  * Return: If the slot already existed, returns the contents of this slot.
636  * If the slot was newly created, returns %NULL.  If it failed to create the
637  * slot, returns %NULL and indicates the error in @xas.
638  */
639 static void *xas_create(struct xa_state *xas, bool allow_root)
640 {
641 	struct xarray *xa = xas->xa;
642 	void *entry;
643 	void __rcu **slot;
644 	struct xa_node *node = xas->xa_node;
645 	int shift;
646 	unsigned int order = xas->xa_shift;
647 
648 	if (xas_top(node)) {
649 		entry = xa_head_locked(xa);
650 		xas->xa_node = NULL;
651 		if (!entry && xa_zero_busy(xa))
652 			entry = XA_ZERO_ENTRY;
653 		shift = xas_expand(xas, entry);
654 		if (shift < 0)
655 			return NULL;
656 		if (!shift && !allow_root)
657 			shift = XA_CHUNK_SHIFT;
658 		entry = xa_head_locked(xa);
659 		slot = &xa->xa_head;
660 	} else if (xas_error(xas)) {
661 		return NULL;
662 	} else if (node) {
663 		unsigned int offset = xas->xa_offset;
664 
665 		shift = node->shift;
666 		entry = xa_entry_locked(xa, node, offset);
667 		slot = &node->slots[offset];
668 	} else {
669 		shift = 0;
670 		entry = xa_head_locked(xa);
671 		slot = &xa->xa_head;
672 	}
673 
674 	while (shift > order) {
675 		shift -= XA_CHUNK_SHIFT;
676 		if (!entry) {
677 			node = xas_alloc(xas, shift);
678 			if (!node)
679 				break;
680 			if (xa_track_free(xa))
681 				node_mark_all(node, XA_FREE_MARK);
682 			rcu_assign_pointer(*slot, xa_mk_node(node));
683 		} else if (xa_is_node(entry)) {
684 			node = xa_to_node(entry);
685 		} else {
686 			break;
687 		}
688 		entry = xas_descend(xas, node);
689 		slot = &node->slots[xas->xa_offset];
690 	}
691 
692 	return entry;
693 }
694 
695 /**
696  * xas_create_range() - Ensure that stores to this range will succeed
697  * @xas: XArray operation state.
698  *
699  * Creates all of the slots in the range covered by @xas.  Sets @xas to
700  * create single-index entries and positions it at the beginning of the
701  * range.  This is for the benefit of users which have not yet been
702  * converted to use multi-index entries.
703  */
704 void xas_create_range(struct xa_state *xas)
705 {
706 	unsigned long index = xas->xa_index;
707 	unsigned char shift = xas->xa_shift;
708 	unsigned char sibs = xas->xa_sibs;
709 
710 	xas->xa_index |= ((sibs + 1UL) << shift) - 1;
711 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
712 		xas->xa_offset |= sibs;
713 	xas->xa_shift = 0;
714 	xas->xa_sibs = 0;
715 
716 	for (;;) {
717 		xas_create(xas, true);
718 		if (xas_error(xas))
719 			goto restore;
720 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
721 			goto success;
722 		xas->xa_index -= XA_CHUNK_SIZE;
723 
724 		for (;;) {
725 			struct xa_node *node = xas->xa_node;
726 			if (node->shift >= shift)
727 				break;
728 			xas->xa_node = xa_parent_locked(xas->xa, node);
729 			xas->xa_offset = node->offset - 1;
730 			if (node->offset != 0)
731 				break;
732 		}
733 	}
734 
735 restore:
736 	xas->xa_shift = shift;
737 	xas->xa_sibs = sibs;
738 	xas->xa_index = index;
739 	return;
740 success:
741 	xas->xa_index = index;
742 	if (xas->xa_node)
743 		xas_set_offset(xas);
744 }
745 EXPORT_SYMBOL_GPL(xas_create_range);
746 
747 static void update_node(struct xa_state *xas, struct xa_node *node,
748 		int count, int values)
749 {
750 	if (!node || (!count && !values))
751 		return;
752 
753 	node->count += count;
754 	node->nr_values += values;
755 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
756 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
757 	xas_update(xas, node);
758 	if (count < 0)
759 		xas_delete_node(xas);
760 }
761 
762 /**
763  * xas_store() - Store this entry in the XArray.
764  * @xas: XArray operation state.
765  * @entry: New entry.
766  *
767  * If @xas is operating on a multi-index entry, the entry returned by this
768  * function is essentially meaningless (it may be an internal entry or it
769  * may be %NULL, even if there are non-NULL entries at some of the indices
770  * covered by the range).  This is not a problem for any current users,
771  * and can be changed if needed.
772  *
773  * Return: The old entry at this index.
774  */
775 void *xas_store(struct xa_state *xas, void *entry)
776 {
777 	struct xa_node *node;
778 	void __rcu **slot = &xas->xa->xa_head;
779 	unsigned int offset, max;
780 	int count = 0;
781 	int values = 0;
782 	void *first, *next;
783 	bool value = xa_is_value(entry);
784 
785 	if (entry) {
786 		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
787 		first = xas_create(xas, allow_root);
788 	} else {
789 		first = xas_load(xas);
790 	}
791 
792 	if (xas_invalid(xas))
793 		return first;
794 	node = xas->xa_node;
795 	if (node && (xas->xa_shift < node->shift))
796 		xas->xa_sibs = 0;
797 	if ((first == entry) && !xas->xa_sibs)
798 		return first;
799 
800 	next = first;
801 	offset = xas->xa_offset;
802 	max = xas->xa_offset + xas->xa_sibs;
803 	if (node) {
804 		slot = &node->slots[offset];
805 		if (xas->xa_sibs)
806 			xas_squash_marks(xas);
807 	}
808 	if (!entry)
809 		xas_init_marks(xas);
810 
811 	for (;;) {
812 		/*
813 		 * Must clear the marks before setting the entry to NULL,
814 		 * otherwise xas_for_each_marked may find a NULL entry and
815 		 * stop early.  rcu_assign_pointer contains a release barrier
816 		 * so the mark clearing will appear to happen before the
817 		 * entry is set to NULL.
818 		 */
819 		rcu_assign_pointer(*slot, entry);
820 		if (xa_is_node(next) && (!node || node->shift))
821 			xas_free_nodes(xas, xa_to_node(next));
822 		if (!node)
823 			break;
824 		count += !next - !entry;
825 		values += !xa_is_value(first) - !value;
826 		if (entry) {
827 			if (offset == max)
828 				break;
829 			if (!xa_is_sibling(entry))
830 				entry = xa_mk_sibling(xas->xa_offset);
831 		} else {
832 			if (offset == XA_CHUNK_MASK)
833 				break;
834 		}
835 		next = xa_entry_locked(xas->xa, node, ++offset);
836 		if (!xa_is_sibling(next)) {
837 			if (!entry && (offset > max))
838 				break;
839 			first = next;
840 		}
841 		slot++;
842 	}
843 
844 	update_node(xas, node, count, values);
845 	return first;
846 }
847 EXPORT_SYMBOL_GPL(xas_store);
848 
849 /**
850  * xas_get_mark() - Returns the state of this mark.
