xref: /linux/lib/test_hmm.c (revision a58f3dcf20ea9e7e968ee8369fd782bbb53dff73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32 
33 #include "test_hmm_uapi.h"
34 
35 #define DMIRROR_NDEVICES		4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
37 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE		16
39 
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 			   (page)->zone_device_data : (page))
50 
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 		"Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55 
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 		"Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60 
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64 
65 struct dmirror_device;
66 
67 struct dmirror_bounce {
68 	void			*ptr;
69 	unsigned long		size;
70 	unsigned long		addr;
71 	unsigned long		cpages;
72 };
73 
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76 
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82 	struct mmu_interval_notifier	notifier;
83 	struct dmirror			*dmirror;
84 };
85 
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91 	struct dmirror_device		*mdevice;
92 	struct xarray			pt;
93 	struct mmu_interval_notifier	notifier;
94 	struct mutex			mutex;
95 };
96 
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101 	struct dev_pagemap	pagemap;
102 	struct dmirror_device	*mdevice;
103 	bool remove;
104 };
105 
106 /*
107  * Per device data.
108  */
109 struct dmirror_device {
110 	struct cdev		cdevice;
111 	unsigned int            zone_device_type;
112 	struct device		device;
113 
114 	unsigned int		devmem_capacity;
115 	unsigned int		devmem_count;
116 	struct dmirror_chunk	**devmem_chunks;
117 	struct mutex		devmem_lock;	/* protects the above */
118 
119 	unsigned long		calloc;
120 	unsigned long		cfree;
121 	struct page		*free_pages;
122 	spinlock_t		lock;		/* protects the above */
123 };
124 
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126 
127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 			       unsigned long addr,
129 			       unsigned long size)
130 {
131 	bounce->addr = addr;
132 	bounce->size = size;
133 	bounce->cpages = 0;
134 	bounce->ptr = vmalloc(size);
135 	if (!bounce->ptr)
136 		return -ENOMEM;
137 	return 0;
138 }
139 
140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142 	return (mdevice->zone_device_type ==
143 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145 
146 static enum migrate_vma_direction
147 dmirror_select_device(struct dmirror *dmirror)
148 {
149 	return (dmirror->mdevice->zone_device_type ==
150 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 		MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 		MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154 
155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157 	vfree(bounce->ptr);
158 }
159 
160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162 	struct cdev *cdev = inode->i_cdev;
163 	struct dmirror *dmirror;
164 	int ret;
165 
166 	/* Mirror this process address space */
167 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 	if (dmirror == NULL)
169 		return -ENOMEM;
170 
171 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 	mutex_init(&dmirror->mutex);
173 	xa_init(&dmirror->pt);
174 
175 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 	if (ret) {
178 		kfree(dmirror);
179 		return ret;
180 	}
181 
182 	filp->private_data = dmirror;
183 	return 0;
184 }
185 
186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188 	struct dmirror *dmirror = filp->private_data;
189 
190 	mmu_interval_notifier_remove(&dmirror->notifier);
191 	xa_destroy(&dmirror->pt);
192 	kfree(dmirror);
193 	return 0;
194 }
195 
196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198 	return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199 }
200 
201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
202 
203 {
204 	return dmirror_page_to_chunk(page)->mdevice;
205 }
206 
207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208 {
209 	unsigned long *pfns = range->hmm_pfns;
210 	unsigned long pfn;
211 
212 	for (pfn = (range->start >> PAGE_SHIFT);
213 	     pfn < (range->end >> PAGE_SHIFT);
214 	     pfn++, pfns++) {
215 		struct page *page;
216 		void *entry;
217 
218 		/*
219 		 * Since we asked for hmm_range_fault() to populate pages,
220 		 * it shouldn't return an error entry on success.
221 		 */
222 		WARN_ON(*pfns & HMM_PFN_ERROR);
223 		WARN_ON(!(*pfns & HMM_PFN_VALID));
224 
225 		page = hmm_pfn_to_page(*pfns);
226 		WARN_ON(!page);
227 
228 		entry = page;
229 		if (*pfns & HMM_PFN_WRITE)
230 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232 			return -EFAULT;
233 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234 		if (xa_is_err(entry))
235 			return xa_err(entry);
236 	}
237 
238 	return 0;
239 }
240 
241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242 			      unsigned long end)
243 {
244 	unsigned long pfn;
245 	void *entry;
246 
247 	/*
248 	 * The XArray doesn't hold references to pages since it relies on
249 	 * the mmu notifier to clear page pointers when they become stale.
250 	 * Therefore, it is OK to just clear the entry.
251 	 */
252 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253 			  end >> PAGE_SHIFT)
254 		xa_erase(&dmirror->pt, pfn);
255 }
256 
257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258 				const struct mmu_notifier_range *range,
259 				unsigned long cur_seq)
260 {
261 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262 
263 	/*
264 	 * Ignore invalidation callbacks for device private pages since
265 	 * the invalidation is handled as part of the migration process.
