xref: /linux/lib/xarray.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * XArray implementation
4  * Copyright (c) 2017 Microsoft Corporation
5  * Author: Matthew Wilcox <willy@infradead.org>
6  */
7 
8 #include <linux/bitmap.h>
9 #include <linux/export.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/xarray.h>
13 
14 /*
15  * Coding conventions in this file:
16  *
17  * @xa is used to refer to the entire xarray.
18  * @xas is the 'xarray operation state'.  It may be either a pointer to
19  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
20  * ambiguity.
21  * @index is the index of the entry being operated on
22  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23  * @node refers to an xa_node; usually the primary one being operated on by
24  * this function.
25  * @offset is the index into the slots array inside an xa_node.
26  * @parent refers to the @xa_node closer to the head than @node.
27  * @entry refers to something stored in a slot in the xarray
28  */
29 
30 static inline unsigned int xa_lock_type(const struct xarray *xa)
31 {
32 	return (__force unsigned int)xa->xa_flags & 3;
33 }
34 
35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36 {
37 	if (lock_type == XA_LOCK_IRQ)
38 		xas_lock_irq(xas);
39 	else if (lock_type == XA_LOCK_BH)
40 		xas_lock_bh(xas);
41 	else
42 		xas_lock(xas);
43 }
44 
45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46 {
47 	if (lock_type == XA_LOCK_IRQ)
48 		xas_unlock_irq(xas);
49 	else if (lock_type == XA_LOCK_BH)
50 		xas_unlock_bh(xas);
51 	else
52 		xas_unlock(xas);
53 }
54 
55 static inline bool xa_track_free(const struct xarray *xa)
56 {
57 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58 }
59 
60 static inline bool xa_zero_busy(const struct xarray *xa)
61 {
62 	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
63 }
64 
65 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
66 {
67 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 		xa->xa_flags |= XA_FLAGS_MARK(mark);
69 }
70 
71 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
72 {
73 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
75 }
76 
77 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
78 {
79 	return node->marks[(__force unsigned)mark];
80 }
81 
82 static inline bool node_get_mark(struct xa_node *node,
83 		unsigned int offset, xa_mark_t mark)
84 {
85 	return test_bit(offset, node_marks(node, mark));
86 }
87 
88 /* returns true if the bit was set */
89 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 				xa_mark_t mark)
91 {
92 	return __test_and_set_bit(offset, node_marks(node, mark));
93 }
94 
95 /* returns true if the bit was set */
96 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 				xa_mark_t mark)
98 {
99 	return __test_and_clear_bit(offset, node_marks(node, mark));
100 }
101 
102 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
103 {
104 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
105 }
106 
107 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
108 {
109 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
110 }
111 
112 #define mark_inc(mark) do { \
113 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114 } while (0)
115 
116 /*
117  * xas_squash_marks() - Merge all marks to the first entry
118  * @xas: Array operation state.
119  *
120  * Set a mark on the first entry if any entry has it set.  Clear marks on
121  * all sibling entries.
122  */
123 static void xas_squash_marks(const struct xa_state *xas)
124 {
125 	unsigned int mark = 0;
126 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127 
128 	if (!xas->xa_sibs)
129 		return;
130 
131 	do {
132 		unsigned long *marks = xas->xa_node->marks[mark];
133 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 			continue;
135 		__set_bit(xas->xa_offset, marks);
136 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
138 }
139 
140 /* extracts the offset within this node from the index */
141 static unsigned int get_offset(unsigned long index, struct xa_node *node)
142 {
143 	return (index >> node->shift) & XA_CHUNK_MASK;
144 }
145 
146 static void xas_set_offset(struct xa_state *xas)
147 {
148 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
149 }
150 
151 /* move the index either forwards (find) or backwards (sibling slot) */
152 static void xas_move_index(struct xa_state *xas, unsigned long offset)
153 {
154 	unsigned int shift = xas->xa_node->shift;
155 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 	xas->xa_index += offset << shift;
157 }
158 
159 static void xas_advance(struct xa_state *xas)
160 {
161 	xas->xa_offset++;
162 	xas_move_index(xas, xas->xa_offset);
163 }
164 
165 static void *set_bounds(struct xa_state *xas)
166 {
167 	xas->xa_node = XAS_BOUNDS;
168 	return NULL;
169 }
170 
171 /*
172  * Starts a walk.  If the @xas is already valid, we assume that it's on
173  * the right path and just return where we've got to.  If we're in an
174  * error state, return NULL.  If the index is outside the current scope
175  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
176  * set @xas->xa_node to NULL and return the current head of the array.
177  */
178 static void *xas_start(struct xa_state *xas)
179 {
180 	void *entry;
181 
182 	if (xas_valid(xas))
183 		return xas_reload(xas);
184 	if (xas_error(xas))
185 		return NULL;
186 
187 	entry = xa_head(xas->xa);
188 	if (!xa_is_node(entry)) {
189 		if (xas->xa_index)
190 			return set_bounds(xas);
191 	} else {
192 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 			return set_bounds(xas);
194 	}
195 
196 	xas->xa_node = NULL;
197 	return entry;
198 }
199 
200 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
201 {
202 	unsigned int offset = get_offset(xas->xa_index, node);
203 	void *entry = xa_entry(xas->xa, node, offset);
204 
205 	xas->xa_node = node;
206 	if (xa_is_sibling(entry)) {
207 		offset = xa_to_sibling(entry);
208 		entry = xa_entry(xas->xa, node, offset);
209 	}
210 
211 	xas->xa_offset = offset;
212 	return entry;
213 }
214 
215 /**
216  * xas_load() - Load an entry from the XArray (advanced).
217  * @xas: XArray operation state.
218  *
219  * Usually walks the @xas to the appropriate state to load the entry
220  * stored at xa_index.  However, it will do nothing and return %NULL if
221  * @xas is in an error state.  xas_load() will never expand the tree.
222  *
223  * If the xa_state is set up to operate on a multi-index entry, xas_load()
224  * may return %NULL or an internal entry, even if there are entries
225  * present within the range specified by @xas.
226  *
227  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
228  * Return: Usually an entry in the XArray, but see description for exceptions.
229  */
230 void *xas_load(struct xa_state *xas)
231 {
232 	void *entry = xas_start(xas);
233 
234 	while (xa_is_node(entry)) {
235 		struct xa_node *node = xa_to_node(entry);
236 
237 		if (xas->xa_shift > node->shift)
238 			break;
239 		entry = xas_descend(xas, node);
240 		if (node->shift == 0)
241 			break;
242 	}
243 	return entry;
244 }
245 EXPORT_SYMBOL_GPL(xas_load);
246 
247 /* Move the radix tree node cache here */
248 extern struct kmem_cache *radix_tree_node_cachep;
249 extern void radix_tree_node_rcu_free(struct rcu_head *head);
250 
251 #define XA_RCU_FREE	((struct xarray *)1)
252 
253 static void xa_node_free(struct xa_node *node)
254 {
255 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 	node->array = XA_RCU_FREE;
257 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
258 }
259 
260 /*
261  * xas_destroy() - Free any resources allocated during the XArray operation.
262  * @xas: XArray operation state.
263  *
264  * This function is now internal-only.
265  */
266 static void xas_destroy(struct xa_state *xas)
267 {
268 	struct xa_node *node = xas->xa_alloc;
269 
270 	if (!node)
271 		return;
272 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 	kmem_cache_free(radix_tree_node_cachep, node);
274 	xas->xa_alloc = NULL;
275 }
276 
277 /**
278  * xas_nomem() - Allocate memory if needed.
279  * @xas: XArray operation state.
280  * @gfp: Memory allocation flags.
281  *
282  * If we need to add new nodes to the XArray, we try to allocate memory
283  * with GFP_NOWAIT while holding the lock, which will usually succeed.
284  * If it fails, @xas is flagged as needing memory to continue.  The caller
285  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
286  * the caller should retry the operation.
287  *
288  * Forward progress is guaranteed as one node is allocated here and
289  * stored in the xa_state where it will be found by xas_alloc().  More
290  * nodes will likely be found in the slab allocator, but we do not tie
291  * them up here.
292  *
293  * Return: true if memory was needed, and was successfully allocated.
