xref: /linux/lib/test_hmm.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32 
33 #include "test_hmm_uapi.h"
34 
35 #define DMIRROR_NDEVICES		4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
37 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE		16
39 
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 			   (page)->zone_device_data : (page))
50 
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 		"Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55 
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 		"Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60 
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64 
65 struct dmirror_device;
66 
67 struct dmirror_bounce {
68 	void			*ptr;
69 	unsigned long		size;
70 	unsigned long		addr;
71 	unsigned long		cpages;
72 };
73 
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76 
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82 	struct mmu_interval_notifier	notifier;
83 	struct dmirror			*dmirror;
84 };
85 
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91 	struct dmirror_device		*mdevice;
92 	struct xarray			pt;
93 	struct mmu_interval_notifier	notifier;
94 	struct mutex			mutex;
95 };
96 
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101 	struct dev_pagemap	pagemap;
102 	struct dmirror_device	*mdevice;
103 };
104 
105 /*
106  * Per device data.
107  */
108 struct dmirror_device {
109 	struct cdev		cdevice;
110 	struct hmm_devmem	*devmem;
111 	unsigned int            zone_device_type;
112 
113 	unsigned int		devmem_capacity;
114 	unsigned int		devmem_count;
115 	struct dmirror_chunk	**devmem_chunks;
116 	struct mutex		devmem_lock;	/* protects the above */
117 
118 	unsigned long		calloc;
119 	unsigned long		cfree;
120 	struct page		*free_pages;
121 	spinlock_t		lock;		/* protects the above */
122 };
123 
124 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
125 
126 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
127 			       unsigned long addr,
128 			       unsigned long size)
129 {
130 	bounce->addr = addr;
131 	bounce->size = size;
132 	bounce->cpages = 0;
133 	bounce->ptr = vmalloc(size);
134 	if (!bounce->ptr)
135 		return -ENOMEM;
136 	return 0;
137 }
138 
139 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
140 {
141 	return (mdevice->zone_device_type ==
142 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
143 }
144 
145 static enum migrate_vma_direction
146 dmirror_select_device(struct dmirror *dmirror)
147 {
148 	return (dmirror->mdevice->zone_device_type ==
149 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
150 		MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
151 		MIGRATE_VMA_SELECT_DEVICE_COHERENT;
152 }
153 
154 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
155 {
156 	vfree(bounce->ptr);
157 }
158 
159 static int dmirror_fops_open(struct inode *inode, struct file *filp)
160 {
161 	struct cdev *cdev = inode->i_cdev;
162 	struct dmirror *dmirror;
163 	int ret;
164 
165 	/* Mirror this process address space */
166 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
167 	if (dmirror == NULL)
168 		return -ENOMEM;
169 
170 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
171 	mutex_init(&dmirror->mutex);
172 	xa_init(&dmirror->pt);
173 
174 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
175 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
176 	if (ret) {
177 		kfree(dmirror);
178 		return ret;
179 	}
180 
181 	filp->private_data = dmirror;
182 	return 0;
183 }
184 
185 static int dmirror_fops_release(struct inode *inode, struct file *filp)
186 {
187 	struct dmirror *dmirror = filp->private_data;
188 
189 	mmu_interval_notifier_remove(&dmirror->notifier);
190 	xa_destroy(&dmirror->pt);
191 	kfree(dmirror);
192 	return 0;
193 }
194 
195 static struct dmirror_device *dmirror_page_to_device(struct page *page)
196 
197 {
198 	return container_of(page->pgmap, struct dmirror_chunk,
199 			    pagemap)->mdevice;
200 }
201 
202 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
203 {
204 	unsigned long *pfns = range->hmm_pfns;
205 	unsigned long pfn;
206 
207 	for (pfn = (range->start >> PAGE_SHIFT);
208 	     pfn < (range->end >> PAGE_SHIFT);
209 	     pfn++, pfns++) {
210 		struct page *page;
211 		void *entry;
212 
213 		/*
214 		 * Since we asked for hmm_range_fault() to populate pages,
215 		 * it shouldn't return an error entry on success.
216 		 */
217 		WARN_ON(*pfns & HMM_PFN_ERROR);
218 		WARN_ON(!(*pfns & HMM_PFN_VALID));
219 
220 		page = hmm_pfn_to_page(*pfns);
221 		WARN_ON(!page);
222 
223 		entry = page;
224 		if (*pfns & HMM_PFN_WRITE)
225 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
226 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
227 			return -EFAULT;
228 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
229 		if (xa_is_err(entry))
230 			return xa_err(entry);
231 	}
232 
233 	return 0;
234 }
235 
236 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
237 			      unsigned long end)
238 {
239 	unsigned long pfn;
240 	void *entry;
241 
242 	/*
243 	 * The XArray doesn't hold references to pages since it relies on
244 	 * the mmu notifier to clear page pointers when they become stale.
245 	 * Therefore, it is OK to just clear the entry.
246 	 */
247 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
248 			  end >> PAGE_SHIFT)
249 		xa_erase(&dmirror->pt, pfn);
250 }
251 
252 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
253 				const struct mmu_notifier_range *range,
254 				unsigned long cur_seq)
255 {
256 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
257 
258 	/*
259 	 * Ignore invalidation callbacks for device private pages since
260 	 * the invalidation is handled as part of the migration process.
