1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 /* 16 * Coding conventions in this file: 17 * 18 * @xa is used to refer to the entire xarray. 19 * @xas is the 'xarray operation state'. It may be either a pointer to 20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 21 * ambiguity. 22 * @index is the index of the entry being operated on 23 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 24 * @node refers to an xa_node; usually the primary one being operated on by 25 * this function. 26 * @offset is the index into the slots array inside an xa_node. 27 * @parent refers to the @xa_node closer to the head than @node. 28 * @entry refers to something stored in a slot in the xarray 29 */ 30 31 static inline unsigned int xa_lock_type(const struct xarray *xa) 32 { 33 return (__force unsigned int)xa->xa_flags & 3; 34 } 35 36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 37 { 38 if (lock_type == XA_LOCK_IRQ) 39 xas_lock_irq(xas); 40 else if (lock_type == XA_LOCK_BH) 41 xas_lock_bh(xas); 42 else 43 xas_lock(xas); 44 } 45 46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 47 { 48 if (lock_type == XA_LOCK_IRQ) 49 xas_unlock_irq(xas); 50 else if (lock_type == XA_LOCK_BH) 51 xas_unlock_bh(xas); 52 else 53 xas_unlock(xas); 54 } 55 56 static inline bool xa_track_free(const struct xarray *xa) 57 { 58 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 59 } 60 61 static inline bool xa_zero_busy(const struct xarray *xa) 62 { 63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 64 } 65 66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 67 { 68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 69 xa->xa_flags |= XA_FLAGS_MARK(mark); 70 } 71 72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 73 { 74 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 76 } 77 78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 79 { 80 return node->marks[(__force unsigned)mark]; 81 } 82 83 static inline bool node_get_mark(struct xa_node *node, 84 unsigned int offset, xa_mark_t mark) 85 { 86 return test_bit(offset, node_marks(node, mark)); 87 } 88 89 /* returns true if the bit was set */ 90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 91 xa_mark_t mark) 92 { 93 return __test_and_set_bit(offset, node_marks(node, mark)); 94 } 95 96 /* returns true if the bit was set */ 97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 98 xa_mark_t mark) 99 { 100 return __test_and_clear_bit(offset, node_marks(node, mark)); 101 } 102 103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 104 { 105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 106 } 107 108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 109 { 110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 111 } 112 113 #define mark_inc(mark) do { \ 114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 115 } while (0) 116 117 /* 118 * xas_squash_marks() - Merge all marks to the first entry 119 * @xas: Array operation state. 120 * 121 * Set a mark on the first entry if any entry has it set. Clear marks on 122 * all sibling entries. 123 */ 124 static void xas_squash_marks(const struct xa_state *xas) 125 { 126 unsigned int mark = 0; 127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 128 129 if (!xas->xa_sibs) 130 return; 131 132 do { 133 unsigned long *marks = xas->xa_node->marks[mark]; 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 135 continue; 136 __set_bit(xas->xa_offset, marks); 137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 138 } while (mark++ != (__force unsigned)XA_MARK_MAX); 139 } 140 141 /* extracts the offset within this node from the index */ 142 static unsigned int get_offset(unsigned long index, struct xa_node *node) 143 { 144 return (index >> node->shift) & XA_CHUNK_MASK; 145 } 146 147 static void xas_set_offset(struct xa_state *xas) 148 { 149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 150 } 151 152 /* move the index either forwards (find) or backwards (sibling slot) */ 153 static void xas_move_index(struct xa_state *xas, unsigned long offset) 154 { 155 unsigned int shift = xas->xa_node->shift; 156 xas->xa_index &= ~XA_CHUNK_MASK << shift; 157 xas->xa_index += offset << shift; 158 } 159 160 static void xas_next_offset(struct xa_state *xas) 161 { 162 xas->xa_offset++; 163 xas_move_index(xas, xas->xa_offset); 164 } 165 166 static void *set_bounds(struct xa_state *xas) 167 { 168 xas->xa_node = XAS_BOUNDS; 169 return NULL; 170 } 171 172 /* 173 * Starts a walk. If the @xas is already valid, we assume that it's on 174 * the right path and just return where we've got to. If we're in an 175 * error state, return NULL. If the index is outside the current scope 176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 177 * set @xas->xa_node to NULL and return the current head of the array. 178 */ 179 static void *xas_start(struct xa_state *xas) 180 { 181 void *entry; 182 183 if (xas_valid(xas)) 184 return xas_reload(xas); 185 if (xas_error(xas)) 186 return NULL; 187 188 entry = xa_head(xas->xa); 189 if (!xa_is_node(entry)) { 190 if (xas->xa_index) 191 return set_bounds(xas); 192 } else { 193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 194 return set_bounds(xas); 195 } 196 197 xas->xa_node = NULL; 198 return entry; 199 } 200 201 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 202 { 203 unsigned int offset = get_offset(xas->xa_index, node); 204 void *entry = xa_entry(xas->xa, node, offset); 205 206 xas->xa_node = node; 207 if (xa_is_sibling(entry)) { 208 offset = xa_to_sibling(entry); 209 entry = xa_entry(xas->xa, node, offset); 210 } 211 212 xas->xa_offset = offset; 213 return entry; 214 } 215 216 /** 217 * xas_load() - Load an entry from the XArray (advanced). 218 * @xas: XArray operation state. 219 * 220 * Usually walks the @xas to the appropriate state to load the entry 221 * stored at xa_index. However, it will do nothing and return %NULL if 222 * @xas is in an error state. xas_load() will never expand the tree. 223 * 224 * If the xa_state is set up to operate on a multi-index entry, xas_load() 225 * may return %NULL or an internal entry, even if there are entries 226 * present within the range specified by @xas. 227 * 228 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 229 * Return: Usually an entry in the XArray, but see description for exceptions. 230 */ 231 void *xas_load(struct xa_state *xas) 232 { 233 void *entry = xas_start(xas); 234 235 while (xa_is_node(entry)) { 236 struct xa_node *node = xa_to_node(entry); 237 238 if (xas->xa_shift > node->shift) 239 break; 240 entry = xas_descend(xas, node); 241 if (node->shift == 0) 242 break; 243 } 244 return entry; 245 } 246 EXPORT_SYMBOL_GPL(xas_load); 247 248 /* Move the radix tree node cache here */ 249 extern struct kmem_cache *radix_tree_node_cachep; 250 extern void radix_tree_node_rcu_free(struct rcu_head *head); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * This function is now internal-only. 266 */ 267 static void xas_destroy(struct xa_state *xas) 268 { 269 struct xa_node *next, *node = xas->xa_alloc; 270 271 while (node) { 272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 273 next = rcu_dereference_raw(node->parent); 274 radix_tree_node_rcu_free(&node->rcu_head); 275 xas->xa_alloc = node = next; 276 } 277 } 278 279 /** 280 * xas_nomem() - Allocate memory if needed. 281 * @xas: XArray operation state. 282 * @gfp: Memory allocation flags. 283 * 284 * If we need to add new nodes to the XArray, we try to allocate memory 285 * with GFP_NOWAIT while holding the lock, which will usually succeed. 286 * If it fails, @xas is flagged as needing memory to continue. The caller 287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 288 * the caller should retry the operation. 289 * 290 * Forward progress is guaranteed as one node is allocated here and 291 * stored in the xa_state where it will be found by xas_alloc(). More 292 * nodes will likely be found in the slab allocator, but we do not tie 293 * them up here. 294 * 295 * Return: true if memory was needed, and was successfully allocated. 