xref: /linux/lib/test_hmm.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/mutex.h>
16 #include <linux/rwsem.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/highmem.h>
20 #include <linux/delay.h>
21 #include <linux/pagemap.h>
22 #include <linux/hmm.h>
23 #include <linux/vmalloc.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/sched/mm.h>
27 #include <linux/platform_device.h>
28 
29 #include "test_hmm_uapi.h"
30 
31 #define DMIRROR_NDEVICES		2
32 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
33 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
34 #define DEVMEM_CHUNKS_RESERVE		16
35 
36 static const struct dev_pagemap_ops dmirror_devmem_ops;
37 static const struct mmu_interval_notifier_ops dmirror_min_ops;
38 static dev_t dmirror_dev;
39 static struct page *dmirror_zero_page;
40 
41 struct dmirror_device;
42 
43 struct dmirror_bounce {
44 	void			*ptr;
45 	unsigned long		size;
46 	unsigned long		addr;
47 	unsigned long		cpages;
48 };
49 
50 #define DPT_XA_TAG_WRITE 3UL
51 
52 /*
53  * Data structure to track address ranges and register for mmu interval
54  * notifier updates.
55  */
56 struct dmirror_interval {
57 	struct mmu_interval_notifier	notifier;
58 	struct dmirror			*dmirror;
59 };
60 
61 /*
62  * Data attached to the open device file.
63  * Note that it might be shared after a fork().
64  */
65 struct dmirror {
66 	struct dmirror_device		*mdevice;
67 	struct xarray			pt;
68 	struct mmu_interval_notifier	notifier;
69 	struct mutex			mutex;
70 };
71 
72 /*
73  * ZONE_DEVICE pages for migration and simulating device memory.
74  */
75 struct dmirror_chunk {
76 	struct dev_pagemap	pagemap;
77 	struct dmirror_device	*mdevice;
78 };
79 
80 /*
81  * Per device data.
82  */
83 struct dmirror_device {
84 	struct cdev		cdevice;
85 	struct hmm_devmem	*devmem;
86 
87 	unsigned int		devmem_capacity;
88 	unsigned int		devmem_count;
89 	struct dmirror_chunk	**devmem_chunks;
90 	struct mutex		devmem_lock;	/* protects the above */
91 
92 	unsigned long		calloc;
93 	unsigned long		cfree;
94 	struct page		*free_pages;
95 	spinlock_t		lock;		/* protects the above */
96 };
97 
98 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
99 
100 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
101 			       unsigned long addr,
102 			       unsigned long size)
103 {
104 	bounce->addr = addr;
105 	bounce->size = size;
106 	bounce->cpages = 0;
107 	bounce->ptr = vmalloc(size);
108 	if (!bounce->ptr)
109 		return -ENOMEM;
110 	return 0;
111 }
112 
113 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
114 {
115 	vfree(bounce->ptr);
116 }
117 
118 static int dmirror_fops_open(struct inode *inode, struct file *filp)
119 {
120 	struct cdev *cdev = inode->i_cdev;
121 	struct dmirror *dmirror;
122 	int ret;
123 
124 	/* Mirror this process address space */
125 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
126 	if (dmirror == NULL)
127 		return -ENOMEM;
128 
129 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
130 	mutex_init(&dmirror->mutex);
131 	xa_init(&dmirror->pt);
132 
133 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
134 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
135 	if (ret) {
136 		kfree(dmirror);
137 		return ret;
138 	}
139 
140 	filp->private_data = dmirror;
141 	return 0;
142 }
143 
144 static int dmirror_fops_release(struct inode *inode, struct file *filp)
145 {
146 	struct dmirror *dmirror = filp->private_data;
147 
148 	mmu_interval_notifier_remove(&dmirror->notifier);
149 	xa_destroy(&dmirror->pt);
150 	kfree(dmirror);
151 	return 0;
152 }
153 
154 static struct dmirror_device *dmirror_page_to_device(struct page *page)
155 
156 {
157 	return container_of(page->pgmap, struct dmirror_chunk,
158 			    pagemap)->mdevice;
159 }
160 
161 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
162 {
163 	unsigned long *pfns = range->hmm_pfns;
164 	unsigned long pfn;
165 
166 	for (pfn = (range->start >> PAGE_SHIFT);
167 	     pfn < (range->end >> PAGE_SHIFT);
168 	     pfn++, pfns++) {
169 		struct page *page;
170 		void *entry;
171 
172 		/*
173 		 * Since we asked for hmm_range_fault() to populate pages,
174 		 * it shouldn't return an error entry on success.