261 	 */
262 	if (range->event == MMU_NOTIFY_MIGRATE &&
263 	    range->owner == dmirror->mdevice)
264 		return true;
265 
266 	if (mmu_notifier_range_blockable(range))
267 		mutex_lock(&dmirror->mutex);
268 	else if (!mutex_trylock(&dmirror->mutex))
269 		return false;
270 
271 	mmu_interval_set_seq(mni, cur_seq);
272 	dmirror_do_update(dmirror, range->start, range->end);
273 
274 	mutex_unlock(&dmirror->mutex);
275 	return true;
276 }
277 
278 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
279 	.invalidate = dmirror_interval_invalidate,
280 };
281 
282 static int dmirror_range_fault(struct dmirror *dmirror,
283 				struct hmm_range *range)
284 {
285 	struct mm_struct *mm = dmirror->notifier.mm;
286 	unsigned long timeout =
287 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
288 	int ret;
289 
290 	while (true) {
291 		if (time_after(jiffies, timeout)) {
292 			ret = -EBUSY;
293 			goto out;
294 		}
295 
296 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
297 		mmap_read_lock(mm);
298 		ret = hmm_range_fault(range);
299 		mmap_read_unlock(mm);
300 		if (ret) {
301 			if (ret == -EBUSY)
302 				continue;
303 			goto out;
304 		}
305 
306 		mutex_lock(&dmirror->mutex);
307 		if (mmu_interval_read_retry(range->notifier,
308 					    range->notifier_seq)) {
309 			mutex_unlock(&dmirror->mutex);
310 			continue;
311 		}
312 		break;
313 	}
314 
315 	ret = dmirror_do_fault(dmirror, range);
316 
317 	mutex_unlock(&dmirror->mutex);
318 out:
319 	return ret;
320 }
321 
322 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
323 			 unsigned long end, bool write)
324 {
325 	struct mm_struct *mm = dmirror->notifier.mm;
326 	unsigned long addr;
327 	unsigned long pfns[64];
328 	struct hmm_range range = {
329 		.notifier = &dmirror->notifier,
330 		.hmm_pfns = pfns,
331 		.pfn_flags_mask = 0,
332 		.default_flags =
333 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
334 		.dev_private_owner = dmirror->mdevice,
335 	};
336 	int ret = 0;
337 
338 	/* Since the mm is for the mirrored process, get a reference first. */
339 	if (!mmget_not_zero(mm))
340 		return 0;
341 
342 	for (addr = start; addr < end; addr = range.end) {
343 		range.start = addr;
344 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
345 
346 		ret = dmirror_range_fault(dmirror, &range);
347 		if (ret)
348 			break;
349 	}
350 
351 	mmput(mm);
352 	return ret;
353 }
354 
355 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
356 			   unsigned long end, struct dmirror_bounce *bounce)
357 {
358 	unsigned long pfn;
359 	void *ptr;
360 
361 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
362 
363 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
364 		void *entry;
365 		struct page *page;
366 		void *tmp;
367 
368 		entry = xa_load(&dmirror->pt, pfn);
369 		page = xa_untag_pointer(entry);
370 		if (!page)
371 			return -ENOENT;
372 
373 		tmp = kmap(page);
374 		memcpy(ptr, tmp, PAGE_SIZE);
375 		kunmap(page);
376 
377 		ptr += PAGE_SIZE;
378 		bounce->cpages++;
379 	}
380 
381 	return 0;
382 }
383 
384 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
385 {
386 	struct dmirror_bounce bounce;
387 	unsigned long start, end;
388 	unsigned long size = cmd->npages << PAGE_SHIFT;
389 	int ret;
390 
391 	start = cmd->addr;
392 	end = start + size;
393 	if (end < start)
394 		return -EINVAL;
395 
396 	ret = dmirror_bounce_init(&bounce, start, size);
397 	if (ret)
398 		return ret;
399 
400 	while (1) {
401 		mutex_lock(&dmirror->mutex);
402 		ret = dmirror_do_read(dmirror, start, end, &bounce);
403 		mutex_unlock(&dmirror->mutex);
404 		if (ret != -ENOENT)
405 			break;
406 
407 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
408 		ret = dmirror_fault(dmirror, start, end, false);
409 		if (ret)
410 			break;
411 		cmd->faults++;
412 	}
413 
414 	if (ret == 0) {
415 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
416 				 bounce.size))
417 			ret = -EFAULT;
418 	}
419 	cmd->cpages = bounce.cpages;
420 	dmirror_bounce_fini(&bounce);
421 	return ret;
422 }
423 
424 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
425 			    unsigned long end, struct dmirror_bounce *bounce)
426 {
427 	unsigned long pfn;
428 	void *ptr;
429 
430 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
431 
432 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
433 		void *entry;
434 		struct page *page;
435 		void *tmp;
436 
437 		entry = xa_load(&dmirror->pt, pfn);
438 		page = xa_untag_pointer(entry);
439 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
440 			return -ENOENT;
441 
442 		tmp = kmap(page);
443 		memcpy(tmp, ptr, PAGE_SIZE);
444 		kunmap(page);
445 
446 		ptr += PAGE_SIZE;
447 		bounce->cpages++;
448 	}
449 
450 	return 0;
451 }
452 
453 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
454 {
455 	struct dmirror_bounce bounce;
456 	unsigned long start, end;
457 	unsigned long size = cmd->npages << PAGE_SHIFT;
458 	int ret;
459 
460 	start = cmd->addr;
461 	end = start + size;
462 	if (end < start)
463 		return -EINVAL;
464 
465 	ret = dmirror_bounce_init(&bounce, start, size);
466 	if (ret)
467 		return ret;
468 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
469 			   bounce.size)) {
470 		ret = -EFAULT;
471 		goto fini;
472 	}
473 
474 	while (1) {
475 		mutex_lock(&dmirror->mutex);
476 		ret = dmirror_do_write(dmirror, start, end, &bounce);
