1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 xa_mark_t mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 for (;;) { 132 unsigned long *marks = node_marks(xas->xa_node, mark); 133 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) { 135 __set_bit(xas->xa_offset, marks); 136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 137 } 138 if (mark == XA_MARK_MAX) 139 break; 140 mark_inc(mark); 141 } 142 } 143 144 /* extracts the offset within this node from the index */ 145 static unsigned int get_offset(unsigned long index, struct xa_node *node) 146 { 147 return (index >> node->shift) & XA_CHUNK_MASK; 148 } 149 150 static void xas_set_offset(struct xa_state *xas) 151 { 152 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 153 } 154 155 /* move the index either forwards (find) or backwards (sibling slot) */ 156 static void xas_move_index(struct xa_state *xas, unsigned long offset) 157 { 158 unsigned int shift = xas->xa_node->shift; 159 xas->xa_index &= ~XA_CHUNK_MASK << shift; 160 xas->xa_index += offset << shift; 161 } 162 163 static void xas_next_offset(struct xa_state *xas) 164 { 165 xas->xa_offset++; 166 xas_move_index(xas, xas->xa_offset); 167 } 168 169 static void *set_bounds(struct xa_state *xas) 170 { 171 xas->xa_node = XAS_BOUNDS; 172 return NULL; 173 } 174 175 /* 176 * Starts a walk. If the @xas is already valid, we assume that it's on 177 * the right path and just return where we've got to. If we're in an 178 * error state, return NULL. If the index is outside the current scope 179 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 180 * set @xas->xa_node to NULL and return the current head of the array. 181 */ 182 static void *xas_start(struct xa_state *xas) 183 { 184 void *entry; 185 186 if (xas_valid(xas)) 187 return xas_reload(xas); 188 if (xas_error(xas)) 189 return NULL; 190 191 entry = xa_head(xas->xa); 192 if (!xa_is_node(entry)) { 193 if (xas->xa_index) 194 return set_bounds(xas); 195 } else { 196 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 197 return set_bounds(xas); 198 } 199 200 xas->xa_node = NULL; 201 return entry; 202 } 203 204 static __always_inline void *xas_descend(struct xa_state *xas, 205 struct xa_node *node) 206 { 207 unsigned int offset = get_offset(xas->xa_index, node); 208 void *entry = xa_entry(xas->xa, node, offset); 209 210 xas->xa_node = node; 211 while (xa_is_sibling(entry)) { 212 offset = xa_to_sibling(entry); 213 entry = xa_entry(xas->xa, node, offset); 214 if (node->shift && xa_is_node(entry)) 215 entry = XA_RETRY_ENTRY; 216 } 217 218 xas->xa_offset = offset; 219 return entry; 220 } 221 222 /** 223 * xas_load() - Load an entry from the XArray (advanced). 224 * @xas: XArray operation state. 225 * 226 * Usually walks the @xas to the appropriate state to load the entry 227 * stored at xa_index. However, it will do nothing and return %NULL if 228 * @xas is in an error state. xas_load() will never expand the tree. 229 * 230 * If the xa_state is set up to operate on a multi-index entry, xas_load() 231 * may return %NULL or an internal entry, even if there are entries 232 * present within the range specified by @xas. 233 * 234 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 235 * Return: Usually an entry in the XArray, but see description for exceptions. 236 */ 237 void *xas_load(struct xa_state *xas) 238 { 239 void *entry = xas_start(xas); 240 241 while (xa_is_node(entry)) { 242 struct xa_node *node = xa_to_node(entry); 243 244 if (xas->xa_shift > node->shift) 245 break; 246 entry = xas_descend(xas, node); 247 if (node->shift == 0) 248 break; 249 } 250 return entry; 251 } 252 EXPORT_SYMBOL_GPL(xas_load); 253 254 #define XA_RCU_FREE ((struct xarray *)1) 255 256 static void xa_node_free(struct xa_node *node) 257 { 258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 259 node->array = XA_RCU_FREE; 260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 261 } 262 263 /* 264 * xas_destroy() - Free any resources allocated during the XArray operation. 265 * @xas: XArray operation state. 266 * 267 * Most users will not need to call this function; it is called for you 268 * by xas_nomem(). 269 */ 270 void xas_destroy(struct xa_state *xas) 271 { 272 struct xa_node *next, *node = xas->xa_alloc; 273 274 while (node) { 275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 276 next = rcu_dereference_raw(node->parent); 277 radix_tree_node_rcu_free(&node->rcu_head); 278 xas->xa_alloc = node = next; 279 } 280 } 281 EXPORT_SYMBOL_GPL(xas_destroy); 282 283 /** 284 * xas_nomem() - Allocate memory if needed. 285 * @xas: XArray operation state. 286 * @gfp: Memory allocation flags. 287 * 288 * If we need to add new nodes to the XArray, we try to allocate memory 289 * with GFP_NOWAIT while holding the lock, which will usually succeed. 290 * If it fails, @xas is flagged as needing memory to continue. The caller 291 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 292 * the caller should retry the operation. 293 * 294 * Forward progress is guaranteed as one node is allocated here and 295 * stored in the xa_state where it will be found by xas_alloc(). More 296 * nodes will likely be found in the slab allocator, but we do not tie 297 * them up here. 298 * 299 * Return: true if memory was needed, and was successfully allocated. 300 */ 301 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 302 { 303 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 304 xas_destroy(xas); 305 return false; 306 } 307 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 308 gfp |= __GFP_ACCOUNT; 309 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 310 if (!xas->xa_alloc) 311 return false; 312 xas->xa_alloc->parent = NULL; 313 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 314 xas->xa_node = XAS_RESTART; 315 return true; 316 } 317 EXPORT_SYMBOL_GPL(xas_nomem); 318 319 /* 320 * __xas_nomem() - Drop locks and allocate memory if needed. 321 * @xas: XArray operation state. 322 * @gfp: Memory allocation flags. 323 * 324 * Internal variant of xas_nomem(). 325 * 326 * Return: true if memory was needed, and was successfully allocated. 327 */ 328 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 329 __must_hold(xas->xa->xa_lock) 330 { 331 unsigned int lock_type = xa_lock_type(xas->xa); 332 333 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 334 xas_destroy(xas); 335 return false; 336 } 337 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 338 gfp |= __GFP_ACCOUNT; 339 if (gfpflags_allow_blocking(gfp)) { 340 xas_unlock_type(xas, lock_type); 341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 342 xas_lock_type(xas, lock_type); 343 } else { 344 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 345 } 346 if (!xas->xa_alloc) 347 return false; 348 xas->xa_alloc->parent = NULL; 349 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 350 xas->xa_node = XAS_RESTART; 351 return true; 352 } 353 354 static void xas_update(struct xa_state *xas, struct xa_node *node) 355 { 356 if (xas->xa_update) 357 xas->xa_update(node); 358 else 359 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 360 } 361 362 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 363 { 364 struct xa_node *parent = xas->xa_node; 365 struct xa_node *node = xas->xa_alloc; 366 367 if (xas_invalid(xas)) 368 return NULL; 369 370 if (node) { 371 xas->xa_alloc = NULL; 372 } else { 373 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 374 375 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 376 gfp |= __GFP_ACCOUNT; 377 378 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 379 if (!node) { 380 xas_set_err(xas, -ENOMEM); 381 return NULL; 382 } 383 } 384 385 if (parent) { 386 node->offset = xas->xa_offset; 387 parent->count++; 388 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 389 xas_update(xas, parent); 390 } 391 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 392 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 393 node->shift = shift; 394 node->count = 0; 395 node->nr_values = 0; 396 RCU_INIT_POINTER(node->parent, xas->xa_node); 397 node->array = xas->xa; 398 399 return node; 400 } 401 402 #ifdef CONFIG_XARRAY_MULTI 403 /* Returns the number of indices covered by a given xa_state */ 404 static unsigned long xas_size(const struct xa_state *xas) 405 { 406 return (xas->xa_sibs + 1UL) << xas->xa_shift; 407 } 408 #endif 409 410 /* 411 * Use this to calculate the maximum index that will need to be created 412 * in order to add the entry described by @xas. Because we cannot store a 413 * multi-index entry at index 0, the calculation is a little more complex 414 * than you might expect. 