266 	 */
267 	if (range->event == MMU_NOTIFY_MIGRATE &&
268 	    range->owner == dmirror->mdevice)
269 		return true;
270 
271 	if (mmu_notifier_range_blockable(range))
272 		mutex_lock(&dmirror->mutex);
273 	else if (!mutex_trylock(&dmirror->mutex))
274 		return false;
275 
276 	mmu_interval_set_seq(mni, cur_seq);
277 	dmirror_do_update(dmirror, range->start, range->end);
278 
279 	mutex_unlock(&dmirror->mutex);
280 	return true;
281 }
282 
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284 	.invalidate = dmirror_interval_invalidate,
285 };
286 
287 static int dmirror_range_fault(struct dmirror *dmirror,
288 				struct hmm_range *range)
289 {
290 	struct mm_struct *mm = dmirror->notifier.mm;
291 	unsigned long timeout =
292 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293 	int ret;
294 
295 	while (true) {
296 		if (time_after(jiffies, timeout)) {
297 			ret = -EBUSY;
298 			goto out;
299 		}
300 
301 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
302 		mmap_read_lock(mm);
303 		ret = hmm_range_fault(range);
304 		mmap_read_unlock(mm);
305 		if (ret) {
306 			if (ret == -EBUSY)
307 				continue;
308 			goto out;
309 		}
310 
311 		mutex_lock(&dmirror->mutex);
312 		if (mmu_interval_read_retry(range->notifier,
313 					    range->notifier_seq)) {
314 			mutex_unlock(&dmirror->mutex);
315 			continue;
316 		}
317 		break;
318 	}
319 
320 	ret = dmirror_do_fault(dmirror, range);
321 
322 	mutex_unlock(&dmirror->mutex);
323 out:
324 	return ret;
325 }
326 
327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328 			 unsigned long end, bool write)
329 {
330 	struct mm_struct *mm = dmirror->notifier.mm;
331 	unsigned long addr;
332 	unsigned long pfns[64];
333 	struct hmm_range range = {
334 		.notifier = &dmirror->notifier,
335 		.hmm_pfns = pfns,
336 		.pfn_flags_mask = 0,
337 		.default_flags =
338 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339 		.dev_private_owner = dmirror->mdevice,
340 	};
341 	int ret = 0;
342 
343 	/* Since the mm is for the mirrored process, get a reference first. */
344 	if (!mmget_not_zero(mm))
345 		return 0;
346 
347 	for (addr = start; addr < end; addr = range.end) {
348 		range.start = addr;
349 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350 
351 		ret = dmirror_range_fault(dmirror, &range);
352 		if (ret)
353 			break;
354 	}
355 
356 	mmput(mm);
357 	return ret;
358 }
359 
360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361 			   unsigned long end, struct dmirror_bounce *bounce)
362 {
363 	unsigned long pfn;
364 	void *ptr;
365 
366 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367 
368 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369 		void *entry;
370 		struct page *page;
371 
372 		entry = xa_load(&dmirror->pt, pfn);
373 		page = xa_untag_pointer(entry);
374 		if (!page)
375 			return -ENOENT;
376 
377 		memcpy_from_page(ptr, page, 0, PAGE_SIZE);
378 
379 		ptr += PAGE_SIZE;
380 		bounce->cpages++;
381 	}
382 
383 	return 0;
384 }
385 
386 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
387 {
388 	struct dmirror_bounce bounce;
389 	unsigned long start, end;
390 	unsigned long size = cmd->npages << PAGE_SHIFT;
391 	int ret;
392 
393 	start = cmd->addr;
394 	end = start + size;
395 	if (end < start)
396 		return -EINVAL;
397 
398 	ret = dmirror_bounce_init(&bounce, start, size);
399 	if (ret)
400 		return ret;
401 
402 	while (1) {
403 		mutex_lock(&dmirror->mutex);
404 		ret = dmirror_do_read(dmirror, start, end, &bounce);
405 		mutex_unlock(&dmirror->mutex);
406 		if (ret != -ENOENT)
407 			break;
408 
409 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
410 		ret = dmirror_fault(dmirror, start, end, false);
411 		if (ret)
412 			break;
413 		cmd->faults++;
414 	}
415 
416 	if (ret == 0) {
417 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
418 				 bounce.size))
419 			ret = -EFAULT;
420 	}
421 	cmd->cpages = bounce.cpages;
422 	dmirror_bounce_fini(&bounce);
423 	return ret;
424 }
425 
426 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
427 			    unsigned long end, struct dmirror_bounce *bounce)
428 {
429 	unsigned long pfn;
430 	void *ptr;
431 
432 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
433 
434 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
435 		void *entry;
436 		struct page *page;
437 
438 		entry = xa_load(&dmirror->pt, pfn);
439 		page = xa_untag_pointer(entry);
440 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
441 			return -ENOENT;
442 
443 		memcpy_to_page(page, 0, ptr, PAGE_SIZE);
444 
445 		ptr += PAGE_SIZE;
446 		bounce->cpages++;
447 	}
448 
449 	return 0;
450 }
451 
452 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
453 {
454 	struct dmirror_bounce bounce;
455 	unsigned long start, end;
456 	unsigned long size = cmd->npages << PAGE_SHIFT;
457 	int ret;
458 
459 	start = cmd->addr;
460 	end = start + size;
461 	if (end < start)
462 		return -EINVAL;
463 
464 	ret = dmirror_bounce_init(&bounce, start, size);
465 	if (ret)
466 		return ret;
467 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
468 			   bounce.size)) {
469 		ret = -EFAULT;
470 		goto fini;
471 	}
472 
473 	while (1) {
474 		mutex_lock(&dmirror->mutex);
475 		ret = dmirror_do_write(dmirror, start, end, &bounce);
476 		mutex_unlock(&dmirror->mutex);
477 		if (ret != -ENOENT)
478 			break;
479 
480 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
481 		ret = dmirror_fault(dmirror, start, end, true);
482 		if (ret)
483 			break;
484 		cmd->faults++;
485 	}
486 
487 fini:
488 	cmd->cpages = bounce.cpages;
489 	dmirror_bounce_fini(&bounce);
490 	return ret;
491 }
492 