296 */ 297 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 298 { 299 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 300 xas_destroy(xas); 301 return false; 302 } 303 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 304 gfp |= __GFP_ACCOUNT; 305 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 306 if (!xas->xa_alloc) 307 return false; 308 xas->xa_alloc->parent = NULL; 309 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 310 xas->xa_node = XAS_RESTART; 311 return true; 312 } 313 EXPORT_SYMBOL_GPL(xas_nomem); 314 315 /* 316 * __xas_nomem() - Drop locks and allocate memory if needed. 317 * @xas: XArray operation state. 318 * @gfp: Memory allocation flags. 319 * 320 * Internal variant of xas_nomem(). 321 * 322 * Return: true if memory was needed, and was successfully allocated. 323 */ 324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 325 __must_hold(xas->xa->xa_lock) 326 { 327 unsigned int lock_type = xa_lock_type(xas->xa); 328 329 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 330 xas_destroy(xas); 331 return false; 332 } 333 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 334 gfp |= __GFP_ACCOUNT; 335 if (gfpflags_allow_blocking(gfp)) { 336 xas_unlock_type(xas, lock_type); 337 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 338 xas_lock_type(xas, lock_type); 339 } else { 340 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 341 } 342 if (!xas->xa_alloc) 343 return false; 344 xas->xa_alloc->parent = NULL; 345 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 346 xas->xa_node = XAS_RESTART; 347 return true; 348 } 349 350 static void xas_update(struct xa_state *xas, struct xa_node *node) 351 { 352 if (xas->xa_update) 353 xas->xa_update(node); 354 else 355 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 356 } 357 358 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 359 { 360 struct xa_node *parent = xas->xa_node; 361 struct xa_node *node = xas->xa_alloc; 362 363 if (xas_invalid(xas)) 364 return NULL; 365 366 if (node) { 367 xas->xa_alloc = NULL; 368 } else { 369 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 370 371 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 372 gfp |= __GFP_ACCOUNT; 373 374 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 375 if (!node) { 376 xas_set_err(xas, -ENOMEM); 377 return NULL; 378 } 379 } 380 381 if (parent) { 382 node->offset = xas->xa_offset; 383 parent->count++; 384 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 385 xas_update(xas, parent); 386 } 387 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 388 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 389 node->shift = shift; 390 node->count = 0; 391 node->nr_values = 0; 392 RCU_INIT_POINTER(node->parent, xas->xa_node); 393 node->array = xas->xa; 394 395 return node; 396 } 397 398 #ifdef CONFIG_XARRAY_MULTI 399 /* Returns the number of indices covered by a given xa_state */ 400 static unsigned long xas_size(const struct xa_state *xas) 401 { 402 return (xas->xa_sibs + 1UL) << xas->xa_shift; 403 } 404 #endif 405 406 /* 407 * Use this to calculate the maximum index that will need to be created 408 * in order to add the entry described by @xas. Because we cannot store a 409 * multi-index entry at index 0, the calculation is a little more complex 410 * than you might expect. 411 */ 412 static unsigned long xas_max(struct xa_state *xas) 413 { 414 unsigned long max = xas->xa_index; 415 416 #ifdef CONFIG_XARRAY_MULTI 417 if (xas->xa_shift || xas->xa_sibs) { 418 unsigned long mask = xas_size(xas) - 1; 419 max |= mask; 420 if (mask == max) 421 max++; 422 } 423 #endif 424 425 return max; 426 } 427 428 /* The maximum index that can be contained in the array without expanding it */ 429 static unsigned long max_index(void *entry) 430 { 431 if (!xa_is_node(entry)) 432 return 0; 433 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 434 } 435 436 static void xas_shrink(struct xa_state *xas) 437 { 438 struct xarray *xa = xas->xa; 439 struct xa_node *node = xas->xa_node; 440 441 for (;;) { 442 void *entry; 443 444 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 445 if (node->count != 1) 446 break; 447 entry = xa_entry_locked(xa, node, 0); 448 if (!entry) 449 break; 450 if (!xa_is_node(entry) && node->shift) 451 break; 452 if (xa_is_zero(entry) && xa_zero_busy(xa)) 453 entry = NULL; 454 xas->xa_node = XAS_BOUNDS; 455 456 RCU_INIT_POINTER(xa->xa_head, entry); 457 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 458 xa_mark_clear(xa, XA_FREE_MARK); 459 460 node->count = 0; 461 node->nr_values = 0; 462 if (!xa_is_node(entry)) 463 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 464 xas_update(xas, node); 465 xa_node_free(node); 466 if (!xa_is_node(entry)) 467 break; 468 node = xa_to_node(entry); 469 node->parent = NULL; 470 } 471 } 472 473 /* 474 * xas_delete_node() - Attempt to delete an xa_node 475 * @xas: Array operation state. 476 * 477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 478 * a non-zero reference count. 479 */ 480 static void xas_delete_node(struct xa_state *xas) 481 { 482 struct xa_node *node = xas->xa_node; 483 484 for (;;) { 485 struct xa_node *parent; 486 487 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 488 if (node->count) 489 break; 490 491 parent = xa_parent_locked(xas->xa, node); 492 xas->xa_node = parent; 493 xas->xa_offset = node->offset; 494 xa_node_free(node); 495 496 if (!parent) { 497 xas->xa->xa_head = NULL; 498 xas->xa_node = XAS_BOUNDS; 499 return; 500 } 501 502 parent->slots[xas->xa_offset] = NULL; 503 parent->count--; 504 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 505 node = parent; 506 xas_update(xas, node); 507 } 508 509 if (!node->parent) 510 xas_shrink(xas); 511 } 512 513 /** 514 * xas_free_nodes() - Free this node and all nodes that it references 515 * @xas: Array operation state. 516 * @top: Node to free 517 * 518 * This node has been removed from the tree. We must now free it and all 519 * of its subnodes. There may be RCU walkers with references into the tree, 520 * so we must replace all entries with retry markers. 521 */ 522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 523 { 524 unsigned int offset = 0; 525 struct xa_node *node = top; 526 527 for (;;) { 528 void *entry = xa_entry_locked(xas->xa, node, offset); 529 530 if (node->shift && xa_is_node(entry)) { 531 node = xa_to_node(entry); 532 offset = 0; 533 continue; 534 } 535 if (entry) 536 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 537 offset++; 538 while (offset == XA_CHUNK_SIZE) { 539 struct xa_node *parent; 540 541 parent = xa_parent_locked(xas->xa, node); 542 offset = node->offset + 1; 543 node->count = 0; 544 node->nr_values = 0; 545 xas_update(xas, node); 546 xa_node_free(node); 547 if (node == top) 548 return; 549 node = parent; 550 } 551 } 552 } 553 554 /* 555 * xas_expand adds nodes to the head of the tree until it has reached 556 * sufficient height to be able to contain @xas->xa_index 557 */ 558 static int xas_expand(struct xa_state *xas, void *head) 559 { 560 struct xarray *xa = xas->xa; 561 struct xa_node *node = NULL; 562 unsigned int shift = 0; 563 unsigned long max = xas_max(xas); 564 565 if (!head) { 566 if (max == 0) 567 return 0; 568 while ((max >> shift) >= XA_CHUNK_SIZE) 569 shift += XA_CHUNK_SHIFT; 570 return shift + XA_CHUNK_SHIFT; 571 } else if (xa_is_node(head)) { 572 node = xa_to_node(head); 573 shift = node->shift + XA_CHUNK_SHIFT; 574 } 575 xas->xa_node = NULL; 576 577 while (max > max_index(head)) { 578 xa_mark_t mark = 0; 579 580 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 581 node = xas_alloc(xas, shift); 582 if (!node) 583 return -ENOMEM; 584 585 node->count = 1; 586 if (xa_is_value(head)) 587 node->nr_values = 1; 588 RCU_INIT_POINTER(node->slots[0], head); 589 590 /* Propagate the aggregated mark info to the new child */ 591 for (;;) { 592 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 593 node_mark_all(node, XA_FREE_MARK); 594 if (!xa_marked(xa, XA_FREE_MARK)) { 595 node_clear_mark(node, 0, XA_FREE_MARK); 596 xa_mark_set(xa, XA_FREE_MARK); 597 } 598 } else if (xa_marked(xa, mark)) { 599 node_set_mark(node, 0, mark); 600 } 601 if (mark == XA_MARK_MAX) 602 break; 603 mark_inc(mark); 604 } 605 606 /* 607 * Now that the new node is fully initialised, we can add 608 * it to the tree 609 */ 610 if (xa_is_node(head)) { 611 xa_to_node(head)->offset = 0; 612 rcu_assign_pointer(xa_to_node(head)->parent, node); 613 } 614 head = xa_mk_node(node); 615 rcu_assign_pointer(xa->xa_head, head); 616 xas_update(xas, node); 617 618 shift += XA_CHUNK_SHIFT; 619 } 620 621 xas->xa_node = node; 622 return shift; 623 } 624 625 /* 626 * xas_create() - Create a slot to store an entry in. 627 * @xas: XArray operation state. 