415 */ 416 static unsigned long xas_max(struct xa_state *xas) 417 { 418 unsigned long max = xas->xa_index; 419 420 #ifdef CONFIG_XARRAY_MULTI 421 if (xas->xa_shift || xas->xa_sibs) { 422 unsigned long mask = xas_size(xas) - 1; 423 max |= mask; 424 if (mask == max) 425 max++; 426 } 427 #endif 428 429 return max; 430 } 431 432 /* The maximum index that can be contained in the array without expanding it */ 433 static unsigned long max_index(void *entry) 434 { 435 if (!xa_is_node(entry)) 436 return 0; 437 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 438 } 439 440 static inline void *xa_zero_to_null(void *entry) 441 { 442 return xa_is_zero(entry) ? NULL : entry; 443 } 444 445 static void xas_shrink(struct xa_state *xas) 446 { 447 struct xarray *xa = xas->xa; 448 struct xa_node *node = xas->xa_node; 449 450 for (;;) { 451 void *entry; 452 453 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 454 if (node->count != 1) 455 break; 456 entry = xa_entry_locked(xa, node, 0); 457 if (!entry) 458 break; 459 if (!xa_is_node(entry) && node->shift) 460 break; 461 if (xa_zero_busy(xa)) 462 entry = xa_zero_to_null(entry); 463 xas->xa_node = XAS_BOUNDS; 464 465 RCU_INIT_POINTER(xa->xa_head, entry); 466 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 467 xa_mark_clear(xa, XA_FREE_MARK); 468 469 node->count = 0; 470 node->nr_values = 0; 471 if (!xa_is_node(entry)) 472 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 473 xas_update(xas, node); 474 xa_node_free(node); 475 if (!xa_is_node(entry)) 476 break; 477 node = xa_to_node(entry); 478 node->parent = NULL; 479 } 480 } 481 482 /* 483 * xas_delete_node() - Attempt to delete an xa_node 484 * @xas: Array operation state. 485 * 486 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 487 * a non-zero reference count. 488 */ 489 static void xas_delete_node(struct xa_state *xas) 490 { 491 struct xa_node *node = xas->xa_node; 492 493 for (;;) { 494 struct xa_node *parent; 495 496 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 497 if (node->count) 498 break; 499 500 parent = xa_parent_locked(xas->xa, node); 501 xas->xa_node = parent; 502 xas->xa_offset = node->offset; 503 xa_node_free(node); 504 505 if (!parent) { 506 xas->xa->xa_head = NULL; 507 xas->xa_node = XAS_BOUNDS; 508 return; 509 } 510 511 parent->slots[xas->xa_offset] = NULL; 512 parent->count--; 513 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 514 node = parent; 515 xas_update(xas, node); 516 } 517 518 if (!node->parent) 519 xas_shrink(xas); 520 } 521 522 /** 523 * xas_free_nodes() - Free this node and all nodes that it references 524 * @xas: Array operation state. 525 * @top: Node to free 526 * 527 * This node has been removed from the tree. We must now free it and all 528 * of its subnodes. There may be RCU walkers with references into the tree, 529 * so we must replace all entries with retry markers. 530 */ 531 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 532 { 533 unsigned int offset = 0; 534 struct xa_node *node = top; 535 536 for (;;) { 537 void *entry = xa_entry_locked(xas->xa, node, offset); 538 539 if (node->shift && xa_is_node(entry)) { 540 node = xa_to_node(entry); 541 offset = 0; 542 continue; 543 } 544 if (entry) 545 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 546 offset++; 547 while (offset == XA_CHUNK_SIZE) { 548 struct xa_node *parent; 549 550 parent = xa_parent_locked(xas->xa, node); 551 offset = node->offset + 1; 552 node->count = 0; 553 node->nr_values = 0; 554 xas_update(xas, node); 555 xa_node_free(node); 556 if (node == top) 557 return; 558 node = parent; 559 } 560 } 561 } 562 563 /* 564 * xas_expand adds nodes to the head of the tree until it has reached 565 * sufficient height to be able to contain @xas->xa_index 566 */ 567 static int xas_expand(struct xa_state *xas, void *head) 568 { 569 struct xarray *xa = xas->xa; 570 struct xa_node *node = NULL; 571 unsigned int shift = 0; 572 unsigned long max = xas_max(xas); 573 574 if (!head) { 575 if (max == 0) 576 return 0; 577 while ((max >> shift) >= XA_CHUNK_SIZE) 578 shift += XA_CHUNK_SHIFT; 579 return shift + XA_CHUNK_SHIFT; 580 } else if (xa_is_node(head)) { 581 node = xa_to_node(head); 582 shift = node->shift + XA_CHUNK_SHIFT; 583 } 584 xas->xa_node = NULL; 585 586 while (max > max_index(head)) { 587 xa_mark_t mark = 0; 588 589 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 590 node = xas_alloc(xas, shift); 591 if (!node) 592 return -ENOMEM; 593 594 node->count = 1; 595 if (xa_is_value(head)) 596 node->nr_values = 1; 597 RCU_INIT_POINTER(node->slots[0], head); 598 599 /* Propagate the aggregated mark info to the new child */ 600 for (;;) { 601 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 602 node_mark_all(node, XA_FREE_MARK); 603 if (!xa_marked(xa, XA_FREE_MARK)) { 604 node_clear_mark(node, 0, XA_FREE_MARK); 605 xa_mark_set(xa, XA_FREE_MARK); 606 } 607 } else if (xa_marked(xa, mark)) { 608 node_set_mark(node, 0, mark); 609 } 610 if (mark == XA_MARK_MAX) 611 break; 612 mark_inc(mark); 613 } 614 615 /* 616 * Now that the new node is fully initialised, we can add 617 * it to the tree 618 */ 619 if (xa_is_node(head)) { 620 xa_to_node(head)->offset = 0; 621 rcu_assign_pointer(xa_to_node(head)->parent, node); 622 } 623 head = xa_mk_node(node); 624 rcu_assign_pointer(xa->xa_head, head); 625 xas_update(xas, node); 626 627 shift += XA_CHUNK_SHIFT; 628 } 629 630 xas->xa_node = node; 631 return shift; 632 } 633 634 /* 635 * xas_create() - Create a slot to store an entry in. 636 * @xas: XArray operation state. 637 * @allow_root: %true if we can store the entry in the root directly 638 * 639 * Most users will not need to call this function directly, as it is called 640 * by xas_store(). It is useful for doing conditional store operations 641 * (see the xa_cmpxchg() implementation for an example). 642 * 643 * Return: If the slot already existed, returns the contents of this slot. 644 * If the slot was newly created, returns %NULL. If it failed to create the 645 * slot, returns %NULL and indicates the error in @xas. 646 */ 647 static void *xas_create(struct xa_state *xas, bool allow_root) 648 { 649 struct xarray *xa = xas->xa; 650 void *entry; 651 void __rcu **slot; 652 struct xa_node *node = xas->xa_node; 653 int shift; 654 unsigned int order = xas->xa_shift; 655 656 if (xas_top(node)) { 657 entry = xa_head_locked(xa); 658 xas->xa_node = NULL; 659 if (!entry && xa_zero_busy(xa)) 660 entry = XA_ZERO_ENTRY; 661 shift = xas_expand(xas, entry); 662 if (shift < 0) 663 return NULL; 664 if (!shift && !allow_root) 665 shift = XA_CHUNK_SHIFT; 666 entry = xa_head_locked(xa); 667 slot = &xa->xa_head; 668 } else if (xas_error(xas)) { 669 return NULL; 670 } else if (node) { 671 unsigned int offset = xas->xa_offset; 672 673 shift = node->shift; 674 entry = xa_entry_locked(xa, node, offset); 675 slot = &node->slots[offset]; 676 } else { 677 shift = 0; 678 entry = xa_head_locked(xa); 679 slot = &xa->xa_head; 680 } 681 682 while (shift > order) { 683 shift -= XA_CHUNK_SHIFT; 684 if (!entry) { 685 node = xas_alloc(xas, shift); 686 if (!node) 687 break; 688 if (xa_track_free(xa)) 689 node_mark_all(node, XA_FREE_MARK); 690 rcu_assign_pointer(*slot, xa_mk_node(node)); 691 } else if (xa_is_node(entry)) { 692 node = xa_to_node(entry); 693 } else { 694 break; 695 } 696 entry = xas_descend(xas, node); 697 slot = &node->slots[xas->xa_offset]; 698 } 699 700 return entry; 701 } 702 703 /** 704 * xas_create_range() - Ensure that stores to this range will succeed 705 * @xas: XArray operation state. 706 * 707 * Creates all of the slots in the range covered by @xas. Sets @xas to 708 * create single-index entries and positions it at the beginning of the 709 * range. This is for the benefit of users which have not yet been 710 * converted to use multi-index entries. 