477 		mutex_unlock(&dmirror->mutex);
478 		if (ret != -ENOENT)
479 			break;
480 
481 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
482 		ret = dmirror_fault(dmirror, start, end, true);
483 		if (ret)
484 			break;
485 		cmd->faults++;
486 	}
487 
488 fini:
489 	cmd->cpages = bounce.cpages;
490 	dmirror_bounce_fini(&bounce);
491 	return ret;
492 }
493 
494 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
495 				   struct page **ppage)
496 {
497 	struct dmirror_chunk *devmem;
498 	struct resource *res = NULL;
499 	unsigned long pfn;
500 	unsigned long pfn_first;
501 	unsigned long pfn_last;
502 	void *ptr;
503 	int ret = -ENOMEM;
504 
505 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
506 	if (!devmem)
507 		return ret;
508 
509 	switch (mdevice->zone_device_type) {
510 	case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
511 		res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
512 					      "hmm_dmirror");
513 		if (IS_ERR_OR_NULL(res))
514 			goto err_devmem;
515 		devmem->pagemap.range.start = res->start;
516 		devmem->pagemap.range.end = res->end;
517 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
518 		break;
519 	case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
520 		devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
521 							spm_addr_dev0 :
522 							spm_addr_dev1;
523 		devmem->pagemap.range.end = devmem->pagemap.range.start +
524 					    DEVMEM_CHUNK_SIZE - 1;
525 		devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
526 		break;
527 	default:
528 		ret = -EINVAL;
529 		goto err_devmem;
530 	}
531 
532 	devmem->pagemap.nr_range = 1;
533 	devmem->pagemap.ops = &dmirror_devmem_ops;
534 	devmem->pagemap.owner = mdevice;
535 
536 	mutex_lock(&mdevice->devmem_lock);
537 
538 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
539 		struct dmirror_chunk **new_chunks;
540 		unsigned int new_capacity;
541 
542 		new_capacity = mdevice->devmem_capacity +
543 				DEVMEM_CHUNKS_RESERVE;
544 		new_chunks = krealloc(mdevice->devmem_chunks,
545 				sizeof(new_chunks[0]) * new_capacity,
546 				GFP_KERNEL);
547 		if (!new_chunks)
548 			goto err_release;
549 		mdevice->devmem_capacity = new_capacity;
550 		mdevice->devmem_chunks = new_chunks;
551 	}
552 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
553 	if (IS_ERR_OR_NULL(ptr)) {
554 		if (ptr)
555 			ret = PTR_ERR(ptr);
556 		else
557 			ret = -EFAULT;
558 		goto err_release;
559 	}
560 
561 	devmem->mdevice = mdevice;
562 	pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
563 	pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
564 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
565 
566 	mutex_unlock(&mdevice->devmem_lock);
567 
568 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
569 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
570 		mdevice->devmem_count,
571 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
572 		pfn_first, pfn_last);
573 
574 	spin_lock(&mdevice->lock);
575 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
576 		struct page *page = pfn_to_page(pfn);
577 
578 		page->zone_device_data = mdevice->free_pages;
579 		mdevice->free_pages = page;
580 	}
581 	if (ppage) {
582 		*ppage = mdevice->free_pages;
583 		mdevice->free_pages = (*ppage)->zone_device_data;
584 		mdevice->calloc++;
585 	}
586 	spin_unlock(&mdevice->lock);
587 
588 	return 0;
589 
590 err_release:
591 	mutex_unlock(&mdevice->devmem_lock);
592 	if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
593 		release_mem_region(devmem->pagemap.range.start,
594 				   range_len(&devmem->pagemap.range));
595 err_devmem:
596 	kfree(devmem);
597 
598 	return ret;
599 }
600 
601 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
602 {
603 	struct page *dpage = NULL;
604 	struct page *rpage = NULL;
605 
606 	/*
607 	 * For ZONE_DEVICE private type, this is a fake device so we allocate
608 	 * real system memory to store our device memory.
609 	 * For ZONE_DEVICE coherent type we use the actual dpage to store the
610 	 * data and ignore rpage.
611 	 */
612 	if (dmirror_is_private_zone(mdevice)) {
613 		rpage = alloc_page(GFP_HIGHUSER);
614 		if (!rpage)
615 			return NULL;
616 	}
617 	spin_lock(&mdevice->lock);
618 
619 	if (mdevice->free_pages) {
620 		dpage = mdevice->free_pages;
621 		mdevice->free_pages = dpage->zone_device_data;
622 		mdevice->calloc++;
623 		spin_unlock(&mdevice->lock);
624 	} else {
625 		spin_unlock(&mdevice->lock);
626 		if (dmirror_allocate_chunk(mdevice, &dpage))
627 			goto error;
628 	}
629 
630 	dpage->zone_device_data = rpage;
631 	lock_page(dpage);
632 	return dpage;
633 
634 error:
635 	if (rpage)
636 		__free_page(rpage);
637 	return NULL;
638 }
639 
640 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
641 					   struct dmirror *dmirror)
642 {
643 	struct dmirror_device *mdevice = dmirror->mdevice;
644 	const unsigned long *src = args->src;
645 	unsigned long *dst = args->dst;
646 	unsigned long addr;
647 
648 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
649 						   src++, dst++) {
650 		struct page *spage;
651 		struct page *dpage;
652 		struct page *rpage;
653 
654 		if (!(*src & MIGRATE_PFN_MIGRATE))
655 			continue;
656 
657 		/*
658 		 * Note that spage might be NULL which is OK since it is an
659 		 * unallocated pte_none() or read-only zero page.