175 		 */
176 		WARN_ON(*pfns & HMM_PFN_ERROR);
177 		WARN_ON(!(*pfns & HMM_PFN_VALID));
178 
179 		page = hmm_pfn_to_page(*pfns);
180 		WARN_ON(!page);
181 
182 		entry = page;
183 		if (*pfns & HMM_PFN_WRITE)
184 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
185 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
186 			return -EFAULT;
187 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
188 		if (xa_is_err(entry))
189 			return xa_err(entry);
190 	}
191 
192 	return 0;
193 }
194 
195 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
196 			      unsigned long end)
197 {
198 	unsigned long pfn;
199 	void *entry;
200 
201 	/*
202 	 * The XArray doesn't hold references to pages since it relies on
203 	 * the mmu notifier to clear page pointers when they become stale.
204 	 * Therefore, it is OK to just clear the entry.
205 	 */
206 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
207 			  end >> PAGE_SHIFT)
208 		xa_erase(&dmirror->pt, pfn);
209 }
210 
211 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
212 				const struct mmu_notifier_range *range,
213 				unsigned long cur_seq)
214 {
215 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
216 
217 	if (mmu_notifier_range_blockable(range))
218 		mutex_lock(&dmirror->mutex);
219 	else if (!mutex_trylock(&dmirror->mutex))
220 		return false;
221 
222 	mmu_interval_set_seq(mni, cur_seq);
223 	dmirror_do_update(dmirror, range->start, range->end);
224 
225 	mutex_unlock(&dmirror->mutex);
226 	return true;
227 }
228 
229 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
230 	.invalidate = dmirror_interval_invalidate,
231 };
232 
233 static int dmirror_range_fault(struct dmirror *dmirror,
234 				struct hmm_range *range)
235 {
236 	struct mm_struct *mm = dmirror->notifier.mm;
237 	unsigned long timeout =
238 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
239 	int ret;
240 
241 	while (true) {
242 		if (time_after(jiffies, timeout)) {
243 			ret = -EBUSY;
244 			goto out;
245 		}
246 
247 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
248 		mmap_read_lock(mm);
249 		ret = hmm_range_fault(range);
250 		mmap_read_unlock(mm);
251 		if (ret) {
252 			if (ret == -EBUSY)
253 				continue;
254 			goto out;
255 		}
256 
257 		mutex_lock(&dmirror->mutex);
258 		if (mmu_interval_read_retry(range->notifier,
259 					    range->notifier_seq)) {
260 			mutex_unlock(&dmirror->mutex);
261 			continue;
262 		}
263 		break;
264 	}
265 
266 	ret = dmirror_do_fault(dmirror, range);
267 
268 	mutex_unlock(&dmirror->mutex);
269 out:
270 	return ret;
271 }
272 
273 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
274 			 unsigned long end, bool write)
275 {
276 	struct mm_struct *mm = dmirror->notifier.mm;
277 	unsigned long addr;
278 	unsigned long pfns[64];
279 	struct hmm_range range = {
280 		.notifier = &dmirror->notifier,
281 		.hmm_pfns = pfns,
282 		.pfn_flags_mask = 0,
283 		.default_flags =
284 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
285 		.dev_private_owner = dmirror->mdevice,
286 	};
287 	int ret = 0;
288 
289 	/* Since the mm is for the mirrored process, get a reference first. */
290 	if (!mmget_not_zero(mm))
291 		return 0;
292 
293 	for (addr = start; addr < end; addr = range.end) {
294 		range.start = addr;
295 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
296 
297 		ret = dmirror_range_fault(dmirror, &range);
298 		if (ret)
299 			break;
300 	}
301 
302 	mmput(mm);
303 	return ret;
304 }
305 
306 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
307 			   unsigned long end, struct dmirror_bounce *bounce)
308 {
309 	unsigned long pfn;
310 	void *ptr;
311 
312 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
313 
314 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
315 		void *entry;
316 		struct page *page;
317 		void *tmp;
318 
319 		entry = xa_load(&dmirror->pt, pfn);