493 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
494 				   struct page **ppage)
495 {
496 	struct dmirror_chunk *devmem;
497 	struct resource *res = NULL;
498 	unsigned long pfn;
499 	unsigned long pfn_first;
500 	unsigned long pfn_last;
501 	void *ptr;
502 	int ret = -ENOMEM;
503 
504 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
505 	if (!devmem)
506 		return ret;
507 
508 	switch (mdevice->zone_device_type) {
509 	case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
510 		res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
511 					      "hmm_dmirror");
512 		if (IS_ERR_OR_NULL(res))
513 			goto err_devmem;
514 		devmem->pagemap.range.start = res->start;
515 		devmem->pagemap.range.end = res->end;
516 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
517 		break;
518 	case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
519 		devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
520 							spm_addr_dev0 :
521 							spm_addr_dev1;
522 		devmem->pagemap.range.end = devmem->pagemap.range.start +
523 					    DEVMEM_CHUNK_SIZE - 1;
524 		devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
525 		break;
526 	default:
527 		ret = -EINVAL;
528 		goto err_devmem;
529 	}
530 
531 	devmem->pagemap.nr_range = 1;
532 	devmem->pagemap.ops = &dmirror_devmem_ops;
533 	devmem->pagemap.owner = mdevice;
534 
535 	mutex_lock(&mdevice->devmem_lock);
536 
537 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
538 		struct dmirror_chunk **new_chunks;
539 		unsigned int new_capacity;
540 
541 		new_capacity = mdevice->devmem_capacity +
542 				DEVMEM_CHUNKS_RESERVE;
543 		new_chunks = krealloc(mdevice->devmem_chunks,
544 				sizeof(new_chunks[0]) * new_capacity,
545 				GFP_KERNEL);
546 		if (!new_chunks)
547 			goto err_release;
548 		mdevice->devmem_capacity = new_capacity;
549 		mdevice->devmem_chunks = new_chunks;
550 	}
551 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
552 	if (IS_ERR_OR_NULL(ptr)) {
553 		if (ptr)
554 			ret = PTR_ERR(ptr);
555 		else
556 			ret = -EFAULT;
557 		goto err_release;
558 	}
559 
560 	devmem->mdevice = mdevice;
561 	pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
562 	pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
563 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
564 
565 	mutex_unlock(&mdevice->devmem_lock);
566 
567 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
568 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
569 		mdevice->devmem_count,
570 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
571 		pfn_first, pfn_last);
572 
573 	spin_lock(&mdevice->lock);
574 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
575 		struct page *page = pfn_to_page(pfn);
576 
577 		page->zone_device_data = mdevice->free_pages;
578 		mdevice->free_pages = page;
579 	}
580 	if (ppage) {
581 		*ppage = mdevice->free_pages;
582 		mdevice->free_pages = (*ppage)->zone_device_data;
583 		mdevice->calloc++;
584 	}
585 	spin_unlock(&mdevice->lock);
586 
587 	return 0;
588 
589 err_release:
590 	mutex_unlock(&mdevice->devmem_lock);
591 	if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
592 		release_mem_region(devmem->pagemap.range.start,
593 				   range_len(&devmem->pagemap.range));
594 err_devmem:
595 	kfree(devmem);
596 
597 	return ret;
598 }
599 
600 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
601 {
602 	struct page *dpage = NULL;
603 	struct page *rpage = NULL;
604 
605 	/*
606 	 * For ZONE_DEVICE private type, this is a fake device so we allocate
607 	 * real system memory to store our device memory.
608 	 * For ZONE_DEVICE coherent type we use the actual dpage to store the
609 	 * data and ignore rpage.
610 	 */
611 	if (dmirror_is_private_zone(mdevice)) {
612 		rpage = alloc_page(GFP_HIGHUSER);
613 		if (!rpage)
614 			return NULL;
615 	}
616 	spin_lock(&mdevice->lock);
617 
618 	if (mdevice->free_pages) {
619 		dpage = mdevice->free_pages;
620 		mdevice->free_pages = dpage->zone_device_data;
621 		mdevice->calloc++;
622 		spin_unlock(&mdevice->lock);
623 	} else {
624 		spin_unlock(&mdevice->lock);
625 		if (dmirror_allocate_chunk(mdevice, &dpage))
626 			goto error;
627 	}
628 
629 	zone_device_page_init(dpage);
630 	dpage->zone_device_data = rpage;
631 	return dpage;
632 
633 error:
634 	if (rpage)
635 		__free_page(rpage);
636 	return NULL;
637 }
638 
639 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
640 					   struct dmirror *dmirror)
641 {
642 	struct dmirror_device *mdevice = dmirror->mdevice;
643 	const unsigned long *src = args->src;
644 	unsigned long *dst = args->dst;
645 	unsigned long addr;
646 
647 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
648 						   src++, dst++) {
649 		struct page *spage;
650 		struct page *dpage;
651 		struct page *rpage;
652 
653 		if (!(*src & MIGRATE_PFN_MIGRATE))
654 			continue;
655 
656 		/*
657 		 * Note that spage might be NULL which is OK since it is an
658 		 * unallocated pte_none() or read-only zero page.
659 		 */
660 		spage = migrate_pfn_to_page(*src);
661 		if (WARN(spage && is_zone_device_page(spage),
662 		     "page already in device spage pfn: 0x%lx\n",
663 		     page_to_pfn(spage)))
664 			continue;
665 
666 		dpage = dmirror_devmem_alloc_page(mdevice);
667 		if (!dpage)
668 			continue;
669 
670 		rpage = BACKING_PAGE(dpage);
671 		if (spage)
672 			copy_highpage(rpage, spage);
673 		else
674 			clear_highpage(rpage);
675 
676 		/*
677 		 * Normally, a device would use the page->zone_device_data to
678 		 * point to the mirror but here we use it to hold the page for
679 		 * the simulated device memory and that page holds the pointer
680 		 * to the mirror.