660 		 */
661 		spage = migrate_pfn_to_page(*src);
662 		if (WARN(spage && is_zone_device_page(spage),
663 		     "page already in device spage pfn: 0x%lx\n",
664 		     page_to_pfn(spage)))
665 			continue;
666 
667 		dpage = dmirror_devmem_alloc_page(mdevice);
668 		if (!dpage)
669 			continue;
670 
671 		rpage = BACKING_PAGE(dpage);
672 		if (spage)
673 			copy_highpage(rpage, spage);
674 		else
675 			clear_highpage(rpage);
676 
677 		/*
678 		 * Normally, a device would use the page->zone_device_data to
679 		 * point to the mirror but here we use it to hold the page for
680 		 * the simulated device memory and that page holds the pointer
681 		 * to the mirror.
682 		 */
683 		rpage->zone_device_data = dmirror;
684 
685 		pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
686 			 page_to_pfn(spage), page_to_pfn(dpage));
687 		*dst = migrate_pfn(page_to_pfn(dpage));
688 		if ((*src & MIGRATE_PFN_WRITE) ||
689 		    (!spage && args->vma->vm_flags & VM_WRITE))
690 			*dst |= MIGRATE_PFN_WRITE;
691 	}
692 }
693 
694 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
695 			     unsigned long end)
696 {
697 	unsigned long pfn;
698 
699 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
700 		void *entry;
701 
702 		entry = xa_load(&dmirror->pt, pfn);
703 		if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
704 			return -EPERM;
705 	}
706 
707 	return 0;
708 }
709 
710 static int dmirror_atomic_map(unsigned long start, unsigned long end,
711 			      struct page **pages, struct dmirror *dmirror)
712 {
713 	unsigned long pfn, mapped = 0;
714 	int i;
715 
716 	/* Map the migrated pages into the device's page tables. */
717 	mutex_lock(&dmirror->mutex);
718 
719 	for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
720 		void *entry;
721 
722 		if (!pages[i])
723 			continue;
724 
725 		entry = pages[i];
726 		entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
727 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
728 		if (xa_is_err(entry)) {
729 			mutex_unlock(&dmirror->mutex);
730 			return xa_err(entry);
731 		}
732 
733 		mapped++;
734 	}
735 
736 	mutex_unlock(&dmirror->mutex);
737 	return mapped;
738 }
739 
740 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
741 					    struct dmirror *dmirror)
742 {
743 	unsigned long start = args->start;
744 	unsigned long end = args->end;
745 	const unsigned long *src = args->src;
746 	const unsigned long *dst = args->dst;
747 	unsigned long pfn;
748 
749 	/* Map the migrated pages into the device's page tables. */
750 	mutex_lock(&dmirror->mutex);
751 
752 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
753 								src++, dst++) {
754 		struct page *dpage;
755 		void *entry;
756 
757 		if (!(*src & MIGRATE_PFN_MIGRATE))
758 			continue;
759 
760 		dpage = migrate_pfn_to_page(*dst);
761 		if (!dpage)
762 			continue;
763 
764 		entry = BACKING_PAGE(dpage);
765 		if (*dst & MIGRATE_PFN_WRITE)
766 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
767 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
768 		if (xa_is_err(entry)) {
769 			mutex_unlock(&dmirror->mutex);
770 			return xa_err(entry);
771 		}
772 	}
773 
774 	mutex_unlock(&dmirror->mutex);
775 	return 0;
776 }
777 
778 static int dmirror_exclusive(struct dmirror *dmirror,
779 			     struct hmm_dmirror_cmd *cmd)
780 {
781 	unsigned long start, end, addr;
782 	unsigned long size = cmd->npages << PAGE_SHIFT;
783 	struct mm_struct *mm = dmirror->notifier.mm;
784 	struct page *pages[64];
785 	struct dmirror_bounce bounce;
786 	unsigned long next;
787 	int ret;
788 
789 	start = cmd->addr;
790 	end = start + size;
791 	if (end < start)
792 		return -EINVAL;
793 
794 	/* Since the mm is for the mirrored process, get a reference first. */
795 	if (!mmget_not_zero(mm))
796 		return -EINVAL;
797 
798 	mmap_read_lock(mm);
799 	for (addr = start; addr < end; addr = next) {
800 		unsigned long mapped = 0;
801 		int i;
802 
803 		if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
804 			next = end;
805 		else
806 			next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
807 
808 		ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
809 		/*
810 		 * Do dmirror_atomic_map() iff all pages are marked for
811 		 * exclusive access to avoid accessing uninitialized
812 		 * fields of pages.