628 * @allow_root: %true if we can store the entry in the root directly 629 * 630 * Most users will not need to call this function directly, as it is called 631 * by xas_store(). It is useful for doing conditional store operations 632 * (see the xa_cmpxchg() implementation for an example). 633 * 634 * Return: If the slot already existed, returns the contents of this slot. 635 * If the slot was newly created, returns %NULL. If it failed to create the 636 * slot, returns %NULL and indicates the error in @xas. 637 */ 638 static void *xas_create(struct xa_state *xas, bool allow_root) 639 { 640 struct xarray *xa = xas->xa; 641 void *entry; 642 void __rcu **slot; 643 struct xa_node *node = xas->xa_node; 644 int shift; 645 unsigned int order = xas->xa_shift; 646 647 if (xas_top(node)) { 648 entry = xa_head_locked(xa); 649 xas->xa_node = NULL; 650 if (!entry && xa_zero_busy(xa)) 651 entry = XA_ZERO_ENTRY; 652 shift = xas_expand(xas, entry); 653 if (shift < 0) 654 return NULL; 655 if (!shift && !allow_root) 656 shift = XA_CHUNK_SHIFT; 657 entry = xa_head_locked(xa); 658 slot = &xa->xa_head; 659 } else if (xas_error(xas)) { 660 return NULL; 661 } else if (node) { 662 unsigned int offset = xas->xa_offset; 663 664 shift = node->shift; 665 entry = xa_entry_locked(xa, node, offset); 666 slot = &node->slots[offset]; 667 } else { 668 shift = 0; 669 entry = xa_head_locked(xa); 670 slot = &xa->xa_head; 671 } 672 673 while (shift > order) { 674 shift -= XA_CHUNK_SHIFT; 675 if (!entry) { 676 node = xas_alloc(xas, shift); 677 if (!node) 678 break; 679 if (xa_track_free(xa)) 680 node_mark_all(node, XA_FREE_MARK); 681 rcu_assign_pointer(*slot, xa_mk_node(node)); 682 } else if (xa_is_node(entry)) { 683 node = xa_to_node(entry); 684 } else { 685 break; 686 } 687 entry = xas_descend(xas, node); 688 slot = &node->slots[xas->xa_offset]; 689 } 690 691 return entry; 692 } 693 694 /** 695 * xas_create_range() - Ensure that stores to this range will succeed 696 * @xas: XArray operation state. 697 * 698 * Creates all of the slots in the range covered by @xas. Sets @xas to 699 * create single-index entries and positions it at the beginning of the 700 * range. This is for the benefit of users which have not yet been 701 * converted to use multi-index entries. 702 */ 703 void xas_create_range(struct xa_state *xas) 704 { 705 unsigned long index = xas->xa_index; 706 unsigned char shift = xas->xa_shift; 707 unsigned char sibs = xas->xa_sibs; 708 709 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 710 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 711 xas->xa_offset |= sibs; 712 xas->xa_shift = 0; 713 xas->xa_sibs = 0; 714 715 for (;;) { 716 xas_create(xas, true); 717 if (xas_error(xas)) 718 goto restore; 719 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 720 goto success; 721 xas->xa_index -= XA_CHUNK_SIZE; 722 723 for (;;) { 724 struct xa_node *node = xas->xa_node; 725 if (node->shift >= shift) 726 break; 727 xas->xa_node = xa_parent_locked(xas->xa, node); 728 xas->xa_offset = node->offset - 1; 729 if (node->offset != 0) 730 break; 731 } 732 } 733 734 restore: 735 xas->xa_shift = shift; 736 xas->xa_sibs = sibs; 737 xas->xa_index = index; 738 return; 739 success: 740 xas->xa_index = index; 741 if (xas->xa_node) 742 xas_set_offset(xas); 743 } 744 EXPORT_SYMBOL_GPL(xas_create_range); 745 746 static void update_node(struct xa_state *xas, struct xa_node *node, 747 int count, int values) 748 { 749 if (!node || (!count && !values)) 750 return; 751 752 node->count += count; 753 node->nr_values += values; 754 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 755 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 756 xas_update(xas, node); 757 if (count < 0) 758 xas_delete_node(xas); 759 } 760 761 /** 762 * xas_store() - Store this entry in the XArray. 763 * @xas: XArray operation state. 764 * @entry: New entry. 765 * 766 * If @xas is operating on a multi-index entry, the entry returned by this 767 * function is essentially meaningless (it may be an internal entry or it 768 * may be %NULL, even if there are non-NULL entries at some of the indices 769 * covered by the range). This is not a problem for any current users, 770 * and can be changed if needed. 771 * 772 * Return: The old entry at this index. 773 */ 774 void *xas_store(struct xa_state *xas, void *entry) 775 { 776 struct xa_node *node; 777 void __rcu **slot = &xas->xa->xa_head; 778 unsigned int offset, max; 779 int count = 0; 780 int values = 0; 781 void *first, *next; 782 bool value = xa_is_value(entry); 783 784 if (entry) { 785 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 786 first = xas_create(xas, allow_root); 787 } else { 788 first = xas_load(xas); 789 } 790 791 if (xas_invalid(xas)) 792 return first; 793 node = xas->xa_node; 794 if (node && (xas->xa_shift < node->shift)) 795 xas->xa_sibs = 0; 796 if ((first == entry) && !xas->xa_sibs) 797 return first; 798 799 next = first; 800 offset = xas->xa_offset; 801 max = xas->xa_offset + xas->xa_sibs; 802 if (node) { 803 slot = &node->slots[offset]; 804 if (xas->xa_sibs) 805 xas_squash_marks(xas); 806 } 807 if (!entry) 808 xas_init_marks(xas); 809 810 for (;;) { 811 /* 812 * Must clear the marks before setting the entry to NULL, 813 * otherwise xas_for_each_marked may find a NULL entry and 814 * stop early. rcu_assign_pointer contains a release barrier 815 * so the mark clearing will appear to happen before the 816 * entry is set to NULL. 817 */ 818 rcu_assign_pointer(*slot, entry); 819 if (xa_is_node(next) && (!node || node->shift)) 820 xas_free_nodes(xas, xa_to_node(next)); 821 if (!node) 822 break; 823 count += !next - !entry; 824 values += !xa_is_value(first) - !value; 825 if (entry) { 826 if (offset == max) 827 break; 828 if (!xa_is_sibling(entry)) 829 entry = xa_mk_sibling(xas->xa_offset); 830 } else { 831 if (offset == XA_CHUNK_MASK) 832 break; 833 } 834 next = xa_entry_locked(xas->xa, node, ++offset); 835 if (!xa_is_sibling(next)) { 836 if (!entry && (offset > max)) 837 break; 838 first = next; 839 } 840 slot++; 841 } 842 843 update_node(xas, node, count, values); 844 return first; 845 } 846 EXPORT_SYMBOL_GPL(xas_store); 847 848 /** 849 * xas_get_mark() - Returns the state of this mark. 850 * @xas: XArray operation state. 851 * @mark: Mark number. 852 * 853 * Return: true if the mark is set, false if the mark is clear or @xas 854 * is in an error state. 855 */ 856 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 857 { 858 if (xas_invalid(xas)) 859 return false; 860 if (!xas->xa_node) 861 return xa_marked(xas->xa, mark); 862 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 863 } 864 EXPORT_SYMBOL_GPL(xas_get_mark); 865 866 /** 867 * xas_set_mark() - Sets the mark on this entry and its parents. 868 * @xas: XArray operation state. 869 * @mark: Mark number. 870 * 871 * Sets the specified mark on this entry, and walks up the tree setting it 872 * on all the ancestor entries. Does nothing if @xas has not been walked to 873 * an entry, or is in an error state. 874 */ 875 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 876 { 877 struct xa_node *node = xas->xa_node; 878 unsigned int offset = xas->xa_offset; 879 880 if (xas_invalid(xas)) 881 return; 882 883 while (node) { 884 if (node_set_mark(node, offset, mark)) 885 return; 886 offset = node->offset; 887 node = xa_parent_locked(xas->xa, node); 888 } 889 890 if (!xa_marked(xas->xa, mark)) 891 xa_mark_set(xas->xa, mark); 892 } 893 EXPORT_SYMBOL_GPL(xas_set_mark); 894 895 /** 896 * xas_clear_mark() - Clears the mark on this entry and its parents. 897 * @xas: XArray operation state. 898 * @mark: Mark number. 899 * 900 * Clears the specified mark on this entry, and walks back to the head 901 * attempting to clear it on all the ancestor entries. Does nothing if 902 * @xas has not been walked to an entry, or is in an error state. 