851  * @xas: XArray operation state.
852  * @mark: Mark number.
853  *
854  * Return: true if the mark is set, false if the mark is clear or @xas
855  * is in an error state.
856  */
857 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
858 {
859 	if (xas_invalid(xas))
860 		return false;
861 	if (!xas->xa_node)
862 		return xa_marked(xas->xa, mark);
863 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
864 }
865 EXPORT_SYMBOL_GPL(xas_get_mark);
866 
867 /**
868  * xas_set_mark() - Sets the mark on this entry and its parents.
869  * @xas: XArray operation state.
870  * @mark: Mark number.
871  *
872  * Sets the specified mark on this entry, and walks up the tree setting it
873  * on all the ancestor entries.  Does nothing if @xas has not been walked to
874  * an entry, or is in an error state.
875  */
876 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
877 {
878 	struct xa_node *node = xas->xa_node;
879 	unsigned int offset = xas->xa_offset;
880 
881 	if (xas_invalid(xas))
882 		return;
883 
884 	while (node) {
885 		if (node_set_mark(node, offset, mark))
886 			return;
887 		offset = node->offset;
888 		node = xa_parent_locked(xas->xa, node);
889 	}
890 
891 	if (!xa_marked(xas->xa, mark))
892 		xa_mark_set(xas->xa, mark);
893 }
894 EXPORT_SYMBOL_GPL(xas_set_mark);
895 
896 /**
897  * xas_clear_mark() - Clears the mark on this entry and its parents.
898  * @xas: XArray operation state.
899  * @mark: Mark number.
900  *
901  * Clears the specified mark on this entry, and walks back to the head
902  * attempting to clear it on all the ancestor entries.  Does nothing if
903  * @xas has not been walked to an entry, or is in an error state.
904  */
905 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
906 {
907 	struct xa_node *node = xas->xa_node;
908 	unsigned int offset = xas->xa_offset;
909 
910 	if (xas_invalid(xas))
911 		return;
912 
913 	while (node) {
914 		if (!node_clear_mark(node, offset, mark))
915 			return;
916 		if (node_any_mark(node, mark))
917 			return;
918 
919 		offset = node->offset;
920 		node = xa_parent_locked(xas->xa, node);
921 	}
922 
923 	if (xa_marked(xas->xa, mark))
924 		xa_mark_clear(xas->xa, mark);
925 }
926 EXPORT_SYMBOL_GPL(xas_clear_mark);
927 
928 /**
929  * xas_init_marks() - Initialise all marks for the entry
930  * @xas: Array operations state.
931  *
932  * Initialise all marks for the entry specified by @xas.  If we're tracking
933  * free entries with a mark, we need to set it on all entries.  All other
934  * marks are cleared.
935  *
936  * This implementation is not as efficient as it could be; we may walk
937  * up the tree multiple times.
938  */
939 void xas_init_marks(const struct xa_state *xas)
940 {
941 	xa_mark_t mark = 0;
942 
943 	for (;;) {
944 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
945 			xas_set_mark(xas, mark);
946 		else
947 			xas_clear_mark(xas, mark);
948 		if (mark == XA_MARK_MAX)
949 			break;
950 		mark_inc(mark);
951 	}
952 }
953 EXPORT_SYMBOL_GPL(xas_init_marks);
954 
955 #ifdef CONFIG_XARRAY_MULTI
956 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
957 {
958 	unsigned int marks = 0;
959 	xa_mark_t mark = XA_MARK_0;
960 
961 	for (;;) {
962 		if (node_get_mark(node, offset, mark))
963 			marks |= 1 << (__force unsigned int)mark;
964 		if (mark == XA_MARK_MAX)
965 			break;
966 		mark_inc(mark);
967 	}
968 
969 	return marks;
970 }
971 
972 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs,
973 		xa_mark_t mark)
974 {
975 	int i;
976 
977 	if (sibs == 0)
978 		node_mark_all(node, mark);
979 	else {
980 		for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1)
981 			node_set_mark(node, i, mark);
982 	}
983 }
984 
985 static void node_set_marks(struct xa_node *node, unsigned int offset,
986 			struct xa_node *child, unsigned int sibs,
987 			unsigned int marks)
988 {
989 	xa_mark_t mark = XA_MARK_0;
990 
991 	for (;;) {
992 		if (marks & (1 << (__force unsigned int)mark)) {
993 			node_set_mark(node, offset, mark);
994 			if (child)
995 				node_mark_slots(child, sibs, mark);
996 		}
997 		if (mark == XA_MARK_MAX)
998 			break;
999 		mark_inc(mark);
1000 	}
1001 }
1002 
1003 /**
1004  * xas_split_alloc() - Allocate memory for splitting an entry.
1005  * @xas: XArray operation state.
1006  * @entry: New entry which will be stored in the array.
1007  * @order: Current entry order.
1008  * @gfp: Memory allocation flags.
1009  *
1010  * This function should be called before calling xas_split().
1011  * If necessary, it will allocate new nodes (and fill them with @entry)
1012  * to prepare for the upcoming split of an entry of @order size into
1013  * entries of the order stored in the @xas.
1014  *
1015  * Context: May sleep if @gfp flags permit.
1016  */
1017 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1018 		gfp_t gfp)
1019 {
1020 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1021 	unsigned int mask = xas->xa_sibs;
1022 
1023 	/* XXX: no support for splitting really large entries yet */
1024 	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1025 		goto nomem;
1026 	if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1027 		return;
1028 
1029 	do {
1030 		unsigned int i;
1031 		void *sibling = NULL;
1032 		struct xa_node *node;
1033 
1034 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1035 		if (!node)
1036 			goto nomem;
1037 		node->array = xas->xa;
1038 		for (i = 0; i < XA_CHUNK_SIZE; i++) {
1039 			if ((i & mask) == 0) {
1040 				RCU_INIT_POINTER(node->slots[i], entry);
1041 				sibling = xa_mk_sibling(i);
1042 			} else {
1043 				RCU_INIT_POINTER(node->slots[i], sibling);
1044 			}
1045 		}
1046 		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1047 		xas->xa_alloc = node;
1048 	} while (sibs-- > 0);
1049 
1050 	return;
1051 nomem:
1052 	xas_destroy(xas);
1053 	xas_set_err(xas, -ENOMEM);
1054 }
1055 EXPORT_SYMBOL_GPL(xas_split_alloc);
1056 
1057 /**
1058  * xas_split() - Split a multi-index entry into smaller entries.
1059  * @xas: XArray operation state.
1060  * @entry: New entry to store in the array.
1061  * @order: Current entry order.
1062  *
1063  * The size of the new entries is set in @xas.  The value in @entry is
1064  * copied to all the replacement entries.
1065  *
1066  * Context: Any context.  The caller should hold the xa_lock.