320 		page = xa_untag_pointer(entry);
321 		if (!page)
322 			return -ENOENT;
323 
324 		tmp = kmap(page);
325 		memcpy(ptr, tmp, PAGE_SIZE);
326 		kunmap(page);
327 
328 		ptr += PAGE_SIZE;
329 		bounce->cpages++;
330 	}
331 
332 	return 0;
333 }
334 
335 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
336 {
337 	struct dmirror_bounce bounce;
338 	unsigned long start, end;
339 	unsigned long size = cmd->npages << PAGE_SHIFT;
340 	int ret;
341 
342 	start = cmd->addr;
343 	end = start + size;
344 	if (end < start)
345 		return -EINVAL;
346 
347 	ret = dmirror_bounce_init(&bounce, start, size);
348 	if (ret)
349 		return ret;
350 
351 	while (1) {
352 		mutex_lock(&dmirror->mutex);
353 		ret = dmirror_do_read(dmirror, start, end, &bounce);
354 		mutex_unlock(&dmirror->mutex);
355 		if (ret != -ENOENT)
356 			break;
357 
358 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
359 		ret = dmirror_fault(dmirror, start, end, false);
360 		if (ret)
361 			break;
362 		cmd->faults++;
363 	}
364 
365 	if (ret == 0) {
366 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
367 				 bounce.size))
368 			ret = -EFAULT;
369 	}
370 	cmd->cpages = bounce.cpages;
371 	dmirror_bounce_fini(&bounce);
372 	return ret;
373 }
374 
375 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
376 			    unsigned long end, struct dmirror_bounce *bounce)
377 {
378 	unsigned long pfn;
379 	void *ptr;
380 
381 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
382 
383 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
384 		void *entry;
385 		struct page *page;
386 		void *tmp;
387 
388 		entry = xa_load(&dmirror->pt, pfn);
389 		page = xa_untag_pointer(entry);
390 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
391 			return -ENOENT;
392 
393 		tmp = kmap(page);
394 		memcpy(tmp, ptr, PAGE_SIZE);
395 		kunmap(page);
396 
397 		ptr += PAGE_SIZE;
398 		bounce->cpages++;
399 	}
400 
401 	return 0;
402 }
403 
404 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
405 {
406 	struct dmirror_bounce bounce;
407 	unsigned long start, end;
408 	unsigned long size = cmd->npages << PAGE_SHIFT;
409 	int ret;
410 
411 	start = cmd->addr;
412 	end = start + size;
413 	if (end < start)
414 		return -EINVAL;
415 
416 	ret = dmirror_bounce_init(&bounce, start, size);
417 	if (ret)
418 		return ret;
419 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
420 			   bounce.size)) {
421 		ret = -EFAULT;
422 		goto fini;
423 	}
424 
425 	while (1) {
426 		mutex_lock(&dmirror->mutex);
427 		ret = dmirror_do_write(dmirror, start, end, &bounce);
428 		mutex_unlock(&dmirror->mutex);
429 		if (ret != -ENOENT)
430 			break;
431 
432 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
433 		ret = dmirror_fault(dmirror, start, end, true);
434 		if (ret)
435 			break;
436 		cmd->faults++;
437 	}
438 
439 fini:
440 	cmd->cpages = bounce.cpages;
441 	dmirror_bounce_fini(&bounce);
442 	return ret;
443 }
444 
445 static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
446 				   struct page **ppage)
447 {
448 	struct dmirror_chunk *devmem;
449 	struct resource *res;
450 	unsigned long pfn;
451 	unsigned long pfn_first;
452 	unsigned long pfn_last;
453 	void *ptr;
454 
455 	mutex_lock(&mdevice->devmem_lock);
456 
457 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
458 		struct dmirror_chunk **new_chunks;
459 		unsigned int new_capacity;
460 
461 		new_capacity = mdevice->devmem_capacity +
462 				DEVMEM_CHUNKS_RESERVE;
463 		new_chunks = krealloc(mdevice->devmem_chunks,
464 				sizeof(new_chunks[0]) * new_capacity,
465 				GFP_KERNEL);
466 		if (!new_chunks)
467 			goto err;
468 		mdevice->devmem_capacity = new_capacity;
469 		mdevice->devmem_chunks = new_chunks;
470 	}
471 
472 	res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
473 					"hmm_dmirror");
474 	if (IS_ERR(res))
475 		goto err;
476 
477 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