813 		 */
814 		if (ret == (next - addr) >> PAGE_SHIFT)
815 			mapped = dmirror_atomic_map(addr, next, pages, dmirror);
816 		for (i = 0; i < ret; i++) {
817 			if (pages[i]) {
818 				unlock_page(pages[i]);
819 				put_page(pages[i]);
820 			}
821 		}
822 
823 		if (addr + (mapped << PAGE_SHIFT) < next) {
824 			mmap_read_unlock(mm);
825 			mmput(mm);
826 			return -EBUSY;
827 		}
828 	}
829 	mmap_read_unlock(mm);
830 	mmput(mm);
831 
832 	/* Return the migrated data for verification. */
833 	ret = dmirror_bounce_init(&bounce, start, size);
834 	if (ret)
835 		return ret;
836 	mutex_lock(&dmirror->mutex);
837 	ret = dmirror_do_read(dmirror, start, end, &bounce);
838 	mutex_unlock(&dmirror->mutex);
839 	if (ret == 0) {
840 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
841 				 bounce.size))
842 			ret = -EFAULT;
843 	}
844 
845 	cmd->cpages = bounce.cpages;
846 	dmirror_bounce_fini(&bounce);
847 	return ret;
848 }
849 
850 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
851 						      struct dmirror *dmirror)
852 {
853 	const unsigned long *src = args->src;
854 	unsigned long *dst = args->dst;
855 	unsigned long start = args->start;
856 	unsigned long end = args->end;
857 	unsigned long addr;
858 
859 	for (addr = start; addr < end; addr += PAGE_SIZE,
860 				       src++, dst++) {
861 		struct page *dpage, *spage;
862 
863 		spage = migrate_pfn_to_page(*src);
864 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
865 			continue;
866 
867 		if (WARN_ON(!is_device_private_page(spage) &&
868 			    !is_device_coherent_page(spage)))
869 			continue;
870 		spage = BACKING_PAGE(spage);
871 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
872 		if (!dpage)
873 			continue;
874 		pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
875 			 page_to_pfn(spage), page_to_pfn(dpage));
876 
877 		lock_page(dpage);
878 		xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
879 		copy_highpage(dpage, spage);
880 		*dst = migrate_pfn(page_to_pfn(dpage));
881 		if (*src & MIGRATE_PFN_WRITE)
882 			*dst |= MIGRATE_PFN_WRITE;
883 	}
884 	return 0;
885 }
886 
887 static unsigned long
888 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
889 {
890 	unsigned long cpages = 0;
891 	unsigned long i;
892 
893 	for (i = 0; i < migrate->npages; i++) {
894 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
895 		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
896 			cpages++;
897 	}
898 	return cpages;
899 }
900 
901 static int dmirror_migrate_to_system(struct dmirror *dmirror,
902 				     struct hmm_dmirror_cmd *cmd)
903 {
904 	unsigned long start, end, addr;
905 	unsigned long size = cmd->npages << PAGE_SHIFT;
906 	struct mm_struct *mm = dmirror->notifier.mm;
907 	struct vm_area_struct *vma;
908 	unsigned long src_pfns[64] = { 0 };
909 	unsigned long dst_pfns[64] = { 0 };
910 	struct migrate_vma args;
911 	unsigned long next;
912 	int ret;
913 
914 	start = cmd->addr;
915 	end = start + size;
916 	if (end < start)
917 		return -EINVAL;
918 
919 	/* Since the mm is for the mirrored process, get a reference first. */
920 	if (!mmget_not_zero(mm))
921 		return -EINVAL;
922 
923 	cmd->cpages = 0;
924 	mmap_read_lock(mm);
925 	for (addr = start; addr < end; addr = next) {
926 		vma = vma_lookup(mm, addr);
927 		if (!vma || !(vma->vm_flags & VM_READ)) {
928 			ret = -EINVAL;
929 			goto out;
930 		}
931 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
932 		if (next > vma->vm_end)
933 			next = vma->vm_end;
934 
935 		args.vma = vma;
936 		args.src = src_pfns;
937 		args.dst = dst_pfns;
938 		args.start = addr;
939 		args.end = next;
940 		args.pgmap_owner = dmirror->mdevice;
941 		args.flags = dmirror_select_device(dmirror);
942 
943 		ret = migrate_vma_setup(&args);
944 		if (ret)
945 			goto out;
946 
947 		pr_debug("Migrating from device mem to sys mem\n");
948 		dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
949 
950 		migrate_vma_pages(&args);
951 		cmd->cpages += dmirror_successful_migrated_pages(&args);
952 		migrate_vma_finalize(&args);
953 	}
954 out:
955 	mmap_read_unlock(mm);
956 	mmput(mm);
957 
958 	return ret;
959 }
960 
961 static int dmirror_migrate_to_device(struct dmirror *dmirror,
962 				struct hmm_dmirror_cmd *cmd)
963 {
964 	unsigned long start, end, addr;
965 	unsigned long size = cmd->npages << PAGE_SHIFT;
966 	struct mm_struct *mm = dmirror->notifier.mm;
967 	struct vm_area_struct *vma;
968 	unsigned long src_pfns[64] = { 0 };
969 	unsigned long dst_pfns[64] = { 0 };
970 	struct dmirror_bounce bounce;
971 	struct migrate_vma args;
972 	unsigned long next;
973 	int ret;
974 
975 	start = cmd->addr;
976 	end = start + size;
977 	if (end < start)
978 		return -EINVAL;
979 
980 	/* Since the mm is for the mirrored process, get a reference first. */
981 	if (!mmget_not_zero(mm))
982 		return -EINVAL;
983 
984 	mmap_read_lock(mm);
985 	for (addr = start; addr < end; addr = next) {
986 		vma = vma_lookup(mm, addr);
987 		if (!vma || !(vma->vm_flags & VM_READ)) {
988 			ret = -EINVAL;
989 			goto out;
990 		}
991 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
992 		if (next > vma->vm_end)
993 			next = vma->vm_end;
994 
995 		args.vma = vma;
996 		args.src = src_pfns;
997 		args.dst = dst_pfns;
998 		args.start = addr;
999 		args.end = next;
1000 		args.pgmap_owner = dmirror->mdevice;
1001 		args.flags = MIGRATE_VMA_SELECT_SYSTEM;
1002 		ret = migrate_vma_setup(&args);
1003 		if (ret)
1004 			goto out;
1005 
1006 		pr_debug("Migrating from sys mem to device mem\n");
1007 		dmirror_migrate_alloc_and_copy(&args, dmirror);
1008 		migrate_vma_pages(&args);
1009 		dmirror_migrate_finalize_and_map(&args, dmirror);
1010 		migrate_vma_finalize(&args);
1011 	}
1012 	mmap_read_unlock(mm);
1013 	mmput(mm);
1014 
1015 	/*
1016 	 * Return the migrated data for verification.