1067  */
1068 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1069 {
1070 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1071 	unsigned int offset, marks;
1072 	struct xa_node *node;
1073 	void *curr = xas_load(xas);
1074 	int values = 0;
1075 
1076 	node = xas->xa_node;
1077 	if (xas_top(node))
1078 		return;
1079 
1080 	marks = node_get_marks(node, xas->xa_offset);
1081 
1082 	offset = xas->xa_offset + sibs;
1083 	do {
1084 		if (xas->xa_shift < node->shift) {
1085 			struct xa_node *child = xas->xa_alloc;
1086 
1087 			xas->xa_alloc = rcu_dereference_raw(child->parent);
1088 			child->shift = node->shift - XA_CHUNK_SHIFT;
1089 			child->offset = offset;
1090 			child->count = XA_CHUNK_SIZE;
1091 			child->nr_values = xa_is_value(entry) ?
1092 					XA_CHUNK_SIZE : 0;
1093 			RCU_INIT_POINTER(child->parent, node);
1094 			node_set_marks(node, offset, child, xas->xa_sibs,
1095 					marks);
1096 			rcu_assign_pointer(node->slots[offset],
1097 					xa_mk_node(child));
1098 			if (xa_is_value(curr))
1099 				values--;
1100 			xas_update(xas, child);
1101 		} else {
1102 			unsigned int canon = offset - xas->xa_sibs;
1103 
1104 			node_set_marks(node, canon, NULL, 0, marks);
1105 			rcu_assign_pointer(node->slots[canon], entry);
1106 			while (offset > canon)
1107 				rcu_assign_pointer(node->slots[offset--],
1108 						xa_mk_sibling(canon));
1109 			values += (xa_is_value(entry) - xa_is_value(curr)) *
1110 					(xas->xa_sibs + 1);
1111 		}
1112 	} while (offset-- > xas->xa_offset);
1113 
1114 	node->nr_values += values;
1115 	xas_update(xas, node);
1116 }
1117 EXPORT_SYMBOL_GPL(xas_split);
1118 #endif
1119 
1120 /**
1121  * xas_pause() - Pause a walk to drop a lock.
1122  * @xas: XArray operation state.
1123  *
1124  * Some users need to pause a walk and drop the lock they're holding in
1125  * order to yield to a higher priority thread or carry out an operation
1126  * on an entry.  Those users should call this function before they drop
1127  * the lock.  It resets the @xas to be suitable for the next iteration
1128  * of the loop after the user has reacquired the lock.  If most entries
1129  * found during a walk require you to call xas_pause(), the xa_for_each()
1130  * iterator may be more appropriate.
1131  *
1132  * Note that xas_pause() only works for forward iteration.  If a user needs
1133  * to pause a reverse iteration, we will need a xas_pause_rev().
1134  */
1135 void xas_pause(struct xa_state *xas)
1136 {
1137 	struct xa_node *node = xas->xa_node;
1138 
1139 	if (xas_invalid(xas))
1140 		return;
1141 
1142 	xas->xa_node = XAS_RESTART;
1143 	if (node) {
1144 		unsigned long offset = xas->xa_offset;
1145 		while (++offset < XA_CHUNK_SIZE) {
1146 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1147 				break;
1148 		}
1149 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
1150 		if (xas->xa_index == 0)
1151 			xas->xa_node = XAS_BOUNDS;
1152 	} else {
1153 		xas->xa_index++;
1154 	}
1155 }
1156 EXPORT_SYMBOL_GPL(xas_pause);
1157 
1158 /*
1159  * __xas_prev() - Find the previous entry in the XArray.
1160  * @xas: XArray operation state.
1161  *
1162  * Helper function for xas_prev() which handles all the complex cases
1163  * out of line.
1164  */
1165 void *__xas_prev(struct xa_state *xas)
1166 {
1167 	void *entry;
1168 
1169 	if (!xas_frozen(xas->xa_node))
1170 		xas->xa_index--;
1171 	if (!xas->xa_node)
1172 		return set_bounds(xas);
1173 	if (xas_not_node(xas->xa_node))
1174 		return xas_load(xas);
1175 
1176 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1177 		xas->xa_offset--;
1178 
1179 	while (xas->xa_offset == 255) {
1180 		xas->xa_offset = xas->xa_node->offset - 1;
1181 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1182 		if (!xas->xa_node)
1183 			return set_bounds(xas);
1184 	}
1185 
1186 	for (;;) {
1187 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1188 		if (!xa_is_node(entry))
1189 			return entry;
1190 
1191 		xas->xa_node = xa_to_node(entry);
1192 		xas_set_offset(xas);
1193 	}
1194 }
1195 EXPORT_SYMBOL_GPL(__xas_prev);
1196 
1197 /*
1198  * __xas_next() - Find the next entry in the XArray.
1199  * @xas: XArray operation state.
1200  *
1201  * Helper function for xas_next() which handles all the complex cases
1202  * out of line.
1203  */
1204 void *__xas_next(struct xa_state *xas)
1205 {
1206 	void *entry;
1207 
1208 	if (!xas_frozen(xas->xa_node))
1209 		xas->xa_index++;
1210 	if (!xas->xa_node)
1211 		return set_bounds(xas);
1212 	if (xas_not_node(xas->xa_node))
1213 		return xas_load(xas);
1214 
1215 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1216 		xas->xa_offset++;
1217 
1218 	while (xas->xa_offset == XA_CHUNK_SIZE) {
1219 		xas->xa_offset = xas->xa_node->offset + 1;
1220 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1221 		if (!xas->xa_node)
1222 			return set_bounds(xas);
1223 	}
1224 
1225 	for (;;) {
1226 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1227 		if (!xa_is_node(entry))
1228 			return entry;
1229 
1230 		xas->xa_node = xa_to_node(entry);
1231 		xas_set_offset(xas);
1232 	}
1233 }
1234 EXPORT_SYMBOL_GPL(__xas_next);
1235 
1236 /**
1237  * xas_find() - Find the next present entry in the XArray.
1238  * @xas: XArray operation state.
1239  * @max: Highest index to return.
1240  *
1241  * If the @xas has not yet been walked to an entry, return the entry
1242  * which has an index >= xas.xa_index.  If it has been walked, the entry
1243  * currently being pointed at has been processed, and so we move to the
1244  * next entry.
1245  *
1246  * If no entry is found and the array is smaller than @max, the iterator
1247  * is set to the smallest index not yet in the array.  This allows @xas
1248  * to be immediately passed to xas_store().
1249  *
1250  * Return: The entry, if found, otherwise %NULL.
1251  */
1252 void *xas_find(struct xa_state *xas, unsigned long max)
1253 {
1254 	void *entry;
1255 
1256 	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1257 		return NULL;
1258 	if (xas->xa_index > max)
1259 		return set_bounds(xas);
1260 
1261 	if (!xas->xa_node) {
1262 		xas->xa_index = 1;
1263 		return set_bounds(xas);
1264 	} else if (xas->xa_node == XAS_RESTART) {
1265 		entry = xas_load(xas);
1266 		if (entry || xas_not_node(xas->xa_node))
1267 			return entry;
1268 	} else if (!xas->xa_node->shift &&
1269 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1270 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1271 	}
1272 
1273 	xas_next_offset(xas);
1274 
1275 	while (xas->xa_node && (xas->xa_index <= max)) {
1276 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1277 			xas->xa_offset = xas->xa_node->offset + 1;
1278 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1279 			continue;
1280 		}
1281 
1282 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1283 		if (xa_is_node(entry)) {
1284 			xas->xa_node = xa_to_node(entry);
1285 			xas->xa_offset = 0;
1286 			continue;
1287 		}
1288 		if (entry && !xa_is_sibling(entry))
1289 			return entry;
1290 
1291 		xas_next_offset(xas);
1292 	}
1293 
1294 	if (!xas->xa_node)
1295 		xas->xa_node = XAS_BOUNDS;
1296 	return NULL;
1297 }
1298 EXPORT_SYMBOL_GPL(xas_find);
1299 
1300 /**
1301  * xas_find_marked() - Find the next marked entry in the XArray.
