xref: /linux/lib/sort.c (revision bb4f8428913814abc30b41a5dba7daade8acc436)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * A fast, small, non-recursive O(n log n) sort for the Linux kernel
4   *
5   * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
6   * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
7   *
8   * Quicksort manages n*log2(n) - 1.26*n for random inputs (1.63*n
9   * better) at the expense of stack usage and much larger code to avoid
10   * quicksort's O(n^2) worst case.
11   */
12  
13  #include <linux/types.h>
14  #include <linux/export.h>
15  #include <linux/sort.h>
16  
17  /**
18   * is_aligned - is this pointer & size okay for word-wide copying?
19   * @base: pointer to data
20   * @size: size of each element
21   * @align: required alignment (typically 4 or 8)
22   *
23   * Returns true if elements can be copied using word loads and stores.
24   * The size must be a multiple of the alignment, and the base address must
25   * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
26   *
27   * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
28   * to "if ((a | b) & mask)", so we do that by hand.
29   */
30  __attribute_const__ __always_inline
31  static bool is_aligned(const void *base, size_t size, unsigned char align)
32  {
33  	unsigned char lsbits = (unsigned char)size;
34  
35  	(void)base;
36  #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
37  	lsbits |= (unsigned char)(uintptr_t)base;
38  #endif
39  	return (lsbits & (align - 1)) == 0;
40  }
41  
42  /**
43   * swap_words_32 - swap two elements in 32-bit chunks
44   * @a: pointer to the first element to swap
45   * @b: pointer to the second element to swap
46   * @n: element size (must be a multiple of 4)
47   *
48   * Exchange the two objects in memory.  This exploits base+index addressing,
49   * which basically all CPUs have, to minimize loop overhead computations.
50   *
51   * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
52   * bottom of the loop, even though the zero flag is still valid from the
53   * subtract (since the intervening mov instructions don't alter the flags).
54   * Gcc 8.1.0 doesn't have that problem.
55   */
56  static void swap_words_32(void *a, void *b, size_t n)
57  {
58  	do {
59  		u32 t = *(u32 *)(a + (n -= 4));
60  		*(u32 *)(a + n) = *(u32 *)(b + n);
61  		*(u32 *)(b + n) = t;
62  	} while (n);
63  }
64  
65  /**
66   * swap_words_64 - swap two elements in 64-bit chunks
67   * @a: pointer to the first element to swap
68   * @b: pointer to the second element to swap
69   * @n: element size (must be a multiple of 8)
70   *
71   * Exchange the two objects in memory.  This exploits base+index
72   * addressing, which basically all CPUs have, to minimize loop overhead
73   * computations.
74   *
75   * We'd like to use 64-bit loads if possible.  If they're not, emulating
76   * one requires base+index+4 addressing which x86 has but most other
77   * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
78   * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
79   * x32 ABI).  Are there any cases the kernel needs to worry about?
80   */
81  static void swap_words_64(void *a, void *b, size_t n)
82  {
83  	do {
84  #ifdef CONFIG_64BIT
85  		u64 t = *(u64 *)(a + (n -= 8));
86  		*(u64 *)(a + n) = *(u64 *)(b + n);
87  		*(u64 *)(b + n) = t;
88  #else
89  		/* Use two 32-bit transfers to avoid base+index+4 addressing */
90  		u32 t = *(u32 *)(a + (n -= 4));
91  		*(u32 *)(a + n) = *(u32 *)(b + n);
92  		*(u32 *)(b + n) = t;
93  
94  		t = *(u32 *)(a + (n -= 4));
95  		*(u32 *)(a + n) = *(u32 *)(b + n);
96  		*(u32 *)(b + n) = t;
97  #endif
98  	} while (n);
99  }
100  
101  /**
102   * swap_bytes - swap two elements a byte at a time
103   * @a: pointer to the first element to swap
104   * @b: pointer to the second element to swap
105   * @n: element size
106   *
107   * This is the fallback if alignment doesn't allow using larger chunks.
108   */
109  static void swap_bytes(void *a, void *b, size_t n)
110  {
111  	do {
112  		char t = ((char *)a)[--n];
113  		((char *)a)[n] = ((char *)b)[n];
114  		((char *)b)[n] = t;
115  	} while (n);
116  }
117  
118  /*
119   * The values are arbitrary as long as they can't be confused with
120   * a pointer, but small integers make for the smallest compare
121   * instructions.
122   */
123  #define SWAP_WORDS_64 (swap_r_func_t)0
124  #define SWAP_WORDS_32 (swap_r_func_t)1
125  #define SWAP_BYTES    (swap_r_func_t)2
126  #define SWAP_WRAPPER  (swap_r_func_t)3
127  
128  struct wrapper {
129  	cmp_func_t cmp;
130  	swap_func_t swap;
131  };
132  
133  /*
134   * The function pointer is last to make tail calls most efficient if the
135   * compiler decides not to inline this function.
136   */
137  static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
138  {
139  	if (swap_func == SWAP_WRAPPER) {
140  		((const struct wrapper *)priv)->swap(a, b, (int)size);
141  		return;
142  	}
143  
144  	if (swap_func == SWAP_WORDS_64)
145  		swap_words_64(a, b, size);
146  	else if (swap_func == SWAP_WORDS_32)
147  		swap_words_32(a, b, size);
148  	else if (swap_func == SWAP_BYTES)
149  		swap_bytes(a, b, size);
150  	else
151  		swap_func(a, b, (int)size, priv);
152  }
153  
154  #define _CMP_WRAPPER ((cmp_r_func_t)0L)
155  
156  static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
157  {
158  	if (cmp == _CMP_WRAPPER)
159  		return ((const struct wrapper *)priv)->cmp(a, b);
160  	return cmp(a, b, priv);
161  }
162  
163  /**
164   * parent - given the offset of the child, find the offset of the parent.