1017 	 * Only for pages in device zone
1018 	 */
1019 	ret = dmirror_bounce_init(&bounce, start, size);
1020 	if (ret)
1021 		return ret;
1022 	mutex_lock(&dmirror->mutex);
1023 	ret = dmirror_do_read(dmirror, start, end, &bounce);
1024 	mutex_unlock(&dmirror->mutex);
1025 	if (ret == 0) {
1026 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1027 				 bounce.size))
1028 			ret = -EFAULT;
1029 	}
1030 	cmd->cpages = bounce.cpages;
1031 	dmirror_bounce_fini(&bounce);
1032 	return ret;
1033 
1034 out:
1035 	mmap_read_unlock(mm);
1036 	mmput(mm);
1037 	return ret;
1038 }
1039 
1040 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1041 			    unsigned char *perm, unsigned long entry)
1042 {
1043 	struct page *page;
1044 
1045 	if (entry & HMM_PFN_ERROR) {
1046 		*perm = HMM_DMIRROR_PROT_ERROR;
1047 		return;
1048 	}
1049 	if (!(entry & HMM_PFN_VALID)) {
1050 		*perm = HMM_DMIRROR_PROT_NONE;
1051 		return;
1052 	}
1053 
1054 	page = hmm_pfn_to_page(entry);
1055 	if (is_device_private_page(page)) {
1056 		/* Is the page migrated to this device or some other? */
1057 		if (dmirror->mdevice == dmirror_page_to_device(page))
1058 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1059 		else
1060 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1061 	} else if (is_device_coherent_page(page)) {
1062 		/* Is the page migrated to this device or some other? */
1063 		if (dmirror->mdevice == dmirror_page_to_device(page))
1064 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1065 		else
1066 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1067 	} else if (is_zero_pfn(page_to_pfn(page)))
1068 		*perm = HMM_DMIRROR_PROT_ZERO;
1069 	else
1070 		*perm = HMM_DMIRROR_PROT_NONE;
1071 	if (entry & HMM_PFN_WRITE)
1072 		*perm |= HMM_DMIRROR_PROT_WRITE;
1073 	else
1074 		*perm |= HMM_DMIRROR_PROT_READ;
1075 	if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1076 		*perm |= HMM_DMIRROR_PROT_PMD;
1077 	else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1078 		*perm |= HMM_DMIRROR_PROT_PUD;
1079 }
1080 
1081 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1082 				const struct mmu_notifier_range *range,
1083 				unsigned long cur_seq)
1084 {
1085 	struct dmirror_interval *dmi =
1086 		container_of(mni, struct dmirror_interval, notifier);
1087 	struct dmirror *dmirror = dmi->dmirror;
1088 
1089 	if (mmu_notifier_range_blockable(range))
1090 		mutex_lock(&dmirror->mutex);
1091 	else if (!mutex_trylock(&dmirror->mutex))
1092 		return false;
1093 
1094 	/*
1095 	 * Snapshots only need to set the sequence number since any
1096 	 * invalidation in the interval invalidates the whole snapshot.