681 		 */
682 		rpage->zone_device_data = dmirror;
683 
684 		pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
685 			 page_to_pfn(spage), page_to_pfn(dpage));
686 		*dst = migrate_pfn(page_to_pfn(dpage));
687 		if ((*src & MIGRATE_PFN_WRITE) ||
688 		    (!spage && args->vma->vm_flags & VM_WRITE))
689 			*dst |= MIGRATE_PFN_WRITE;
690 	}
691 }
692 
693 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
694 			     unsigned long end)
695 {
696 	unsigned long pfn;
697 
698 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
699 		void *entry;
700 
701 		entry = xa_load(&dmirror->pt, pfn);
702 		if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
703 			return -EPERM;
704 	}
705 
706 	return 0;
707 }
708 
709 static int dmirror_atomic_map(unsigned long start, unsigned long end,
710 			      struct page **pages, struct dmirror *dmirror)
711 {
712 	unsigned long pfn, mapped = 0;
713 	int i;
714 
715 	/* Map the migrated pages into the device's page tables. */
716 	mutex_lock(&dmirror->mutex);
717 
718 	for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
719 		void *entry;
720 
721 		if (!pages[i])
722 			continue;
723 
724 		entry = pages[i];
725 		entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
726 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
727 		if (xa_is_err(entry)) {
728 			mutex_unlock(&dmirror->mutex);
729 			return xa_err(entry);
730 		}
731 
732 		mapped++;
733 	}
734 
735 	mutex_unlock(&dmirror->mutex);
736 	return mapped;
737 }
738 
739 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
740 					    struct dmirror *dmirror)
741 {
742 	unsigned long start = args->start;
743 	unsigned long end = args->end;
744 	const unsigned long *src = args->src;
745 	const unsigned long *dst = args->dst;
746 	unsigned long pfn;
747 
748 	/* Map the migrated pages into the device's page tables. */
749 	mutex_lock(&dmirror->mutex);
750 
751 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
752 								src++, dst++) {
753 		struct page *dpage;
754 		void *entry;
755 
756 		if (!(*src & MIGRATE_PFN_MIGRATE))
757 			continue;
758 
759 		dpage = migrate_pfn_to_page(*dst);
760 		if (!dpage)
761 			continue;
762 
763 		entry = BACKING_PAGE(dpage);
764 		if (*dst & MIGRATE_PFN_WRITE)
765 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
766 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
767 		if (xa_is_err(entry)) {
768 			mutex_unlock(&dmirror->mutex);
769 			return xa_err(entry);
770 		}
771 	}
772 
773 	mutex_unlock(&dmirror->mutex);
774 	return 0;
775 }
776 
777 static int dmirror_exclusive(struct dmirror *dmirror,
778 			     struct hmm_dmirror_cmd *cmd)
779 {
780 	unsigned long start, end, addr;
781 	unsigned long size = cmd->npages << PAGE_SHIFT;
782 	struct mm_struct *mm = dmirror->notifier.mm;
783 	struct dmirror_bounce bounce;
784 	int ret = 0;
785 
786 	start = cmd->addr;
787 	end = start + size;
788 	if (end < start)
789 		return -EINVAL;
790 
791 	/* Since the mm is for the mirrored process, get a reference first. */
792 	if (!mmget_not_zero(mm))
793 		return -EINVAL;
794 
795 	mmap_read_lock(mm);
796 	for (addr = start; !ret && addr < end; addr += PAGE_SIZE) {
797 		struct folio *folio;
798 		struct page *page;
799 
800 		page = make_device_exclusive(mm, addr, NULL, &folio);
801 		if (IS_ERR(page)) {
802 			ret = PTR_ERR(page);
803 			break;
804 		}
805 
806 		ret = dmirror_atomic_map(addr, addr + PAGE_SIZE, &page, dmirror);
807 		ret = ret == 1 ? 0 : -EBUSY;
808 		folio_unlock(folio);
809 		folio_put(folio);
810 	}
811 	mmap_read_unlock(mm);
812 	mmput(mm);
813 
814 	if (ret)
815 		return ret;
816 
817 	/* Return the migrated data for verification. */
818 	ret = dmirror_bounce_init(&bounce, start, size);
819 	if (ret)
820 		return ret;
821 	mutex_lock(&dmirror->mutex);
822 	ret = dmirror_do_read(dmirror, start, end, &bounce);
823 	mutex_unlock(&dmirror->mutex);
824 	if (ret == 0) {
825 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
826 				 bounce.size))
827 			ret = -EFAULT;
828 	}
829 
830 	cmd->cpages = bounce.cpages;
831 	dmirror_bounce_fini(&bounce);
832 	return ret;
833 }
834 
835 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
836 						      struct dmirror *dmirror)
837 {
838 	const unsigned long *src = args->src;
839 	unsigned long *dst = args->dst;
840 	unsigned long start = args->start;
841 	unsigned long end = args->end;
842 	unsigned long addr;
843 
844 	for (addr = start; addr < end; addr += PAGE_SIZE,
845 				       src++, dst++) {