165   * @i: the offset of the heap element whose parent is sought.  Non-zero.
166   * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
167   * @size: size of each element
168   *
169   * In terms of array indexes, the parent of element j = @i/@size is simply
170   * (j-1)/2.  But when working in byte offsets, we can't use implicit
171   * truncation of integer divides.
172   *
173   * Fortunately, we only need one bit of the quotient, not the full divide.
174   * @size has a least significant bit.  That bit will be clear if @i is
175   * an even multiple of @size, and set if it's an odd multiple.
176   *
177   * Logically, we're doing "if (i & lsbit) i -= size;", but since the
178   * branch is unpredictable, it's done with a bit of clever branch-free
179   * code instead.
180   */
181  __attribute_const__ __always_inline
182  static size_t parent(size_t i, unsigned int lsbit, size_t size)
183  {
184  	i -= size;
185  	i -= size & -(i & lsbit);
186  	return i / 2;
187  }
188  
189  /**
190   * sort_r - sort an array of elements
191   * @base: pointer to data to sort
192   * @num: number of elements
193   * @size: size of each element
194   * @cmp_func: pointer to comparison function
195   * @swap_func: pointer to swap function or NULL
196   * @priv: third argument passed to comparison function
197   *
198   * This function does a heapsort on the given array.  You may provide
199   * a swap_func function if you need to do something more than a memory
200   * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
201   * avoids a slow retpoline and so is significantly faster.
202   *
203   * Sorting time is O(n log n) both on average and worst-case. While
204   * quicksort is slightly faster on average, it suffers from exploitable
205   * O(n*n) worst-case behavior and extra memory requirements that make
206   * it less suitable for kernel use.
207   */
208  void sort_r(void *base, size_t num, size_t size,
209  	    cmp_r_func_t cmp_func,
210  	    swap_r_func_t swap_func,
211  	    const void *priv)
212  {
213  	/* pre-scale counters for performance */
214  	size_t n = num * size, a = (num/2) * size;
215  	const unsigned int lsbit = size & -size;  /* Used to find parent */
216  	size_t shift = 0;
217  
218  	if (!a)		/* num < 2 || size == 0 */
219  		return;
220  
221  	/* called from 'sort' without swap function, let's pick the default */
222  	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
223  		swap_func = NULL;
224  
225  	if (!swap_func) {
226  		if (is_aligned(base, size, 8))
227  			swap_func = SWAP_WORDS_64;
228  		else if (is_aligned(base, size, 4))
229  			swap_func = SWAP_WORDS_32;
230  		else
231  			swap_func = SWAP_BYTES;
232  	}
233  
234  	/*
235  	 * Loop invariants:
236  	 * 1. elements [a,n) satisfy the heap property (compare greater than
237  	 *    all of their children),
238  	 * 2. elements [n,num*size) are sorted, and
239  	 * 3. a <= b <= c <= d <= n (whenever they are valid).
240  	 */
241  	for (;;) {
242  		size_t b, c, d;
243  
244  		if (a)			/* Building heap: sift down a */
245  			a -= size << shift;
246  		else if (n > 3 * size) { /* Sorting: Extract two largest elements */
247  			n -= size;
248  			do_swap(base, base + n, size, swap_func, priv);
249  			shift = do_cmp(base + size, base + 2 * size, cmp_func, priv) <= 0;
250  			a = size << shift;
251  			n -= size;
252  			do_swap(base + a, base + n, size, swap_func, priv);
253  		} else {		/* Sort complete */
254  			break;
255  		}
256  
257  		/*
258  		 * Sift element at "a" down into heap.  This is the
259  		 * "bottom-up" variant, which significantly reduces
260  		 * calls to cmp_func(): we find the sift-down path all
261  		 * the way to the leaves (one compare per level), then
262  		 * backtrack to find where to insert the target element.
263  		 *
264  		 * Because elements tend to sift down close to the leaves,
265  		 * this uses fewer compares than doing two per level
266  		 * on the way down.  (A bit more than half as many on
267  		 * average, 3/4 worst-case.)
268  		 */
269  		for (b = a; c = 2*b + size, (d = c + size) < n;)
270  			b = do_cmp(base + c, base + d, cmp_func, priv) > 0 ? c : d;
271  		if (d == n)	/* Special case last leaf with no sibling */
272  			b = c;
273  
274  		/* Now backtrack from "b" to the correct location for "a" */
275  		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
276  			b = parent(b, lsbit, size);
277  		c = b;			/* Where "a" belongs */
278  		while (b != a) {	/* Shift it into place */
279  			b = parent(b, lsbit, size);
280  			do_swap(base + b, base + c, size, swap_func, priv);
281  		}
282  	}
283  
284  	n -= size;
285  	do_swap(base, base + n, size, swap_func, priv);
286  	if (n == size * 2 && do_cmp(base, base + size, cmp_func, priv) > 0)
287  		do_swap(base, base + size, size, swap_func, priv);
288  }
289  EXPORT_SYMBOL(sort_r);
290  
291  void sort(void *base, size_t num, size_t size,
292  	  cmp_func_t cmp_func,
293  	  swap_func_t swap_func)
294  {
295  	struct wrapper w = {
296  		.cmp  = cmp_func,
297  		.swap = swap_func,
298  	};
299  
300  	return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
301  }
302  EXPORT_SYMBOL(sort);
303