478 	if (!devmem)
479 		goto err_release;
480 
481 	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
482 	devmem->pagemap.res = *res;
483 	devmem->pagemap.ops = &dmirror_devmem_ops;
484 	devmem->pagemap.owner = mdevice;
485 
486 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
487 	if (IS_ERR(ptr))
488 		goto err_free;
489 
490 	devmem->mdevice = mdevice;
491 	pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT;
492 	pfn_last = pfn_first +
493 		(resource_size(&devmem->pagemap.res) >> PAGE_SHIFT);
494 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
495 
496 	mutex_unlock(&mdevice->devmem_lock);
497 
498 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
499 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
500 		mdevice->devmem_count,
501 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
502 		pfn_first, pfn_last);
503 
504 	spin_lock(&mdevice->lock);
505 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
506 		struct page *page = pfn_to_page(pfn);
507 
508 		page->zone_device_data = mdevice->free_pages;
509 		mdevice->free_pages = page;
510 	}
511 	if (ppage) {
512 		*ppage = mdevice->free_pages;
513 		mdevice->free_pages = (*ppage)->zone_device_data;
514 		mdevice->calloc++;
515 	}
516 	spin_unlock(&mdevice->lock);
517 
518 	return true;
519 
520 err_free:
521 	kfree(devmem);
522 err_release:
523 	release_mem_region(devmem->pagemap.res.start,
524 			   resource_size(&devmem->pagemap.res));
525 err:
526 	mutex_unlock(&mdevice->devmem_lock);
527 	return false;
528 }
529 
530 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
531 {
532 	struct page *dpage = NULL;
533 	struct page *rpage;
534 
535 	/*
536 	 * This is a fake device so we alloc real system memory to store
537 	 * our device memory.
538 	 */
539 	rpage = alloc_page(GFP_HIGHUSER);
540 	if (!rpage)
541 		return NULL;
542 
543 	spin_lock(&mdevice->lock);
544 
545 	if (mdevice->free_pages) {
546 		dpage = mdevice->free_pages;
547 		mdevice->free_pages = dpage->zone_device_data;
548 		mdevice->calloc++;
549 		spin_unlock(&mdevice->lock);
550 	} else {
551 		spin_unlock(&mdevice->lock);
552 		if (!dmirror_allocate_chunk(mdevice, &dpage))
553 			goto error;
554 	}
555 
556 	dpage->zone_device_data = rpage;
557 	get_page(dpage);
558 	lock_page(dpage);
559 	return dpage;
560 
561 error:
562 	__free_page(rpage);
563 	return NULL;
564 }
565 
566 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
567 					   struct dmirror *dmirror)
568 {
569 	struct dmirror_device *mdevice = dmirror->mdevice;
570 	const unsigned long *src = args->src;
571 	unsigned long *dst = args->dst;
572 	unsigned long addr;
573 
574 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
575 						   src++, dst++) {
576 		struct page *spage;
577 		struct page *dpage;
578 		struct page *rpage;
579 
580 		if (!(*src & MIGRATE_PFN_MIGRATE))
581 			continue;
582 
583 		/*
584 		 * Note that spage might be NULL which is OK since it is an
585 		 * unallocated pte_none() or read-only zero page.
586 		 */
587 		spage = migrate_pfn_to_page(*src);
588 
589 		/*
590 		 * Don't migrate device private pages from our own driver or
591 		 * others. For our own we would do a device private memory copy
592 		 * not a migration and for others, we would need to fault the
593 		 * other device's page into system memory first.
594 		 */
595 		if (spage && is_zone_device_page(spage))
596 			continue;
597 
598 		dpage = dmirror_devmem_alloc_page(mdevice);
599 		if (!dpage)
600 			continue;
601 
602 		rpage = dpage->zone_device_data;
603 		if (spage)
604 			copy_highpage(rpage, spage);
605 		else
606 			clear_highpage(rpage);
607 
608 		/*
609 		 * Normally, a device would use the page->zone_device_data to
610 		 * point to the mirror but here we use it to hold the page for
611 		 * the simulated device memory and that page holds the pointer
612 		 * to the mirror.