1302  * @xas: XArray operation state.
1303  * @max: Highest index to return.
1304  * @mark: Mark number to search for.
1305  *
1306  * If the @xas has not yet been walked to an entry, return the marked entry
1307  * which has an index >= xas.xa_index.  If it has been walked, the entry
1308  * currently being pointed at has been processed, and so we return the
1309  * first marked entry with an index > xas.xa_index.
1310  *
1311  * If no marked entry is found and the array is smaller than @max, @xas is
1312  * set to the bounds state and xas->xa_index is set to the smallest index
1313  * not yet in the array.  This allows @xas to be immediately passed to
1314  * xas_store().
1315  *
1316  * If no entry is found before @max is reached, @xas is set to the restart
1317  * state.
1318  *
1319  * Return: The entry, if found, otherwise %NULL.
1320  */
1321 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1322 {
1323 	bool advance = true;
1324 	unsigned int offset;
1325 	void *entry;
1326 
1327 	if (xas_error(xas))
1328 		return NULL;
1329 	if (xas->xa_index > max)
1330 		goto max;
1331 
1332 	if (!xas->xa_node) {
1333 		xas->xa_index = 1;
1334 		goto out;
1335 	} else if (xas_top(xas->xa_node)) {
1336 		advance = false;
1337 		entry = xa_head(xas->xa);
1338 		xas->xa_node = NULL;
1339 		if (xas->xa_index > max_index(entry))
1340 			goto out;
1341 		if (!xa_is_node(entry)) {
1342 			if (xa_marked(xas->xa, mark))
1343 				return entry;
1344 			xas->xa_index = 1;
1345 			goto out;
1346 		}
1347 		xas->xa_node = xa_to_node(entry);
1348 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1349 	}
1350 
1351 	while (xas->xa_index <= max) {
1352 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1353 			xas->xa_offset = xas->xa_node->offset + 1;
1354 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1355 			if (!xas->xa_node)
1356 				break;
1357 			advance = false;
1358 			continue;
1359 		}
1360 
1361 		if (!advance) {
1362 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1363 			if (xa_is_sibling(entry)) {
1364 				xas->xa_offset = xa_to_sibling(entry);
1365 				xas_move_index(xas, xas->xa_offset);
1366 			}
1367 		}
1368 
1369 		offset = xas_find_chunk(xas, advance, mark);
1370 		if (offset > xas->xa_offset) {
1371 			advance = false;
1372 			xas_move_index(xas, offset);
1373 			/* Mind the wrap */
1374 			if ((xas->xa_index - 1) >= max)
1375 				goto max;
1376 			xas->xa_offset = offset;
1377 			if (offset == XA_CHUNK_SIZE)
1378 				continue;
1379 		}
1380 
1381 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1382 		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1383 			continue;
1384 		if (!xa_is_node(entry))
1385 			return entry;
1386 		xas->xa_node = xa_to_node(entry);
1387 		xas_set_offset(xas);
1388 	}
1389 
1390 out:
1391 	if (xas->xa_index > max)
1392 		goto max;
1393 	return set_bounds(xas);
1394 max:
1395 	xas->xa_node = XAS_RESTART;
1396 	return NULL;
1397 }
1398 EXPORT_SYMBOL_GPL(xas_find_marked);
1399 
1400 /**
1401  * xas_find_conflict() - Find the next present entry in a range.
1402  * @xas: XArray operation state.
1403  *
1404  * The @xas describes both a range and a position within that range.
1405  *
1406  * Context: Any context.  Expects xa_lock to be held.
1407  * Return: The next entry in the range covered by @xas or %NULL.
1408  */
1409 void *xas_find_conflict(struct xa_state *xas)
1410 {
1411 	void *curr;
1412 
1413 	if (xas_error(xas))
1414 		return NULL;
1415 
1416 	if (!xas->xa_node)
1417 		return NULL;
1418 
1419 	if (xas_top(xas->xa_node)) {
1420 		curr = xas_start(xas);
1421 		if (!curr)
1422 			return NULL;
1423 		while (xa_is_node(curr)) {
1424 			struct xa_node *node = xa_to_node(curr);
1425 			curr = xas_descend(xas, node);
1426 		}
1427 		if (curr)
1428 			return curr;
1429 	}
1430 
1431 	if (xas->xa_node->shift > xas->xa_shift)
1432 		return NULL;
1433 
1434 	for (;;) {
1435 		if (xas->xa_node->shift == xas->xa_shift) {
1436 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1437 				break;
1438 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1439 			xas->xa_offset = xas->xa_node->offset;
1440 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1441 			if (!xas->xa_node)
1442 				break;
1443 			continue;
1444 		}
1445 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1446 		if (xa_is_sibling(curr))
1447 			continue;
1448 		while (xa_is_node(curr)) {
1449 			xas->xa_node = xa_to_node(curr);
1450 			xas->xa_offset = 0;
1451 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1452 		}
1453 		if (curr)
1454 			return curr;
1455 	}
1456 	xas->xa_offset -= xas->xa_sibs;
1457 	return NULL;
1458 }
1459 EXPORT_SYMBOL_GPL(xas_find_conflict);
1460 
1461 /**
1462  * xa_load() - Load an entry from an XArray.
1463  * @xa: XArray.
1464  * @index: index into array.
1465  *
1466  * Context: Any context.  Takes and releases the RCU lock.
1467  * Return: The entry at @index in @xa.
1468  */
1469 void *xa_load(struct xarray *xa, unsigned long index)
1470 {
1471 	XA_STATE(xas, xa, index);
1472 	void *entry;
1473 
1474 	rcu_read_lock();
1475 	do {
1476 		entry = xas_load(&xas);
1477 		if (xa_is_zero(entry))
1478 			entry = NULL;
1479 	} while (xas_retry(&xas, entry));
1480 	rcu_read_unlock();
1481 
1482 	return entry;
1483 }
1484 EXPORT_SYMBOL(xa_load);
1485 
1486 static void *xas_result(struct xa_state *xas, void *curr)
1487 {
1488 	if (xa_is_zero(curr))
1489 		return NULL;
1490 	if (xas_error(xas))
1491 		curr = xas->xa_node;
1492 	return curr;
1493 }
1494 
1495 /**
1496  * __xa_erase() - Erase this entry from the XArray while locked.
1497  * @xa: XArray.
1498  * @index: Index into array.
1499  *
1500  * After this function returns, loading from @index will return %NULL.
1501  * If the index is part of a multi-index entry, all indices will be erased
1502  * and none of the entries will be part of a multi-index entry.