1097 	 */
1098 	mmu_interval_set_seq(mni, cur_seq);
1099 
1100 	mutex_unlock(&dmirror->mutex);
1101 	return true;
1102 }
1103 
1104 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1105 	.invalidate = dmirror_snapshot_invalidate,
1106 };
1107 
1108 static int dmirror_range_snapshot(struct dmirror *dmirror,
1109 				  struct hmm_range *range,
1110 				  unsigned char *perm)
1111 {
1112 	struct mm_struct *mm = dmirror->notifier.mm;
1113 	struct dmirror_interval notifier;
1114 	unsigned long timeout =
1115 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1116 	unsigned long i;
1117 	unsigned long n;
1118 	int ret = 0;
1119 
1120 	notifier.dmirror = dmirror;
1121 	range->notifier = &notifier.notifier;
1122 
1123 	ret = mmu_interval_notifier_insert(range->notifier, mm,
1124 			range->start, range->end - range->start,
1125 			&dmirror_mrn_ops);
1126 	if (ret)
1127 		return ret;
1128 
1129 	while (true) {
1130 		if (time_after(jiffies, timeout)) {
1131 			ret = -EBUSY;
1132 			goto out;
1133 		}
1134 
1135 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
1136 
1137 		mmap_read_lock(mm);
1138 		ret = hmm_range_fault(range);
1139 		mmap_read_unlock(mm);
1140 		if (ret) {
1141 			if (ret == -EBUSY)
1142 				continue;
1143 			goto out;
1144 		}
1145 
1146 		mutex_lock(&dmirror->mutex);
1147 		if (mmu_interval_read_retry(range->notifier,
1148 					    range->notifier_seq)) {
1149 			mutex_unlock(&dmirror->mutex);
1150 			continue;
1151 		}
1152 		break;
1153 	}
1154 
1155 	n = (range->end - range->start) >> PAGE_SHIFT;
1156 	for (i = 0; i < n; i++)
1157 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1158 
1159 	mutex_unlock(&dmirror->mutex);
1160 out:
1161 	mmu_interval_notifier_remove(range->notifier);
1162 	return ret;
1163 }
1164 
1165 static int dmirror_snapshot(struct dmirror *dmirror,
1166 			    struct hmm_dmirror_cmd *cmd)
1167 {
1168 	struct mm_struct *mm = dmirror->notifier.mm;
1169 	unsigned long start, end;
1170 	unsigned long size = cmd->npages << PAGE_SHIFT;
1171 	unsigned long addr;
1172 	unsigned long next;
1173 	unsigned long pfns[64];
1174 	unsigned char perm[64];
1175 	char __user *uptr;
1176 	struct hmm_range range = {
1177 		.hmm_pfns = pfns,
1178 		.dev_private_owner = dmirror->mdevice,
1179 	};
1180 	int ret = 0;
1181 
1182 	start = cmd->addr;
1183 	end = start + size;
1184 	if (end < start)
1185 		return -EINVAL;
1186 
1187 	/* Since the mm is for the mirrored process, get a reference first. */
1188 	if (!mmget_not_zero(mm))
1189 		return -EINVAL;
1190 
1191 	/*
1192 	 * Register a temporary notifier to detect invalidations even if it
1193 	 * overlaps with other mmu_interval_notifiers.
1194 	 */
1195 	uptr = u64_to_user_ptr(cmd->ptr);
1196 	for (addr = start; addr < end; addr = next) {
1197 		unsigned long n;
1198 
1199 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1200 		range.start = addr;
1201 		range.end = next;
1202 
1203 		ret = dmirror_range_snapshot(dmirror, &range, perm);
1204 		if (ret)
1205 			break;
1206 
1207 		n = (range.end - range.start) >> PAGE_SHIFT;
1208 		if (copy_to_user(uptr, perm, n)) {
1209 			ret = -EFAULT;
1210 			break;
1211 		}
1212 
1213 		cmd->cpages += n;
1214 		uptr += n;
1215 	}
1216 	mmput(mm);
1217 
1218 	return ret;
1219 }
1220 
1221 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1222 					unsigned int command,
1223 					unsigned long arg)
1224 {
1225 	void __user *uarg = (void __user *)arg;
1226 	struct hmm_dmirror_cmd cmd;
1227 	struct dmirror *dmirror;
1228 	int ret;
1229 
1230 	dmirror = filp->private_data;
1231 	if (!dmirror)
1232 		return -EINVAL;
1233 
1234 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1235 		return -EFAULT;
1236 
1237 	if (cmd.addr & ~PAGE_MASK)
1238 		return -EINVAL;
1239 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1240 		return -EINVAL;
1241 
1242 	cmd.cpages = 0;
1243 	cmd.faults = 0;
1244 
1245 	switch (command) {
1246 	case HMM_DMIRROR_READ:
1247 		ret = dmirror_read(dmirror, &cmd);
1248 		break;
1249 
1250 	case HMM_DMIRROR_WRITE:
1251 		ret = dmirror_write(dmirror, &cmd);
1252 		break;
1253 
1254 	case HMM_DMIRROR_MIGRATE_TO_DEV:
1255 		ret = dmirror_migrate_to_device(dmirror, &cmd);
1256 		break;
1257 
1258 	case HMM_DMIRROR_MIGRATE_TO_SYS:
1259 		ret = dmirror_migrate_to_system(dmirror, &cmd);
1260 		break;
1261 
1262 	case HMM_DMIRROR_EXCLUSIVE:
1263 		ret = dmirror_exclusive(dmirror, &cmd);
1264 		break;
1265 
1266 	case HMM_DMIRROR_CHECK_EXCLUSIVE:
1267 		ret = dmirror_check_atomic(dmirror, cmd.addr,
1268 					cmd.addr + (cmd.npages << PAGE_SHIFT));
1269 		break;
1270 
1271 	case HMM_DMIRROR_SNAPSHOT:
1272 		ret = dmirror_snapshot(dmirror, &cmd);
1273 		break;
1274 
1275 	default:
1276 		return -EINVAL;
1277 	}
1278 	if (ret)
1279 		return ret;
1280 
1281 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1282 		return -EFAULT;
1283 
1284 	return 0;
1285 }
1286 
1287 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1288 {
1289 	unsigned long addr;
1290 
1291 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1292 		struct page *page;
1293 		int ret;
1294 
1295 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1296 		if (!page)
1297 			return -ENOMEM;
1298 
1299 		ret = vm_insert_page(vma, addr, page);
1300 		if (ret) {
1301 			__free_page(page);
1302 			return ret;
1303 		}
1304 		put_page(page);
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct file_operations dmirror_fops = {
1311 	.open		= dmirror_fops_open,
1312 	.release	= dmirror_fops_release,
1313 	.mmap		= dmirror_fops_mmap,
1314 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1315 	.llseek		= default_llseek,
1316 	.owner		= THIS_MODULE,
1317 };
1318 
1319 static void dmirror_devmem_free(struct page *page)
1320 {
1321 	struct page *rpage = BACKING_PAGE(page);
1322 	struct dmirror_device *mdevice;
1323 
1324 	if (rpage != page)
1325 		__free_page(rpage);
1326 
1327 	mdevice = dmirror_page_to_device(page);
1328 	spin_lock(&mdevice->lock);
1329 	mdevice->cfree++;
1330 	page->zone_device_data = mdevice->free_pages;
1331 	mdevice->free_pages = page;
1332 	spin_unlock(&mdevice->lock);
1333 }
1334 
1335 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1336 {
1337 	struct migrate_vma args;
1338 	unsigned long src_pfns = 0;
1339 	unsigned long dst_pfns = 0;
1340 	struct page *rpage;
1341 	struct dmirror *dmirror;
1342 	vm_fault_t ret;
1343 
1344 	/*
1345 	 * Normally, a device would use the page->zone_device_data to point to
1346 	 * the mirror but here we use it to hold the page for the simulated
1347 	 * device memory and that page holds the pointer to the mirror.