613 		 */
614 		rpage->zone_device_data = dmirror;
615 
616 		*dst = migrate_pfn(page_to_pfn(dpage)) |
617 			    MIGRATE_PFN_LOCKED;
618 		if ((*src & MIGRATE_PFN_WRITE) ||
619 		    (!spage && args->vma->vm_flags & VM_WRITE))
620 			*dst |= MIGRATE_PFN_WRITE;
621 	}
622 }
623 
624 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
625 					    struct dmirror *dmirror)
626 {
627 	unsigned long start = args->start;
628 	unsigned long end = args->end;
629 	const unsigned long *src = args->src;
630 	const unsigned long *dst = args->dst;
631 	unsigned long pfn;
632 
633 	/* Map the migrated pages into the device's page tables. */
634 	mutex_lock(&dmirror->mutex);
635 
636 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
637 								src++, dst++) {
638 		struct page *dpage;
639 		void *entry;
640 
641 		if (!(*src & MIGRATE_PFN_MIGRATE))
642 			continue;
643 
644 		dpage = migrate_pfn_to_page(*dst);
645 		if (!dpage)
646 			continue;
647 
648 		/*
649 		 * Store the page that holds the data so the page table
650 		 * doesn't have to deal with ZONE_DEVICE private pages.
651 		 */
652 		entry = dpage->zone_device_data;
653 		if (*dst & MIGRATE_PFN_WRITE)
654 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
655 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
656 		if (xa_is_err(entry)) {
657 			mutex_unlock(&dmirror->mutex);
658 			return xa_err(entry);
659 		}
660 	}
661 
662 	mutex_unlock(&dmirror->mutex);
663 	return 0;
664 }
665 
666 static int dmirror_migrate(struct dmirror *dmirror,
667 			   struct hmm_dmirror_cmd *cmd)
668 {
669 	unsigned long start, end, addr;
670 	unsigned long size = cmd->npages << PAGE_SHIFT;
671 	struct mm_struct *mm = dmirror->notifier.mm;
672 	struct vm_area_struct *vma;
673 	unsigned long src_pfns[64];
674 	unsigned long dst_pfns[64];
675 	struct dmirror_bounce bounce;
676 	struct migrate_vma args;
677 	unsigned long next;
678 	int ret;
679 
680 	start = cmd->addr;
681 	end = start + size;
682 	if (end < start)
683 		return -EINVAL;
684 
685 	/* Since the mm is for the mirrored process, get a reference first. */
686 	if (!mmget_not_zero(mm))
687 		return -EINVAL;
688 
689 	mmap_read_lock(mm);
690 	for (addr = start; addr < end; addr = next) {
691 		vma = find_vma(mm, addr);
692 		if (!vma || addr < vma->vm_start ||
693 		    !(vma->vm_flags & VM_READ)) {
694 			ret = -EINVAL;
695 			goto out;
696 		}
697 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
698 		if (next > vma->vm_end)
699 			next = vma->vm_end;
700 
701 		args.vma = vma;
702 		args.src = src_pfns;
703 		args.dst = dst_pfns;
704 		args.start = addr;
705 		args.end = next;
706 		args.src_owner = NULL;
707 		ret = migrate_vma_setup(&args);
708 		if (ret)
709 			goto out;
710 
711 		dmirror_migrate_alloc_and_copy(&args, dmirror);
712 		migrate_vma_pages(&args);
713 		dmirror_migrate_finalize_and_map(&args, dmirror);
714 		migrate_vma_finalize(&args);
715 	}
716 	mmap_read_unlock(mm);
717 	mmput(mm);
718 
719 	/* Return the migrated data for verification. */
720 	ret = dmirror_bounce_init(&bounce, start, size);
721 	if (ret)
722 		return ret;
723 	mutex_lock(&dmirror->mutex);
724 	ret = dmirror_do_read(dmirror, start, end, &bounce);
725 	mutex_unlock(&dmirror->mutex);
726 	if (ret == 0) {
727 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
728 				 bounce.size))
729 			ret = -EFAULT;
730 	}
731 	cmd->cpages = bounce.cpages;
732 	dmirror_bounce_fini(&bounce);
733 	return ret;
734 
735 out:
736 	mmap_read_unlock(mm);
737 	mmput(mm);
738 	return ret;
739 }
740 
741 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
742 			    unsigned char *perm, unsigned long entry)
743 {
744 	struct page *page;
745 
746 	if (entry & HMM_PFN_ERROR) {
747 		*perm = HMM_DMIRROR_PROT_ERROR;
748 		return;
749 	}
750 	if (!(entry & HMM_PFN_VALID)) {
751 		*perm = HMM_DMIRROR_PROT_NONE;
752 		return;
753 	}
754 
755 	page = hmm_pfn_to_page(entry);
756 	if (is_device_private_page(page)) {
757 		/* Is the page migrated to this device or some other? */
758 		if (dmirror->mdevice == dmirror_page_to_device(page))
759 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
760 		else
761 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
762 	} else if (is_zero_pfn(page_to_pfn(page)))
763 		*perm = HMM_DMIRROR_PROT_ZERO;
764 	else
765 		*perm = HMM_DMIRROR_PROT_NONE;
766 	if (entry & HMM_PFN_WRITE)
767 		*perm |= HMM_DMIRROR_PROT_WRITE;
768 	else
769 		*perm |= HMM_DMIRROR_PROT_READ;
770 }
771 
772 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
773 				const struct mmu_notifier_range *range,
774 				unsigned long cur_seq)
775 {
776 	struct dmirror_interval *dmi =
777 		container_of(mni, struct dmirror_interval, notifier);
778 	struct dmirror *dmirror = dmi->dmirror;
779 
780 	if (mmu_notifier_range_blockable(range))
781 		mutex_lock(&dmirror->mutex);
782 	else if (!mutex_trylock(&dmirror->mutex))
783 		return false;
784 
785 	/*
786 	 * Snapshots only need to set the sequence number since any
787 	 * invalidation in the interval invalidates the whole snapshot.