711 */ 712 void xas_create_range(struct xa_state *xas) 713 { 714 unsigned long index = xas->xa_index; 715 unsigned char shift = xas->xa_shift; 716 unsigned char sibs = xas->xa_sibs; 717 718 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 719 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 720 xas->xa_offset |= sibs; 721 xas->xa_shift = 0; 722 xas->xa_sibs = 0; 723 724 for (;;) { 725 xas_create(xas, true); 726 if (xas_error(xas)) 727 goto restore; 728 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 729 goto success; 730 xas->xa_index -= XA_CHUNK_SIZE; 731 732 for (;;) { 733 struct xa_node *node = xas->xa_node; 734 if (node->shift >= shift) 735 break; 736 xas->xa_node = xa_parent_locked(xas->xa, node); 737 xas->xa_offset = node->offset - 1; 738 if (node->offset != 0) 739 break; 740 } 741 } 742 743 restore: 744 xas->xa_shift = shift; 745 xas->xa_sibs = sibs; 746 xas->xa_index = index; 747 return; 748 success: 749 xas->xa_index = index; 750 if (xas->xa_node) 751 xas_set_offset(xas); 752 } 753 EXPORT_SYMBOL_GPL(xas_create_range); 754 755 static void update_node(struct xa_state *xas, struct xa_node *node, 756 int count, int values) 757 { 758 if (!node || (!count && !values)) 759 return; 760 761 node->count += count; 762 node->nr_values += values; 763 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 764 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 765 xas_update(xas, node); 766 if (count < 0) 767 xas_delete_node(xas); 768 } 769 770 /** 771 * xas_store() - Store this entry in the XArray. 772 * @xas: XArray operation state. 773 * @entry: New entry. 774 * 775 * If @xas is operating on a multi-index entry, the entry returned by this 776 * function is essentially meaningless (it may be an internal entry or it 777 * may be %NULL, even if there are non-NULL entries at some of the indices 778 * covered by the range). This is not a problem for any current users, 779 * and can be changed if needed. 780 * 781 * Return: The old entry at this index. 782 */ 783 void *xas_store(struct xa_state *xas, void *entry) 784 { 785 struct xa_node *node; 786 void __rcu **slot = &xas->xa->xa_head; 787 unsigned int offset, max; 788 int count = 0; 789 int values = 0; 790 void *first, *next; 791 bool value = xa_is_value(entry); 792 793 if (entry) { 794 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 795 first = xas_create(xas, allow_root); 796 } else { 797 first = xas_load(xas); 798 } 799 800 if (xas_invalid(xas)) 801 return first; 802 node = xas->xa_node; 803 if (node && (xas->xa_shift < node->shift)) 804 xas->xa_sibs = 0; 805 if ((first == entry) && !xas->xa_sibs) 806 return first; 807 808 next = first; 809 offset = xas->xa_offset; 810 max = xas->xa_offset + xas->xa_sibs; 811 if (node) { 812 slot = &node->slots[offset]; 813 if (xas->xa_sibs) 814 xas_squash_marks(xas); 815 } 816 if (!entry) 817 xas_init_marks(xas); 818 819 for (;;) { 820 /* 821 * Must clear the marks before setting the entry to NULL, 822 * otherwise xas_for_each_marked may find a NULL entry and 823 * stop early. rcu_assign_pointer contains a release barrier 824 * so the mark clearing will appear to happen before the 825 * entry is set to NULL. 826 */ 827 rcu_assign_pointer(*slot, entry); 828 if (xa_is_node(next) && (!node || node->shift)) 829 xas_free_nodes(xas, xa_to_node(next)); 830 if (!node) 831 break; 832 count += !next - !entry; 833 values += !xa_is_value(first) - !value; 834 if (entry) { 835 if (offset == max) 836 break; 837 if (!xa_is_sibling(entry)) 838 entry = xa_mk_sibling(xas->xa_offset); 839 } else { 840 if (offset == XA_CHUNK_MASK) 841 break; 842 } 843 next = xa_entry_locked(xas->xa, node, ++offset); 844 if (!xa_is_sibling(next)) { 845 if (!entry && (offset > max)) 846 break; 847 first = next; 848 } 849 slot++; 850 } 851 852 update_node(xas, node, count, values); 853 return first; 854 } 855 EXPORT_SYMBOL_GPL(xas_store); 856 857 /** 858 * xas_get_mark() - Returns the state of this mark. 859 * @xas: XArray operation state. 860 * @mark: Mark number. 861 * 862 * Return: true if the mark is set, false if the mark is clear or @xas 863 * is in an error state. 864 */ 865 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 866 { 867 if (xas_invalid(xas)) 868 return false; 869 if (!xas->xa_node) 870 return xa_marked(xas->xa, mark); 871 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 872 } 873 EXPORT_SYMBOL_GPL(xas_get_mark); 874 875 /** 876 * xas_set_mark() - Sets the mark on this entry and its parents. 877 * @xas: XArray operation state. 878 * @mark: Mark number. 879 * 880 * Sets the specified mark on this entry, and walks up the tree setting it 881 * on all the ancestor entries. Does nothing if @xas has not been walked to 882 * an entry, or is in an error state. 883 */ 884 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 885 { 886 struct xa_node *node = xas->xa_node; 887 unsigned int offset = xas->xa_offset; 888 889 if (xas_invalid(xas)) 890 return; 891 892 while (node) { 893 if (node_set_mark(node, offset, mark)) 894 return; 895 offset = node->offset; 896 node = xa_parent_locked(xas->xa, node); 897 } 898 899 if (!xa_marked(xas->xa, mark)) 900 xa_mark_set(xas->xa, mark); 901 } 902 EXPORT_SYMBOL_GPL(xas_set_mark); 903 904 /** 905 * xas_clear_mark() - Clears the mark on this entry and its parents. 906 * @xas: XArray operation state. 907 * @mark: Mark number. 908 * 909 * Clears the specified mark on this entry, and walks back to the head 910 * attempting to clear it on all the ancestor entries. Does nothing if 911 * @xas has not been walked to an entry, or is in an error state. 912 */ 913 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 914 { 915 struct xa_node *node = xas->xa_node; 916 unsigned int offset = xas->xa_offset; 917 918 if (xas_invalid(xas)) 919 return; 920 921 while (node) { 922 if (!node_clear_mark(node, offset, mark)) 923 return; 924 if (node_any_mark(node, mark)) 925 return; 926 927 offset = node->offset; 928 node = xa_parent_locked(xas->xa, node); 929 } 930 931 if (xa_marked(xas->xa, mark)) 932 xa_mark_clear(xas->xa, mark); 933 } 934 EXPORT_SYMBOL_GPL(xas_clear_mark); 935 936 /** 937 * xas_init_marks() - Initialise all marks for the entry 938 * @xas: Array operations state. 939 * 940 * Initialise all marks for the entry specified by @xas. If we're tracking 941 * free entries with a mark, we need to set it on all entries. All other 942 * marks are cleared. 943 * 944 * This implementation is not as efficient as it could be; we may walk 945 * up the tree multiple times. 946 */ 947 void xas_init_marks(const struct xa_state *xas) 948 { 949 xa_mark_t mark = 0; 950 951 for (;;) { 952 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 953 xas_set_mark(xas, mark); 954 else 955 xas_clear_mark(xas, mark); 956 if (mark == XA_MARK_MAX) 957 break; 958 mark_inc(mark); 959 } 960 } 961 EXPORT_SYMBOL_GPL(xas_init_marks); 962 963 #ifdef CONFIG_XARRAY_MULTI 964 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 965 { 966 unsigned int marks = 0; 967 xa_mark_t mark = XA_MARK_0; 968 969 for (;;) { 970 if (node_get_mark(node, offset, mark)) 971 marks |= 1 << (__force unsigned int)mark; 972 if (mark == XA_MARK_MAX) 973 break; 974 mark_inc(mark); 975 } 976 977 return marks; 978 } 979 980 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, 981 xa_mark_t mark) 982 { 983 int i; 984 985 if (sibs == 0) 986 node_mark_all(node, mark); 987 else { 988 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) 989 node_set_mark(node, i, mark); 990 } 991 } 992 993 static void node_set_marks(struct xa_node *node, unsigned int offset, 994 struct xa_node *child, unsigned int sibs, 995 unsigned int marks) 996 { 997 xa_mark_t mark = XA_MARK_0; 998 999 for (;;) { 1000 if (marks & (1 << (__force unsigned int)mark)) { 1001 node_set_mark(node, offset, mark); 1002 if (child) 1003 node_mark_slots(child, sibs, mark); 1004 } 1005 if (mark == XA_MARK_MAX) 1006 break; 1007 mark_inc(mark); 1008 } 1009 } 1010 1011 static void __xas_init_node_for_split(struct xa_state *xas, 1012 struct xa_node *node, void *entry) 1013 { 1014 unsigned int i; 1015 void *sibling = NULL; 1016 unsigned int mask = xas->xa_sibs; 1017 1018 if (!node) 1019 return; 1020 node->array = xas->xa; 1021 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1022 if ((i & mask) == 0) { 1023 RCU_INIT_POINTER(node->slots[i], entry); 1024 sibling = xa_mk_sibling(i); 1025 } else { 1026 RCU_INIT_POINTER(node->slots[i], sibling); 1027 } 1028 } 1029 } 1030 1031 /** 1032 * xas_split_alloc() - Allocate memory for splitting an entry. 1033 * @xas: XArray operation state. 1034 * @entry: New entry which will be stored in the array. 1035 * @order: Current entry order. 1036 * @gfp: Memory allocation flags. 1037 * 1038 * This function should be called before calling xas_split(). 1039 * If necessary, it will allocate new nodes (and fill them with @entry) 1040 * to prepare for the upcoming split of an entry of @order size into 1041 * entries of the order stored in the @xas. 1042 * 1043 * Context: May sleep if @gfp flags permit. 