846 		struct page *dpage, *spage;
847 
848 		spage = migrate_pfn_to_page(*src);
849 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
850 			continue;
851 
852 		if (WARN_ON(!is_device_private_page(spage) &&
853 			    !is_device_coherent_page(spage)))
854 			continue;
855 		spage = BACKING_PAGE(spage);
856 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
857 		if (!dpage)
858 			continue;
859 		pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
860 			 page_to_pfn(spage), page_to_pfn(dpage));
861 
862 		lock_page(dpage);
863 		xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
864 		copy_highpage(dpage, spage);
865 		*dst = migrate_pfn(page_to_pfn(dpage));
866 		if (*src & MIGRATE_PFN_WRITE)
867 			*dst |= MIGRATE_PFN_WRITE;
868 	}
869 	return 0;
870 }
871 
872 static unsigned long
873 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
874 {
875 	unsigned long cpages = 0;
876 	unsigned long i;
877 
878 	for (i = 0; i < migrate->npages; i++) {
879 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
880 		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
881 			cpages++;
882 	}
883 	return cpages;
884 }
885 
886 static int dmirror_migrate_to_system(struct dmirror *dmirror,
887 				     struct hmm_dmirror_cmd *cmd)
888 {
889 	unsigned long start, end, addr;
890 	unsigned long size = cmd->npages << PAGE_SHIFT;
891 	struct mm_struct *mm = dmirror->notifier.mm;
892 	struct vm_area_struct *vma;
893 	unsigned long src_pfns[64] = { 0 };
894 	unsigned long dst_pfns[64] = { 0 };
895 	struct migrate_vma args = { 0 };
896 	unsigned long next;
897 	int ret;
898 
899 	start = cmd->addr;
900 	end = start + size;
901 	if (end < start)
902 		return -EINVAL;
903 
904 	/* Since the mm is for the mirrored process, get a reference first. */
905 	if (!mmget_not_zero(mm))
906 		return -EINVAL;
907 
908 	cmd->cpages = 0;
909 	mmap_read_lock(mm);
910 	for (addr = start; addr < end; addr = next) {
911 		vma = vma_lookup(mm, addr);
912 		if (!vma || !(vma->vm_flags & VM_READ)) {
913 			ret = -EINVAL;
914 			goto out;
915 		}
916 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
917 		if (next > vma->vm_end)
918 			next = vma->vm_end;
919 
920 		args.vma = vma;
921 		args.src = src_pfns;
922 		args.dst = dst_pfns;
923 		args.start = addr;
924 		args.end = next;
925 		args.pgmap_owner = dmirror->mdevice;
926 		args.flags = dmirror_select_device(dmirror);
927 
928 		ret = migrate_vma_setup(&args);
929 		if (ret)
930 			goto out;
931 
932 		pr_debug("Migrating from device mem to sys mem\n");
933 		dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
934 
935 		migrate_vma_pages(&args);
936 		cmd->cpages += dmirror_successful_migrated_pages(&args);
937 		migrate_vma_finalize(&args);
938 	}
939 out:
940 	mmap_read_unlock(mm);
941 	mmput(mm);
942 
943 	return ret;
944 }
945 
946 static int dmirror_migrate_to_device(struct dmirror *dmirror,
947 				struct hmm_dmirror_cmd *cmd)
948 {
949 	unsigned long start, end, addr;
950 	unsigned long size = cmd->npages << PAGE_SHIFT;
951 	struct mm_struct *mm = dmirror->notifier.mm;
952 	struct vm_area_struct *vma;
953 	unsigned long src_pfns[64] = { 0 };
954 	unsigned long dst_pfns[64] = { 0 };
955 	struct dmirror_bounce bounce;
956 	struct migrate_vma args = { 0 };
957 	unsigned long next;
958 	int ret;
959 
960 	start = cmd->addr;
961 	end = start + size;
962 	if (end < start)
963 		return -EINVAL;
964 
965 	/* Since the mm is for the mirrored process, get a reference first. */
966 	if (!mmget_not_zero(mm))
967 		return -EINVAL;
968 
969 	mmap_read_lock(mm);
970 	for (addr = start; addr < end; addr = next) {
971 		vma = vma_lookup(mm, addr);
972 		if (!vma || !(vma->vm_flags & VM_READ)) {
973 			ret = -EINVAL;
974 			goto out;
975 		}
976 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
977 		if (next > vma->vm_end)
978 			next = vma->vm_end;
979 
980 		args.vma = vma;
981 		args.src = src_pfns;
982 		args.dst = dst_pfns;
983 		args.start = addr;
984 		args.end = next;
985 		args.pgmap_owner = dmirror->mdevice;
986 		args.flags = MIGRATE_VMA_SELECT_SYSTEM;
987 		ret = migrate_vma_setup(&args);
988 		if (ret)
989 			goto out;
990 
991 		pr_debug("Migrating from sys mem to device mem\n");
992 		dmirror_migrate_alloc_and_copy(&args, dmirror);
993 		migrate_vma_pages(&args);
994 		dmirror_migrate_finalize_and_map(&args, dmirror);
995 		migrate_vma_finalize(&args);
996 	}
997 	mmap_read_unlock(mm);
998 	mmput(mm);
999 
1000 	/*
1001 	 * Return the migrated data for verification.