903 */ 904 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 905 { 906 struct xa_node *node = xas->xa_node; 907 unsigned int offset = xas->xa_offset; 908 909 if (xas_invalid(xas)) 910 return; 911 912 while (node) { 913 if (!node_clear_mark(node, offset, mark)) 914 return; 915 if (node_any_mark(node, mark)) 916 return; 917 918 offset = node->offset; 919 node = xa_parent_locked(xas->xa, node); 920 } 921 922 if (xa_marked(xas->xa, mark)) 923 xa_mark_clear(xas->xa, mark); 924 } 925 EXPORT_SYMBOL_GPL(xas_clear_mark); 926 927 /** 928 * xas_init_marks() - Initialise all marks for the entry 929 * @xas: Array operations state. 930 * 931 * Initialise all marks for the entry specified by @xas. If we're tracking 932 * free entries with a mark, we need to set it on all entries. All other 933 * marks are cleared. 934 * 935 * This implementation is not as efficient as it could be; we may walk 936 * up the tree multiple times. 937 */ 938 void xas_init_marks(const struct xa_state *xas) 939 { 940 xa_mark_t mark = 0; 941 942 for (;;) { 943 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 944 xas_set_mark(xas, mark); 945 else 946 xas_clear_mark(xas, mark); 947 if (mark == XA_MARK_MAX) 948 break; 949 mark_inc(mark); 950 } 951 } 952 EXPORT_SYMBOL_GPL(xas_init_marks); 953 954 #ifdef CONFIG_XARRAY_MULTI 955 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 956 { 957 unsigned int marks = 0; 958 xa_mark_t mark = XA_MARK_0; 959 960 for (;;) { 961 if (node_get_mark(node, offset, mark)) 962 marks |= 1 << (__force unsigned int)mark; 963 if (mark == XA_MARK_MAX) 964 break; 965 mark_inc(mark); 966 } 967 968 return marks; 969 } 970 971 static void node_set_marks(struct xa_node *node, unsigned int offset, 972 struct xa_node *child, unsigned int marks) 973 { 974 xa_mark_t mark = XA_MARK_0; 975 976 for (;;) { 977 if (marks & (1 << (__force unsigned int)mark)) { 978 node_set_mark(node, offset, mark); 979 if (child) 980 node_mark_all(child, mark); 981 } 982 if (mark == XA_MARK_MAX) 983 break; 984 mark_inc(mark); 985 } 986 } 987 988 /** 989 * xas_split_alloc() - Allocate memory for splitting an entry. 990 * @xas: XArray operation state. 991 * @entry: New entry which will be stored in the array. 992 * @order: Current entry order. 993 * @gfp: Memory allocation flags. 994 * 995 * This function should be called before calling xas_split(). 996 * If necessary, it will allocate new nodes (and fill them with @entry) 997 * to prepare for the upcoming split of an entry of @order size into 998 * entries of the order stored in the @xas. 999 * 1000 * Context: May sleep if @gfp flags permit. 1001 */ 1002 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1003 gfp_t gfp) 1004 { 1005 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1006 unsigned int mask = xas->xa_sibs; 1007 1008 /* XXX: no support for splitting really large entries yet */ 1009 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1010 goto nomem; 1011 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1012 return; 1013 1014 do { 1015 unsigned int i; 1016 void *sibling = NULL; 1017 struct xa_node *node; 1018 1019 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1020 if (!node) 1021 goto nomem; 1022 node->array = xas->xa; 1023 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1024 if ((i & mask) == 0) { 1025 RCU_INIT_POINTER(node->slots[i], entry); 1026 sibling = xa_mk_sibling(i); 1027 } else { 1028 RCU_INIT_POINTER(node->slots[i], sibling); 1029 } 1030 } 1031 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1032 xas->xa_alloc = node; 1033 } while (sibs-- > 0); 1034 1035 return; 1036 nomem: 1037 xas_destroy(xas); 1038 xas_set_err(xas, -ENOMEM); 1039 } 1040 EXPORT_SYMBOL_GPL(xas_split_alloc); 1041 1042 /** 1043 * xas_split() - Split a multi-index entry into smaller entries. 1044 * @xas: XArray operation state. 1045 * @entry: New entry to store in the array. 1046 * @order: Current entry order. 1047 * 1048 * The size of the new entries is set in @xas. The value in @entry is 1049 * copied to all the replacement entries. 1050 * 1051 * Context: Any context. The caller should hold the xa_lock. 1052 */ 1053 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1054 { 1055 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1056 unsigned int offset, marks; 1057 struct xa_node *node; 1058 void *curr = xas_load(xas); 1059 int values = 0; 1060 1061 node = xas->xa_node; 1062 if (xas_top(node)) 1063 return; 1064 1065 marks = node_get_marks(node, xas->xa_offset); 1066 1067 offset = xas->xa_offset + sibs; 1068 do { 1069 if (xas->xa_shift < node->shift) { 1070 struct xa_node *child = xas->xa_alloc; 1071 1072 xas->xa_alloc = rcu_dereference_raw(child->parent); 1073 child->shift = node->shift - XA_CHUNK_SHIFT; 1074 child->offset = offset; 1075 child->count = XA_CHUNK_SIZE; 1076 child->nr_values = xa_is_value(entry) ? 1077 XA_CHUNK_SIZE : 0; 1078 RCU_INIT_POINTER(child->parent, node); 1079 node_set_marks(node, offset, child, marks); 1080 rcu_assign_pointer(node->slots[offset], 1081 xa_mk_node(child)); 1082 if (xa_is_value(curr)) 1083 values--; 1084 xas_update(xas, child); 1085 } else { 1086 unsigned int canon = offset - xas->xa_sibs; 1087 1088 node_set_marks(node, canon, NULL, marks); 1089 rcu_assign_pointer(node->slots[canon], entry); 1090 while (offset > canon) 1091 rcu_assign_pointer(node->slots[offset--], 1092 xa_mk_sibling(canon)); 1093 values += (xa_is_value(entry) - xa_is_value(curr)) * 1094 (xas->xa_sibs + 1); 1095 } 1096 } while (offset-- > xas->xa_offset); 1097 1098 node->nr_values += values; 1099 xas_update(xas, node); 1100 } 1101 EXPORT_SYMBOL_GPL(xas_split); 1102 #endif 1103 1104 /** 1105 * xas_pause() - Pause a walk to drop a lock. 1106 * @xas: XArray operation state. 1107 * 1108 * Some users need to pause a walk and drop the lock they're holding in 1109 * order to yield to a higher priority thread or carry out an operation 1110 * on an entry. Those users should call this function before they drop 1111 * the lock. It resets the @xas to be suitable for the next iteration 1112 * of the loop after the user has reacquired the lock. If most entries 1113 * found during a walk require you to call xas_pause(), the xa_for_each() 1114 * iterator may be more appropriate. 1115 * 1116 * Note that xas_pause() only works for forward iteration. If a user needs 1117 * to pause a reverse iteration, we will need a xas_pause_rev(). 1118 */ 1119 void xas_pause(struct xa_state *xas) 1120 { 1121 struct xa_node *node = xas->xa_node; 1122 1123 if (xas_invalid(xas)) 1124 return; 1125 1126 xas->xa_node = XAS_RESTART; 1127 if (node) { 1128 unsigned long offset = xas->xa_offset; 1129 while (++offset < XA_CHUNK_SIZE) { 1130 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1131 break; 1132 } 1133 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1134 if (xas->xa_index == 0) 1135 xas->xa_node = XAS_BOUNDS; 1136 } else { 1137 xas->xa_index++; 1138 } 1139 } 1140 EXPORT_SYMBOL_GPL(xas_pause); 1141 1142 /* 1143 * __xas_prev() - Find the previous entry in the XArray. 1144 * @xas: XArray operation state. 1145 * 1146 * Helper function for xas_prev() which handles all the complex cases 1147 * out of line. 1148 */ 1149 void *__xas_prev(struct xa_state *xas) 1150 { 1151 void *entry; 1152 1153 if (!xas_frozen(xas->xa_node)) 1154 xas->xa_index--; 1155 if (!xas->xa_node) 1156 return set_bounds(xas); 1157 if (xas_not_node(xas->xa_node)) 1158 return xas_load(xas); 1159 1160 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1161 xas->xa_offset--; 1162 1163 while (xas->xa_offset == 255) { 1164 xas->xa_offset = xas->xa_node->offset - 1; 1165 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1166 if (!xas->xa_node) 1167 return set_bounds(xas); 1168 } 1169 1170 for (;;) { 1171 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1172 if (!xa_is_node(entry)) 1173 return entry; 1174 1175 xas->xa_node = xa_to_node(entry); 1176 xas_set_offset(xas); 1177 } 1178 } 1179 EXPORT_SYMBOL_GPL(__xas_prev); 1180 1181 /* 1182 * __xas_next() - Find the next entry in the XArray. 1183 * @xas: XArray operation state. 