294  */
295 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
296 {
297 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 		xas_destroy(xas);
299 		return false;
300 	}
301 	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
302 	if (!xas->xa_alloc)
303 		return false;
304 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
305 	xas->xa_node = XAS_RESTART;
306 	return true;
307 }
308 EXPORT_SYMBOL_GPL(xas_nomem);
309 
310 /*
311  * __xas_nomem() - Drop locks and allocate memory if needed.
312  * @xas: XArray operation state.
313  * @gfp: Memory allocation flags.
314  *
315  * Internal variant of xas_nomem().
316  *
317  * Return: true if memory was needed, and was successfully allocated.
318  */
319 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
320 	__must_hold(xas->xa->xa_lock)
321 {
322 	unsigned int lock_type = xa_lock_type(xas->xa);
323 
324 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
325 		xas_destroy(xas);
326 		return false;
327 	}
328 	if (gfpflags_allow_blocking(gfp)) {
329 		xas_unlock_type(xas, lock_type);
330 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
331 		xas_lock_type(xas, lock_type);
332 	} else {
333 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
334 	}
335 	if (!xas->xa_alloc)
336 		return false;
337 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
338 	xas->xa_node = XAS_RESTART;
339 	return true;
340 }
341 
342 static void xas_update(struct xa_state *xas, struct xa_node *node)
343 {
344 	if (xas->xa_update)
345 		xas->xa_update(node);
346 	else
347 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
348 }
349 
350 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
351 {
352 	struct xa_node *parent = xas->xa_node;
353 	struct xa_node *node = xas->xa_alloc;
354 
355 	if (xas_invalid(xas))
356 		return NULL;
357 
358 	if (node) {
359 		xas->xa_alloc = NULL;
360 	} else {
361 		node = kmem_cache_alloc(radix_tree_node_cachep,
362 					GFP_NOWAIT | __GFP_NOWARN);
363 		if (!node) {
364 			xas_set_err(xas, -ENOMEM);
365 			return NULL;
366 		}
367 	}
368 
369 	if (parent) {
370 		node->offset = xas->xa_offset;
371 		parent->count++;
372 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
373 		xas_update(xas, parent);
374 	}
375 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
376 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
377 	node->shift = shift;
378 	node->count = 0;
379 	node->nr_values = 0;
380 	RCU_INIT_POINTER(node->parent, xas->xa_node);
381 	node->array = xas->xa;
382 
383 	return node;
384 }
385 
386 #ifdef CONFIG_XARRAY_MULTI
387 /* Returns the number of indices covered by a given xa_state */
388 static unsigned long xas_size(const struct xa_state *xas)
389 {
390 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
391 }
392 #endif
393 
394 /*
395  * Use this to calculate the maximum index that will need to be created
396  * in order to add the entry described by @xas.  Because we cannot store a
397  * multiple-index entry at index 0, the calculation is a little more complex
398  * than you might expect.
399  */
400 static unsigned long xas_max(struct xa_state *xas)
401 {
402 	unsigned long max = xas->xa_index;
403 
404 #ifdef CONFIG_XARRAY_MULTI
405 	if (xas->xa_shift || xas->xa_sibs) {
406 		unsigned long mask = xas_size(xas) - 1;
407 		max |= mask;
408 		if (mask == max)
409 			max++;
410 	}
411 #endif
412 
413 	return max;
414 }
415 
416 /* The maximum index that can be contained in the array without expanding it */
417 static unsigned long max_index(void *entry)
418 {
419 	if (!xa_is_node(entry))
420 		return 0;
421 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
422 }
423 
424 static void xas_shrink(struct xa_state *xas)
425 {
426 	struct xarray *xa = xas->xa;
427 	struct xa_node *node = xas->xa_node;
428 
429 	for (;;) {
430 		void *entry;
431 
432 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
433 		if (node->count != 1)
434 			break;
435 		entry = xa_entry_locked(xa, node, 0);
436 		if (!entry)
437 			break;
438 		if (!xa_is_node(entry) && node->shift)
439 			break;
440 		if (xa_is_zero(entry) && xa_zero_busy(xa))
441 			entry = NULL;
442 		xas->xa_node = XAS_BOUNDS;
443 
444 		RCU_INIT_POINTER(xa->xa_head, entry);
445 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
446 			xa_mark_clear(xa, XA_FREE_MARK);
447 
448 		node->count = 0;
449 		node->nr_values = 0;
450 		if (!xa_is_node(entry))
451 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
452 		xas_update(xas, node);
453 		xa_node_free(node);
454 		if (!xa_is_node(entry))
455 			break;
456 		node = xa_to_node(entry);
457 		node->parent = NULL;
458 	}
459 }
460 
461 /*
462  * xas_delete_node() - Attempt to delete an xa_node
463  * @xas: Array operation state.
464  *
465  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
466  * a non-zero reference count.
467  */
468 static void xas_delete_node(struct xa_state *xas)
469 {
470 	struct xa_node *node = xas->xa_node;
471 
472 	for (;;) {
473 		struct xa_node *parent;
474 
475 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
476 		if (node->count)
477 			break;
478 
479 		parent = xa_parent_locked(xas->xa, node);
480 		xas->xa_node = parent;
481 		xas->xa_offset = node->offset;
482 		xa_node_free(node);
483 
484 		if (!parent) {
485 			xas->xa->xa_head = NULL;
486 			xas->xa_node = XAS_BOUNDS;
487 			return;
488 		}
489 
490 		parent->slots[xas->xa_offset] = NULL;
491 		parent->count--;
492 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
493 		node = parent;
494 		xas_update(xas, node);
495 	}
496 
497 	if (!node->parent)
498 		xas_shrink(xas);
499 }
500 
501 /**
502  * xas_free_nodes() - Free this node and all nodes that it references
503  * @xas: Array operation state.
504  * @top: Node to free
505  *
506  * This node has been removed from the tree.  We must now free it and all
507  * of its subnodes.  There may be RCU walkers with references into the tree,
508  * so we must replace all entries with retry markers.
509  */
510 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
511 {
512 	unsigned int offset = 0;
513 	struct xa_node *node = top;
514 
515 	for (;;) {
516 		void *entry = xa_entry_locked(xas->xa, node, offset);
517 
518 		if (node->shift && xa_is_node(entry)) {
519 			node = xa_to_node(entry);
520 			offset = 0;
521 			continue;
522 		}
523 		if (entry)
524 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
525 		offset++;
526 		while (offset == XA_CHUNK_SIZE) {
527 			struct xa_node *parent;
528 
529 			parent = xa_parent_locked(xas->xa, node);
530 			offset = node->offset + 1;
531 			node->count = 0;
532 			node->nr_values = 0;
533 			xas_update(xas, node);
534 			xa_node_free(node);
535 			if (node == top)
536 				return;
537 			node = parent;
538 		}
539 	}
540 }
541 
542 /*
543  * xas_expand adds nodes to the head of the tree until it has reached
544  * sufficient height to be able to contain @xas->xa_index
545  */
546 static int xas_expand(struct xa_state *xas, void *head)
547 {
548 	struct xarray *xa = xas->xa;
549 	struct xa_node *node = NULL;
550 	unsigned int shift = 0;
551 	unsigned long max = xas_max(xas);
552 
553 	if (!head) {
554 		if (max == 0)
555 			return 0;
556 		while ((max >> shift) >= XA_CHUNK_SIZE)
557 			shift += XA_CHUNK_SHIFT;
558 		return shift + XA_CHUNK_SHIFT;
559 	} else if (xa_is_node(head)) {
560 		node = xa_to_node(head);
561 		shift = node->shift + XA_CHUNK_SHIFT;
562 	}
563 	xas->xa_node = NULL;
564 
565 	while (max > max_index(head)) {
566 		xa_mark_t mark = 0;
567 
568 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
569 		node = xas_alloc(xas, shift);
570 		if (!node)
571 			return -ENOMEM;
572 
573 		node->count = 1;
574 		if (xa_is_value(head))
575 			node->nr_values = 1;
576 		RCU_INIT_POINTER(node->slots[0], head);
577 
578 		/* Propagate the aggregated mark info to the new child */
579 		for (;;) {
580 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
581 				node_mark_all(node, XA_FREE_MARK);
582 				if (!xa_marked(xa, XA_FREE_MARK)) {
583 					node_clear_mark(node, 0, XA_FREE_MARK);
584 					xa_mark_set(xa, XA_FREE_MARK);
585 				}
586 			} else if (xa_marked(xa, mark)) {
587 				node_set_mark(node, 0, mark);
588 			}
589 			if (mark == XA_MARK_MAX)
590 				break;
591 			mark_inc(mark);
592 		}
593 
594 		/*
595 		 * Now that the new node is fully initialised, we can add
596 		 * it to the tree
597 		 */
598 		if (xa_is_node(head)) {
599 			xa_to_node(head)->offset = 0;
600 			rcu_assign_pointer(xa_to_node(head)->parent, node);
601 		}
602 		head = xa_mk_node(node);
603 		rcu_assign_pointer(xa->xa_head, head);
604 		xas_update(xas, node);
605 
606 		shift += XA_CHUNK_SHIFT;
607 	}
608 
609 	xas->xa_node = node;
610 	return shift;
611 }
612 
613 /*
614  * xas_create() - Create a slot to store an entry in.