1044 */ 1045 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1046 gfp_t gfp) 1047 { 1048 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1049 1050 /* XXX: no support for splitting really large entries yet */ 1051 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order)) 1052 goto nomem; 1053 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1054 return; 1055 1056 do { 1057 struct xa_node *node; 1058 1059 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1060 if (!node) 1061 goto nomem; 1062 1063 __xas_init_node_for_split(xas, node, entry); 1064 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1065 xas->xa_alloc = node; 1066 } while (sibs-- > 0); 1067 1068 return; 1069 nomem: 1070 xas_destroy(xas); 1071 xas_set_err(xas, -ENOMEM); 1072 } 1073 EXPORT_SYMBOL_GPL(xas_split_alloc); 1074 1075 /** 1076 * xas_split() - Split a multi-index entry into smaller entries. 1077 * @xas: XArray operation state. 1078 * @entry: New entry to store in the array. 1079 * @order: Current entry order. 1080 * 1081 * The size of the new entries is set in @xas. The value in @entry is 1082 * copied to all the replacement entries. 1083 * 1084 * Context: Any context. The caller should hold the xa_lock. 1085 */ 1086 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1087 { 1088 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1089 unsigned int offset, marks; 1090 struct xa_node *node; 1091 void *curr = xas_load(xas); 1092 int values = 0; 1093 1094 node = xas->xa_node; 1095 if (xas_top(node)) 1096 return; 1097 1098 marks = node_get_marks(node, xas->xa_offset); 1099 1100 offset = xas->xa_offset + sibs; 1101 do { 1102 if (xas->xa_shift < node->shift) { 1103 struct xa_node *child = xas->xa_alloc; 1104 1105 xas->xa_alloc = rcu_dereference_raw(child->parent); 1106 child->shift = node->shift - XA_CHUNK_SHIFT; 1107 child->offset = offset; 1108 child->count = XA_CHUNK_SIZE; 1109 child->nr_values = xa_is_value(entry) ? 1110 XA_CHUNK_SIZE : 0; 1111 RCU_INIT_POINTER(child->parent, node); 1112 node_set_marks(node, offset, child, xas->xa_sibs, 1113 marks); 1114 rcu_assign_pointer(node->slots[offset], 1115 xa_mk_node(child)); 1116 if (xa_is_value(curr)) 1117 values--; 1118 xas_update(xas, child); 1119 } else { 1120 unsigned int canon = offset - xas->xa_sibs; 1121 1122 node_set_marks(node, canon, NULL, 0, marks); 1123 rcu_assign_pointer(node->slots[canon], entry); 1124 while (offset > canon) 1125 rcu_assign_pointer(node->slots[offset--], 1126 xa_mk_sibling(canon)); 1127 values += (xa_is_value(entry) - xa_is_value(curr)) * 1128 (xas->xa_sibs + 1); 1129 } 1130 } while (offset-- > xas->xa_offset); 1131 1132 node->nr_values += values; 1133 xas_update(xas, node); 1134 } 1135 EXPORT_SYMBOL_GPL(xas_split); 1136 1137 /** 1138 * xas_try_split_min_order() - Minimal split order xas_try_split() can accept 1139 * @order: Current entry order. 1140 * 1141 * xas_try_split() can split a multi-index entry to smaller than @order - 1 if 1142 * no new xa_node is needed. This function provides the minimal order 1143 * xas_try_split() supports. 1144 * 1145 * Return: the minimal order xas_try_split() supports 1146 * 1147 * Context: Any context. 1148 * 1149 */ 1150 unsigned int xas_try_split_min_order(unsigned int order) 1151 { 1152 if (order % XA_CHUNK_SHIFT == 0) 1153 return order == 0 ? 0 : order - 1; 1154 1155 return order - (order % XA_CHUNK_SHIFT); 1156 } 1157 EXPORT_SYMBOL_GPL(xas_try_split_min_order); 1158 1159 /** 1160 * xas_try_split() - Try to split a multi-index entry. 1161 * @xas: XArray operation state. 1162 * @entry: New entry to store in the array. 1163 * @order: Current entry order. 1164 * 1165 * The size of the new entries is set in @xas. The value in @entry is 1166 * copied to all the replacement entries. If and only if one new xa_node is 1167 * needed, the function will use GFP_NOWAIT to get one if xas->xa_alloc is 1168 * NULL. If more new xa_node are needed, the function gives EINVAL error. 1169 * 1170 * NOTE: use xas_try_split_min_order() to get next split order instead of 1171 * @order - 1 if you want to minmize xas_try_split() calls. 1172 * 1173 * Context: Any context. The caller should hold the xa_lock. 1174 */ 1175 void xas_try_split(struct xa_state *xas, void *entry, unsigned int order) 1176 { 1177 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1178 unsigned int offset, marks; 1179 struct xa_node *node; 1180 void *curr = xas_load(xas); 1181 int values = 0; 1182 gfp_t gfp = GFP_NOWAIT; 1183 1184 node = xas->xa_node; 1185 if (xas_top(node)) 1186 return; 1187 1188 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 1189 gfp |= __GFP_ACCOUNT; 1190 1191 marks = node_get_marks(node, xas->xa_offset); 1192 1193 offset = xas->xa_offset + sibs; 1194 1195 if (xas->xa_shift < node->shift) { 1196 struct xa_node *child = xas->xa_alloc; 1197 unsigned int expected_sibs = 1198 (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1; 1199 1200 /* 1201 * No support for splitting sibling entries 1202 * (horizontally) or cascade split (vertically), which 1203 * requires two or more new xa_nodes. 1204 * Since if one xa_node allocation fails, 1205 * it is hard to free the prior allocations. 1206 */ 1207 if (sibs || xas->xa_sibs != expected_sibs) { 1208 xas_destroy(xas); 1209 xas_set_err(xas, -EINVAL); 1210 return; 1211 } 1212 1213 if (!child) { 1214 child = kmem_cache_alloc_lru(radix_tree_node_cachep, 1215 xas->xa_lru, gfp); 1216 if (!child) { 1217 xas_destroy(xas); 1218 xas_set_err(xas, -ENOMEM); 1219 return; 1220 } 1221 RCU_INIT_POINTER(child->parent, xas->xa_alloc); 1222 } 1223 __xas_init_node_for_split(xas, child, entry); 1224 1225 xas->xa_alloc = rcu_dereference_raw(child->parent); 1226 child->shift = node->shift - XA_CHUNK_SHIFT; 1227 child->offset = offset; 1228 child->count = XA_CHUNK_SIZE; 1229 child->nr_values = xa_is_value(entry) ? 1230 XA_CHUNK_SIZE : 0; 1231 RCU_INIT_POINTER(child->parent, node); 1232 node_set_marks(node, offset, child, xas->xa_sibs, 1233 marks); 1234 rcu_assign_pointer(node->slots[offset], 1235 xa_mk_node(child)); 1236 if (xa_is_value(curr)) 1237 values--; 1238 xas_update(xas, child); 1239 1240 } else { 1241 do { 1242 unsigned int canon = offset - xas->xa_sibs; 1243 1244 node_set_marks(node, canon, NULL, 0, marks); 1245 rcu_assign_pointer(node->slots[canon], entry); 1246 while (offset > canon) 1247 rcu_assign_pointer(node->slots[offset--], 1248 xa_mk_sibling(canon)); 1249 values += (xa_is_value(entry) - xa_is_value(curr)) * 1250 (xas->xa_sibs + 1); 1251 } while (offset-- > xas->xa_offset); 1252 } 1253 1254 node->nr_values += values; 1255 xas_update(xas, node); 1256 } 1257 EXPORT_SYMBOL_GPL(xas_try_split); 1258 #endif 1259 1260 /** 1261 * xas_pause() - Pause a walk to drop a lock. 1262 * @xas: XArray operation state. 1263 * 1264 * Some users need to pause a walk and drop the lock they're holding in 1265 * order to yield to a higher priority thread or carry out an operation 1266 * on an entry. Those users should call this function before they drop 1267 * the lock. It resets the @xas to be suitable for the next iteration 1268 * of the loop after the user has reacquired the lock. If most entries 1269 * found during a walk require you to call xas_pause(), the xa_for_each() 1270 * iterator may be more appropriate. 1271 * 1272 * Note that xas_pause() only works for forward iteration. If a user needs 1273 * to pause a reverse iteration, we will need a xas_pause_rev(). 1274 */ 1275 void xas_pause(struct xa_state *xas) 1276 { 1277 struct xa_node *node = xas->xa_node; 1278 1279 if (xas_invalid(xas)) 1280 return; 1281 1282 xas->xa_node = XAS_RESTART; 1283 if (node) { 1284 unsigned long offset = xas->xa_offset; 1285 while (++offset < XA_CHUNK_SIZE) { 1286 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1287 break; 1288 } 1289 xas->xa_index &= ~0UL << node->shift; 1290 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1291 if (xas->xa_index == 0) 1292 xas->xa_node = XAS_BOUNDS; 1293 } else { 1294 xas->xa_index++; 1295 } 1296 } 1297 EXPORT_SYMBOL_GPL(xas_pause); 1298 1299 /* 1300 * __xas_prev() - Find the previous entry in the XArray. 1301 * @xas: XArray operation state. 1302 * 1303 * Helper function for xas_prev() which handles all the complex cases 1304 * out of line. 1305 */ 1306 void *__xas_prev(struct xa_state *xas) 1307 { 1308 void *entry; 1309 1310 if (!xas_frozen(xas->xa_node)) 1311 xas->xa_index--; 1312 if (!xas->xa_node) 1313 return set_bounds(xas); 1314 if (xas_not_node(xas->xa_node)) 1315 return xas_load(xas); 1316 1317 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1318 xas->xa_offset--; 1319 1320 while (xas->xa_offset == 255) { 1321 xas->xa_offset = xas->xa_node->offset - 1; 1322 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1323 if (!xas->xa_node) 1324 return set_bounds(xas); 1325 } 1326 1327 for (;;) { 1328 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1329 if (!xa_is_node(entry)) 1330 return entry; 1331 1332 xas->xa_node = xa_to_node(entry); 1333 xas_set_offset(xas); 1334 } 1335 } 1336 EXPORT_SYMBOL_GPL(__xas_prev); 1337 1338 /* 1339 * __xas_next() - Find the next entry in the XArray. 