1503  *
1504  * Context: Any context.  Expects xa_lock to be held on entry.
1505  * Return: The entry which used to be at this index.
1506  */
1507 void *__xa_erase(struct xarray *xa, unsigned long index)
1508 {
1509 	XA_STATE(xas, xa, index);
1510 	return xas_result(&xas, xas_store(&xas, NULL));
1511 }
1512 EXPORT_SYMBOL(__xa_erase);
1513 
1514 /**
1515  * xa_erase() - Erase this entry from the XArray.
1516  * @xa: XArray.
1517  * @index: Index of entry.
1518  *
1519  * After this function returns, loading from @index will return %NULL.
1520  * If the index is part of a multi-index entry, all indices will be erased
1521  * and none of the entries will be part of a multi-index entry.
1522  *
1523  * Context: Any context.  Takes and releases the xa_lock.
1524  * Return: The entry which used to be at this index.
1525  */
1526 void *xa_erase(struct xarray *xa, unsigned long index)
1527 {
1528 	void *entry;
1529 
1530 	xa_lock(xa);
1531 	entry = __xa_erase(xa, index);
1532 	xa_unlock(xa);
1533 
1534 	return entry;
1535 }
1536 EXPORT_SYMBOL(xa_erase);
1537 
1538 /**
1539  * __xa_store() - Store this entry in the XArray.
1540  * @xa: XArray.
1541  * @index: Index into array.
1542  * @entry: New entry.
1543  * @gfp: Memory allocation flags.
1544  *
1545  * You must already be holding the xa_lock when calling this function.
1546  * It will drop the lock if needed to allocate memory, and then reacquire
1547  * it afterwards.
1548  *
1549  * Context: Any context.  Expects xa_lock to be held on entry.  May
1550  * release and reacquire xa_lock if @gfp flags permit.
1551  * Return: The old entry at this index or xa_err() if an error happened.
1552  */
1553 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1554 {
1555 	XA_STATE(xas, xa, index);
1556 	void *curr;
1557 
1558 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1559 		return XA_ERROR(-EINVAL);
1560 	if (xa_track_free(xa) && !entry)
1561 		entry = XA_ZERO_ENTRY;
1562 
1563 	do {
1564 		curr = xas_store(&xas, entry);
1565 		if (xa_track_free(xa))
1566 			xas_clear_mark(&xas, XA_FREE_MARK);
1567 	} while (__xas_nomem(&xas, gfp));
1568 
1569 	return xas_result(&xas, curr);
1570 }
1571 EXPORT_SYMBOL(__xa_store);
1572 
1573 /**
1574  * xa_store() - Store this entry in the XArray.
1575  * @xa: XArray.
1576  * @index: Index into array.
1577  * @entry: New entry.
1578  * @gfp: Memory allocation flags.
1579  *
1580  * After this function returns, loads from this index will return @entry.
1581  * Storing into an existing multi-index entry updates the entry of every index.
1582  * The marks associated with @index are unaffected unless @entry is %NULL.
1583  *
1584  * Context: Any context.  Takes and releases the xa_lock.
1585  * May sleep if the @gfp flags permit.
1586  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1587  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1588  * failed.
1589  */
1590 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1591 {
1592 	void *curr;
1593 
1594 	xa_lock(xa);
1595 	curr = __xa_store(xa, index, entry, gfp);
1596 	xa_unlock(xa);
1597 
1598 	return curr;
1599 }
1600 EXPORT_SYMBOL(xa_store);
1601 
1602 /**
1603  * __xa_cmpxchg() - Store this entry in the XArray.
1604  * @xa: XArray.
1605  * @index: Index into array.
1606  * @old: Old value to test against.
1607  * @entry: New entry.
1608  * @gfp: Memory allocation flags.
1609  *
1610  * You must already be holding the xa_lock when calling this function.
1611  * It will drop the lock if needed to allocate memory, and then reacquire
1612  * it afterwards.
1613  *
1614  * Context: Any context.  Expects xa_lock to be held on entry.  May
1615  * release and reacquire xa_lock if @gfp flags permit.
1616  * Return: The old entry at this index or xa_err() if an error happened.
1617  */
1618 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1619 			void *old, void *entry, gfp_t gfp)
1620 {
1621 	XA_STATE(xas, xa, index);
1622 	void *curr;
1623 
1624 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1625 		return XA_ERROR(-EINVAL);
1626 
1627 	do {
1628 		curr = xas_load(&xas);
1629 		if (curr == old) {
1630 			xas_store(&xas, entry);
1631 			if (xa_track_free(xa) && entry && !curr)
1632 				xas_clear_mark(&xas, XA_FREE_MARK);
1633 		}
1634 	} while (__xas_nomem(&xas, gfp));
1635 
1636 	return xas_result(&xas, curr);
1637 }
1638 EXPORT_SYMBOL(__xa_cmpxchg);
1639 
1640 /**
1641  * __xa_insert() - Store this entry in the XArray if no entry is present.
1642  * @xa: XArray.
1643  * @index: Index into array.
1644  * @entry: New entry.
1645  * @gfp: Memory allocation flags.
1646  *
1647  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1648  * if no entry is present.  Inserting will fail if a reserved entry is
1649  * present, even though loading from this index will return NULL.
1650  *
1651  * Context: Any context.  Expects xa_lock to be held on entry.  May
1652  * release and reacquire xa_lock if @gfp flags permit.
1653  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1654  * -ENOMEM if memory could not be allocated.
1655  */
1656 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1657 {
1658 	XA_STATE(xas, xa, index);
1659 	void *curr;
1660 
1661 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1662 		return -EINVAL;
1663 	if (!entry)
1664 		entry = XA_ZERO_ENTRY;
1665 
1666 	do {
1667 		curr = xas_load(&xas);
1668 		if (!curr) {
1669 			xas_store(&xas, entry);
1670 			if (xa_track_free(xa))
1671 				xas_clear_mark(&xas, XA_FREE_MARK);
1672 		} else {
1673 			xas_set_err(&xas, -EBUSY);
1674 		}
1675 	} while (__xas_nomem(&xas, gfp));
1676 
1677 	return xas_error(&xas);
1678 }
1679 EXPORT_SYMBOL(__xa_insert);
1680 
1681 #ifdef CONFIG_XARRAY_MULTI
1682 static void xas_set_range(struct xa_state *xas, unsigned long first,
1683 		unsigned long last)
1684 {
1685 	unsigned int shift = 0;
1686 	unsigned long sibs = last - first;
1687 	unsigned int offset = XA_CHUNK_MASK;
1688 
1689 	xas_set(xas, first);
1690 
1691 	while ((first & XA_CHUNK_MASK) == 0) {
1692 		if (sibs < XA_CHUNK_MASK)
1693 			break;
1694 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1695 			break;
1696 		shift += XA_CHUNK_SHIFT;
1697 		if (offset == XA_CHUNK_MASK)
1698 			offset = sibs & XA_CHUNK_MASK;
1699 		sibs >>= XA_CHUNK_SHIFT;
1700 		first >>= XA_CHUNK_SHIFT;
1701 	}
1702 
1703 	offset = first & XA_CHUNK_MASK;
1704 	if (offset + sibs > XA_CHUNK_MASK)
1705 		sibs = XA_CHUNK_MASK - offset;
1706 	if ((((first + sibs + 1) << shift) - 1) > last)
1707 		sibs -= 1;
1708 
1709 	xas->xa_shift = shift;
1710 	xas->xa_sibs = sibs;
1711 }
1712 
1713 /**
1714  * xa_store_range() - Store this entry at a range of indices in the XArray.