1002 	 * Only for pages in device zone
1003 	 */
1004 	ret = dmirror_bounce_init(&bounce, start, size);
1005 	if (ret)
1006 		return ret;
1007 	mutex_lock(&dmirror->mutex);
1008 	ret = dmirror_do_read(dmirror, start, end, &bounce);
1009 	mutex_unlock(&dmirror->mutex);
1010 	if (ret == 0) {
1011 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1012 				 bounce.size))
1013 			ret = -EFAULT;
1014 	}
1015 	cmd->cpages = bounce.cpages;
1016 	dmirror_bounce_fini(&bounce);
1017 	return ret;
1018 
1019 out:
1020 	mmap_read_unlock(mm);
1021 	mmput(mm);
1022 	return ret;
1023 }
1024 
1025 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1026 			    unsigned char *perm, unsigned long entry)
1027 {
1028 	struct page *page;
1029 
1030 	if (entry & HMM_PFN_ERROR) {
1031 		*perm = HMM_DMIRROR_PROT_ERROR;
1032 		return;
1033 	}
1034 	if (!(entry & HMM_PFN_VALID)) {
1035 		*perm = HMM_DMIRROR_PROT_NONE;
1036 		return;
1037 	}
1038 
1039 	page = hmm_pfn_to_page(entry);
1040 	if (is_device_private_page(page)) {
1041 		/* Is the page migrated to this device or some other? */
1042 		if (dmirror->mdevice == dmirror_page_to_device(page))
1043 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1044 		else
1045 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1046 	} else if (is_device_coherent_page(page)) {
1047 		/* Is the page migrated to this device or some other? */
1048 		if (dmirror->mdevice == dmirror_page_to_device(page))
1049 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1050 		else
1051 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1052 	} else if (is_zero_pfn(page_to_pfn(page)))
1053 		*perm = HMM_DMIRROR_PROT_ZERO;
1054 	else
1055 		*perm = HMM_DMIRROR_PROT_NONE;
1056 	if (entry & HMM_PFN_WRITE)
1057 		*perm |= HMM_DMIRROR_PROT_WRITE;
1058 	else
1059 		*perm |= HMM_DMIRROR_PROT_READ;
1060 	if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1061 		*perm |= HMM_DMIRROR_PROT_PMD;
1062 	else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1063 		*perm |= HMM_DMIRROR_PROT_PUD;
1064 }
1065 
1066 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1067 				const struct mmu_notifier_range *range,
1068 				unsigned long cur_seq)
1069 {
1070 	struct dmirror_interval *dmi =
1071 		container_of(mni, struct dmirror_interval, notifier);
1072 	struct dmirror *dmirror = dmi->dmirror;
1073 
1074 	if (mmu_notifier_range_blockable(range))
1075 		mutex_lock(&dmirror->mutex);
1076 	else if (!mutex_trylock(&dmirror->mutex))
1077 		return false;
1078 
1079 	/*
1080 	 * Snapshots only need to set the sequence number since any
1081 	 * invalidation in the interval invalidates the whole snapshot.
1082 	 */
1083 	mmu_interval_set_seq(mni, cur_seq);
1084 
1085 	mutex_unlock(&dmirror->mutex);
1086 	return true;
1087 }
1088 
1089 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1090 	.invalidate = dmirror_snapshot_invalidate,
1091 };
1092 
1093 static int dmirror_range_snapshot(struct dmirror *dmirror,
1094 				  struct hmm_range *range,
1095 				  unsigned char *perm)
1096 {
1097 	struct mm_struct *mm = dmirror->notifier.mm;
1098 	struct dmirror_interval notifier;
1099 	unsigned long timeout =
1100 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1101 	unsigned long i;
1102 	unsigned long n;
1103 	int ret = 0;
1104 
1105 	notifier.dmirror = dmirror;
1106 	range->notifier = &notifier.notifier;
1107 
1108 	ret = mmu_interval_notifier_insert(range->notifier, mm,
1109 			range->start, range->end - range->start,
1110 			&dmirror_mrn_ops);
1111 	if (ret)
1112 		return ret;
1113 
1114 	while (true) {
1115 		if (time_after(jiffies, timeout)) {
1116 			ret = -EBUSY;
1117 			goto out;
1118 		}
1119 
1120 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
1121 
1122 		mmap_read_lock(mm);
1123 		ret = hmm_range_fault(range);
1124 		mmap_read_unlock(mm);
1125 		if (ret) {
1126 			if (ret == -EBUSY)
1127 				continue;
1128 			goto out;
1129 		}
1130 
1131 		mutex_lock(&dmirror->mutex);
1132 		if (mmu_interval_read_retry(range->notifier,
1133 					    range->notifier_seq)) {
1134 			mutex_unlock(&dmirror->mutex);
1135 			continue;
1136 		}
1137 		break;
1138 	}
1139 
1140 	n = (range->end - range->start) >> PAGE_SHIFT;
1141 	for (i = 0; i < n; i++)
1142 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1143 
1144 	mutex_unlock(&dmirror->mutex);
1145 out:
1146 	mmu_interval_notifier_remove(range->notifier);
1147 	return ret;
1148 }
1149 
1150 static int dmirror_snapshot(struct dmirror *dmirror,
1151 			    struct hmm_dmirror_cmd *cmd)
1152 {
1153 	struct mm_struct *mm = dmirror->notifier.mm;
1154 	unsigned long start, end;
1155 	unsigned long size = cmd->npages << PAGE_SHIFT;
1156 	unsigned long addr;
1157 	unsigned long next;
1158 	unsigned long pfns[64];
1159 	unsigned char perm[64];
1160 	char __user *uptr;
1161 	struct hmm_range range = {
1162 		.hmm_pfns = pfns,
1163 		.dev_private_owner = dmirror->mdevice,
1164 	};
1165 	int ret = 0;
1166 
1167 	start = cmd->addr;
1168 	end = start + size;
1169 	if (end < start)
1170 		return -EINVAL;
1171 
1172 	/* Since the mm is for the mirrored process, get a reference first. */
1173 	if (!mmget_not_zero(mm))
1174 		return -EINVAL;
1175 
1176 	/*
1177 	 * Register a temporary notifier to detect invalidations even if it
1178 	 * overlaps with other mmu_interval_notifiers.
