xref: /linux/lib/stackdepot.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic stack depot for storing stack traces.
4  *
5  * Some debugging tools need to save stack traces of certain events which can
6  * be later presented to the user. For example, KASAN needs to safe alloc and
7  * free stacks for each object, but storing two stack traces per object
8  * requires too much memory (e.g. SLUB_DEBUG needs 256 bytes per object for
9  * that).
10  *
11  * Instead, stack depot maintains a hashtable of unique stacktraces. Since alloc
12  * and free stacks repeat a lot, we save about 100x space.
13  * Stacks are never removed from depot, so we store them contiguously one after
14  * another in a contiguos memory allocation.
15  *
16  * Author: Alexander Potapenko <glider@google.com>
17  * Copyright (C) 2016 Google, Inc.
18  *
19  * Based on code by Dmitry Chernenkov.
20  */
21 
22 #include <linux/gfp.h>
23 #include <linux/jhash.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/printk.h>
28 #include <linux/slab.h>
29 #include <linux/stacktrace.h>
30 #include <linux/stackdepot.h>
31 #include <linux/string.h>
32 #include <linux/types.h>
33 
34 #define DEPOT_STACK_BITS (sizeof(depot_stack_handle_t) * 8)
35 
36 #define STACK_ALLOC_NULL_PROTECTION_BITS 1
37 #define STACK_ALLOC_ORDER 2 /* 'Slab' size order for stack depot, 4 pages */
38 #define STACK_ALLOC_SIZE (1LL << (PAGE_SHIFT + STACK_ALLOC_ORDER))
39 #define STACK_ALLOC_ALIGN 4
40 #define STACK_ALLOC_OFFSET_BITS (STACK_ALLOC_ORDER + PAGE_SHIFT - \
41 					STACK_ALLOC_ALIGN)
42 #define STACK_ALLOC_INDEX_BITS (DEPOT_STACK_BITS - \
43 		STACK_ALLOC_NULL_PROTECTION_BITS - STACK_ALLOC_OFFSET_BITS)
44 #define STACK_ALLOC_SLABS_CAP 8192
45 #define STACK_ALLOC_MAX_SLABS \
46 	(((1LL << (STACK_ALLOC_INDEX_BITS)) < STACK_ALLOC_SLABS_CAP) ? \
47 	 (1LL << (STACK_ALLOC_INDEX_BITS)) : STACK_ALLOC_SLABS_CAP)
48 
49 /* The compact structure to store the reference to stacks. */
50 union handle_parts {
51 	depot_stack_handle_t handle;
52 	struct {
53 		u32 slabindex : STACK_ALLOC_INDEX_BITS;
54 		u32 offset : STACK_ALLOC_OFFSET_BITS;
55 		u32 valid : STACK_ALLOC_NULL_PROTECTION_BITS;
56 	};
57 };
58 
59 struct stack_record {
60 	struct stack_record *next;	/* Link in the hashtable */
61 	u32 hash;			/* Hash in the hastable */
62 	u32 size;			/* Number of frames in the stack */
63 	union handle_parts handle;
64 	unsigned long entries[1];	/* Variable-sized array of entries. */
65 };
66 
67 static void *stack_slabs[STACK_ALLOC_MAX_SLABS];
68 
69 static int depot_index;
70 static int next_slab_inited;
71 static size_t depot_offset;
72 static DEFINE_SPINLOCK(depot_lock);
73 
74 static bool init_stack_slab(void **prealloc)
75 {
76 	if (!*prealloc)
77 		return false;
78 	/*
79 	 * This smp_load_acquire() pairs with smp_store_release() to
80 	 * |next_slab_inited| below and in depot_alloc_stack().
81 	 */
82 	if (smp_load_acquire(&next_slab_inited))
83 		return true;
84 	if (stack_slabs[depot_index] == NULL) {
85 		stack_slabs[depot_index] = *prealloc;
86 	} else {
87 		stack_slabs[depot_index + 1] = *prealloc;
88 		/*
89 		 * This smp_store_release pairs with smp_load_acquire() from
90 		 * |next_slab_inited| above and in stack_depot_save().