1348 	 */
1349 	rpage = vmf->page->zone_device_data;
1350 	dmirror = rpage->zone_device_data;
1351 
1352 	/* FIXME demonstrate how we can adjust migrate range */
1353 	args.vma = vmf->vma;
1354 	args.start = vmf->address;
1355 	args.end = args.start + PAGE_SIZE;
1356 	args.src = &src_pfns;
1357 	args.dst = &dst_pfns;
1358 	args.pgmap_owner = dmirror->mdevice;
1359 	args.flags = dmirror_select_device(dmirror);
1360 
1361 	if (migrate_vma_setup(&args))
1362 		return VM_FAULT_SIGBUS;
1363 
1364 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1365 	if (ret)
1366 		return ret;
1367 	migrate_vma_pages(&args);
1368 	/*
1369 	 * No device finalize step is needed since
1370 	 * dmirror_devmem_fault_alloc_and_copy() will have already
1371 	 * invalidated the device page table.
1372 	 */
1373 	migrate_vma_finalize(&args);
1374 	return 0;
1375 }
1376 
1377 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1378 	.page_free	= dmirror_devmem_free,
1379 	.migrate_to_ram	= dmirror_devmem_fault,
1380 };
1381 
1382 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1383 {
1384 	dev_t dev;
1385 	int ret;
1386 
1387 	dev = MKDEV(MAJOR(dmirror_dev), id);
1388 	mutex_init(&mdevice->devmem_lock);
1389 	spin_lock_init(&mdevice->lock);
1390 
1391 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1392 	mdevice->cdevice.owner = THIS_MODULE;
1393 	ret = cdev_add(&mdevice->cdevice, dev, 1);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/* Build a list of free ZONE_DEVICE struct pages */
1398 	return dmirror_allocate_chunk(mdevice, NULL);
1399 }
1400 
1401 static void dmirror_device_remove(struct dmirror_device *mdevice)
1402 {
1403 	unsigned int i;
1404 
1405 	if (mdevice->devmem_chunks) {
1406 		for (i = 0; i < mdevice->devmem_count; i++) {
1407 			struct dmirror_chunk *devmem =
1408 				mdevice->devmem_chunks[i];
1409 
1410 			memunmap_pages(&devmem->pagemap);
1411 			if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1412 				release_mem_region(devmem->pagemap.range.start,
1413 						   range_len(&devmem->pagemap.range));
1414 			kfree(devmem);
1415 		}
1416 		kfree(mdevice->devmem_chunks);
1417 	}
1418 
1419 	cdev_del(&mdevice->cdevice);
1420 }
1421 
1422 static int __init hmm_dmirror_init(void)
1423 {
1424 	int ret;
1425 	int id = 0;
1426 	int ndevices = 0;
1427 
1428 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1429 				  "HMM_DMIRROR");
1430 	if (ret)
1431 		goto err_unreg;
1432 
1433 	memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1434 	dmirror_devices[ndevices++].zone_device_type =
1435 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1436 	dmirror_devices[ndevices++].zone_device_type =
1437 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1438 	if (spm_addr_dev0 && spm_addr_dev1) {
1439 		dmirror_devices[ndevices++].zone_device_type =
1440 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1441 		dmirror_devices[ndevices++].zone_device_type =
1442 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1443 	}
1444 	for (id = 0; id < ndevices; id++) {
1445 		ret = dmirror_device_init(dmirror_devices + id, id);
1446 		if (ret)
1447 			goto err_chrdev;
1448 	}
1449 
1450 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1451 	return 0;
1452 
1453 err_chrdev:
1454 	while (--id >= 0)
1455 		dmirror_device_remove(dmirror_devices + id);
1456 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1457 err_unreg:
1458 	return ret;
1459 }
1460 
1461 static void __exit hmm_dmirror_exit(void)
1462 {
1463 	int id;
1464 
1465 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1466 		if (dmirror_devices[id].zone_device_type)
1467 			dmirror_device_remove(dmirror_devices + id);
1468 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1469 }
1470 
1471 module_init(hmm_dmirror_init);
1472 module_exit(hmm_dmirror_exit);
1473 MODULE_LICENSE("GPL");
1474