615  * @xas: XArray operation state.
616  * @allow_root: %true if we can store the entry in the root directly
617  *
618  * Most users will not need to call this function directly, as it is called
619  * by xas_store().  It is useful for doing conditional store operations
620  * (see the xa_cmpxchg() implementation for an example).
621  *
622  * Return: If the slot already existed, returns the contents of this slot.
623  * If the slot was newly created, returns %NULL.  If it failed to create the
624  * slot, returns %NULL and indicates the error in @xas.
625  */
626 static void *xas_create(struct xa_state *xas, bool allow_root)
627 {
628 	struct xarray *xa = xas->xa;
629 	void *entry;
630 	void __rcu **slot;
631 	struct xa_node *node = xas->xa_node;
632 	int shift;
633 	unsigned int order = xas->xa_shift;
634 
635 	if (xas_top(node)) {
636 		entry = xa_head_locked(xa);
637 		xas->xa_node = NULL;
638 		if (!entry && xa_zero_busy(xa))
639 			entry = XA_ZERO_ENTRY;
640 		shift = xas_expand(xas, entry);
641 		if (shift < 0)
642 			return NULL;
643 		if (!shift && !allow_root)
644 			shift = XA_CHUNK_SHIFT;
645 		entry = xa_head_locked(xa);
646 		slot = &xa->xa_head;
647 	} else if (xas_error(xas)) {
648 		return NULL;
649 	} else if (node) {
650 		unsigned int offset = xas->xa_offset;
651 
652 		shift = node->shift;
653 		entry = xa_entry_locked(xa, node, offset);
654 		slot = &node->slots[offset];
655 	} else {
656 		shift = 0;
657 		entry = xa_head_locked(xa);
658 		slot = &xa->xa_head;
659 	}
660 
661 	while (shift > order) {
662 		shift -= XA_CHUNK_SHIFT;
663 		if (!entry) {
664 			node = xas_alloc(xas, shift);
665 			if (!node)
666 				break;
667 			if (xa_track_free(xa))
668 				node_mark_all(node, XA_FREE_MARK);
669 			rcu_assign_pointer(*slot, xa_mk_node(node));
670 		} else if (xa_is_node(entry)) {
671 			node = xa_to_node(entry);
672 		} else {
673 			break;
674 		}
675 		entry = xas_descend(xas, node);
676 		slot = &node->slots[xas->xa_offset];
677 	}
678 
679 	return entry;
680 }
681 
682 /**
683  * xas_create_range() - Ensure that stores to this range will succeed
684  * @xas: XArray operation state.
685  *
686  * Creates all of the slots in the range covered by @xas.  Sets @xas to
687  * create single-index entries and positions it at the beginning of the
688  * range.  This is for the benefit of users which have not yet been
689  * converted to use multi-index entries.
690  */
691 void xas_create_range(struct xa_state *xas)
692 {
693 	unsigned long index = xas->xa_index;
694 	unsigned char shift = xas->xa_shift;
695 	unsigned char sibs = xas->xa_sibs;
696 
697 	xas->xa_index |= ((sibs + 1) << shift) - 1;
698 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
699 		xas->xa_offset |= sibs;
700 	xas->xa_shift = 0;
701 	xas->xa_sibs = 0;
702 
703 	for (;;) {
704 		xas_create(xas, true);
705 		if (xas_error(xas))
706 			goto restore;
707 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
708 			goto success;
709 		xas->xa_index -= XA_CHUNK_SIZE;
710 
711 		for (;;) {
712 			struct xa_node *node = xas->xa_node;
713 			xas->xa_node = xa_parent_locked(xas->xa, node);
714 			xas->xa_offset = node->offset - 1;
715 			if (node->offset != 0)
716 				break;
717 		}
718 	}
719 
720 restore:
721 	xas->xa_shift = shift;
722 	xas->xa_sibs = sibs;
723 	xas->xa_index = index;
724 	return;
725 success:
726 	xas->xa_index = index;
727 	if (xas->xa_node)
728 		xas_set_offset(xas);
729 }
730 EXPORT_SYMBOL_GPL(xas_create_range);
731 
732 static void update_node(struct xa_state *xas, struct xa_node *node,
733 		int count, int values)
734 {
735 	if (!node || (!count && !values))
736 		return;
737 
738 	node->count += count;
739 	node->nr_values += values;
740 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
741 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
742 	xas_update(xas, node);
743 	if (count < 0)
744 		xas_delete_node(xas);
745 }
746 
747 /**
748  * xas_store() - Store this entry in the XArray.
749  * @xas: XArray operation state.
750  * @entry: New entry.
751  *
752  * If @xas is operating on a multi-index entry, the entry returned by this
753  * function is essentially meaningless (it may be an internal entry or it
754  * may be %NULL, even if there are non-NULL entries at some of the indices
755  * covered by the range).  This is not a problem for any current users,
756  * and can be changed if needed.
757  *
758  * Return: The old entry at this index.
759  */
760 void *xas_store(struct xa_state *xas, void *entry)
761 {
762 	struct xa_node *node;
763 	void __rcu **slot = &xas->xa->xa_head;
764 	unsigned int offset, max;
765 	int count = 0;
766 	int values = 0;
767 	void *first, *next;
768 	bool value = xa_is_value(entry);
769 
770 	if (entry) {
771 		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
772 		first = xas_create(xas, allow_root);
773 	} else {
774 		first = xas_load(xas);
775 	}
776 
777 	if (xas_invalid(xas))
778 		return first;
779 	node = xas->xa_node;
780 	if (node && (xas->xa_shift < node->shift))
781 		xas->xa_sibs = 0;
782 	if ((first == entry) && !xas->xa_sibs)
783 		return first;
784 
785 	next = first;
786 	offset = xas->xa_offset;
787 	max = xas->xa_offset + xas->xa_sibs;
788 	if (node) {
789 		slot = &node->slots[offset];
790 		if (xas->xa_sibs)
791 			xas_squash_marks(xas);
792 	}
793 	if (!entry)
794 		xas_init_marks(xas);
795 
796 	for (;;) {
797 		/*
798 		 * Must clear the marks before setting the entry to NULL,
799 		 * otherwise xas_for_each_marked may find a NULL entry and
800 		 * stop early.  rcu_assign_pointer contains a release barrier
801 		 * so the mark clearing will appear to happen before the
802 		 * entry is set to NULL.
803 		 */
804 		rcu_assign_pointer(*slot, entry);
805 		if (xa_is_node(next) && (!node || node->shift))
806 			xas_free_nodes(xas, xa_to_node(next));
807 		if (!node)
808 			break;
809 		count += !next - !entry;
810 		values += !xa_is_value(first) - !value;
811 		if (entry) {
812 			if (offset == max)
813 				break;
814 			if (!xa_is_sibling(entry))
815 				entry = xa_mk_sibling(xas->xa_offset);
816 		} else {
817 			if (offset == XA_CHUNK_MASK)
818 				break;
819 		}
820 		next = xa_entry_locked(xas->xa, node, ++offset);
821 		if (!xa_is_sibling(next)) {
822 			if (!entry && (offset > max))
823 				break;
824 			first = next;
825 		}
826 		slot++;
827 	}
828 
829 	update_node(xas, node, count, values);
830 	return first;
831 }
832 EXPORT_SYMBOL_GPL(xas_store);
833 
834 /**
835  * xas_get_mark() - Returns the state of this mark.