91 		 */
92 		smp_store_release(&next_slab_inited, 1);
93 	}
94 	*prealloc = NULL;
95 	return true;
96 }
97 
98 /* Allocation of a new stack in raw storage */
99 static struct stack_record *depot_alloc_stack(unsigned long *entries, int size,
100 		u32 hash, void **prealloc, gfp_t alloc_flags)
101 {
102 	int required_size = offsetof(struct stack_record, entries) +
103 		sizeof(unsigned long) * size;
104 	struct stack_record *stack;
105 
106 	required_size = ALIGN(required_size, 1 << STACK_ALLOC_ALIGN);
107 
108 	if (unlikely(depot_offset + required_size > STACK_ALLOC_SIZE)) {
109 		if (unlikely(depot_index + 1 >= STACK_ALLOC_MAX_SLABS)) {
110 			WARN_ONCE(1, "Stack depot reached limit capacity");
111 			return NULL;
112 		}
113 		depot_index++;
114 		depot_offset = 0;
115 		/*
116 		 * smp_store_release() here pairs with smp_load_acquire() from
117 		 * |next_slab_inited| in stack_depot_save() and
118 		 * init_stack_slab().
119 		 */
120 		if (depot_index + 1 < STACK_ALLOC_MAX_SLABS)
121 			smp_store_release(&next_slab_inited, 0);
122 	}
123 	init_stack_slab(prealloc);
124 	if (stack_slabs[depot_index] == NULL)
125 		return NULL;
126 
127 	stack = stack_slabs[depot_index] + depot_offset;
128 
129 	stack->hash = hash;
130 	stack->size = size;
131 	stack->handle.slabindex = depot_index;
132 	stack->handle.offset = depot_offset >> STACK_ALLOC_ALIGN;
133 	stack->handle.valid = 1;
134 	memcpy(stack->entries, entries, size * sizeof(unsigned long));
135 	depot_offset += required_size;
136 
137 	return stack;
138 }
139 
140 #define STACK_HASH_ORDER 20
141 #define STACK_HASH_SIZE (1L << STACK_HASH_ORDER)
142 #define STACK_HASH_MASK (STACK_HASH_SIZE - 1)
143 #define STACK_HASH_SEED 0x9747b28c
144 
145 static struct stack_record *stack_table[STACK_HASH_SIZE] = {
146 	[0 ...	STACK_HASH_SIZE - 1] = NULL
147 };
148 
149 /* Calculate hash for a stack */
150 static inline u32 hash_stack(unsigned long *entries, unsigned int size)
151 {
152 	return jhash2((u32 *)entries,
153 			       size * sizeof(unsigned long) / sizeof(u32),
154 			       STACK_HASH_SEED);
155 }
156 
157 /* Use our own, non-instrumented version of memcmp().
158  *
159  * We actually don't care about the order, just the equality.
160  */
161 static inline
162 int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2,
163 			unsigned int n)
164 {
165 	for ( ; n-- ; u1++, u2++) {
166 		if (*u1 != *u2)
167 			return 1;
168 	}
169 	return 0;
170 }
171 
172 /* Find a stack that is equal to the one stored in entries in the hash */
173 static inline struct stack_record *find_stack(struct stack_record *bucket,
174 					     unsigned long *entries, int size,
175 					     u32 hash)
176 {
177 	struct stack_record *found;
178 
179 	for (found = bucket; found; found = found->next) {
180 		if (found->hash == hash &&
181 		    found->size == size &&
182 		    !stackdepot_memcmp(entries, found->entries, size))
183 			return found;
184 	}
185 	return NULL;
186 }
187 
188 /**
189  * stack_depot_fetch - Fetch stack entries from a depot
190  *
191  * @handle:		Stack depot handle which was returned from
192  *			stack_depot_save().
193  * @entries:		Pointer to store the entries address
194  *
195  * Return: The number of trace entries for this depot.