1340 * @xas: XArray operation state. 1341 * 1342 * Helper function for xas_next() which handles all the complex cases 1343 * out of line. 1344 */ 1345 void *__xas_next(struct xa_state *xas) 1346 { 1347 void *entry; 1348 1349 if (!xas_frozen(xas->xa_node)) 1350 xas->xa_index++; 1351 if (!xas->xa_node) 1352 return set_bounds(xas); 1353 if (xas_not_node(xas->xa_node)) 1354 return xas_load(xas); 1355 1356 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1357 xas->xa_offset++; 1358 1359 while (xas->xa_offset == XA_CHUNK_SIZE) { 1360 xas->xa_offset = xas->xa_node->offset + 1; 1361 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1362 if (!xas->xa_node) 1363 return set_bounds(xas); 1364 } 1365 1366 for (;;) { 1367 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1368 if (!xa_is_node(entry)) 1369 return entry; 1370 1371 xas->xa_node = xa_to_node(entry); 1372 xas_set_offset(xas); 1373 } 1374 } 1375 EXPORT_SYMBOL_GPL(__xas_next); 1376 1377 /** 1378 * xas_find() - Find the next present entry in the XArray. 1379 * @xas: XArray operation state. 1380 * @max: Highest index to return. 1381 * 1382 * If the @xas has not yet been walked to an entry, return the entry 1383 * which has an index >= xas.xa_index. If it has been walked, the entry 1384 * currently being pointed at has been processed, and so we move to the 1385 * next entry. 1386 * 1387 * If no entry is found and the array is smaller than @max, the iterator 1388 * is set to the smallest index not yet in the array. This allows @xas 1389 * to be immediately passed to xas_store(). 1390 * 1391 * Return: The entry, if found, otherwise %NULL. 1392 */ 1393 void *xas_find(struct xa_state *xas, unsigned long max) 1394 { 1395 void *entry; 1396 1397 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1398 return NULL; 1399 if (xas->xa_index > max) 1400 return set_bounds(xas); 1401 1402 if (!xas->xa_node) { 1403 xas->xa_index = 1; 1404 return set_bounds(xas); 1405 } else if (xas->xa_node == XAS_RESTART) { 1406 entry = xas_load(xas); 1407 if (entry || xas_not_node(xas->xa_node)) 1408 return entry; 1409 } else if (!xas->xa_node->shift && 1410 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1411 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1412 } 1413 1414 xas_next_offset(xas); 1415 1416 while (xas->xa_node && (xas->xa_index <= max)) { 1417 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1418 xas->xa_offset = xas->xa_node->offset + 1; 1419 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1420 continue; 1421 } 1422 1423 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1424 if (xa_is_node(entry)) { 1425 xas->xa_node = xa_to_node(entry); 1426 xas->xa_offset = 0; 1427 continue; 1428 } 1429 if (entry && !xa_is_sibling(entry)) 1430 return entry; 1431 1432 xas_next_offset(xas); 1433 } 1434 1435 if (!xas->xa_node) 1436 xas->xa_node = XAS_BOUNDS; 1437 return NULL; 1438 } 1439 EXPORT_SYMBOL_GPL(xas_find); 1440 1441 /** 1442 * xas_find_marked() - Find the next marked entry in the XArray. 1443 * @xas: XArray operation state. 1444 * @max: Highest index to return. 1445 * @mark: Mark number to search for. 1446 * 1447 * If the @xas has not yet been walked to an entry, return the marked entry 1448 * which has an index >= xas.xa_index. If it has been walked, the entry 1449 * currently being pointed at has been processed, and so we return the 1450 * first marked entry with an index > xas.xa_index. 1451 * 1452 * If no marked entry is found and the array is smaller than @max, @xas is 1453 * set to the bounds state and xas->xa_index is set to the smallest index 1454 * not yet in the array. This allows @xas to be immediately passed to 1455 * xas_store(). 1456 * 1457 * If no entry is found before @max is reached, @xas is set to the restart 1458 * state. 1459 * 1460 * Return: The entry, if found, otherwise %NULL. 1461 */ 1462 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1463 { 1464 bool advance = true; 1465 unsigned int offset; 1466 void *entry; 1467 1468 if (xas_error(xas)) 1469 return NULL; 1470 if (xas->xa_index > max) 1471 goto max; 1472 1473 if (!xas->xa_node) { 1474 xas->xa_index = 1; 1475 goto out; 1476 } else if (xas_top(xas->xa_node)) { 1477 advance = false; 1478 entry = xa_head(xas->xa); 1479 xas->xa_node = NULL; 1480 if (xas->xa_index > max_index(entry)) 1481 goto out; 1482 if (!xa_is_node(entry)) { 1483 if (xa_marked(xas->xa, mark)) 1484 return entry; 1485 xas->xa_index = 1; 1486 goto out; 1487 } 1488 xas->xa_node = xa_to_node(entry); 1489 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1490 } 1491 1492 while (xas->xa_index <= max) { 1493 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1494 xas->xa_offset = xas->xa_node->offset + 1; 1495 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1496 if (!xas->xa_node) 1497 break; 1498 advance = false; 1499 continue; 1500 } 1501 1502 if (!advance) { 1503 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1504 if (xa_is_sibling(entry)) { 1505 xas->xa_offset = xa_to_sibling(entry); 1506 xas_move_index(xas, xas->xa_offset); 1507 } 1508 } 1509 1510 offset = xas_find_chunk(xas, advance, mark); 1511 if (offset > xas->xa_offset) { 1512 advance = false; 1513 xas_move_index(xas, offset); 1514 /* Mind the wrap */ 1515 if ((xas->xa_index - 1) >= max) 1516 goto max; 1517 xas->xa_offset = offset; 1518 if (offset == XA_CHUNK_SIZE) 1519 continue; 1520 } 1521 1522 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1523 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1524 continue; 1525 if (xa_is_sibling(entry)) 1526 continue; 1527 if (!xa_is_node(entry)) 1528 return entry; 1529 xas->xa_node = xa_to_node(entry); 1530 xas_set_offset(xas); 1531 } 1532 1533 out: 1534 if (xas->xa_index > max) 1535 goto max; 1536 return set_bounds(xas); 1537 max: 1538 xas->xa_node = XAS_RESTART; 1539 return NULL; 1540 } 1541 EXPORT_SYMBOL_GPL(xas_find_marked); 1542 1543 /** 1544 * xas_find_conflict() - Find the next present entry in a range. 1545 * @xas: XArray operation state. 1546 * 1547 * The @xas describes both a range and a position within that range. 1548 * 1549 * Context: Any context. Expects xa_lock to be held. 1550 * Return: The next entry in the range covered by @xas or %NULL. 1551 */ 1552 void *xas_find_conflict(struct xa_state *xas) 1553 { 1554 void *curr; 1555 1556 if (xas_error(xas)) 1557 return NULL; 1558 1559 if (!xas->xa_node) 1560 return NULL; 1561 1562 if (xas_top(xas->xa_node)) { 1563 curr = xas_start(xas); 1564 if (!curr) 1565 return NULL; 1566 while (xa_is_node(curr)) { 1567 struct xa_node *node = xa_to_node(curr); 1568 curr = xas_descend(xas, node); 1569 } 1570 if (curr) 1571 return curr; 1572 } 1573 1574 if (xas->xa_node->shift > xas->xa_shift) 1575 return NULL; 1576 1577 for (;;) { 1578 if (xas->xa_node->shift == xas->xa_shift) { 1579 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1580 break; 1581 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1582 xas->xa_offset = xas->xa_node->offset; 1583 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1584 if (!xas->xa_node) 1585 break; 1586 continue; 1587 } 1588 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1589 if (xa_is_sibling(curr)) 1590 continue; 1591 while (xa_is_node(curr)) { 1592 xas->xa_node = xa_to_node(curr); 1593 xas->xa_offset = 0; 1594 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1595 } 1596 if (curr) 1597 return curr; 1598 } 1599 xas->xa_offset -= xas->xa_sibs; 1600 return NULL; 1601 } 1602 EXPORT_SYMBOL_GPL(xas_find_conflict); 1603 1604 /** 1605 * xa_load() - Load an entry from an XArray. 1606 * @xa: XArray. 1607 * @index: index into array. 1608 * 1609 * Context: Any context. Takes and releases the RCU lock. 1610 * Return: The entry at @index in @xa. 1611 */ 1612 void *xa_load(struct xarray *xa, unsigned long index) 1613 { 1614 XA_STATE(xas, xa, index); 1615 void *entry; 1616 1617 rcu_read_lock(); 1618 do { 1619 entry = xa_zero_to_null(xas_load(&xas)); 1620 } while (xas_retry(&xas, entry)); 1621 rcu_read_unlock(); 1622 1623 return entry; 1624 } 1625 EXPORT_SYMBOL(xa_load); 1626 1627 static void *xas_result(struct xa_state *xas, void *curr) 1628 { 1629 if (xas_error(xas)) 1630 curr = xas->xa_node; 1631 return curr; 1632 } 1633 1634 /** 1635 * __xa_erase() - Erase this entry from the XArray while locked. 