836  * @xas: XArray operation state.
837  * @mark: Mark number.
838  *
839  * Return: true if the mark is set, false if the mark is clear or @xas
840  * is in an error state.
841  */
842 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
843 {
844 	if (xas_invalid(xas))
845 		return false;
846 	if (!xas->xa_node)
847 		return xa_marked(xas->xa, mark);
848 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
849 }
850 EXPORT_SYMBOL_GPL(xas_get_mark);
851 
852 /**
853  * xas_set_mark() - Sets the mark on this entry and its parents.
854  * @xas: XArray operation state.
855  * @mark: Mark number.
856  *
857  * Sets the specified mark on this entry, and walks up the tree setting it
858  * on all the ancestor entries.  Does nothing if @xas has not been walked to
859  * an entry, or is in an error state.
860  */
861 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
862 {
863 	struct xa_node *node = xas->xa_node;
864 	unsigned int offset = xas->xa_offset;
865 
866 	if (xas_invalid(xas))
867 		return;
868 
869 	while (node) {
870 		if (node_set_mark(node, offset, mark))
871 			return;
872 		offset = node->offset;
873 		node = xa_parent_locked(xas->xa, node);
874 	}
875 
876 	if (!xa_marked(xas->xa, mark))
877 		xa_mark_set(xas->xa, mark);
878 }
879 EXPORT_SYMBOL_GPL(xas_set_mark);
880 
881 /**
882  * xas_clear_mark() - Clears the mark on this entry and its parents.
883  * @xas: XArray operation state.
884  * @mark: Mark number.
885  *
886  * Clears the specified mark on this entry, and walks back to the head
887  * attempting to clear it on all the ancestor entries.  Does nothing if
888  * @xas has not been walked to an entry, or is in an error state.
889  */
890 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
891 {
892 	struct xa_node *node = xas->xa_node;
893 	unsigned int offset = xas->xa_offset;
894 
895 	if (xas_invalid(xas))
896 		return;
897 
898 	while (node) {
899 		if (!node_clear_mark(node, offset, mark))
900 			return;
901 		if (node_any_mark(node, mark))
902 			return;
903 
904 		offset = node->offset;
905 		node = xa_parent_locked(xas->xa, node);
906 	}
907 
908 	if (xa_marked(xas->xa, mark))
909 		xa_mark_clear(xas->xa, mark);
910 }
911 EXPORT_SYMBOL_GPL(xas_clear_mark);
912 
913 /**
914  * xas_init_marks() - Initialise all marks for the entry
915  * @xas: Array operations state.
916  *
917  * Initialise all marks for the entry specified by @xas.  If we're tracking
918  * free entries with a mark, we need to set it on all entries.  All other
919  * marks are cleared.
920  *
921  * This implementation is not as efficient as it could be; we may walk
922  * up the tree multiple times.
923  */
924 void xas_init_marks(const struct xa_state *xas)
925 {
926 	xa_mark_t mark = 0;
927 
928 	for (;;) {
929 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
930 			xas_set_mark(xas, mark);
931 		else
932 			xas_clear_mark(xas, mark);
933 		if (mark == XA_MARK_MAX)
934 			break;
935 		mark_inc(mark);
936 	}
937 }
938 EXPORT_SYMBOL_GPL(xas_init_marks);
939 
940 /**
941  * xas_pause() - Pause a walk to drop a lock.
942  * @xas: XArray operation state.
943  *
944  * Some users need to pause a walk and drop the lock they're holding in
945  * order to yield to a higher priority thread or carry out an operation
946  * on an entry.  Those users should call this function before they drop
947  * the lock.  It resets the @xas to be suitable for the next iteration
948  * of the loop after the user has reacquired the lock.  If most entries
949  * found during a walk require you to call xas_pause(), the xa_for_each()
950  * iterator may be more appropriate.
951  *
952  * Note that xas_pause() only works for forward iteration.  If a user needs
953  * to pause a reverse iteration, we will need a xas_pause_rev().
954  */
955 void xas_pause(struct xa_state *xas)
956 {
957 	struct xa_node *node = xas->xa_node;
958 
959 	if (xas_invalid(xas))
960 		return;
961 
962 	if (node) {
963 		unsigned int offset = xas->xa_offset;
964 		while (++offset < XA_CHUNK_SIZE) {
965 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
966 				break;
967 		}
968 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
969 	} else {
970 		xas->xa_index++;
971 	}
972 	xas->xa_node = XAS_RESTART;
973 }
974 EXPORT_SYMBOL_GPL(xas_pause);
975 
976 /*
977  * __xas_prev() - Find the previous entry in the XArray.
978  * @xas: XArray operation state.
979  *
980  * Helper function for xas_prev() which handles all the complex cases
981  * out of line.
982  */
983 void *__xas_prev(struct xa_state *xas)
984 {
985 	void *entry;
986 
987 	if (!xas_frozen(xas->xa_node))
988 		xas->xa_index--;
989 	if (xas_not_node(xas->xa_node))
990 		return xas_load(xas);
991 
992 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
993 		xas->xa_offset--;
994 
995 	while (xas->xa_offset == 255) {
996 		xas->xa_offset = xas->xa_node->offset - 1;
997 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
998 		if (!xas->xa_node)
999 			return set_bounds(xas);
1000 	}
1001 
1002 	for (;;) {
1003 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1004 		if (!xa_is_node(entry))
1005 			return entry;
1006 
1007 		xas->xa_node = xa_to_node(entry);
1008 		xas_set_offset(xas);
1009 	}
1010 }
1011 EXPORT_SYMBOL_GPL(__xas_prev);
1012 
1013 /*
1014  * __xas_next() - Find the next entry in the XArray.
1015  * @xas: XArray operation state.
1016  *
1017  * Helper function for xas_next() which handles all the complex cases
1018  * out of line.
1019  */
1020 void *__xas_next(struct xa_state *xas)
1021 {
1022 	void *entry;
1023 
1024 	if (!xas_frozen(xas->xa_node))
1025 		xas->xa_index++;
1026 	if (xas_not_node(xas->xa_node))
1027 		return xas_load(xas);
1028 
1029 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1030 		xas->xa_offset++;
1031 
1032 	while (xas->xa_offset == XA_CHUNK_SIZE) {
1033 		xas->xa_offset = xas->xa_node->offset + 1;
1034 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1035 		if (!xas->xa_node)
1036 			return set_bounds(xas);
1037 	}
1038 
1039 	for (;;) {
1040 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1041 		if (!xa_is_node(entry))
1042 			return entry;
1043 
1044 		xas->xa_node = xa_to_node(entry);
1045 		xas_set_offset(xas);
1046 	}
1047 }
1048 EXPORT_SYMBOL_GPL(__xas_next);
1049 
1050 /**
1051  * xas_find() - Find the next present entry in the XArray.
1052  * @xas: XArray operation state.
1053  * @max: Highest index to return.
1054  *
1055  * If the @xas has not yet been walked to an entry, return the entry
1056  * which has an index >= xas.xa_index.  If it has been walked, the entry
1057  * currently being pointed at has been processed, and so we move to the
1058  * next entry.
1059  *
1060  * If no entry is found and the array is smaller than @max, the iterator
1061  * is set to the smallest index not yet in the array.  This allows @xas
1062  * to be immediately passed to xas_store().
1063  *
1064  * Return: The entry, if found, otherwise %NULL.
1065  */
1066 void *xas_find(struct xa_state *xas, unsigned long max)
1067 {
1068 	void *entry;
1069 
1070 	if (xas_error(xas))
1071 		return NULL;
1072 
1073 	if (!xas->xa_node) {
1074 		xas->xa_index = 1;
1075 		return set_bounds(xas);
1076 	} else if (xas_top(xas->xa_node)) {
1077 		entry = xas_load(xas);
1078 		if (entry || xas_not_node(xas->xa_node))
1079 			return entry;
1080 	} else if (!xas->xa_node->shift &&
1081 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1082 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1083 	}
1084 
1085 	xas_advance(xas);
1086 
1087 	while (xas->xa_node && (xas->xa_index <= max)) {
1088 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1089 			xas->xa_offset = xas->xa_node->offset + 1;
1090 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1091 			continue;
1092 		}
1093 
1094 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1095 		if (xa_is_node(entry)) {
1096 			xas->xa_node = xa_to_node(entry);
1097 			xas->xa_offset = 0;
1098 			continue;
1099 		}
1100 		if (entry && !xa_is_sibling(entry))
1101 			return entry;
1102 
1103 		xas_advance(xas);
1104 	}
1105 
1106 	if (!xas->xa_node)
1107 		xas->xa_node = XAS_BOUNDS;
1108 	return NULL;
1109 }
1110 EXPORT_SYMBOL_GPL(xas_find);
1111 
1112 /**
1113  * xas_find_marked() - Find the next marked entry in the XArray.