1184 * 1185 * Helper function for xas_next() which handles all the complex cases 1186 * out of line. 1187 */ 1188 void *__xas_next(struct xa_state *xas) 1189 { 1190 void *entry; 1191 1192 if (!xas_frozen(xas->xa_node)) 1193 xas->xa_index++; 1194 if (!xas->xa_node) 1195 return set_bounds(xas); 1196 if (xas_not_node(xas->xa_node)) 1197 return xas_load(xas); 1198 1199 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1200 xas->xa_offset++; 1201 1202 while (xas->xa_offset == XA_CHUNK_SIZE) { 1203 xas->xa_offset = xas->xa_node->offset + 1; 1204 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1205 if (!xas->xa_node) 1206 return set_bounds(xas); 1207 } 1208 1209 for (;;) { 1210 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1211 if (!xa_is_node(entry)) 1212 return entry; 1213 1214 xas->xa_node = xa_to_node(entry); 1215 xas_set_offset(xas); 1216 } 1217 } 1218 EXPORT_SYMBOL_GPL(__xas_next); 1219 1220 /** 1221 * xas_find() - Find the next present entry in the XArray. 1222 * @xas: XArray operation state. 1223 * @max: Highest index to return. 1224 * 1225 * If the @xas has not yet been walked to an entry, return the entry 1226 * which has an index >= xas.xa_index. If it has been walked, the entry 1227 * currently being pointed at has been processed, and so we move to the 1228 * next entry. 1229 * 1230 * If no entry is found and the array is smaller than @max, the iterator 1231 * is set to the smallest index not yet in the array. This allows @xas 1232 * to be immediately passed to xas_store(). 1233 * 1234 * Return: The entry, if found, otherwise %NULL. 1235 */ 1236 void *xas_find(struct xa_state *xas, unsigned long max) 1237 { 1238 void *entry; 1239 1240 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1241 return NULL; 1242 if (xas->xa_index > max) 1243 return set_bounds(xas); 1244 1245 if (!xas->xa_node) { 1246 xas->xa_index = 1; 1247 return set_bounds(xas); 1248 } else if (xas->xa_node == XAS_RESTART) { 1249 entry = xas_load(xas); 1250 if (entry || xas_not_node(xas->xa_node)) 1251 return entry; 1252 } else if (!xas->xa_node->shift && 1253 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1254 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1255 } 1256 1257 xas_next_offset(xas); 1258 1259 while (xas->xa_node && (xas->xa_index <= max)) { 1260 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1261 xas->xa_offset = xas->xa_node->offset + 1; 1262 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1263 continue; 1264 } 1265 1266 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1267 if (xa_is_node(entry)) { 1268 xas->xa_node = xa_to_node(entry); 1269 xas->xa_offset = 0; 1270 continue; 1271 } 1272 if (entry && !xa_is_sibling(entry)) 1273 return entry; 1274 1275 xas_next_offset(xas); 1276 } 1277 1278 if (!xas->xa_node) 1279 xas->xa_node = XAS_BOUNDS; 1280 return NULL; 1281 } 1282 EXPORT_SYMBOL_GPL(xas_find); 1283 1284 /** 1285 * xas_find_marked() - Find the next marked entry in the XArray. 1286 * @xas: XArray operation state. 1287 * @max: Highest index to return. 1288 * @mark: Mark number to search for. 1289 * 1290 * If the @xas has not yet been walked to an entry, return the marked entry 1291 * which has an index >= xas.xa_index. If it has been walked, the entry 1292 * currently being pointed at has been processed, and so we return the 1293 * first marked entry with an index > xas.xa_index. 1294 * 1295 * If no marked entry is found and the array is smaller than @max, @xas is 1296 * set to the bounds state and xas->xa_index is set to the smallest index 1297 * not yet in the array. This allows @xas to be immediately passed to 1298 * xas_store(). 1299 * 1300 * If no entry is found before @max is reached, @xas is set to the restart 1301 * state. 1302 * 1303 * Return: The entry, if found, otherwise %NULL. 1304 */ 1305 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1306 { 1307 bool advance = true; 1308 unsigned int offset; 1309 void *entry; 1310 1311 if (xas_error(xas)) 1312 return NULL; 1313 if (xas->xa_index > max) 1314 goto max; 1315 1316 if (!xas->xa_node) { 1317 xas->xa_index = 1; 1318 goto out; 1319 } else if (xas_top(xas->xa_node)) { 1320 advance = false; 1321 entry = xa_head(xas->xa); 1322 xas->xa_node = NULL; 1323 if (xas->xa_index > max_index(entry)) 1324 goto out; 1325 if (!xa_is_node(entry)) { 1326 if (xa_marked(xas->xa, mark)) 1327 return entry; 1328 xas->xa_index = 1; 1329 goto out; 1330 } 1331 xas->xa_node = xa_to_node(entry); 1332 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1333 } 1334 1335 while (xas->xa_index <= max) { 1336 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1337 xas->xa_offset = xas->xa_node->offset + 1; 1338 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1339 if (!xas->xa_node) 1340 break; 1341 advance = false; 1342 continue; 1343 } 1344 1345 if (!advance) { 1346 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1347 if (xa_is_sibling(entry)) { 1348 xas->xa_offset = xa_to_sibling(entry); 1349 xas_move_index(xas, xas->xa_offset); 1350 } 1351 } 1352 1353 offset = xas_find_chunk(xas, advance, mark); 1354 if (offset > xas->xa_offset) { 1355 advance = false; 1356 xas_move_index(xas, offset); 1357 /* Mind the wrap */ 1358 if ((xas->xa_index - 1) >= max) 1359 goto max; 1360 xas->xa_offset = offset; 1361 if (offset == XA_CHUNK_SIZE) 1362 continue; 1363 } 1364 1365 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1366 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1367 continue; 1368 if (!xa_is_node(entry)) 1369 return entry; 1370 xas->xa_node = xa_to_node(entry); 1371 xas_set_offset(xas); 1372 } 1373 1374 out: 1375 if (xas->xa_index > max) 1376 goto max; 1377 return set_bounds(xas); 1378 max: 1379 xas->xa_node = XAS_RESTART; 1380 return NULL; 1381 } 1382 EXPORT_SYMBOL_GPL(xas_find_marked); 1383 1384 /** 1385 * xas_find_conflict() - Find the next present entry in a range. 1386 * @xas: XArray operation state. 1387 * 1388 * The @xas describes both a range and a position within that range. 1389 * 1390 * Context: Any context. Expects xa_lock to be held. 1391 * Return: The next entry in the range covered by @xas or %NULL. 1392 */ 1393 void *xas_find_conflict(struct xa_state *xas) 1394 { 1395 void *curr; 1396 1397 if (xas_error(xas)) 1398 return NULL; 1399 1400 if (!xas->xa_node) 1401 return NULL; 1402 1403 if (xas_top(xas->xa_node)) { 1404 curr = xas_start(xas); 1405 if (!curr) 1406 return NULL; 1407 while (xa_is_node(curr)) { 1408 struct xa_node *node = xa_to_node(curr); 1409 curr = xas_descend(xas, node); 1410 } 1411 if (curr) 1412 return curr; 1413 } 1414 1415 if (xas->xa_node->shift > xas->xa_shift) 1416 return NULL; 1417 1418 for (;;) { 1419 if (xas->xa_node->shift == xas->xa_shift) { 1420 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1421 break; 1422 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1423 xas->xa_offset = xas->xa_node->offset; 1424 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1425 if (!xas->xa_node) 1426 break; 1427 continue; 1428 } 1429 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1430 if (xa_is_sibling(curr)) 1431 continue; 1432 while (xa_is_node(curr)) { 1433 xas->xa_node = xa_to_node(curr); 1434 xas->xa_offset = 0; 1435 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1436 } 1437 if (curr) 1438 return curr; 1439 } 1440 xas->xa_offset -= xas->xa_sibs; 1441 return NULL; 1442 } 1443 EXPORT_SYMBOL_GPL(xas_find_conflict); 1444 1445 /** 1446 * xa_load() - Load an entry from an XArray. 1447 * @xa: XArray. 1448 * @index: index into array. 1449 * 1450 * Context: Any context. Takes and releases the RCU lock. 1451 * Return: The entry at @index in @xa. 1452 */ 1453 void *xa_load(struct xarray *xa, unsigned long index) 1454 { 1455 XA_STATE(xas, xa, index); 1456 void *entry; 1457 1458 rcu_read_lock(); 1459 do { 1460 entry = xas_load(&xas); 1461 if (xa_is_zero(entry)) 1462 entry = NULL; 1463 } while (xas_retry(&xas, entry)); 1464 rcu_read_unlock(); 1465 1466 return entry; 1467 } 1468 EXPORT_SYMBOL(xa_load); 1469 1470 static void *xas_result(struct xa_state *xas, void *curr) 1471 { 1472 if (xa_is_zero(curr)) 1473 return NULL; 1474 if (xas_error(xas)) 1475 curr = xas->xa_node; 1476 return curr; 1477 } 1478 1479 /** 1480 * __xa_erase() - Erase this entry from the XArray while locked. 1481 * @xa: XArray. 1482 * @index: Index into array. 1483 * 1484 * After this function returns, loading from @index will return %NULL. 1485 * If the index is part of a multi-index entry, all indices will be erased 1486 * and none of the entries will be part of a multi-index entry. 