788 	 */
789 	mmu_interval_set_seq(mni, cur_seq);
790 
791 	mutex_unlock(&dmirror->mutex);
792 	return true;
793 }
794 
795 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
796 	.invalidate = dmirror_snapshot_invalidate,
797 };
798 
799 static int dmirror_range_snapshot(struct dmirror *dmirror,
800 				  struct hmm_range *range,
801 				  unsigned char *perm)
802 {
803 	struct mm_struct *mm = dmirror->notifier.mm;
804 	struct dmirror_interval notifier;
805 	unsigned long timeout =
806 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
807 	unsigned long i;
808 	unsigned long n;
809 	int ret = 0;
810 
811 	notifier.dmirror = dmirror;
812 	range->notifier = &notifier.notifier;
813 
814 	ret = mmu_interval_notifier_insert(range->notifier, mm,
815 			range->start, range->end - range->start,
816 			&dmirror_mrn_ops);
817 	if (ret)
818 		return ret;
819 
820 	while (true) {
821 		if (time_after(jiffies, timeout)) {
822 			ret = -EBUSY;
823 			goto out;
824 		}
825 
826 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
827 
828 		mmap_read_lock(mm);
829 		ret = hmm_range_fault(range);
830 		mmap_read_unlock(mm);
831 		if (ret) {
832 			if (ret == -EBUSY)
833 				continue;
834 			goto out;
835 		}
836 
837 		mutex_lock(&dmirror->mutex);
838 		if (mmu_interval_read_retry(range->notifier,
839 					    range->notifier_seq)) {
840 			mutex_unlock(&dmirror->mutex);
841 			continue;
842 		}
843 		break;
844 	}
845 
846 	n = (range->end - range->start) >> PAGE_SHIFT;
847 	for (i = 0; i < n; i++)
848 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
849 
850 	mutex_unlock(&dmirror->mutex);
851 out:
852 	mmu_interval_notifier_remove(range->notifier);
853 	return ret;
854 }
855 
856 static int dmirror_snapshot(struct dmirror *dmirror,
857 			    struct hmm_dmirror_cmd *cmd)
858 {
859 	struct mm_struct *mm = dmirror->notifier.mm;
860 	unsigned long start, end;
861 	unsigned long size = cmd->npages << PAGE_SHIFT;
862 	unsigned long addr;
863 	unsigned long next;
864 	unsigned long pfns[64];
865 	unsigned char perm[64];
866 	char __user *uptr;
867 	struct hmm_range range = {
868 		.hmm_pfns = pfns,
869 		.dev_private_owner = dmirror->mdevice,
870 	};
871 	int ret = 0;
872 
873 	start = cmd->addr;
874 	end = start + size;
875 	if (end < start)
876 		return -EINVAL;
877 
878 	/* Since the mm is for the mirrored process, get a reference first. */
879 	if (!mmget_not_zero(mm))
880 		return -EINVAL;
881 
882 	/*
883 	 * Register a temporary notifier to detect invalidations even if it
884 	 * overlaps with other mmu_interval_notifiers.