1179 	 */
1180 	uptr = u64_to_user_ptr(cmd->ptr);
1181 	for (addr = start; addr < end; addr = next) {
1182 		unsigned long n;
1183 
1184 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1185 		range.start = addr;
1186 		range.end = next;
1187 
1188 		ret = dmirror_range_snapshot(dmirror, &range, perm);
1189 		if (ret)
1190 			break;
1191 
1192 		n = (range.end - range.start) >> PAGE_SHIFT;
1193 		if (copy_to_user(uptr, perm, n)) {
1194 			ret = -EFAULT;
1195 			break;
1196 		}
1197 
1198 		cmd->cpages += n;
1199 		uptr += n;
1200 	}
1201 	mmput(mm);
1202 
1203 	return ret;
1204 }
1205 
1206 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1207 {
1208 	unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1209 	unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1210 	unsigned long npages = end_pfn - start_pfn + 1;
1211 	unsigned long i;
1212 	unsigned long *src_pfns;
1213 	unsigned long *dst_pfns;
1214 
1215 	src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1216 	dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1217 
1218 	migrate_device_range(src_pfns, start_pfn, npages);
1219 	for (i = 0; i < npages; i++) {
1220 		struct page *dpage, *spage;
1221 
1222 		spage = migrate_pfn_to_page(src_pfns[i]);
1223 		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1224 			continue;
1225 
1226 		if (WARN_ON(!is_device_private_page(spage) &&
1227 			    !is_device_coherent_page(spage)))
1228 			continue;
1229 		spage = BACKING_PAGE(spage);
1230 		dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1231 		lock_page(dpage);
1232 		copy_highpage(dpage, spage);
1233 		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1234 		if (src_pfns[i] & MIGRATE_PFN_WRITE)
1235 			dst_pfns[i] |= MIGRATE_PFN_WRITE;
1236 	}
1237 	migrate_device_pages(src_pfns, dst_pfns, npages);
1238 	migrate_device_finalize(src_pfns, dst_pfns, npages);
1239 	kvfree(src_pfns);
1240 	kvfree(dst_pfns);
1241 }
1242 
1243 /* Removes free pages from the free list so they can't be re-allocated */
1244 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1245 {
1246 	struct dmirror_device *mdevice = devmem->mdevice;
1247 	struct page *page;
1248 
1249 	for (page = mdevice->free_pages; page; page = page->zone_device_data)
1250 		if (dmirror_page_to_chunk(page) == devmem)
1251 			mdevice->free_pages = page->zone_device_data;
1252 }
1253 
1254 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1255 {
1256 	unsigned int i;
1257 
1258 	mutex_lock(&mdevice->devmem_lock);
1259 	if (mdevice->devmem_chunks) {
1260 		for (i = 0; i < mdevice->devmem_count; i++) {
1261 			struct dmirror_chunk *devmem =
1262 				mdevice->devmem_chunks[i];
1263 
1264 			spin_lock(&mdevice->lock);
1265 			devmem->remove = true;
1266 			dmirror_remove_free_pages(devmem);
1267 			spin_unlock(&mdevice->lock);
1268 
1269 			dmirror_device_evict_chunk(devmem);
1270 			memunmap_pages(&devmem->pagemap);
1271 			if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1272 				release_mem_region(devmem->pagemap.range.start,
1273 						   range_len(&devmem->pagemap.range));
1274 			kfree(devmem);
1275 		}
1276 		mdevice->devmem_count = 0;
1277 		mdevice->devmem_capacity = 0;
1278 		mdevice->free_pages = NULL;
1279 		kfree(mdevice->devmem_chunks);
1280 		mdevice->devmem_chunks = NULL;
1281 	}
1282 	mutex_unlock(&mdevice->devmem_lock);
1283 }
1284 
1285 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1286 					unsigned int command,
1287 					unsigned long arg)
1288 {
1289 	void __user *uarg = (void __user *)arg;
1290 	struct hmm_dmirror_cmd cmd;
1291 	struct dmirror *dmirror;
1292 	int ret;
1293 
1294 	dmirror = filp->private_data;
1295 	if (!dmirror)
1296 		return -EINVAL;
1297 
1298 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1299 		return -EFAULT;
1300 
1301 	if (cmd.addr & ~PAGE_MASK)
1302 		return -EINVAL;
1303 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1304 		return -EINVAL;
1305 
1306 	cmd.cpages = 0;
1307 	cmd.faults = 0;
1308 
1309 	switch (command) {
1310 	case HMM_DMIRROR_READ:
1311 		ret = dmirror_read(dmirror, &cmd);
1312 		break;
1313 
1314 	case HMM_DMIRROR_WRITE:
1315 		ret = dmirror_write(dmirror, &cmd);
1316 		break;
1317 
1318 	case HMM_DMIRROR_MIGRATE_TO_DEV:
1319 		ret = dmirror_migrate_to_device(dmirror, &cmd);
1320 		break;
1321 
1322 	case HMM_DMIRROR_MIGRATE_TO_SYS:
1323 		ret = dmirror_migrate_to_system(dmirror, &cmd);
1324 		break;
1325 
1326 	case HMM_DMIRROR_EXCLUSIVE:
1327 		ret = dmirror_exclusive(dmirror, &cmd);
1328 		break;
1329 
1330 	case HMM_DMIRROR_CHECK_EXCLUSIVE:
1331 		ret = dmirror_check_atomic(dmirror, cmd.addr,
1332 					cmd.addr + (cmd.npages << PAGE_SHIFT));
1333 		break;
1334 
1335 	case HMM_DMIRROR_SNAPSHOT:
1336 		ret = dmirror_snapshot(dmirror, &cmd);
1337 		break;
1338 
1339 	case HMM_DMIRROR_RELEASE:
1340 		dmirror_device_remove_chunks(dmirror->mdevice);
1341 		ret = 0;
1342 		break;
1343 
1344 	default:
1345 		return -EINVAL;
1346 	}
1347 	if (ret)
1348 		return ret;
1349 
1350 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1351 		return -EFAULT;
1352 
1353 	return 0;
1354 }
1355 
1356 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358 	unsigned long addr;
1359 
1360 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1361 		struct page *page;
1362 		int ret;
1363 
1364 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1365 		if (!page)