1114  * @xas: XArray operation state.
1115  * @max: Highest index to return.
1116  * @mark: Mark number to search for.
1117  *
1118  * If the @xas has not yet been walked to an entry, return the marked entry
1119  * which has an index >= xas.xa_index.  If it has been walked, the entry
1120  * currently being pointed at has been processed, and so we return the
1121  * first marked entry with an index > xas.xa_index.
1122  *
1123  * If no marked entry is found and the array is smaller than @max, @xas is
1124  * set to the bounds state and xas->xa_index is set to the smallest index
1125  * not yet in the array.  This allows @xas to be immediately passed to
1126  * xas_store().
1127  *
1128  * If no entry is found before @max is reached, @xas is set to the restart
1129  * state.
1130  *
1131  * Return: The entry, if found, otherwise %NULL.
1132  */
1133 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1134 {
1135 	bool advance = true;
1136 	unsigned int offset;
1137 	void *entry;
1138 
1139 	if (xas_error(xas))
1140 		return NULL;
1141 
1142 	if (!xas->xa_node) {
1143 		xas->xa_index = 1;
1144 		goto out;
1145 	} else if (xas_top(xas->xa_node)) {
1146 		advance = false;
1147 		entry = xa_head(xas->xa);
1148 		xas->xa_node = NULL;
1149 		if (xas->xa_index > max_index(entry))
1150 			goto out;
1151 		if (!xa_is_node(entry)) {
1152 			if (xa_marked(xas->xa, mark))
1153 				return entry;
1154 			xas->xa_index = 1;
1155 			goto out;
1156 		}
1157 		xas->xa_node = xa_to_node(entry);
1158 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1159 	}
1160 
1161 	while (xas->xa_index <= max) {
1162 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1163 			xas->xa_offset = xas->xa_node->offset + 1;
1164 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1165 			if (!xas->xa_node)
1166 				break;
1167 			advance = false;
1168 			continue;
1169 		}
1170 
1171 		if (!advance) {
1172 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1173 			if (xa_is_sibling(entry)) {
1174 				xas->xa_offset = xa_to_sibling(entry);
1175 				xas_move_index(xas, xas->xa_offset);
1176 			}
1177 		}
1178 
1179 		offset = xas_find_chunk(xas, advance, mark);
1180 		if (offset > xas->xa_offset) {
1181 			advance = false;
1182 			xas_move_index(xas, offset);
1183 			/* Mind the wrap */
1184 			if ((xas->xa_index - 1) >= max)
1185 				goto max;
1186 			xas->xa_offset = offset;
1187 			if (offset == XA_CHUNK_SIZE)
1188 				continue;
1189 		}
1190 
1191 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1192 		if (!xa_is_node(entry))
1193 			return entry;
1194 		xas->xa_node = xa_to_node(entry);
1195 		xas_set_offset(xas);
1196 	}
1197 
1198 out:
1199 	if (xas->xa_index > max)
1200 		goto max;
1201 	return set_bounds(xas);
1202 max:
1203 	xas->xa_node = XAS_RESTART;
1204 	return NULL;
1205 }
1206 EXPORT_SYMBOL_GPL(xas_find_marked);
1207 
1208 /**
1209  * xas_find_conflict() - Find the next present entry in a range.
1210  * @xas: XArray operation state.
1211  *
1212  * The @xas describes both a range and a position within that range.
1213  *
1214  * Context: Any context.  Expects xa_lock to be held.
1215  * Return: The next entry in the range covered by @xas or %NULL.
1216  */
1217 void *xas_find_conflict(struct xa_state *xas)
1218 {
1219 	void *curr;
1220 
1221 	if (xas_error(xas))
1222 		return NULL;
1223 
1224 	if (!xas->xa_node)
1225 		return NULL;
1226 
1227 	if (xas_top(xas->xa_node)) {
1228 		curr = xas_start(xas);
1229 		if (!curr)
1230 			return NULL;
1231 		while (xa_is_node(curr)) {
1232 			struct xa_node *node = xa_to_node(curr);
1233 			curr = xas_descend(xas, node);
1234 		}
1235 		if (curr)
1236 			return curr;
1237 	}
1238 
1239 	if (xas->xa_node->shift > xas->xa_shift)
1240 		return NULL;
1241 
1242 	for (;;) {
1243 		if (xas->xa_node->shift == xas->xa_shift) {
1244 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1245 				break;
1246 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1247 			xas->xa_offset = xas->xa_node->offset;
1248 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1249 			if (!xas->xa_node)
1250 				break;
1251 			continue;
1252 		}
1253 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1254 		if (xa_is_sibling(curr))
1255 			continue;
1256 		while (xa_is_node(curr)) {
1257 			xas->xa_node = xa_to_node(curr);
1258 			xas->xa_offset = 0;
1259 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1260 		}
1261 		if (curr)
1262 			return curr;
1263 	}
1264 	xas->xa_offset -= xas->xa_sibs;
1265 	return NULL;
1266 }
1267 EXPORT_SYMBOL_GPL(xas_find_conflict);
1268 
1269 /**
1270  * xa_load() - Load an entry from an XArray.
1271  * @xa: XArray.
1272  * @index: index into array.
1273  *
1274  * Context: Any context.  Takes and releases the RCU lock.
1275  * Return: The entry at @index in @xa.
1276  */
1277 void *xa_load(struct xarray *xa, unsigned long index)
1278 {
1279 	XA_STATE(xas, xa, index);
1280 	void *entry;
1281 
1282 	rcu_read_lock();
1283 	do {
1284 		entry = xas_load(&xas);
1285 		if (xa_is_zero(entry))
1286 			entry = NULL;
1287 	} while (xas_retry(&xas, entry));
1288 	rcu_read_unlock();
1289 
1290 	return entry;
1291 }
1292 EXPORT_SYMBOL(xa_load);
1293 
1294 static void *xas_result(struct xa_state *xas, void *curr)
1295 {
1296 	if (xa_is_zero(curr))
1297 		return NULL;
1298 	if (xas_error(xas))
1299 		curr = xas->xa_node;
1300 	return curr;
1301 }
1302 
1303 /**
1304  * __xa_erase() - Erase this entry from the XArray while locked.
1305  * @xa: XArray.
1306  * @index: Index into array.
1307  *
1308  * After this function returns, loading from @index will return %NULL.
1309  * If the index is part of a multi-index entry, all indices will be erased
1310  * and none of the entries will be part of a multi-index entry.
1311  *
1312  * Context: Any context.  Expects xa_lock to be held on entry.
1313  * Return: The entry which used to be at this index.
1314  */
1315 void *__xa_erase(struct xarray *xa, unsigned long index)
1316 {
1317 	XA_STATE(xas, xa, index);
1318 	return xas_result(&xas, xas_store(&xas, NULL));
1319 }
1320 EXPORT_SYMBOL(__xa_erase);
1321 
1322 /**
1323  * xa_erase() - Erase this entry from the XArray.
1324  * @xa: XArray.
1325  * @index: Index of entry.
1326  *
1327  * After this function returns, loading from @index will return %NULL.
1328  * If the index is part of a multi-index entry, all indices will be erased
1329  * and none of the entries will be part of a multi-index entry.
1330  *
1331  * Context: Any context.  Takes and releases the xa_lock.
1332  * Return: The entry which used to be at this index.
1333  */
1334 void *xa_erase(struct xarray *xa, unsigned long index)
1335 {
1336 	void *entry;
1337 
1338 	xa_lock(xa);
1339 	entry = __xa_erase(xa, index);
1340 	xa_unlock(xa);
1341 
1342 	return entry;
1343 }
1344 EXPORT_SYMBOL(xa_erase);
1345 
1346 /**
1347  * __xa_store() - Store this entry in the XArray.