885 	 */
886 	uptr = u64_to_user_ptr(cmd->ptr);
887 	for (addr = start; addr < end; addr = next) {
888 		unsigned long n;
889 
890 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
891 		range.start = addr;
892 		range.end = next;
893 
894 		ret = dmirror_range_snapshot(dmirror, &range, perm);
895 		if (ret)
896 			break;
897 
898 		n = (range.end - range.start) >> PAGE_SHIFT;
899 		if (copy_to_user(uptr, perm, n)) {
900 			ret = -EFAULT;
901 			break;
902 		}
903 
904 		cmd->cpages += n;
905 		uptr += n;
906 	}
907 	mmput(mm);
908 
909 	return ret;
910 }
911 
912 static long dmirror_fops_unlocked_ioctl(struct file *filp,
913 					unsigned int command,
914 					unsigned long arg)
915 {
916 	void __user *uarg = (void __user *)arg;
917 	struct hmm_dmirror_cmd cmd;
918 	struct dmirror *dmirror;
919 	int ret;
920 
921 	dmirror = filp->private_data;
922 	if (!dmirror)
923 		return -EINVAL;
924 
925 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
926 		return -EFAULT;
927 
928 	if (cmd.addr & ~PAGE_MASK)
929 		return -EINVAL;
930 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
931 		return -EINVAL;
932 
933 	cmd.cpages = 0;
934 	cmd.faults = 0;
935 
936 	switch (command) {
937 	case HMM_DMIRROR_READ:
938 		ret = dmirror_read(dmirror, &cmd);
939 		break;
940 
941 	case HMM_DMIRROR_WRITE:
942 		ret = dmirror_write(dmirror, &cmd);
943 		break;
944 
945 	case HMM_DMIRROR_MIGRATE:
946 		ret = dmirror_migrate(dmirror, &cmd);
947 		break;
948 
949 	case HMM_DMIRROR_SNAPSHOT:
950 		ret = dmirror_snapshot(dmirror, &cmd);
951 		break;
952 
953 	default:
954 		return -EINVAL;
955 	}
956 	if (ret)
957 		return ret;
958 
959 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
960 		return -EFAULT;
961 
962 	return 0;
963 }
964 
965 static const struct file_operations dmirror_fops = {
966 	.open		= dmirror_fops_open,
967 	.release	= dmirror_fops_release,
968 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
969 	.llseek		= default_llseek,
970 	.owner		= THIS_MODULE,
971 };
972 
973 static void dmirror_devmem_free(struct page *page)
974 {
975 	struct page *rpage = page->zone_device_data;
976 	struct dmirror_device *mdevice;
977 
978 	if (rpage)
979 		__free_page(rpage);
980 
981 	mdevice = dmirror_page_to_device(page);
982 
983 	spin_lock(&mdevice->lock);
984 	mdevice->cfree++;
985 	page->zone_device_data = mdevice->free_pages;
986 	mdevice->free_pages = page;
987 	spin_unlock(&mdevice->lock);
988 }
989 
990 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
991 						struct dmirror_device *mdevice)
992 {
993 	const unsigned long *src = args->src;
994 	unsigned long *dst = args->dst;
995 	unsigned long start = args->start;
996 	unsigned long end = args->end;
997 	unsigned long addr;
998 
999 	for (addr = start; addr < end; addr += PAGE_SIZE,
1000 				       src++, dst++) {
1001 		struct page *dpage, *spage;
1002 
1003 		spage = migrate_pfn_to_page(*src);
1004 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
1005 			continue;
1006 		spage = spage->zone_device_data;
1007 
1008 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
1009 		if (!dpage)
1010 			continue;
1011 
1012 		lock_page(dpage);
1013 		copy_highpage(dpage, spage);
1014 		*dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
1015 		if (*src & MIGRATE_PFN_WRITE)
1016 			*dst |= MIGRATE_PFN_WRITE;
1017 	}
1018 	return 0;
1019 }
1020 
1021 static void dmirror_devmem_fault_finalize_and_map(struct migrate_vma *args,
1022 						  struct dmirror *dmirror)
1023 {
1024 	/* Invalidate the device's page table mapping. */
1025 	mutex_lock(&dmirror->mutex);
1026 	dmirror_do_update(dmirror, args->start, args->end);
1027 	mutex_unlock(&dmirror->mutex);
1028 }
1029 
1030 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1031 {
1032 	struct migrate_vma args;
1033 	unsigned long src_pfns;
1034 	unsigned long dst_pfns;
1035 	struct page *rpage;
1036 	struct dmirror *dmirror;
1037 	vm_fault_t ret;
1038 
1039 	/*
1040 	 * Normally, a device would use the page->zone_device_data to point to
1041 	 * the mirror but here we use it to hold the page for the simulated
1042 	 * device memory and that page holds the pointer to the mirror.