1636 * @xa: XArray. 1637 * @index: Index into array. 1638 * 1639 * After this function returns, loading from @index will return %NULL. 1640 * If the index is part of a multi-index entry, all indices will be erased 1641 * and none of the entries will be part of a multi-index entry. 1642 * 1643 * Context: Any context. Expects xa_lock to be held on entry. 1644 * Return: The entry which used to be at this index. 1645 */ 1646 void *__xa_erase(struct xarray *xa, unsigned long index) 1647 { 1648 XA_STATE(xas, xa, index); 1649 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL))); 1650 } 1651 EXPORT_SYMBOL(__xa_erase); 1652 1653 /** 1654 * xa_erase() - Erase this entry from the XArray. 1655 * @xa: XArray. 1656 * @index: Index of entry. 1657 * 1658 * After this function returns, loading from @index will return %NULL. 1659 * If the index is part of a multi-index entry, all indices will be erased 1660 * and none of the entries will be part of a multi-index entry. 1661 * 1662 * Context: Any context. Takes and releases the xa_lock. 1663 * Return: The entry which used to be at this index. 1664 */ 1665 void *xa_erase(struct xarray *xa, unsigned long index) 1666 { 1667 void *entry; 1668 1669 xa_lock(xa); 1670 entry = __xa_erase(xa, index); 1671 xa_unlock(xa); 1672 1673 return entry; 1674 } 1675 EXPORT_SYMBOL(xa_erase); 1676 1677 /** 1678 * __xa_store() - Store this entry in the XArray. 1679 * @xa: XArray. 1680 * @index: Index into array. 1681 * @entry: New entry. 1682 * @gfp: Memory allocation flags. 1683 * 1684 * You must already be holding the xa_lock when calling this function. 1685 * It will drop the lock if needed to allocate memory, and then reacquire 1686 * it afterwards. 1687 * 1688 * Context: Any context. Expects xa_lock to be held on entry. May 1689 * release and reacquire xa_lock if @gfp flags permit. 1690 * Return: The old entry at this index or xa_err() if an error happened. 1691 */ 1692 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1693 { 1694 XA_STATE(xas, xa, index); 1695 void *curr; 1696 1697 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1698 return XA_ERROR(-EINVAL); 1699 if (xa_track_free(xa) && !entry) 1700 entry = XA_ZERO_ENTRY; 1701 1702 do { 1703 curr = xas_store(&xas, entry); 1704 if (xa_track_free(xa)) 1705 xas_clear_mark(&xas, XA_FREE_MARK); 1706 } while (__xas_nomem(&xas, gfp)); 1707 1708 return xas_result(&xas, xa_zero_to_null(curr)); 1709 } 1710 EXPORT_SYMBOL(__xa_store); 1711 1712 /** 1713 * xa_store() - Store this entry in the XArray. 1714 * @xa: XArray. 1715 * @index: Index into array. 1716 * @entry: New entry. 1717 * @gfp: Memory allocation flags. 1718 * 1719 * After this function returns, loads from this index will return @entry. 1720 * Storing into an existing multi-index entry updates the entry of every index. 1721 * The marks associated with @index are unaffected unless @entry is %NULL. 1722 * 1723 * Context: Any context. Takes and releases the xa_lock. 1724 * May sleep if the @gfp flags permit. 1725 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1726 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1727 * failed. 1728 */ 1729 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1730 { 1731 void *curr; 1732 1733 xa_lock(xa); 1734 curr = __xa_store(xa, index, entry, gfp); 1735 xa_unlock(xa); 1736 1737 return curr; 1738 } 1739 EXPORT_SYMBOL(xa_store); 1740 1741 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1742 void *old, void *entry, gfp_t gfp); 1743 1744 /** 1745 * __xa_cmpxchg() - Store this entry in the XArray. 1746 * @xa: XArray. 1747 * @index: Index into array. 1748 * @old: Old value to test against. 1749 * @entry: New entry. 1750 * @gfp: Memory allocation flags. 1751 * 1752 * You must already be holding the xa_lock when calling this function. 1753 * It will drop the lock if needed to allocate memory, and then reacquire 1754 * it afterwards. 1755 * 1756 * Context: Any context. Expects xa_lock to be held on entry. May 1757 * release and reacquire xa_lock if @gfp flags permit. 1758 * Return: The old entry at this index or xa_err() if an error happened. 1759 */ 1760 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1761 void *old, void *entry, gfp_t gfp) 1762 { 1763 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp)); 1764 } 1765 EXPORT_SYMBOL(__xa_cmpxchg); 1766 1767 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1768 void *old, void *entry, gfp_t gfp) 1769 { 1770 XA_STATE(xas, xa, index); 1771 void *curr; 1772 1773 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1774 return XA_ERROR(-EINVAL); 1775 1776 do { 1777 curr = xas_load(&xas); 1778 if (curr == old) { 1779 xas_store(&xas, entry); 1780 if (xa_track_free(xa) && entry && !curr) 1781 xas_clear_mark(&xas, XA_FREE_MARK); 1782 } 1783 } while (__xas_nomem(&xas, gfp)); 1784 1785 return xas_result(&xas, curr); 1786 } 1787 1788 /** 1789 * __xa_insert() - Store this entry in the XArray if no entry is present. 1790 * @xa: XArray. 1791 * @index: Index into array. 1792 * @entry: New entry. 1793 * @gfp: Memory allocation flags. 1794 * 1795 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1796 * if no entry is present. Inserting will fail if a reserved entry is 1797 * present, even though loading from this index will return NULL. 1798 * 1799 * Context: Any context. Expects xa_lock to be held on entry. May 1800 * release and reacquire xa_lock if @gfp flags permit. 1801 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1802 * -ENOMEM if memory could not be allocated. 1803 */ 1804 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1805 { 1806 void *curr; 1807 int errno; 1808 1809 if (!entry) 1810 entry = XA_ZERO_ENTRY; 1811 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp); 1812 errno = xa_err(curr); 1813 if (errno) 1814 return errno; 1815 return (curr != NULL) ? -EBUSY : 0; 1816 } 1817 EXPORT_SYMBOL(__xa_insert); 1818 1819 #ifdef CONFIG_XARRAY_MULTI 1820 static void xas_set_range(struct xa_state *xas, unsigned long first, 1821 unsigned long last) 1822 { 1823 unsigned int shift = 0; 1824 unsigned long sibs = last - first; 1825 unsigned int offset = XA_CHUNK_MASK; 1826 1827 xas_set(xas, first); 1828 1829 while ((first & XA_CHUNK_MASK) == 0) { 1830 if (sibs < XA_CHUNK_MASK) 1831 break; 1832 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1833 break; 1834 shift += XA_CHUNK_SHIFT; 1835 if (offset == XA_CHUNK_MASK) 1836 offset = sibs & XA_CHUNK_MASK; 1837 sibs >>= XA_CHUNK_SHIFT; 1838 first >>= XA_CHUNK_SHIFT; 1839 } 1840 1841 offset = first & XA_CHUNK_MASK; 1842 if (offset + sibs > XA_CHUNK_MASK) 1843 sibs = XA_CHUNK_MASK - offset; 1844 if ((((first + sibs + 1) << shift) - 1) > last) 1845 sibs -= 1; 1846 1847 xas->xa_shift = shift; 1848 xas->xa_sibs = sibs; 1849 } 1850 1851 /** 1852 * xa_store_range() - Store this entry at a range of indices in the XArray. 1853 * @xa: XArray. 1854 * @first: First index to affect. 1855 * @last: Last index to affect. 1856 * @entry: New entry. 1857 * @gfp: Memory allocation flags. 1858 * 1859 * After this function returns, loads from any index between @first and @last, 1860 * inclusive will return @entry. 1861 * Storing into an existing multi-index entry updates the entry of every index. 1862 * The marks associated with @index are unaffected unless @entry is %NULL. 1863 * 1864 * Context: Process context. Takes and releases the xa_lock. May sleep 1865 * if the @gfp flags permit. 1866 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1867 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1868 */ 1869 void *xa_store_range(struct xarray *xa, unsigned long first, 1870 unsigned long last, void *entry, gfp_t gfp) 1871 { 1872 XA_STATE(xas, xa, 0); 1873 1874 if (WARN_ON_ONCE(xa_is_internal(entry))) 1875 return XA_ERROR(-EINVAL); 1876 if (last < first) 1877 return XA_ERROR(-EINVAL); 1878 1879 do { 1880 xas_lock(&xas); 1881 if (entry) { 1882 unsigned int order = BITS_PER_LONG; 1883 if (last + 1) 1884 order = __ffs(last + 1); 1885 xas_set_order(&xas, last, order); 1886 xas_create(&xas, true); 1887 if (xas_error(&xas)) 1888 goto unlock; 1889 } 1890 do { 1891 xas_set_range(&xas, first, last); 1892 xas_store(&xas, entry); 1893 if (xas_error(&xas)) 1894 goto unlock; 1895 first += xas_size(&xas); 1896 } while (first <= last); 1897 unlock: 1898 xas_unlock(&xas); 1899 } while (xas_nomem(&xas, gfp)); 1900 1901 return xas_result(&xas, NULL); 1902 } 1903 EXPORT_SYMBOL(xa_store_range); 1904 1905 /** 1906 * xas_get_order() - Get the order of an entry. 1907 * @xas: XArray operation state. 