196  */
197 unsigned int stack_depot_fetch(depot_stack_handle_t handle,
198 			       unsigned long **entries)
199 {
200 	union handle_parts parts = { .handle = handle };
201 	void *slab = stack_slabs[parts.slabindex];
202 	size_t offset = parts.offset << STACK_ALLOC_ALIGN;
203 	struct stack_record *stack = slab + offset;
204 
205 	*entries = stack->entries;
206 	return stack->size;
207 }
208 EXPORT_SYMBOL_GPL(stack_depot_fetch);
209 
210 /**
211  * stack_depot_save - Save a stack trace from an array
212  *
213  * @entries:		Pointer to storage array
214  * @nr_entries:		Size of the storage array
215  * @alloc_flags:	Allocation gfp flags
216  *
217  * Return: The handle of the stack struct stored in depot
218  */
219 depot_stack_handle_t stack_depot_save(unsigned long *entries,
220 				      unsigned int nr_entries,
221 				      gfp_t alloc_flags)
222 {
223 	struct stack_record *found = NULL, **bucket;
224 	depot_stack_handle_t retval = 0;
225 	struct page *page = NULL;
226 	void *prealloc = NULL;
227 	unsigned long flags;
228 	u32 hash;
229 
230 	if (unlikely(nr_entries == 0))
231 		goto fast_exit;
232 
233 	hash = hash_stack(entries, nr_entries);
234 	bucket = &stack_table[hash & STACK_HASH_MASK];
235 
236 	/*
237 	 * Fast path: look the stack trace up without locking.
238 	 * The smp_load_acquire() here pairs with smp_store_release() to
239 	 * |bucket| below.
240 	 */
241 	found = find_stack(smp_load_acquire(bucket), entries,
242 			   nr_entries, hash);
243 	if (found)
244 		goto exit;
245 
246 	/*
247 	 * Check if the current or the next stack slab need to be initialized.
248 	 * If so, allocate the memory - we won't be able to do that under the
249 	 * lock.
250 	 *
251 	 * The smp_load_acquire() here pairs with smp_store_release() to
252 	 * |next_slab_inited| in depot_alloc_stack() and init_stack_slab().
253 	 */
254 	if (unlikely(!smp_load_acquire(&next_slab_inited))) {
255 		/*
256 		 * Zero out zone modifiers, as we don't have specific zone
257 		 * requirements. Keep the flags related to allocation in atomic
258 		 * contexts and I/O.
259 		 */
260 		alloc_flags &= ~GFP_ZONEMASK;
261 		alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
262 		alloc_flags |= __GFP_NOWARN;
263 		page = alloc_pages(alloc_flags, STACK_ALLOC_ORDER);
264 		if (page)
265 			prealloc = page_address(page);
266 	}
267 
268 	spin_lock_irqsave(&depot_lock, flags);
269 
270 	found = find_stack(*bucket, entries, nr_entries, hash);
271 	if (!found) {
272 		struct stack_record *new =
273 			depot_alloc_stack(entries, nr_entries,
274 					  hash, &prealloc, alloc_flags);
275 		if (new) {
276 			new->next = *bucket;
277 			/*
278 			 * This smp_store_release() pairs with
279 			 * smp_load_acquire() from |bucket| above.
280 			 */
281 			smp_store_release(bucket, new);
282 			found = new;
283 		}
284 	} else if (prealloc) {
285 		/*
286 		 * We didn't need to store this stack trace, but let's keep
287 		 * the preallocated memory for the future.
288 		 */
289 		WARN_ON(!init_stack_slab(&prealloc));
290 	}
291 
292 	spin_unlock_irqrestore(&depot_lock, flags);
293 exit:
294 	if (prealloc) {
295 		/* Nobody used this memory, ok to free it. */
296 		free_pages((unsigned long)prealloc, STACK_ALLOC_ORDER);
297 	}
298 	if (found)
299 		retval = found->handle.handle;
300 fast_exit:
301 	return retval;
302 }
303 EXPORT_SYMBOL_GPL(stack_depot_save);
304