1715  * @xa: XArray.
1716  * @first: First index to affect.
1717  * @last: Last index to affect.
1718  * @entry: New entry.
1719  * @gfp: Memory allocation flags.
1720  *
1721  * After this function returns, loads from any index between @first and @last,
1722  * inclusive will return @entry.
1723  * Storing into an existing multi-index entry updates the entry of every index.
1724  * The marks associated with @index are unaffected unless @entry is %NULL.
1725  *
1726  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1727  * if the @gfp flags permit.
1728  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1729  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1730  */
1731 void *xa_store_range(struct xarray *xa, unsigned long first,
1732 		unsigned long last, void *entry, gfp_t gfp)
1733 {
1734 	XA_STATE(xas, xa, 0);
1735 
1736 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1737 		return XA_ERROR(-EINVAL);
1738 	if (last < first)
1739 		return XA_ERROR(-EINVAL);
1740 
1741 	do {
1742 		xas_lock(&xas);
1743 		if (entry) {
1744 			unsigned int order = BITS_PER_LONG;
1745 			if (last + 1)
1746 				order = __ffs(last + 1);
1747 			xas_set_order(&xas, last, order);
1748 			xas_create(&xas, true);
1749 			if (xas_error(&xas))
1750 				goto unlock;
1751 		}
1752 		do {
1753 			xas_set_range(&xas, first, last);
1754 			xas_store(&xas, entry);
1755 			if (xas_error(&xas))
1756 				goto unlock;
1757 			first += xas_size(&xas);
1758 		} while (first <= last);
1759 unlock:
1760 		xas_unlock(&xas);
1761 	} while (xas_nomem(&xas, gfp));
1762 
1763 	return xas_result(&xas, NULL);
1764 }
1765 EXPORT_SYMBOL(xa_store_range);
1766 
1767 /**
1768  * xa_get_order() - Get the order of an entry.
1769  * @xa: XArray.
1770  * @index: Index of the entry.
1771  *
1772  * Return: A number between 0 and 63 indicating the order of the entry.
1773  */
1774 int xa_get_order(struct xarray *xa, unsigned long index)
1775 {
1776 	XA_STATE(xas, xa, index);
1777 	void *entry;
1778 	int order = 0;
1779 
1780 	rcu_read_lock();
1781 	entry = xas_load(&xas);
1782 
1783 	if (!entry)
1784 		goto unlock;
1785 
1786 	if (!xas.xa_node)
1787 		goto unlock;
1788 
1789 	for (;;) {
1790 		unsigned int slot = xas.xa_offset + (1 << order);
1791 
1792 		if (slot >= XA_CHUNK_SIZE)
1793 			break;
1794 		if (!xa_is_sibling(xas.xa_node->slots[slot]))
1795 			break;
1796 		order++;
1797 	}
1798 
1799 	order += xas.xa_node->shift;
1800 unlock:
1801 	rcu_read_unlock();
1802 
1803 	return order;
1804 }
1805 EXPORT_SYMBOL(xa_get_order);
1806 #endif /* CONFIG_XARRAY_MULTI */
1807 
1808 /**
1809  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1810  * @xa: XArray.
1811  * @id: Pointer to ID.
1812  * @limit: Range for allocated ID.
1813  * @entry: New entry.
1814  * @gfp: Memory allocation flags.
1815  *
1816  * Finds an empty entry in @xa between @limit.min and @limit.max,
1817  * stores the index into the @id pointer, then stores the entry at
1818  * that index.  A concurrent lookup will not see an uninitialised @id.
1819  *
1820  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1821  * in xa_init_flags().
1822  *
1823  * Context: Any context.  Expects xa_lock to be held on entry.  May
1824  * release and reacquire xa_lock if @gfp flags permit.
1825  * Return: 0 on success, -ENOMEM if memory could not be allocated or
1826  * -EBUSY if there are no free entries in @limit.
1827  */
1828 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1829 		struct xa_limit limit, gfp_t gfp)
1830 {
1831 	XA_STATE(xas, xa, 0);
1832 
1833 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1834 		return -EINVAL;
1835 	if (WARN_ON_ONCE(!xa_track_free(xa)))
1836 		return -EINVAL;
1837 
1838 	if (!entry)
1839 		entry = XA_ZERO_ENTRY;
1840 
1841 	do {
1842 		xas.xa_index = limit.min;
1843 		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1844 		if (xas.xa_node == XAS_RESTART)
1845 			xas_set_err(&xas, -EBUSY);
1846 		else
1847 			*id = xas.xa_index;
1848 		xas_store(&xas, entry);
1849 		xas_clear_mark(&xas, XA_FREE_MARK);
1850 	} while (__xas_nomem(&xas, gfp));
1851 
1852 	return xas_error(&xas);
1853 }
1854 EXPORT_SYMBOL(__xa_alloc);
1855 
1856 /**
1857  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1858  * @xa: XArray.
1859  * @id: Pointer to ID.
1860  * @entry: New entry.
1861  * @limit: Range of allocated ID.
1862  * @next: Pointer to next ID to allocate.
1863  * @gfp: Memory allocation flags.
1864  *
1865  * Finds an empty entry in @xa between @limit.min and @limit.max,
1866  * stores the index into the @id pointer, then stores the entry at
1867  * that index.  A concurrent lookup will not see an uninitialised @id.
1868  * The search for an empty entry will start at @next and will wrap
1869  * around if necessary.
1870  *
1871  * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1872  * in xa_init_flags().
1873  *
1874  * Context: Any context.  Expects xa_lock to be held on entry.  May
1875  * release and reacquire xa_lock if @gfp flags permit.
1876  * Return: 0 if the allocation succeeded without wrapping.  1 if the
1877  * allocation succeeded after wrapping, -ENOMEM if memory could not be
1878  * allocated or -EBUSY if there are no free entries in @limit.
1879  */
1880 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1881 		struct xa_limit limit, u32 *next, gfp_t gfp)
1882 {
1883 	u32 min = limit.min;
1884 	int ret;
1885 
1886 	limit.min = max(min, *next);
1887 	ret = __xa_alloc(xa, id, entry, limit, gfp);
1888 	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1889 		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1890 		ret = 1;
1891 	}
1892 
1893 	if (ret < 0 && limit.min > min) {
1894 		limit.min = min;
1895 		ret = __xa_alloc(xa, id, entry, limit, gfp);
1896 		if (ret == 0)
1897 			ret = 1;
1898 	}
1899 
1900 	if (ret >= 0) {
1901 		*next = *id + 1;
1902 		if (*next == 0)
1903 			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1904 	}
1905 	return ret;
1906 }
1907 EXPORT_SYMBOL(__xa_alloc_cyclic);
1908 
1909 /**
1910  * __xa_set_mark() - Set this mark on this entry while locked.