1908 * 1909 * Called after xas_load, the xas should not be in an error state. 1910 * 1911 * Return: A number between 0 and 63 indicating the order of the entry. 1912 */ 1913 int xas_get_order(struct xa_state *xas) 1914 { 1915 int order = 0; 1916 1917 if (!xas->xa_node) 1918 return 0; 1919 1920 for (;;) { 1921 unsigned int slot = xas->xa_offset + (1 << order); 1922 1923 if (slot >= XA_CHUNK_SIZE) 1924 break; 1925 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) 1926 break; 1927 order++; 1928 } 1929 1930 order += xas->xa_node->shift; 1931 return order; 1932 } 1933 EXPORT_SYMBOL_GPL(xas_get_order); 1934 1935 /** 1936 * xa_get_order() - Get the order of an entry. 1937 * @xa: XArray. 1938 * @index: Index of the entry. 1939 * 1940 * Return: A number between 0 and 63 indicating the order of the entry. 1941 */ 1942 int xa_get_order(struct xarray *xa, unsigned long index) 1943 { 1944 XA_STATE(xas, xa, index); 1945 int order = 0; 1946 void *entry; 1947 1948 rcu_read_lock(); 1949 entry = xas_load(&xas); 1950 if (entry) 1951 order = xas_get_order(&xas); 1952 rcu_read_unlock(); 1953 1954 return order; 1955 } 1956 EXPORT_SYMBOL(xa_get_order); 1957 #endif /* CONFIG_XARRAY_MULTI */ 1958 1959 /** 1960 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1961 * @xa: XArray. 1962 * @id: Pointer to ID. 1963 * @limit: Range for allocated ID. 1964 * @entry: New entry. 1965 * @gfp: Memory allocation flags. 1966 * 1967 * Finds an empty entry in @xa between @limit.min and @limit.max, 1968 * stores the index into the @id pointer, then stores the entry at 1969 * that index. A concurrent lookup will not see an uninitialised @id. 1970 * 1971 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1972 * in xa_init_flags(). 1973 * 1974 * Context: Any context. Expects xa_lock to be held on entry. May 1975 * release and reacquire xa_lock if @gfp flags permit. 1976 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1977 * -EBUSY if there are no free entries in @limit. 1978 */ 1979 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1980 struct xa_limit limit, gfp_t gfp) 1981 { 1982 XA_STATE(xas, xa, 0); 1983 1984 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1985 return -EINVAL; 1986 if (WARN_ON_ONCE(!xa_track_free(xa))) 1987 return -EINVAL; 1988 1989 if (!entry) 1990 entry = XA_ZERO_ENTRY; 1991 1992 do { 1993 xas.xa_index = limit.min; 1994 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1995 if (xas.xa_node == XAS_RESTART) 1996 xas_set_err(&xas, -EBUSY); 1997 else 1998 *id = xas.xa_index; 1999 xas_store(&xas, entry); 2000 xas_clear_mark(&xas, XA_FREE_MARK); 2001 } while (__xas_nomem(&xas, gfp)); 2002 2003 return xas_error(&xas); 2004 } 2005 EXPORT_SYMBOL(__xa_alloc); 2006 2007 /** 2008 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 2009 * @xa: XArray. 2010 * @id: Pointer to ID. 2011 * @entry: New entry. 2012 * @limit: Range of allocated ID. 2013 * @next: Pointer to next ID to allocate. 2014 * @gfp: Memory allocation flags. 2015 * 2016 * Finds an empty entry in @xa between @limit.min and @limit.max, 2017 * stores the index into the @id pointer, then stores the entry at 2018 * that index. A concurrent lookup will not see an uninitialised @id. 2019 * The search for an empty entry will start at @next and will wrap 2020 * around if necessary. 2021 * 2022 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 2023 * in xa_init_flags(). 2024 * 2025 * Context: Any context. Expects xa_lock to be held on entry. May 2026 * release and reacquire xa_lock if @gfp flags permit. 2027 * Return: 0 if the allocation succeeded without wrapping. 1 if the 2028 * allocation succeeded after wrapping, -ENOMEM if memory could not be 2029 * allocated or -EBUSY if there are no free entries in @limit. 2030 */ 2031 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 2032 struct xa_limit limit, u32 *next, gfp_t gfp) 2033 { 2034 u32 min = limit.min; 2035 int ret; 2036 2037 limit.min = max(min, *next); 2038 ret = __xa_alloc(xa, id, entry, limit, gfp); 2039 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 2040 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 2041 ret = 1; 2042 } 2043 2044 if (ret < 0 && limit.min > min) { 2045 limit.min = min; 2046 ret = __xa_alloc(xa, id, entry, limit, gfp); 2047 if (ret == 0) 2048 ret = 1; 2049 } 2050 2051 if (ret >= 0) { 2052 *next = *id + 1; 2053 if (*next == 0) 2054 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 2055 } 2056 return ret; 2057 } 2058 EXPORT_SYMBOL(__xa_alloc_cyclic); 2059 2060 /** 2061 * __xa_set_mark() - Set this mark on this entry while locked. 2062 * @xa: XArray. 2063 * @index: Index of entry. 2064 * @mark: Mark number. 2065 * 2066 * Attempting to set a mark on a %NULL entry does not succeed. 2067 * 2068 * Context: Any context. Expects xa_lock to be held on entry. 2069 */ 2070 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2071 { 2072 XA_STATE(xas, xa, index); 2073 void *entry = xas_load(&xas); 2074 2075 if (entry) 2076 xas_set_mark(&xas, mark); 2077 } 2078 EXPORT_SYMBOL(__xa_set_mark); 2079 2080 /** 2081 * __xa_clear_mark() - Clear this mark on this entry while locked. 2082 * @xa: XArray. 2083 * @index: Index of entry. 2084 * @mark: Mark number. 2085 * 2086 * Context: Any context. Expects xa_lock to be held on entry. 2087 */ 2088 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2089 { 2090 XA_STATE(xas, xa, index); 2091 void *entry = xas_load(&xas); 2092 2093 if (entry) 2094 xas_clear_mark(&xas, mark); 2095 } 2096 EXPORT_SYMBOL(__xa_clear_mark); 2097 2098 /** 2099 * xa_get_mark() - Inquire whether this mark is set on this entry. 2100 * @xa: XArray. 2101 * @index: Index of entry. 2102 * @mark: Mark number. 2103 * 2104 * This function uses the RCU read lock, so the result may be out of date 2105 * by the time it returns. If you need the result to be stable, use a lock. 2106 * 2107 * Context: Any context. Takes and releases the RCU lock. 2108 * Return: True if the entry at @index has this mark set, false if it doesn't. 2109 */ 2110 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2111 { 2112 XA_STATE(xas, xa, index); 2113 void *entry; 2114 2115 rcu_read_lock(); 2116 entry = xas_start(&xas); 2117 while (xas_get_mark(&xas, mark)) { 2118 if (!xa_is_node(entry)) 2119 goto found; 2120 entry = xas_descend(&xas, xa_to_node(entry)); 2121 } 2122 rcu_read_unlock(); 2123 return false; 2124 found: 2125 rcu_read_unlock(); 2126 return true; 2127 } 2128 EXPORT_SYMBOL(xa_get_mark); 2129 2130 /** 2131 * xa_set_mark() - Set this mark on this entry. 2132 * @xa: XArray. 2133 * @index: Index of entry. 2134 * @mark: Mark number. 2135 * 2136 * Attempting to set a mark on a %NULL entry does not succeed. 2137 * 2138 * Context: Process context. Takes and releases the xa_lock. 2139 */ 2140 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2141 { 2142 xa_lock(xa); 2143 __xa_set_mark(xa, index, mark); 2144 xa_unlock(xa); 2145 } 2146 EXPORT_SYMBOL(xa_set_mark); 2147 2148 /** 2149 * xa_clear_mark() - Clear this mark on this entry. 2150 * @xa: XArray. 2151 * @index: Index of entry. 2152 * @mark: Mark number. 2153 * 2154 * Clearing a mark always succeeds. 2155 * 2156 * Context: Process context. Takes and releases the xa_lock. 2157 */ 2158 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2159 { 2160 xa_lock(xa); 2161 __xa_clear_mark(xa, index, mark); 2162 xa_unlock(xa); 2163 } 2164 EXPORT_SYMBOL(xa_clear_mark); 2165 2166 /** 2167 * xa_find() - Search the XArray for an entry. 2168 * @xa: XArray. 2169 * @indexp: Pointer to an index. 2170 * @max: Maximum index to search to. 2171 * @filter: Selection criterion. 2172 * 2173 * Finds the entry in @xa which matches the @filter, and has the lowest 2174 * index that is at least @indexp and no more than @max. 2175 * If an entry is found, @indexp is updated to be the index of the entry. 2176 * This function is protected by the RCU read lock, so it may not find 2177 * entries which are being simultaneously added. It will not return an 2178 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2179 * 2180 * Context: Any context. Takes and releases the RCU lock. 2181 * Return: The entry, if found, otherwise %NULL. 2182 */ 2183 void *xa_find(struct xarray *xa, unsigned long *indexp, 2184 unsigned long max, xa_mark_t filter) 2185 { 2186 XA_STATE(xas, xa, *indexp); 2187 void *entry; 2188 2189 rcu_read_lock(); 2190 do { 2191 if ((__force unsigned int)filter < XA_MAX_MARKS) 2192 entry = xas_find_marked(&xas, max, filter); 2193 else 2194 entry = xas_find(&xas, max); 2195 } while (xas_retry(&xas, entry)); 2196 rcu_read_unlock(); 2197 2198 if (entry) 2199 *indexp = xas.xa_index; 2200 return entry; 2201 } 2202 EXPORT_SYMBOL(xa_find); 2203 2204 static bool xas_sibling(struct xa_state *xas) 2205 { 2206 struct xa_node *node = xas->xa_node; 2207 unsigned long mask; 2208 2209 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2210 return false; 2211 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2212 return (xas->xa_index & mask) > 2213 ((unsigned long)xas->xa_offset << node->shift); 2214 } 2215 2216 /** 2217 * xa_find_after() - Search the XArray for a present entry. 