1348  * @xa: XArray.
1349  * @index: Index into array.
1350  * @entry: New entry.
1351  * @gfp: Memory allocation flags.
1352  *
1353  * You must already be holding the xa_lock when calling this function.
1354  * It will drop the lock if needed to allocate memory, and then reacquire
1355  * it afterwards.
1356  *
1357  * Context: Any context.  Expects xa_lock to be held on entry.  May
1358  * release and reacquire xa_lock if @gfp flags permit.
1359  * Return: The old entry at this index or xa_err() if an error happened.
1360  */
1361 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1362 {
1363 	XA_STATE(xas, xa, index);
1364 	void *curr;
1365 
1366 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1367 		return XA_ERROR(-EINVAL);
1368 	if (xa_track_free(xa) && !entry)
1369 		entry = XA_ZERO_ENTRY;
1370 
1371 	do {
1372 		curr = xas_store(&xas, entry);
1373 		if (xa_track_free(xa))
1374 			xas_clear_mark(&xas, XA_FREE_MARK);
1375 	} while (__xas_nomem(&xas, gfp));
1376 
1377 	return xas_result(&xas, curr);
1378 }
1379 EXPORT_SYMBOL(__xa_store);
1380 
1381 /**
1382  * xa_store() - Store this entry in the XArray.
1383  * @xa: XArray.
1384  * @index: Index into array.
1385  * @entry: New entry.
1386  * @gfp: Memory allocation flags.
1387  *
1388  * After this function returns, loads from this index will return @entry.
1389  * Storing into an existing multislot entry updates the entry of every index.
1390  * The marks associated with @index are unaffected unless @entry is %NULL.
1391  *
1392  * Context: Any context.  Takes and releases the xa_lock.
1393  * May sleep if the @gfp flags permit.
1394  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1395  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1396  * failed.
1397  */
1398 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1399 {
1400 	void *curr;
1401 
1402 	xa_lock(xa);
1403 	curr = __xa_store(xa, index, entry, gfp);
1404 	xa_unlock(xa);
1405 
1406 	return curr;
1407 }
1408 EXPORT_SYMBOL(xa_store);
1409 
1410 /**
1411  * __xa_cmpxchg() - Store this entry in the XArray.
1412  * @xa: XArray.
1413  * @index: Index into array.
1414  * @old: Old value to test against.
1415  * @entry: New entry.
1416  * @gfp: Memory allocation flags.
1417  *
1418  * You must already be holding the xa_lock when calling this function.
1419  * It will drop the lock if needed to allocate memory, and then reacquire
1420  * it afterwards.
1421  *
1422  * Context: Any context.  Expects xa_lock to be held on entry.  May
1423  * release and reacquire xa_lock if @gfp flags permit.
1424  * Return: The old entry at this index or xa_err() if an error happened.
1425  */
1426 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1427 			void *old, void *entry, gfp_t gfp)
1428 {
1429 	XA_STATE(xas, xa, index);
1430 	void *curr;
1431 
1432 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1433 		return XA_ERROR(-EINVAL);
1434 
1435 	do {
1436 		curr = xas_load(&xas);
1437 		if (curr == old) {
1438 			xas_store(&xas, entry);
1439 			if (xa_track_free(xa) && entry && !curr)
1440 				xas_clear_mark(&xas, XA_FREE_MARK);
1441 		}
1442 	} while (__xas_nomem(&xas, gfp));
1443 
1444 	return xas_result(&xas, curr);
1445 }
1446 EXPORT_SYMBOL(__xa_cmpxchg);
1447 
1448 /**
1449  * __xa_insert() - Store this entry in the XArray if no entry is present.
1450  * @xa: XArray.
1451  * @index: Index into array.
1452  * @entry: New entry.
1453  * @gfp: Memory allocation flags.
1454  *
1455  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1456  * if no entry is present.  Inserting will fail if a reserved entry is
1457  * present, even though loading from this index will return NULL.
1458  *
1459  * Context: Any context.  Expects xa_lock to be held on entry.  May
1460  * release and reacquire xa_lock if @gfp flags permit.
1461  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1462  * -ENOMEM if memory could not be allocated.
1463  */
1464 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1465 {
1466 	XA_STATE(xas, xa, index);
1467 	void *curr;
1468 
1469 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1470 		return -EINVAL;
1471 	if (!entry)
1472 		entry = XA_ZERO_ENTRY;
1473 
1474 	do {
1475 		curr = xas_load(&xas);
1476 		if (!curr) {
1477 			xas_store(&xas, entry);
1478 			if (xa_track_free(xa))
1479 				xas_clear_mark(&xas, XA_FREE_MARK);
1480 		} else {
1481 			xas_set_err(&xas, -EBUSY);
1482 		}
1483 	} while (__xas_nomem(&xas, gfp));
1484 
1485 	return xas_error(&xas);
1486 }
1487 EXPORT_SYMBOL(__xa_insert);
1488 
1489 #ifdef CONFIG_XARRAY_MULTI
1490 static void xas_set_range(struct xa_state *xas, unsigned long first,
1491 		unsigned long last)
1492 {
1493 	unsigned int shift = 0;
1494 	unsigned long sibs = last - first;
1495 	unsigned int offset = XA_CHUNK_MASK;
1496 
1497 	xas_set(xas, first);
1498 
1499 	while ((first & XA_CHUNK_MASK) == 0) {
1500 		if (sibs < XA_CHUNK_MASK)
1501 			break;
1502 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1503 			break;
1504 		shift += XA_CHUNK_SHIFT;
1505 		if (offset == XA_CHUNK_MASK)
1506 			offset = sibs & XA_CHUNK_MASK;
1507 		sibs >>= XA_CHUNK_SHIFT;
1508 		first >>= XA_CHUNK_SHIFT;
1509 	}
1510 
1511 	offset = first & XA_CHUNK_MASK;
1512 	if (offset + sibs > XA_CHUNK_MASK)
1513 		sibs = XA_CHUNK_MASK - offset;
1514 	if ((((first + sibs + 1) << shift) - 1) > last)
1515 		sibs -= 1;
1516 
1517 	xas->xa_shift = shift;
1518 	xas->xa_sibs = sibs;
1519 }
1520 
1521 /**
1522  * xa_store_range() - Store this entry at a range of indices in the XArray.
1523  * @xa: XArray.
1524  * @first: First index to affect.
1525  * @last: Last index to affect.
1526  * @entry: New entry.
1527  * @gfp: Memory allocation flags.
1528  *
1529  * After this function returns, loads from any index between @first and @last,
1530  * inclusive will return @entry.
1531  * Storing into an existing multislot entry updates the entry of every index.
1532  * The marks associated with @index are unaffected unless @entry is %NULL.
1533  *
1534  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1535  * if the @gfp flags permit.
1536  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1537  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1538  */
1539 void *xa_store_range(struct xarray *xa, unsigned long first,
1540 		unsigned long last, void *entry, gfp_t gfp)
1541 {
1542 	XA_STATE(xas, xa, 0);
1543 
1544 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1545 		return XA_ERROR(-EINVAL);
1546 	if (last < first)
1547 		return XA_ERROR(-EINVAL);
1548 
1549 	do {
1550 		xas_lock(&xas);
1551 		if (entry) {
1552 			unsigned int order = BITS_PER_LONG;
1553 			if (last + 1)
1554 				order = __ffs(last + 1);
1555 			xas_set_order(&xas, last, order);
1556 			xas_create(&xas, true);
1557 			if (xas_error(&xas))
1558 				goto unlock;
1559 		}
1560 		do {
1561 			xas_set_range(&xas, first, last);
1562 			xas_store(&xas, entry);
1563 			if (xas_error(&xas))
1564 				goto unlock;
1565 			first += xas_size(&xas);
1566 		} while (first <= last);
1567 unlock:
1568 		xas_unlock(&xas);
1569 	} while (xas_nomem(&xas, gfp));
1570 
1571 	return xas_result(&xas, NULL);
1572 }
1573 EXPORT_SYMBOL(xa_store_range);
1574 #endif /* CONFIG_XARRAY_MULTI */
1575 
1576 /**
1577  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1578  * @xa: XArray.