1911  * @xa: XArray.
1912  * @index: Index of entry.
1913  * @mark: Mark number.
1914  *
1915  * Attempting to set a mark on a %NULL entry does not succeed.
1916  *
1917  * Context: Any context.  Expects xa_lock to be held on entry.
1918  */
1919 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1920 {
1921 	XA_STATE(xas, xa, index);
1922 	void *entry = xas_load(&xas);
1923 
1924 	if (entry)
1925 		xas_set_mark(&xas, mark);
1926 }
1927 EXPORT_SYMBOL(__xa_set_mark);
1928 
1929 /**
1930  * __xa_clear_mark() - Clear this mark on this entry while locked.
1931  * @xa: XArray.
1932  * @index: Index of entry.
1933  * @mark: Mark number.
1934  *
1935  * Context: Any context.  Expects xa_lock to be held on entry.
1936  */
1937 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1938 {
1939 	XA_STATE(xas, xa, index);
1940 	void *entry = xas_load(&xas);
1941 
1942 	if (entry)
1943 		xas_clear_mark(&xas, mark);
1944 }
1945 EXPORT_SYMBOL(__xa_clear_mark);
1946 
1947 /**
1948  * xa_get_mark() - Inquire whether this mark is set on this entry.
1949  * @xa: XArray.
1950  * @index: Index of entry.
1951  * @mark: Mark number.
1952  *
1953  * This function uses the RCU read lock, so the result may be out of date
1954  * by the time it returns.  If you need the result to be stable, use a lock.
1955  *
1956  * Context: Any context.  Takes and releases the RCU lock.
1957  * Return: True if the entry at @index has this mark set, false if it doesn't.
1958  */
1959 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1960 {
1961 	XA_STATE(xas, xa, index);
1962 	void *entry;
1963 
1964 	rcu_read_lock();
1965 	entry = xas_start(&xas);
1966 	while (xas_get_mark(&xas, mark)) {
1967 		if (!xa_is_node(entry))
1968 			goto found;
1969 		entry = xas_descend(&xas, xa_to_node(entry));
1970 	}
1971 	rcu_read_unlock();
1972 	return false;
1973  found:
1974 	rcu_read_unlock();
1975 	return true;
1976 }
1977 EXPORT_SYMBOL(xa_get_mark);
1978 
1979 /**
1980  * xa_set_mark() - Set this mark on this entry.
1981  * @xa: XArray.
1982  * @index: Index of entry.
1983  * @mark: Mark number.
1984  *
1985  * Attempting to set a mark on a %NULL entry does not succeed.
1986  *
1987  * Context: Process context.  Takes and releases the xa_lock.
1988  */
1989 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1990 {
1991 	xa_lock(xa);
1992 	__xa_set_mark(xa, index, mark);
1993 	xa_unlock(xa);
1994 }
1995 EXPORT_SYMBOL(xa_set_mark);
1996 
1997 /**
1998  * xa_clear_mark() - Clear this mark on this entry.
1999  * @xa: XArray.
2000  * @index: Index of entry.
2001  * @mark: Mark number.
2002  *
2003  * Clearing a mark always succeeds.
2004  *
2005  * Context: Process context.  Takes and releases the xa_lock.
2006  */
2007 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2008 {
2009 	xa_lock(xa);
2010 	__xa_clear_mark(xa, index, mark);
2011 	xa_unlock(xa);
2012 }
2013 EXPORT_SYMBOL(xa_clear_mark);
2014 
2015 /**
2016  * xa_find() - Search the XArray for an entry.
2017  * @xa: XArray.
2018  * @indexp: Pointer to an index.
2019  * @max: Maximum index to search to.
2020  * @filter: Selection criterion.
2021  *
2022  * Finds the entry in @xa which matches the @filter, and has the lowest
2023  * index that is at least @indexp and no more than @max.
2024  * If an entry is found, @indexp is updated to be the index of the entry.
2025  * This function is protected by the RCU read lock, so it may not find
2026  * entries which are being simultaneously added.  It will not return an
2027  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2028  *
2029  * Context: Any context.  Takes and releases the RCU lock.
2030  * Return: The entry, if found, otherwise %NULL.
2031  */
2032 void *xa_find(struct xarray *xa, unsigned long *indexp,
2033 			unsigned long max, xa_mark_t filter)
2034 {
2035 	XA_STATE(xas, xa, *indexp);
2036 	void *entry;
2037 
2038 	rcu_read_lock();
2039 	do {
2040 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2041 			entry = xas_find_marked(&xas, max, filter);
2042 		else
2043 			entry = xas_find(&xas, max);
2044 	} while (xas_retry(&xas, entry));
2045 	rcu_read_unlock();
2046 
2047 	if (entry)
2048 		*indexp = xas.xa_index;
2049 	return entry;
2050 }
2051 EXPORT_SYMBOL(xa_find);
2052 
2053 static bool xas_sibling(struct xa_state *xas)
2054 {
2055 	struct xa_node *node = xas->xa_node;
2056 	unsigned long mask;
2057 
2058 	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2059 		return false;
2060 	mask = (XA_CHUNK_SIZE << node->shift) - 1;
2061 	return (xas->xa_index & mask) >
2062 		((unsigned long)xas->xa_offset << node->shift);
2063 }
2064 
2065 /**
2066  * xa_find_after() - Search the XArray for a present entry.
2067  * @xa: XArray.
2068  * @indexp: Pointer to an index.
2069  * @max: Maximum index to search to.
2070  * @filter: Selection criterion.
2071  *
2072  * Finds the entry in @xa which matches the @filter and has the lowest
2073  * index that is above @indexp and no more than @max.
2074  * If an entry is found, @indexp is updated to be the index of the entry.
2075  * This function is protected by the RCU read lock, so it may miss entries
2076  * which are being simultaneously added.  It will not return an
2077  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2078  *
2079  * Context: Any context.  Takes and releases the RCU lock.
2080  * Return: The pointer, if found, otherwise %NULL.
2081  */
2082 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2083 			unsigned long max, xa_mark_t filter)
2084 {
2085 	XA_STATE(xas, xa, *indexp + 1);
2086 	void *entry;
2087 
2088 	if (xas.xa_index == 0)
2089 		return NULL;
2090 
2091 	rcu_read_lock();
2092 	for (;;) {
2093 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2094 			entry = xas_find_marked(&xas, max, filter);
2095 		else
2096 			entry = xas_find(&xas, max);
2097 
2098 		if (xas_invalid(&xas))
2099 			break;
2100 		if (xas_sibling(&xas))
2101 			continue;
2102 		if (!xas_retry(&xas, entry))
2103 			break;
2104 	}
2105 	rcu_read_unlock();
2106 
2107 	if (entry)
2108 		*indexp = xas.xa_index;
2109 	return entry;
2110 }
2111 EXPORT_SYMBOL(xa_find_after);
2112 
2113 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2114 			unsigned long max, unsigned int n)
2115 {
2116 	void *entry;
2117 	unsigned int i = 0;
2118 
2119 	rcu_read_lock();
2120 	xas_for_each(xas, entry, max) {
2121 		if (xas_retry(xas, entry))
2122 			continue;
2123 		dst[i++] = entry;
2124 		if (i == n)
2125 			break;
2126 	}
2127 	rcu_read_unlock();
2128 
2129 	return i;
2130 }
2131 
2132 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2133 			unsigned long max, unsigned int n, xa_mark_t mark)
2134 {
2135 	void *entry;
2136 	unsigned int i = 0;
2137 
2138 	rcu_read_lock();
2139 	xas_for_each_marked(xas, entry, max, mark) {
2140 		if (xas_retry(xas, entry))
2141 			continue;
2142 		dst[i++] = entry;
2143 		if (i == n)
2144 			break;
2145 	}
2146 	rcu_read_unlock();
2147 
2148 	return i;
2149 }
2150 
2151 /**
2152  * xa_extract() - Copy selected entries from the XArray into a normal array.