2218 * @xa: XArray. 2219 * @indexp: Pointer to an index. 2220 * @max: Maximum index to search to. 2221 * @filter: Selection criterion. 2222 * 2223 * Finds the entry in @xa which matches the @filter and has the lowest 2224 * index that is above @indexp and no more than @max. 2225 * If an entry is found, @indexp is updated to be the index of the entry. 2226 * This function is protected by the RCU read lock, so it may miss entries 2227 * which are being simultaneously added. It will not return an 2228 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2229 * 2230 * Context: Any context. Takes and releases the RCU lock. 2231 * Return: The pointer, if found, otherwise %NULL. 2232 */ 2233 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2234 unsigned long max, xa_mark_t filter) 2235 { 2236 XA_STATE(xas, xa, *indexp + 1); 2237 void *entry; 2238 2239 if (xas.xa_index == 0) 2240 return NULL; 2241 2242 rcu_read_lock(); 2243 for (;;) { 2244 if ((__force unsigned int)filter < XA_MAX_MARKS) 2245 entry = xas_find_marked(&xas, max, filter); 2246 else 2247 entry = xas_find(&xas, max); 2248 2249 if (xas_invalid(&xas)) 2250 break; 2251 if (xas_sibling(&xas)) 2252 continue; 2253 if (!xas_retry(&xas, entry)) 2254 break; 2255 } 2256 rcu_read_unlock(); 2257 2258 if (entry) 2259 *indexp = xas.xa_index; 2260 return entry; 2261 } 2262 EXPORT_SYMBOL(xa_find_after); 2263 2264 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2265 unsigned long max, unsigned int n) 2266 { 2267 void *entry; 2268 unsigned int i = 0; 2269 2270 rcu_read_lock(); 2271 xas_for_each(xas, entry, max) { 2272 if (xas_retry(xas, entry)) 2273 continue; 2274 dst[i++] = entry; 2275 if (i == n) 2276 break; 2277 } 2278 rcu_read_unlock(); 2279 2280 return i; 2281 } 2282 2283 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2284 unsigned long max, unsigned int n, xa_mark_t mark) 2285 { 2286 void *entry; 2287 unsigned int i = 0; 2288 2289 rcu_read_lock(); 2290 xas_for_each_marked(xas, entry, max, mark) { 2291 if (xas_retry(xas, entry)) 2292 continue; 2293 dst[i++] = entry; 2294 if (i == n) 2295 break; 2296 } 2297 rcu_read_unlock(); 2298 2299 return i; 2300 } 2301 2302 /** 2303 * xa_extract() - Copy selected entries from the XArray into a normal array. 2304 * @xa: The source XArray to copy from. 2305 * @dst: The buffer to copy entries into. 2306 * @start: The first index in the XArray eligible to be selected. 2307 * @max: The last index in the XArray eligible to be selected. 2308 * @n: The maximum number of entries to copy. 2309 * @filter: Selection criterion. 2310 * 2311 * Copies up to @n entries that match @filter from the XArray. The 2312 * copied entries will have indices between @start and @max, inclusive. 2313 * 2314 * The @filter may be an XArray mark value, in which case entries which are 2315 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2316 * which case all entries which are not %NULL will be copied. 2317 * 2318 * The entries returned may not represent a snapshot of the XArray at a 2319 * moment in time. For example, if another thread stores to index 5, then 2320 * index 10, calling xa_extract() may return the old contents of index 5 2321 * and the new contents of index 10. Indices not modified while this 2322 * function is running will not be skipped. 2323 * 2324 * If you need stronger guarantees, holding the xa_lock across calls to this 2325 * function will prevent concurrent modification. 2326 * 2327 * Context: Any context. Takes and releases the RCU lock. 2328 * Return: The number of entries copied. 2329 */ 2330 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2331 unsigned long max, unsigned int n, xa_mark_t filter) 2332 { 2333 XA_STATE(xas, xa, start); 2334 2335 if (!n) 2336 return 0; 2337 2338 if ((__force unsigned int)filter < XA_MAX_MARKS) 2339 return xas_extract_marked(&xas, dst, max, n, filter); 2340 return xas_extract_present(&xas, dst, max, n); 2341 } 2342 EXPORT_SYMBOL(xa_extract); 2343 2344 /** 2345 * xa_delete_node() - Private interface for workingset code. 2346 * @node: Node to be removed from the tree. 2347 * @update: Function to call to update ancestor nodes. 2348 * 2349 * Context: xa_lock must be held on entry and will not be released. 2350 */ 2351 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2352 { 2353 struct xa_state xas = { 2354 .xa = node->array, 2355 .xa_index = (unsigned long)node->offset << 2356 (node->shift + XA_CHUNK_SHIFT), 2357 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2358 .xa_offset = node->offset, 2359 .xa_node = xa_parent_locked(node->array, node), 2360 .xa_update = update, 2361 }; 2362 2363 xas_store(&xas, NULL); 2364 } 2365 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2366 2367 /** 2368 * xa_destroy() - Free all internal data structures. 2369 * @xa: XArray. 2370 * 2371 * After calling this function, the XArray is empty and has freed all memory 2372 * allocated for its internal data structures. You are responsible for 2373 * freeing the objects referenced by the XArray. 2374 * 2375 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2376 */ 2377 void xa_destroy(struct xarray *xa) 2378 { 2379 XA_STATE(xas, xa, 0); 2380 unsigned long flags; 2381 void *entry; 2382 2383 xas.xa_node = NULL; 2384 xas_lock_irqsave(&xas, flags); 2385 entry = xa_head_locked(xa); 2386 RCU_INIT_POINTER(xa->xa_head, NULL); 2387 xas_init_marks(&xas); 2388 if (xa_zero_busy(xa)) 2389 xa_mark_clear(xa, XA_FREE_MARK); 2390 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2391 if (xa_is_node(entry)) 2392 xas_free_nodes(&xas, xa_to_node(entry)); 2393 xas_unlock_irqrestore(&xas, flags); 2394 } 2395 EXPORT_SYMBOL(xa_destroy); 2396 2397 #ifdef XA_DEBUG 2398 void xa_dump_node(const struct xa_node *node) 2399 { 2400 unsigned i, j; 2401 2402 if (!node) 2403 return; 2404 if ((unsigned long)node & 3) { 2405 pr_cont("node %px\n", node); 2406 return; 2407 } 2408 2409 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2410 "array %px list %px %px marks", 2411 node, node->parent ? "offset" : "max", node->offset, 2412 node->parent, node->shift, node->count, node->nr_values, 2413 node->array, node->private_list.prev, node->private_list.next); 2414 for (i = 0; i < XA_MAX_MARKS; i++) 2415 for (j = 0; j < XA_MARK_LONGS; j++) 2416 pr_cont(" %lx", node->marks[i][j]); 2417 pr_cont("\n"); 2418 } 2419 2420 void xa_dump_index(unsigned long index, unsigned int shift) 2421 { 2422 if (!shift) 2423 pr_info("%lu: ", index); 2424 else if (shift >= BITS_PER_LONG) 2425 pr_info("0-%lu: ", ~0UL); 2426 else 2427 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2428 } 2429 2430 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2431 { 2432 if (!entry) 2433 return; 2434 2435 xa_dump_index(index, shift); 2436 2437 if (xa_is_node(entry)) { 2438 if (shift == 0) { 2439 pr_cont("%px\n", entry); 2440 } else { 2441 unsigned long i; 2442 struct xa_node *node = xa_to_node(entry); 2443 xa_dump_node(node); 2444 for (i = 0; i < XA_CHUNK_SIZE; i++) 2445 xa_dump_entry(node->slots[i], 2446 index + (i << node->shift), node->shift); 2447 } 2448 } else if (xa_is_value(entry)) 2449 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2450 xa_to_value(entry), entry); 2451 else if (!xa_is_internal(entry)) 2452 pr_cont("%px\n", entry); 2453 else if (xa_is_retry(entry)) 2454 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2455 else if (xa_is_sibling(entry)) 2456 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2457 else if (xa_is_zero(entry)) 2458 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2459 else 2460 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2461 } 2462 2463 void xa_dump(const struct xarray *xa) 2464 { 2465 void *entry = xa->xa_head; 2466 unsigned int shift = 0; 2467 2468 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2469 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2470 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2471 if (xa_is_node(entry)) 2472 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2473 xa_dump_entry(entry, 0, shift); 2474 } 2475 #endif 2476