1487 * 1488 * Context: Any context. Expects xa_lock to be held on entry. 1489 * Return: The entry which used to be at this index. 1490 */ 1491 void *__xa_erase(struct xarray *xa, unsigned long index) 1492 { 1493 XA_STATE(xas, xa, index); 1494 return xas_result(&xas, xas_store(&xas, NULL)); 1495 } 1496 EXPORT_SYMBOL(__xa_erase); 1497 1498 /** 1499 * xa_erase() - Erase this entry from the XArray. 1500 * @xa: XArray. 1501 * @index: Index of entry. 1502 * 1503 * After this function returns, loading from @index will return %NULL. 1504 * If the index is part of a multi-index entry, all indices will be erased 1505 * and none of the entries will be part of a multi-index entry. 1506 * 1507 * Context: Any context. Takes and releases the xa_lock. 1508 * Return: The entry which used to be at this index. 1509 */ 1510 void *xa_erase(struct xarray *xa, unsigned long index) 1511 { 1512 void *entry; 1513 1514 xa_lock(xa); 1515 entry = __xa_erase(xa, index); 1516 xa_unlock(xa); 1517 1518 return entry; 1519 } 1520 EXPORT_SYMBOL(xa_erase); 1521 1522 /** 1523 * __xa_store() - Store this entry in the XArray. 1524 * @xa: XArray. 1525 * @index: Index into array. 1526 * @entry: New entry. 1527 * @gfp: Memory allocation flags. 1528 * 1529 * You must already be holding the xa_lock when calling this function. 1530 * It will drop the lock if needed to allocate memory, and then reacquire 1531 * it afterwards. 1532 * 1533 * Context: Any context. Expects xa_lock to be held on entry. May 1534 * release and reacquire xa_lock if @gfp flags permit. 1535 * Return: The old entry at this index or xa_err() if an error happened. 1536 */ 1537 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1538 { 1539 XA_STATE(xas, xa, index); 1540 void *curr; 1541 1542 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1543 return XA_ERROR(-EINVAL); 1544 if (xa_track_free(xa) && !entry) 1545 entry = XA_ZERO_ENTRY; 1546 1547 do { 1548 curr = xas_store(&xas, entry); 1549 if (xa_track_free(xa)) 1550 xas_clear_mark(&xas, XA_FREE_MARK); 1551 } while (__xas_nomem(&xas, gfp)); 1552 1553 return xas_result(&xas, curr); 1554 } 1555 EXPORT_SYMBOL(__xa_store); 1556 1557 /** 1558 * xa_store() - Store this entry in the XArray. 1559 * @xa: XArray. 1560 * @index: Index into array. 1561 * @entry: New entry. 1562 * @gfp: Memory allocation flags. 1563 * 1564 * After this function returns, loads from this index will return @entry. 1565 * Storing into an existing multi-index entry updates the entry of every index. 1566 * The marks associated with @index are unaffected unless @entry is %NULL. 1567 * 1568 * Context: Any context. Takes and releases the xa_lock. 1569 * May sleep if the @gfp flags permit. 1570 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1571 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1572 * failed. 1573 */ 1574 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1575 { 1576 void *curr; 1577 1578 xa_lock(xa); 1579 curr = __xa_store(xa, index, entry, gfp); 1580 xa_unlock(xa); 1581 1582 return curr; 1583 } 1584 EXPORT_SYMBOL(xa_store); 1585 1586 /** 1587 * __xa_cmpxchg() - Store this entry in the XArray. 1588 * @xa: XArray. 1589 * @index: Index into array. 1590 * @old: Old value to test against. 1591 * @entry: New entry. 1592 * @gfp: Memory allocation flags. 1593 * 1594 * You must already be holding the xa_lock when calling this function. 1595 * It will drop the lock if needed to allocate memory, and then reacquire 1596 * it afterwards. 1597 * 1598 * Context: Any context. Expects xa_lock to be held on entry. May 1599 * release and reacquire xa_lock if @gfp flags permit. 1600 * Return: The old entry at this index or xa_err() if an error happened. 1601 */ 1602 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1603 void *old, void *entry, gfp_t gfp) 1604 { 1605 XA_STATE(xas, xa, index); 1606 void *curr; 1607 1608 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1609 return XA_ERROR(-EINVAL); 1610 1611 do { 1612 curr = xas_load(&xas); 1613 if (curr == old) { 1614 xas_store(&xas, entry); 1615 if (xa_track_free(xa) && entry && !curr) 1616 xas_clear_mark(&xas, XA_FREE_MARK); 1617 } 1618 } while (__xas_nomem(&xas, gfp)); 1619 1620 return xas_result(&xas, curr); 1621 } 1622 EXPORT_SYMBOL(__xa_cmpxchg); 1623 1624 /** 1625 * __xa_insert() - Store this entry in the XArray if no entry is present. 1626 * @xa: XArray. 1627 * @index: Index into array. 1628 * @entry: New entry. 1629 * @gfp: Memory allocation flags. 1630 * 1631 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1632 * if no entry is present. Inserting will fail if a reserved entry is 1633 * present, even though loading from this index will return NULL. 1634 * 1635 * Context: Any context. Expects xa_lock to be held on entry. May 1636 * release and reacquire xa_lock if @gfp flags permit. 1637 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1638 * -ENOMEM if memory could not be allocated. 1639 */ 1640 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1641 { 1642 XA_STATE(xas, xa, index); 1643 void *curr; 1644 1645 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1646 return -EINVAL; 1647 if (!entry) 1648 entry = XA_ZERO_ENTRY; 1649 1650 do { 1651 curr = xas_load(&xas); 1652 if (!curr) { 1653 xas_store(&xas, entry); 1654 if (xa_track_free(xa)) 1655 xas_clear_mark(&xas, XA_FREE_MARK); 1656 } else { 1657 xas_set_err(&xas, -EBUSY); 1658 } 1659 } while (__xas_nomem(&xas, gfp)); 1660 1661 return xas_error(&xas); 1662 } 1663 EXPORT_SYMBOL(__xa_insert); 1664 1665 #ifdef CONFIG_XARRAY_MULTI 1666 static void xas_set_range(struct xa_state *xas, unsigned long first, 1667 unsigned long last) 1668 { 1669 unsigned int shift = 0; 1670 unsigned long sibs = last - first; 1671 unsigned int offset = XA_CHUNK_MASK; 1672 1673 xas_set(xas, first); 1674 1675 while ((first & XA_CHUNK_MASK) == 0) { 1676 if (sibs < XA_CHUNK_MASK) 1677 break; 1678 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1679 break; 1680 shift += XA_CHUNK_SHIFT; 1681 if (offset == XA_CHUNK_MASK) 1682 offset = sibs & XA_CHUNK_MASK; 1683 sibs >>= XA_CHUNK_SHIFT; 1684 first >>= XA_CHUNK_SHIFT; 1685 } 1686 1687 offset = first & XA_CHUNK_MASK; 1688 if (offset + sibs > XA_CHUNK_MASK) 1689 sibs = XA_CHUNK_MASK - offset; 1690 if ((((first + sibs + 1) << shift) - 1) > last) 1691 sibs -= 1; 1692 1693 xas->xa_shift = shift; 1694 xas->xa_sibs = sibs; 1695 } 1696 1697 /** 1698 * xa_store_range() - Store this entry at a range of indices in the XArray. 1699 * @xa: XArray. 1700 * @first: First index to affect. 1701 * @last: Last index to affect. 1702 * @entry: New entry. 1703 * @gfp: Memory allocation flags. 1704 * 1705 * After this function returns, loads from any index between @first and @last, 1706 * inclusive will return @entry. 1707 * Storing into an existing multi-index entry updates the entry of every index. 1708 * The marks associated with @index are unaffected unless @entry is %NULL. 1709 * 1710 * Context: Process context. Takes and releases the xa_lock. May sleep 1711 * if the @gfp flags permit. 1712 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1713 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1714 */ 1715 void *xa_store_range(struct xarray *xa, unsigned long first, 1716 unsigned long last, void *entry, gfp_t gfp) 1717 { 1718 XA_STATE(xas, xa, 0); 1719 1720 if (WARN_ON_ONCE(xa_is_internal(entry))) 1721 return XA_ERROR(-EINVAL); 1722 if (last < first) 1723 return XA_ERROR(-EINVAL); 1724 1725 do { 1726 xas_lock(&xas); 1727 if (entry) { 1728 unsigned int order = BITS_PER_LONG; 1729 if (last + 1) 1730 order = __ffs(last + 1); 1731 xas_set_order(&xas, last, order); 1732 xas_create(&xas, true); 1733 if (xas_error(&xas)) 1734 goto unlock; 1735 } 1736 do { 1737 xas_set_range(&xas, first, last); 1738 xas_store(&xas, entry); 1739 if (xas_error(&xas)) 1740 goto unlock; 1741 first += xas_size(&xas); 1742 } while (first <= last); 1743 unlock: 1744 xas_unlock(&xas); 1745 } while (xas_nomem(&xas, gfp)); 1746 1747 return xas_result(&xas, NULL); 1748 } 1749 EXPORT_SYMBOL(xa_store_range); 1750 1751 /** 1752 * xa_get_order() - Get the order of an entry. 1753 * @xa: XArray. 1754 * @index: Index of the entry. 