2153  * @xa: The source XArray to copy from.
2154  * @dst: The buffer to copy entries into.
2155  * @start: The first index in the XArray eligible to be selected.
2156  * @max: The last index in the XArray eligible to be selected.
2157  * @n: The maximum number of entries to copy.
2158  * @filter: Selection criterion.
2159  *
2160  * Copies up to @n entries that match @filter from the XArray.  The
2161  * copied entries will have indices between @start and @max, inclusive.
2162  *
2163  * The @filter may be an XArray mark value, in which case entries which are
2164  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
2165  * which case all entries which are not %NULL will be copied.
2166  *
2167  * The entries returned may not represent a snapshot of the XArray at a
2168  * moment in time.  For example, if another thread stores to index 5, then
2169  * index 10, calling xa_extract() may return the old contents of index 5
2170  * and the new contents of index 10.  Indices not modified while this
2171  * function is running will not be skipped.
2172  *
2173  * If you need stronger guarantees, holding the xa_lock across calls to this
2174  * function will prevent concurrent modification.
2175  *
2176  * Context: Any context.  Takes and releases the RCU lock.
2177  * Return: The number of entries copied.
2178  */
2179 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2180 			unsigned long max, unsigned int n, xa_mark_t filter)
2181 {
2182 	XA_STATE(xas, xa, start);
2183 
2184 	if (!n)
2185 		return 0;
2186 
2187 	if ((__force unsigned int)filter < XA_MAX_MARKS)
2188 		return xas_extract_marked(&xas, dst, max, n, filter);
2189 	return xas_extract_present(&xas, dst, max, n);
2190 }
2191 EXPORT_SYMBOL(xa_extract);
2192 
2193 /**
2194  * xa_delete_node() - Private interface for workingset code.
2195  * @node: Node to be removed from the tree.
2196  * @update: Function to call to update ancestor nodes.
2197  *
2198  * Context: xa_lock must be held on entry and will not be released.
2199  */
2200 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2201 {
2202 	struct xa_state xas = {
2203 		.xa = node->array,
2204 		.xa_index = (unsigned long)node->offset <<
2205 				(node->shift + XA_CHUNK_SHIFT),
2206 		.xa_shift = node->shift + XA_CHUNK_SHIFT,
2207 		.xa_offset = node->offset,
2208 		.xa_node = xa_parent_locked(node->array, node),
2209 		.xa_update = update,
2210 	};
2211 
2212 	xas_store(&xas, NULL);
2213 }
2214 EXPORT_SYMBOL_GPL(xa_delete_node);	/* For the benefit of the test suite */
2215 
2216 /**
2217  * xa_destroy() - Free all internal data structures.
2218  * @xa: XArray.
2219  *
2220  * After calling this function, the XArray is empty and has freed all memory
2221  * allocated for its internal data structures.  You are responsible for
2222  * freeing the objects referenced by the XArray.
2223  *
2224  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
2225  */
2226 void xa_destroy(struct xarray *xa)
2227 {
2228 	XA_STATE(xas, xa, 0);
2229 	unsigned long flags;
2230 	void *entry;
2231 
2232 	xas.xa_node = NULL;
2233 	xas_lock_irqsave(&xas, flags);
2234 	entry = xa_head_locked(xa);
2235 	RCU_INIT_POINTER(xa->xa_head, NULL);
2236 	xas_init_marks(&xas);
2237 	if (xa_zero_busy(xa))
2238 		xa_mark_clear(xa, XA_FREE_MARK);
2239 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
2240 	if (xa_is_node(entry))
2241 		xas_free_nodes(&xas, xa_to_node(entry));
2242 	xas_unlock_irqrestore(&xas, flags);
2243 }
2244 EXPORT_SYMBOL(xa_destroy);
2245 
2246 #ifdef XA_DEBUG
2247 void xa_dump_node(const struct xa_node *node)
2248 {
2249 	unsigned i, j;
2250 
2251 	if (!node)
2252 		return;
2253 	if ((unsigned long)node & 3) {
2254 		pr_cont("node %px\n", node);
2255 		return;
2256 	}
2257 
2258 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2259 		"array %px list %px %px marks",
2260 		node, node->parent ? "offset" : "max", node->offset,
2261 		node->parent, node->shift, node->count, node->nr_values,
2262 		node->array, node->private_list.prev, node->private_list.next);
2263 	for (i = 0; i < XA_MAX_MARKS; i++)
2264 		for (j = 0; j < XA_MARK_LONGS; j++)
2265 			pr_cont(" %lx", node->marks[i][j]);
2266 	pr_cont("\n");
2267 }
2268 
2269 void xa_dump_index(unsigned long index, unsigned int shift)
2270 {
2271 	if (!shift)
2272 		pr_info("%lu: ", index);
2273 	else if (shift >= BITS_PER_LONG)
2274 		pr_info("0-%lu: ", ~0UL);
2275 	else
2276 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2277 }
2278 
2279 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2280 {
2281 	if (!entry)
2282 		return;
2283 
2284 	xa_dump_index(index, shift);
2285 
2286 	if (xa_is_node(entry)) {
2287 		if (shift == 0) {
2288 			pr_cont("%px\n", entry);
2289 		} else {
2290 			unsigned long i;
2291 			struct xa_node *node = xa_to_node(entry);
2292 			xa_dump_node(node);
2293 			for (i = 0; i < XA_CHUNK_SIZE; i++)
2294 				xa_dump_entry(node->slots[i],
2295 				      index + (i << node->shift), node->shift);
2296 		}
2297 	} else if (xa_is_value(entry))
2298 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2299 						xa_to_value(entry), entry);
2300 	else if (!xa_is_internal(entry))
2301 		pr_cont("%px\n", entry);
2302 	else if (xa_is_retry(entry))
2303 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2304 	else if (xa_is_sibling(entry))
2305 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2306 	else if (xa_is_zero(entry))
2307 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2308 	else
2309 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2310 }
2311 
2312 void xa_dump(const struct xarray *xa)
2313 {
2314 	void *entry = xa->xa_head;
2315 	unsigned int shift = 0;
2316 
2317 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2318 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2319 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2320 	if (xa_is_node(entry))
2321 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2322 	xa_dump_entry(entry, 0, shift);
2323 }
2324 #endif
2325