1366 			return -ENOMEM;
1367 
1368 		ret = vm_insert_page(vma, addr, page);
1369 		if (ret) {
1370 			__free_page(page);
1371 			return ret;
1372 		}
1373 		put_page(page);
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 static const struct file_operations dmirror_fops = {
1380 	.open		= dmirror_fops_open,
1381 	.release	= dmirror_fops_release,
1382 	.mmap		= dmirror_fops_mmap,
1383 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1384 	.llseek		= default_llseek,
1385 	.owner		= THIS_MODULE,
1386 };
1387 
1388 static void dmirror_devmem_free(struct page *page)
1389 {
1390 	struct page *rpage = BACKING_PAGE(page);
1391 	struct dmirror_device *mdevice;
1392 
1393 	if (rpage != page)
1394 		__free_page(rpage);
1395 
1396 	mdevice = dmirror_page_to_device(page);
1397 	spin_lock(&mdevice->lock);
1398 
1399 	/* Return page to our allocator if not freeing the chunk */
1400 	if (!dmirror_page_to_chunk(page)->remove) {
1401 		mdevice->cfree++;
1402 		page->zone_device_data = mdevice->free_pages;
1403 		mdevice->free_pages = page;
1404 	}
1405 	spin_unlock(&mdevice->lock);
1406 }
1407 
1408 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1409 {
1410 	struct migrate_vma args = { 0 };
1411 	unsigned long src_pfns = 0;
1412 	unsigned long dst_pfns = 0;
1413 	struct page *rpage;
1414 	struct dmirror *dmirror;
1415 	vm_fault_t ret;
1416 
1417 	/*
1418 	 * Normally, a device would use the page->zone_device_data to point to
1419 	 * the mirror but here we use it to hold the page for the simulated
1420 	 * device memory and that page holds the pointer to the mirror.
1421 	 */
1422 	rpage = vmf->page->zone_device_data;
1423 	dmirror = rpage->zone_device_data;
1424 
1425 	/* FIXME demonstrate how we can adjust migrate range */
1426 	args.vma = vmf->vma;
1427 	args.start = vmf->address;
1428 	args.end = args.start + PAGE_SIZE;
1429 	args.src = &src_pfns;
1430 	args.dst = &dst_pfns;
1431 	args.pgmap_owner = dmirror->mdevice;
1432 	args.flags = dmirror_select_device(dmirror);
1433 	args.fault_page = vmf->page;
1434 
1435 	if (migrate_vma_setup(&args))
1436 		return VM_FAULT_SIGBUS;
1437 
1438 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1439 	if (ret)
1440 		return ret;
1441 	migrate_vma_pages(&args);
1442 	/*
1443 	 * No device finalize step is needed since
1444 	 * dmirror_devmem_fault_alloc_and_copy() will have already
1445 	 * invalidated the device page table.
1446 	 */
1447 	migrate_vma_finalize(&args);
1448 	return 0;
1449 }
1450 
1451 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1452 	.page_free	= dmirror_devmem_free,
1453 	.migrate_to_ram	= dmirror_devmem_fault,
1454 };
1455 
1456 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1457 {
1458 	dev_t dev;
1459 	int ret;
1460 
1461 	dev = MKDEV(MAJOR(dmirror_dev), id);
1462 	mutex_init(&mdevice->devmem_lock);
1463 	spin_lock_init(&mdevice->lock);
1464 
1465 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1466 	mdevice->cdevice.owner = THIS_MODULE;
1467 	device_initialize(&mdevice->device);
1468 	mdevice->device.devt = dev;
1469 
1470 	ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1471 	if (ret)
1472 		return ret;
1473 
1474 	ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1475 	if (ret)
1476 		return ret;
1477 
1478 	/* Build a list of free ZONE_DEVICE struct pages */
1479 	return dmirror_allocate_chunk(mdevice, NULL);
1480 }
1481 
1482 static void dmirror_device_remove(struct dmirror_device *mdevice)
1483 {
1484 	dmirror_device_remove_chunks(mdevice);
1485 	cdev_device_del(&mdevice->cdevice, &mdevice->device);
1486 }
1487 
1488 static int __init hmm_dmirror_init(void)
1489 {
1490 	int ret;
1491 	int id = 0;
1492 	int ndevices = 0;
1493 
1494 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1495 				  "HMM_DMIRROR");
1496 	if (ret)
1497 		goto err_unreg;
1498 
1499 	memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1500 	dmirror_devices[ndevices++].zone_device_type =
1501 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1502 	dmirror_devices[ndevices++].zone_device_type =
1503 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1504 	if (spm_addr_dev0 && spm_addr_dev1) {
1505 		dmirror_devices[ndevices++].zone_device_type =
1506 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1507 		dmirror_devices[ndevices++].zone_device_type =
1508 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1509 	}
1510 	for (id = 0; id < ndevices; id++) {
1511 		ret = dmirror_device_init(dmirror_devices + id, id);
1512 		if (ret)
1513 			goto err_chrdev;
1514 	}
1515 
1516 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1517 	return 0;
1518 
1519 err_chrdev:
1520 	while (--id >= 0)
1521 		dmirror_device_remove(dmirror_devices + id);
1522 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1523 err_unreg:
1524 	return ret;
1525 }
1526 
1527 static void __exit hmm_dmirror_exit(void)
1528 {
1529 	int id;
1530 
1531 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1532 		if (dmirror_devices[id].zone_device_type)
1533 			dmirror_device_remove(dmirror_devices + id);
1534 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1535 }
1536 
1537 module_init(hmm_dmirror_init);
1538 module_exit(hmm_dmirror_exit);
1539 MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module");
1540 MODULE_LICENSE("GPL");
1541