1043 	 */
1044 	rpage = vmf->page->zone_device_data;
1045 	dmirror = rpage->zone_device_data;
1046 
1047 	/* FIXME demonstrate how we can adjust migrate range */
1048 	args.vma = vmf->vma;
1049 	args.start = vmf->address;
1050 	args.end = args.start + PAGE_SIZE;
1051 	args.src = &src_pfns;
1052 	args.dst = &dst_pfns;
1053 	args.src_owner = dmirror->mdevice;
1054 
1055 	if (migrate_vma_setup(&args))
1056 		return VM_FAULT_SIGBUS;
1057 
1058 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror->mdevice);
1059 	if (ret)
1060 		return ret;
1061 	migrate_vma_pages(&args);
1062 	dmirror_devmem_fault_finalize_and_map(&args, dmirror);
1063 	migrate_vma_finalize(&args);
1064 	return 0;
1065 }
1066 
1067 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1068 	.page_free	= dmirror_devmem_free,
1069 	.migrate_to_ram	= dmirror_devmem_fault,
1070 };
1071 
1072 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1073 {
1074 	dev_t dev;
1075 	int ret;
1076 
1077 	dev = MKDEV(MAJOR(dmirror_dev), id);
1078 	mutex_init(&mdevice->devmem_lock);
1079 	spin_lock_init(&mdevice->lock);
1080 
1081 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1082 	mdevice->cdevice.owner = THIS_MODULE;
1083 	ret = cdev_add(&mdevice->cdevice, dev, 1);
1084 	if (ret)
1085 		return ret;
1086 
1087 	/* Build a list of free ZONE_DEVICE private struct pages */
1088 	dmirror_allocate_chunk(mdevice, NULL);
1089 
1090 	return 0;
1091 }
1092 
1093 static void dmirror_device_remove(struct dmirror_device *mdevice)
1094 {
1095 	unsigned int i;
1096 
1097 	if (mdevice->devmem_chunks) {
1098 		for (i = 0; i < mdevice->devmem_count; i++) {
1099 			struct dmirror_chunk *devmem =
1100 				mdevice->devmem_chunks[i];
1101 
1102 			memunmap_pages(&devmem->pagemap);
1103 			release_mem_region(devmem->pagemap.res.start,
1104 					   resource_size(&devmem->pagemap.res));
1105 			kfree(devmem);
1106 		}
1107 		kfree(mdevice->devmem_chunks);
1108 	}
1109 
1110 	cdev_del(&mdevice->cdevice);
1111 }
1112 
1113 static int __init hmm_dmirror_init(void)
1114 {
1115 	int ret;
1116 	int id;
1117 
1118 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1119 				  "HMM_DMIRROR");
1120 	if (ret)
1121 		goto err_unreg;
1122 
1123 	for (id = 0; id < DMIRROR_NDEVICES; id++) {
1124 		ret = dmirror_device_init(dmirror_devices + id, id);
1125 		if (ret)
1126 			goto err_chrdev;
1127 	}
1128 
1129 	/*
1130 	 * Allocate a zero page to simulate a reserved page of device private
1131 	 * memory which is always zero. The zero_pfn page isn't used just to
1132 	 * make the code here simpler (i.e., we need a struct page for it).
1133 	 */
1134 	dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1135 	if (!dmirror_zero_page) {
1136 		ret = -ENOMEM;
1137 		goto err_chrdev;
1138 	}
1139 
1140 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1141 	return 0;
1142 
1143 err_chrdev:
1144 	while (--id >= 0)
1145 		dmirror_device_remove(dmirror_devices + id);
1146 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1147 err_unreg:
1148 	return ret;
1149 }
1150 
1151 static void __exit hmm_dmirror_exit(void)
1152 {
1153 	int id;
1154 
1155 	if (dmirror_zero_page)
1156 		__free_page(dmirror_zero_page);
1157 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1158 		dmirror_device_remove(dmirror_devices + id);
1159 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1160 }
1161 
1162 module_init(hmm_dmirror_init);
1163 module_exit(hmm_dmirror_exit);
1164 MODULE_LICENSE("GPL");
1165