1755 * 1756 * Return: A number between 0 and 63 indicating the order of the entry. 1757 */ 1758 int xa_get_order(struct xarray *xa, unsigned long index) 1759 { 1760 XA_STATE(xas, xa, index); 1761 void *entry; 1762 int order = 0; 1763 1764 rcu_read_lock(); 1765 entry = xas_load(&xas); 1766 1767 if (!entry) 1768 goto unlock; 1769 1770 if (!xas.xa_node) 1771 goto unlock; 1772 1773 for (;;) { 1774 unsigned int slot = xas.xa_offset + (1 << order); 1775 1776 if (slot >= XA_CHUNK_SIZE) 1777 break; 1778 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1779 break; 1780 order++; 1781 } 1782 1783 order += xas.xa_node->shift; 1784 unlock: 1785 rcu_read_unlock(); 1786 1787 return order; 1788 } 1789 EXPORT_SYMBOL(xa_get_order); 1790 #endif /* CONFIG_XARRAY_MULTI */ 1791 1792 /** 1793 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1794 * @xa: XArray. 1795 * @id: Pointer to ID. 1796 * @limit: Range for allocated ID. 1797 * @entry: New entry. 1798 * @gfp: Memory allocation flags. 1799 * 1800 * Finds an empty entry in @xa between @limit.min and @limit.max, 1801 * stores the index into the @id pointer, then stores the entry at 1802 * that index. A concurrent lookup will not see an uninitialised @id. 1803 * 1804 * Context: Any context. Expects xa_lock to be held on entry. May 1805 * release and reacquire xa_lock if @gfp flags permit. 1806 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1807 * -EBUSY if there are no free entries in @limit. 1808 */ 1809 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1810 struct xa_limit limit, gfp_t gfp) 1811 { 1812 XA_STATE(xas, xa, 0); 1813 1814 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1815 return -EINVAL; 1816 if (WARN_ON_ONCE(!xa_track_free(xa))) 1817 return -EINVAL; 1818 1819 if (!entry) 1820 entry = XA_ZERO_ENTRY; 1821 1822 do { 1823 xas.xa_index = limit.min; 1824 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1825 if (xas.xa_node == XAS_RESTART) 1826 xas_set_err(&xas, -EBUSY); 1827 else 1828 *id = xas.xa_index; 1829 xas_store(&xas, entry); 1830 xas_clear_mark(&xas, XA_FREE_MARK); 1831 } while (__xas_nomem(&xas, gfp)); 1832 1833 return xas_error(&xas); 1834 } 1835 EXPORT_SYMBOL(__xa_alloc); 1836 1837 /** 1838 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1839 * @xa: XArray. 1840 * @id: Pointer to ID. 1841 * @entry: New entry. 1842 * @limit: Range of allocated ID. 1843 * @next: Pointer to next ID to allocate. 1844 * @gfp: Memory allocation flags. 1845 * 1846 * Finds an empty entry in @xa between @limit.min and @limit.max, 1847 * stores the index into the @id pointer, then stores the entry at 1848 * that index. A concurrent lookup will not see an uninitialised @id. 1849 * The search for an empty entry will start at @next and will wrap 1850 * around if necessary. 1851 * 1852 * Context: Any context. Expects xa_lock to be held on entry. May 1853 * release and reacquire xa_lock if @gfp flags permit. 1854 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1855 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1856 * allocated or -EBUSY if there are no free entries in @limit. 1857 */ 1858 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1859 struct xa_limit limit, u32 *next, gfp_t gfp) 1860 { 1861 u32 min = limit.min; 1862 int ret; 1863 1864 limit.min = max(min, *next); 1865 ret = __xa_alloc(xa, id, entry, limit, gfp); 1866 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1867 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1868 ret = 1; 1869 } 1870 1871 if (ret < 0 && limit.min > min) { 1872 limit.min = min; 1873 ret = __xa_alloc(xa, id, entry, limit, gfp); 1874 if (ret == 0) 1875 ret = 1; 1876 } 1877 1878 if (ret >= 0) { 1879 *next = *id + 1; 1880 if (*next == 0) 1881 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1882 } 1883 return ret; 1884 } 1885 EXPORT_SYMBOL(__xa_alloc_cyclic); 1886 1887 /** 1888 * __xa_set_mark() - Set this mark on this entry while locked. 1889 * @xa: XArray. 1890 * @index: Index of entry. 1891 * @mark: Mark number. 1892 * 1893 * Attempting to set a mark on a %NULL entry does not succeed. 1894 * 1895 * Context: Any context. Expects xa_lock to be held on entry. 1896 */ 1897 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1898 { 1899 XA_STATE(xas, xa, index); 1900 void *entry = xas_load(&xas); 1901 1902 if (entry) 1903 xas_set_mark(&xas, mark); 1904 } 1905 EXPORT_SYMBOL(__xa_set_mark); 1906 1907 /** 1908 * __xa_clear_mark() - Clear this mark on this entry while locked. 1909 * @xa: XArray. 1910 * @index: Index of entry. 1911 * @mark: Mark number. 1912 * 1913 * Context: Any context. Expects xa_lock to be held on entry. 1914 */ 1915 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1916 { 1917 XA_STATE(xas, xa, index); 1918 void *entry = xas_load(&xas); 1919 1920 if (entry) 1921 xas_clear_mark(&xas, mark); 1922 } 1923 EXPORT_SYMBOL(__xa_clear_mark); 1924 1925 /** 1926 * xa_get_mark() - Inquire whether this mark is set on this entry. 1927 * @xa: XArray. 1928 * @index: Index of entry. 1929 * @mark: Mark number. 1930 * 1931 * This function uses the RCU read lock, so the result may be out of date 1932 * by the time it returns. If you need the result to be stable, use a lock. 1933 * 1934 * Context: Any context. Takes and releases the RCU lock. 1935 * Return: True if the entry at @index has this mark set, false if it doesn't. 1936 */ 1937 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1938 { 1939 XA_STATE(xas, xa, index); 1940 void *entry; 1941 1942 rcu_read_lock(); 1943 entry = xas_start(&xas); 1944 while (xas_get_mark(&xas, mark)) { 1945 if (!xa_is_node(entry)) 1946 goto found; 1947 entry = xas_descend(&xas, xa_to_node(entry)); 1948 } 1949 rcu_read_unlock(); 1950 return false; 1951 found: 1952 rcu_read_unlock(); 1953 return true; 1954 } 1955 EXPORT_SYMBOL(xa_get_mark); 1956 1957 /** 1958 * xa_set_mark() - Set this mark on this entry. 1959 * @xa: XArray. 1960 * @index: Index of entry. 1961 * @mark: Mark number. 1962 * 1963 * Attempting to set a mark on a %NULL entry does not succeed. 1964 * 1965 * Context: Process context. Takes and releases the xa_lock. 1966 */ 1967 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1968 { 1969 xa_lock(xa); 1970 __xa_set_mark(xa, index, mark); 1971 xa_unlock(xa); 1972 } 1973 EXPORT_SYMBOL(xa_set_mark); 1974 1975 /** 1976 * xa_clear_mark() - Clear this mark on this entry. 1977 * @xa: XArray. 1978 * @index: Index of entry. 1979 * @mark: Mark number. 1980 * 1981 * Clearing a mark always succeeds. 1982 * 1983 * Context: Process context. Takes and releases the xa_lock. 1984 */ 1985 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1986 { 1987 xa_lock(xa); 1988 __xa_clear_mark(xa, index, mark); 1989 xa_unlock(xa); 1990 } 1991 EXPORT_SYMBOL(xa_clear_mark); 1992 1993 /** 1994 * xa_find() - Search the XArray for an entry. 1995 * @xa: XArray. 1996 * @indexp: Pointer to an index. 1997 * @max: Maximum index to search to. 1998 * @filter: Selection criterion. 1999 * 2000 * Finds the entry in @xa which matches the @filter, and has the lowest 2001 * index that is at least @indexp and no more than @max. 2002 * If an entry is found, @indexp is updated to be the index of the entry. 2003 * This function is protected by the RCU read lock, so it may not find 2004 * entries which are being simultaneously added. It will not return an 2005 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2006 * 2007 * Context: Any context. Takes and releases the RCU lock. 2008 * Return: The entry, if found, otherwise %NULL. 2009 */ 2010 void *xa_find(struct xarray *xa, unsigned long *indexp, 2011 unsigned long max, xa_mark_t filter) 2012 { 2013 XA_STATE(xas, xa, *indexp); 2014 void *entry; 2015 2016 rcu_read_lock(); 2017 do { 2018 if ((__force unsigned int)filter < XA_MAX_MARKS) 2019 entry = xas_find_marked(&xas, max, filter); 2020 else 2021 entry = xas_find(&xas, max); 2022 } while (xas_retry(&xas, entry)); 2023 rcu_read_unlock(); 2024 2025 if (entry) 2026 *indexp = xas.xa_index; 2027 return entry; 2028 } 2029 EXPORT_SYMBOL(xa_find); 2030 2031 static bool xas_sibling(struct xa_state *xas) 2032 { 2033 struct xa_node *node = xas->xa_node; 2034 unsigned long mask; 2035 2036 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2037 return false; 2038 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2039 return (xas->xa_index & mask) > 2040 ((unsigned long)xas->xa_offset << node->shift); 2041 } 2042 2043 /** 2044 * xa_find_after() - Search the XArray for a present entry. 