1579  * @id: Pointer to ID.
1580  * @limit: Range for allocated ID.
1581  * @entry: New entry.
1582  * @gfp: Memory allocation flags.
1583  *
1584  * Finds an empty entry in @xa between @limit.min and @limit.max,
1585  * stores the index into the @id pointer, then stores the entry at
1586  * that index.  A concurrent lookup will not see an uninitialised @id.
1587  *
1588  * Context: Any context.  Expects xa_lock to be held on entry.  May
1589  * release and reacquire xa_lock if @gfp flags permit.
1590  * Return: 0 on success, -ENOMEM if memory could not be allocated or
1591  * -EBUSY if there are no free entries in @limit.
1592  */
1593 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1594 		struct xa_limit limit, gfp_t gfp)
1595 {
1596 	XA_STATE(xas, xa, 0);
1597 
1598 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1599 		return -EINVAL;
1600 	if (WARN_ON_ONCE(!xa_track_free(xa)))
1601 		return -EINVAL;
1602 
1603 	if (!entry)
1604 		entry = XA_ZERO_ENTRY;
1605 
1606 	do {
1607 		xas.xa_index = limit.min;
1608 		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1609 		if (xas.xa_node == XAS_RESTART)
1610 			xas_set_err(&xas, -EBUSY);
1611 		else
1612 			*id = xas.xa_index;
1613 		xas_store(&xas, entry);
1614 		xas_clear_mark(&xas, XA_FREE_MARK);
1615 	} while (__xas_nomem(&xas, gfp));
1616 
1617 	return xas_error(&xas);
1618 }
1619 EXPORT_SYMBOL(__xa_alloc);
1620 
1621 /**
1622  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1623  * @xa: XArray.
1624  * @id: Pointer to ID.
1625  * @entry: New entry.
1626  * @limit: Range of allocated ID.
1627  * @next: Pointer to next ID to allocate.
1628  * @gfp: Memory allocation flags.
1629  *
1630  * Finds an empty entry in @xa between @limit.min and @limit.max,
1631  * stores the index into the @id pointer, then stores the entry at
1632  * that index.  A concurrent lookup will not see an uninitialised @id.
1633  * The search for an empty entry will start at @next and will wrap
1634  * around if necessary.
1635  *
1636  * Context: Any context.  Expects xa_lock to be held on entry.  May
1637  * release and reacquire xa_lock if @gfp flags permit.
1638  * Return: 0 if the allocation succeeded without wrapping.  1 if the
1639  * allocation succeeded after wrapping, -ENOMEM if memory could not be
1640  * allocated or -EBUSY if there are no free entries in @limit.
1641  */
1642 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1643 		struct xa_limit limit, u32 *next, gfp_t gfp)
1644 {
1645 	u32 min = limit.min;
1646 	int ret;
1647 
1648 	limit.min = max(min, *next);
1649 	ret = __xa_alloc(xa, id, entry, limit, gfp);
1650 	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1651 		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1652 		ret = 1;
1653 	}
1654 
1655 	if (ret < 0 && limit.min > min) {
1656 		limit.min = min;
1657 		ret = __xa_alloc(xa, id, entry, limit, gfp);
1658 		if (ret == 0)
1659 			ret = 1;
1660 	}
1661 
1662 	if (ret >= 0) {
1663 		*next = *id + 1;
1664 		if (*next == 0)
1665 			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1666 	}
1667 	return ret;
1668 }
1669 EXPORT_SYMBOL(__xa_alloc_cyclic);
1670 
1671 /**
1672  * __xa_set_mark() - Set this mark on this entry while locked.
1673  * @xa: XArray.
1674  * @index: Index of entry.
1675  * @mark: Mark number.
1676  *
1677  * Attempting to set a mark on a %NULL entry does not succeed.
1678  *
1679  * Context: Any context.  Expects xa_lock to be held on entry.
1680  */
1681 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1682 {
1683 	XA_STATE(xas, xa, index);
1684 	void *entry = xas_load(&xas);
1685 
1686 	if (entry)
1687 		xas_set_mark(&xas, mark);
1688 }
1689 EXPORT_SYMBOL(__xa_set_mark);
1690 
1691 /**
1692  * __xa_clear_mark() - Clear this mark on this entry while locked.
1693  * @xa: XArray.
1694  * @index: Index of entry.
1695  * @mark: Mark number.
1696  *
1697  * Context: Any context.  Expects xa_lock to be held on entry.
1698  */
1699 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1700 {
1701 	XA_STATE(xas, xa, index);
1702 	void *entry = xas_load(&xas);
1703 
1704 	if (entry)
1705 		xas_clear_mark(&xas, mark);
1706 }
1707 EXPORT_SYMBOL(__xa_clear_mark);
1708 
1709 /**
1710  * xa_get_mark() - Inquire whether this mark is set on this entry.
1711  * @xa: XArray.
1712  * @index: Index of entry.
1713  * @mark: Mark number.
1714  *
1715  * This function uses the RCU read lock, so the result may be out of date
1716  * by the time it returns.  If you need the result to be stable, use a lock.
1717  *
1718  * Context: Any context.  Takes and releases the RCU lock.
1719  * Return: True if the entry at @index has this mark set, false if it doesn't.
1720  */
1721 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1722 {
1723 	XA_STATE(xas, xa, index);
1724 	void *entry;
1725 
1726 	rcu_read_lock();
1727 	entry = xas_start(&xas);
1728 	while (xas_get_mark(&xas, mark)) {
1729 		if (!xa_is_node(entry))
1730 			goto found;
1731 		entry = xas_descend(&xas, xa_to_node(entry));
1732 	}
1733 	rcu_read_unlock();
1734 	return false;
1735  found:
1736 	rcu_read_unlock();
1737 	return true;
1738 }
1739 EXPORT_SYMBOL(xa_get_mark);
1740 
1741 /**
1742  * xa_set_mark() - Set this mark on this entry.
1743  * @xa: XArray.
1744  * @index: Index of entry.
1745  * @mark: Mark number.
1746  *
1747  * Attempting to set a mark on a %NULL entry does not succeed.
1748  *
1749  * Context: Process context.  Takes and releases the xa_lock.
1750  */
1751 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1752 {
1753 	xa_lock(xa);
1754 	__xa_set_mark(xa, index, mark);
1755 	xa_unlock(xa);
1756 }
1757 EXPORT_SYMBOL(xa_set_mark);
1758 
1759 /**
1760  * xa_clear_mark() - Clear this mark on this entry.
1761  * @xa: XArray.
1762  * @index: Index of entry.
1763  * @mark: Mark number.
1764  *
1765  * Clearing a mark always succeeds.
1766  *
1767  * Context: Process context.  Takes and releases the xa_lock.
1768  */
1769 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1770 {
1771 	xa_lock(xa);
1772 	__xa_clear_mark(xa, index, mark);
1773 	xa_unlock(xa);
1774 }
1775 EXPORT_SYMBOL(xa_clear_mark);
1776 
1777 /**
1778  * xa_find() - Search the XArray for an entry.
1779  * @xa: XArray.
1780  * @indexp: Pointer to an index.
1781  * @max: Maximum index to search to.
1782  * @filter: Selection criterion.
1783  *
1784  * Finds the entry in @xa which matches the @filter, and has the lowest
1785  * index that is at least @indexp and no more than @max.
1786  * If an entry is found, @indexp is updated to be the index of the entry.
1787  * This function is protected by the RCU read lock, so it may not find
1788  * entries which are being simultaneously added.  It will not return an
1789  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1790  *
1791  * Context: Any context.  Takes and releases the RCU lock.
1792  * Return: The entry, if found, otherwise %NULL.
1793  */
1794 void *xa_find(struct xarray *xa, unsigned long *indexp,
1795 			unsigned long max, xa_mark_t filter)
1796 {
1797 	XA_STATE(xas, xa, *indexp);
1798 	void *entry;
1799 
1800 	rcu_read_lock();
1801 	do {
1802 		if ((__force unsigned int)filter < XA_MAX_MARKS)
1803 			entry = xas_find_marked(&xas, max, filter);
1804 		else
1805 			entry = xas_find(&xas, max);
1806 	} while (xas_retry(&xas, entry));
1807 	rcu_read_unlock();
1808 
1809 	if (entry)
1810 		*indexp = xas.xa_index;
1811 	return entry;
1812 }
1813 EXPORT_SYMBOL(xa_find);
1814 
1815 /**
1816  * xa_find_after() - Search the XArray for a present entry.