2045 * @xa: XArray. 2046 * @indexp: Pointer to an index. 2047 * @max: Maximum index to search to. 2048 * @filter: Selection criterion. 2049 * 2050 * Finds the entry in @xa which matches the @filter and has the lowest 2051 * index that is above @indexp and no more than @max. 2052 * If an entry is found, @indexp is updated to be the index of the entry. 2053 * This function is protected by the RCU read lock, so it may miss entries 2054 * which are being simultaneously added. It will not return an 2055 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2056 * 2057 * Context: Any context. Takes and releases the RCU lock. 2058 * Return: The pointer, if found, otherwise %NULL. 2059 */ 2060 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2061 unsigned long max, xa_mark_t filter) 2062 { 2063 XA_STATE(xas, xa, *indexp + 1); 2064 void *entry; 2065 2066 if (xas.xa_index == 0) 2067 return NULL; 2068 2069 rcu_read_lock(); 2070 for (;;) { 2071 if ((__force unsigned int)filter < XA_MAX_MARKS) 2072 entry = xas_find_marked(&xas, max, filter); 2073 else 2074 entry = xas_find(&xas, max); 2075 2076 if (xas_invalid(&xas)) 2077 break; 2078 if (xas_sibling(&xas)) 2079 continue; 2080 if (!xas_retry(&xas, entry)) 2081 break; 2082 } 2083 rcu_read_unlock(); 2084 2085 if (entry) 2086 *indexp = xas.xa_index; 2087 return entry; 2088 } 2089 EXPORT_SYMBOL(xa_find_after); 2090 2091 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2092 unsigned long max, unsigned int n) 2093 { 2094 void *entry; 2095 unsigned int i = 0; 2096 2097 rcu_read_lock(); 2098 xas_for_each(xas, entry, max) { 2099 if (xas_retry(xas, entry)) 2100 continue; 2101 dst[i++] = entry; 2102 if (i == n) 2103 break; 2104 } 2105 rcu_read_unlock(); 2106 2107 return i; 2108 } 2109 2110 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2111 unsigned long max, unsigned int n, xa_mark_t mark) 2112 { 2113 void *entry; 2114 unsigned int i = 0; 2115 2116 rcu_read_lock(); 2117 xas_for_each_marked(xas, entry, max, mark) { 2118 if (xas_retry(xas, entry)) 2119 continue; 2120 dst[i++] = entry; 2121 if (i == n) 2122 break; 2123 } 2124 rcu_read_unlock(); 2125 2126 return i; 2127 } 2128 2129 /** 2130 * xa_extract() - Copy selected entries from the XArray into a normal array. 2131 * @xa: The source XArray to copy from. 2132 * @dst: The buffer to copy entries into. 2133 * @start: The first index in the XArray eligible to be selected. 2134 * @max: The last index in the XArray eligible to be selected. 2135 * @n: The maximum number of entries to copy. 2136 * @filter: Selection criterion. 2137 * 2138 * Copies up to @n entries that match @filter from the XArray. The 2139 * copied entries will have indices between @start and @max, inclusive. 2140 * 2141 * The @filter may be an XArray mark value, in which case entries which are 2142 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2143 * which case all entries which are not %NULL will be copied. 2144 * 2145 * The entries returned may not represent a snapshot of the XArray at a 2146 * moment in time. For example, if another thread stores to index 5, then 2147 * index 10, calling xa_extract() may return the old contents of index 5 2148 * and the new contents of index 10. Indices not modified while this 2149 * function is running will not be skipped. 2150 * 2151 * If you need stronger guarantees, holding the xa_lock across calls to this 2152 * function will prevent concurrent modification. 2153 * 2154 * Context: Any context. Takes and releases the RCU lock. 2155 * Return: The number of entries copied. 2156 */ 2157 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2158 unsigned long max, unsigned int n, xa_mark_t filter) 2159 { 2160 XA_STATE(xas, xa, start); 2161 2162 if (!n) 2163 return 0; 2164 2165 if ((__force unsigned int)filter < XA_MAX_MARKS) 2166 return xas_extract_marked(&xas, dst, max, n, filter); 2167 return xas_extract_present(&xas, dst, max, n); 2168 } 2169 EXPORT_SYMBOL(xa_extract); 2170 2171 /** 2172 * xa_delete_node() - Private interface for workingset code. 2173 * @node: Node to be removed from the tree. 2174 * @update: Function to call to update ancestor nodes. 2175 * 2176 * Context: xa_lock must be held on entry and will not be released. 2177 */ 2178 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2179 { 2180 struct xa_state xas = { 2181 .xa = node->array, 2182 .xa_index = (unsigned long)node->offset << 2183 (node->shift + XA_CHUNK_SHIFT), 2184 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2185 .xa_offset = node->offset, 2186 .xa_node = xa_parent_locked(node->array, node), 2187 .xa_update = update, 2188 }; 2189 2190 xas_store(&xas, NULL); 2191 } 2192 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2193 2194 /** 2195 * xa_destroy() - Free all internal data structures. 2196 * @xa: XArray. 2197 * 2198 * After calling this function, the XArray is empty and has freed all memory 2199 * allocated for its internal data structures. You are responsible for 2200 * freeing the objects referenced by the XArray. 2201 * 2202 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2203 */ 2204 void xa_destroy(struct xarray *xa) 2205 { 2206 XA_STATE(xas, xa, 0); 2207 unsigned long flags; 2208 void *entry; 2209 2210 xas.xa_node = NULL; 2211 xas_lock_irqsave(&xas, flags); 2212 entry = xa_head_locked(xa); 2213 RCU_INIT_POINTER(xa->xa_head, NULL); 2214 xas_init_marks(&xas); 2215 if (xa_zero_busy(xa)) 2216 xa_mark_clear(xa, XA_FREE_MARK); 2217 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2218 if (xa_is_node(entry)) 2219 xas_free_nodes(&xas, xa_to_node(entry)); 2220 xas_unlock_irqrestore(&xas, flags); 2221 } 2222 EXPORT_SYMBOL(xa_destroy); 2223 2224 #ifdef XA_DEBUG 2225 void xa_dump_node(const struct xa_node *node) 2226 { 2227 unsigned i, j; 2228 2229 if (!node) 2230 return; 2231 if ((unsigned long)node & 3) { 2232 pr_cont("node %px\n", node); 2233 return; 2234 } 2235 2236 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2237 "array %px list %px %px marks", 2238 node, node->parent ? "offset" : "max", node->offset, 2239 node->parent, node->shift, node->count, node->nr_values, 2240 node->array, node->private_list.prev, node->private_list.next); 2241 for (i = 0; i < XA_MAX_MARKS; i++) 2242 for (j = 0; j < XA_MARK_LONGS; j++) 2243 pr_cont(" %lx", node->marks[i][j]); 2244 pr_cont("\n"); 2245 } 2246 2247 void xa_dump_index(unsigned long index, unsigned int shift) 2248 { 2249 if (!shift) 2250 pr_info("%lu: ", index); 2251 else if (shift >= BITS_PER_LONG) 2252 pr_info("0-%lu: ", ~0UL); 2253 else 2254 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2255 } 2256 2257 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2258 { 2259 if (!entry) 2260 return; 2261 2262 xa_dump_index(index, shift); 2263 2264 if (xa_is_node(entry)) { 2265 if (shift == 0) { 2266 pr_cont("%px\n", entry); 2267 } else { 2268 unsigned long i; 2269 struct xa_node *node = xa_to_node(entry); 2270 xa_dump_node(node); 2271 for (i = 0; i < XA_CHUNK_SIZE; i++) 2272 xa_dump_entry(node->slots[i], 2273 index + (i << node->shift), node->shift); 2274 } 2275 } else if (xa_is_value(entry)) 2276 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2277 xa_to_value(entry), entry); 2278 else if (!xa_is_internal(entry)) 2279 pr_cont("%px\n", entry); 2280 else if (xa_is_retry(entry)) 2281 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2282 else if (xa_is_sibling(entry)) 2283 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2284 else if (xa_is_zero(entry)) 2285 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2286 else 2287 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2288 } 2289 2290 void xa_dump(const struct xarray *xa) 2291 { 2292 void *entry = xa->xa_head; 2293 unsigned int shift = 0; 2294 2295 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2296 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2297 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2298 if (xa_is_node(entry)) 2299 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2300 xa_dump_entry(entry, 0, shift); 2301 } 2302 #endif 2303