1817  * @xa: XArray.
1818  * @indexp: Pointer to an index.
1819  * @max: Maximum index to search to.
1820  * @filter: Selection criterion.
1821  *
1822  * Finds the entry in @xa which matches the @filter and has the lowest
1823  * index that is above @indexp and no more than @max.
1824  * If an entry is found, @indexp is updated to be the index of the entry.
1825  * This function is protected by the RCU read lock, so it may miss entries
1826  * which are being simultaneously added.  It will not return an
1827  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1828  *
1829  * Context: Any context.  Takes and releases the RCU lock.
1830  * Return: The pointer, if found, otherwise %NULL.
1831  */
1832 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1833 			unsigned long max, xa_mark_t filter)
1834 {
1835 	XA_STATE(xas, xa, *indexp + 1);
1836 	void *entry;
1837 
1838 	rcu_read_lock();
1839 	for (;;) {
1840 		if ((__force unsigned int)filter < XA_MAX_MARKS)
1841 			entry = xas_find_marked(&xas, max, filter);
1842 		else
1843 			entry = xas_find(&xas, max);
1844 		if (xas.xa_node == XAS_BOUNDS)
1845 			break;
1846 		if (xas.xa_shift) {
1847 			if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1848 				continue;
1849 		} else {
1850 			if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1851 				continue;
1852 		}
1853 		if (!xas_retry(&xas, entry))
1854 			break;
1855 	}
1856 	rcu_read_unlock();
1857 
1858 	if (entry)
1859 		*indexp = xas.xa_index;
1860 	return entry;
1861 }
1862 EXPORT_SYMBOL(xa_find_after);
1863 
1864 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1865 			unsigned long max, unsigned int n)
1866 {
1867 	void *entry;
1868 	unsigned int i = 0;
1869 
1870 	rcu_read_lock();
1871 	xas_for_each(xas, entry, max) {
1872 		if (xas_retry(xas, entry))
1873 			continue;
1874 		dst[i++] = entry;
1875 		if (i == n)
1876 			break;
1877 	}
1878 	rcu_read_unlock();
1879 
1880 	return i;
1881 }
1882 
1883 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1884 			unsigned long max, unsigned int n, xa_mark_t mark)
1885 {
1886 	void *entry;
1887 	unsigned int i = 0;
1888 
1889 	rcu_read_lock();
1890 	xas_for_each_marked(xas, entry, max, mark) {
1891 		if (xas_retry(xas, entry))
1892 			continue;
1893 		dst[i++] = entry;
1894 		if (i == n)
1895 			break;
1896 	}
1897 	rcu_read_unlock();
1898 
1899 	return i;
1900 }
1901 
1902 /**
1903  * xa_extract() - Copy selected entries from the XArray into a normal array.
1904  * @xa: The source XArray to copy from.
1905  * @dst: The buffer to copy entries into.
1906  * @start: The first index in the XArray eligible to be selected.
1907  * @max: The last index in the XArray eligible to be selected.
1908  * @n: The maximum number of entries to copy.
1909  * @filter: Selection criterion.
1910  *
1911  * Copies up to @n entries that match @filter from the XArray.  The
1912  * copied entries will have indices between @start and @max, inclusive.
1913  *
1914  * The @filter may be an XArray mark value, in which case entries which are
1915  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
1916  * which case all entries which are not %NULL will be copied.
1917  *
1918  * The entries returned may not represent a snapshot of the XArray at a
1919  * moment in time.  For example, if another thread stores to index 5, then
1920  * index 10, calling xa_extract() may return the old contents of index 5
1921  * and the new contents of index 10.  Indices not modified while this
1922  * function is running will not be skipped.
1923  *
1924  * If you need stronger guarantees, holding the xa_lock across calls to this
1925  * function will prevent concurrent modification.
1926  *
1927  * Context: Any context.  Takes and releases the RCU lock.
1928  * Return: The number of entries copied.
1929  */
1930 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1931 			unsigned long max, unsigned int n, xa_mark_t filter)
1932 {
1933 	XA_STATE(xas, xa, start);
1934 
1935 	if (!n)
1936 		return 0;
1937 
1938 	if ((__force unsigned int)filter < XA_MAX_MARKS)
1939 		return xas_extract_marked(&xas, dst, max, n, filter);
1940 	return xas_extract_present(&xas, dst, max, n);
1941 }
1942 EXPORT_SYMBOL(xa_extract);
1943 
1944 /**
1945  * xa_destroy() - Free all internal data structures.
1946  * @xa: XArray.
1947  *
1948  * After calling this function, the XArray is empty and has freed all memory
1949  * allocated for its internal data structures.  You are responsible for
1950  * freeing the objects referenced by the XArray.
1951  *
1952  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
1953  */
1954 void xa_destroy(struct xarray *xa)
1955 {
1956 	XA_STATE(xas, xa, 0);
1957 	unsigned long flags;
1958 	void *entry;
1959 
1960 	xas.xa_node = NULL;
1961 	xas_lock_irqsave(&xas, flags);
1962 	entry = xa_head_locked(xa);
1963 	RCU_INIT_POINTER(xa->xa_head, NULL);
1964 	xas_init_marks(&xas);
1965 	if (xa_zero_busy(xa))
1966 		xa_mark_clear(xa, XA_FREE_MARK);
1967 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
1968 	if (xa_is_node(entry))
1969 		xas_free_nodes(&xas, xa_to_node(entry));
1970 	xas_unlock_irqrestore(&xas, flags);
1971 }
1972 EXPORT_SYMBOL(xa_destroy);
1973 
1974 #ifdef XA_DEBUG
1975 void xa_dump_node(const struct xa_node *node)
1976 {
1977 	unsigned i, j;
1978 
1979 	if (!node)
1980 		return;
1981 	if ((unsigned long)node & 3) {
1982 		pr_cont("node %px\n", node);
1983 		return;
1984 	}
1985 
1986 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1987 		"array %px list %px %px marks",
1988 		node, node->parent ? "offset" : "max", node->offset,
1989 		node->parent, node->shift, node->count, node->nr_values,
1990 		node->array, node->private_list.prev, node->private_list.next);
1991 	for (i = 0; i < XA_MAX_MARKS; i++)
1992 		for (j = 0; j < XA_MARK_LONGS; j++)
1993 			pr_cont(" %lx", node->marks[i][j]);
1994 	pr_cont("\n");
1995 }
1996 
1997 void xa_dump_index(unsigned long index, unsigned int shift)
1998 {
1999 	if (!shift)
2000 		pr_info("%lu: ", index);
2001 	else if (shift >= BITS_PER_LONG)
2002 		pr_info("0-%lu: ", ~0UL);
2003 	else
2004 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2005 }
2006 
2007 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2008 {
2009 	if (!entry)
2010 		return;
2011 
2012 	xa_dump_index(index, shift);
2013 
2014 	if (xa_is_node(entry)) {
2015 		if (shift == 0) {
2016 			pr_cont("%px\n", entry);
2017 		} else {
2018 			unsigned long i;
2019 			struct xa_node *node = xa_to_node(entry);
2020 			xa_dump_node(node);
2021 			for (i = 0; i < XA_CHUNK_SIZE; i++)
2022 				xa_dump_entry(node->slots[i],
2023 				      index + (i << node->shift), node->shift);
2024 		}
2025 	} else if (xa_is_value(entry))
2026 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2027 						xa_to_value(entry), entry);
2028 	else if (!xa_is_internal(entry))
2029 		pr_cont("%px\n", entry);
2030 	else if (xa_is_retry(entry))
2031 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2032 	else if (xa_is_sibling(entry))
2033 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2034 	else if (xa_is_zero(entry))
2035 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2036 	else
2037 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2038 }
2039 
2040 void xa_dump(const struct xarray *xa)
2041 {
2042 	void *entry = xa->xa_head;
2043 	unsigned int shift = 0;
2044 
2045 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2046 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2047 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2048 	if (xa_is_node(entry))
2049 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2050 	xa_dump_entry(entry, 0, shift);
2051 }
2052 #endif
2053