xref: /linux/lib/scatterlist.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3  *
4  * Scatterlist handling helpers.
5  *
6  * This source code is licensed under the GNU General Public License,
7  * Version 2. See the file COPYING for more details.
8  */
9 #include <linux/export.h>
10 #include <linux/slab.h>
11 #include <linux/scatterlist.h>
12 #include <linux/highmem.h>
13 #include <linux/kmemleak.h>
14 
15 /**
16  * sg_next - return the next scatterlist entry in a list
17  * @sg:		The current sg entry
18  *
19  * Description:
20  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
21  *   of a chained scatterlist, it could jump to the start of a new
22  *   scatterlist array.
23  *
24  **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27 	if (sg_is_last(sg))
28 		return NULL;
29 
30 	sg++;
31 	if (unlikely(sg_is_chain(sg)))
32 		sg = sg_chain_ptr(sg);
33 
34 	return sg;
35 }
36 EXPORT_SYMBOL(sg_next);
37 
38 /**
39  * sg_nents - return total count of entries in scatterlist
40  * @sg:		The scatterlist
41  *
42  * Description:
43  * Allows to know how many entries are in sg, taking into acount
44  * chaining as well
45  *
46  **/
47 int sg_nents(struct scatterlist *sg)
48 {
49 	int nents;
50 	for (nents = 0; sg; sg = sg_next(sg))
51 		nents++;
52 	return nents;
53 }
54 EXPORT_SYMBOL(sg_nents);
55 
56 /**
57  * sg_nents_for_len - return total count of entries in scatterlist
58  *                    needed to satisfy the supplied length
59  * @sg:		The scatterlist
60  * @len:	The total required length
61  *
62  * Description:
63  * Determines the number of entries in sg that are required to meet
64  * the supplied length, taking into acount chaining as well
65  *
66  * Returns:
67  *   the number of sg entries needed, negative error on failure
68  *
69  **/
70 int sg_nents_for_len(struct scatterlist *sg, u64 len)
71 {
72 	int nents;
73 	u64 total;
74 
75 	if (!len)
76 		return 0;
77 
78 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
79 		nents++;
80 		total += sg->length;
81 		if (total >= len)
82 			return nents;
83 	}
84 
85 	return -EINVAL;
86 }
87 EXPORT_SYMBOL(sg_nents_for_len);
88 
89 /**
90  * sg_last - return the last scatterlist entry in a list
91  * @sgl:	First entry in the scatterlist
92  * @nents:	Number of entries in the scatterlist
93  *
94  * Description:
95  *   Should only be used casually, it (currently) scans the entire list
96  *   to get the last entry.
97  *
98  *   Note that the @sgl@ pointer passed in need not be the first one,
99  *   the important bit is that @nents@ denotes the number of entries that
100  *   exist from @sgl@.
101  *
102  **/
103 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
104 {
105 	struct scatterlist *sg, *ret = NULL;
106 	unsigned int i;
107 
108 	for_each_sg(sgl, sg, nents, i)
109 		ret = sg;
110 
111 	BUG_ON(!sg_is_last(ret));
112 	return ret;
113 }
114 EXPORT_SYMBOL(sg_last);
115 
116 /**
117  * sg_init_table - Initialize SG table
118  * @sgl:	   The SG table
119  * @nents:	   Number of entries in table
120  *
121  * Notes:
122  *   If this is part of a chained sg table, sg_mark_end() should be
123  *   used only on the last table part.
124  *
125  **/
126 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
127 {
128 	memset(sgl, 0, sizeof(*sgl) * nents);
129 	sg_init_marker(sgl, nents);
130 }
131 EXPORT_SYMBOL(sg_init_table);
132 
133 /**
134  * sg_init_one - Initialize a single entry sg list
135  * @sg:		 SG entry
136  * @buf:	 Virtual address for IO
137  * @buflen:	 IO length
138  *
139  **/
140 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
141 {
142 	sg_init_table(sg, 1);
143 	sg_set_buf(sg, buf, buflen);
144 }
145 EXPORT_SYMBOL(sg_init_one);
146 
147 /*
148  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
149  * helpers.
150  */
151 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
152 {
153 	if (nents == SG_MAX_SINGLE_ALLOC) {
154 		/*
155 		 * Kmemleak doesn't track page allocations as they are not
156 		 * commonly used (in a raw form) for kernel data structures.
157 		 * As we chain together a list of pages and then a normal
158 		 * kmalloc (tracked by kmemleak), in order to for that last
159 		 * allocation not to become decoupled (and thus a
160 		 * false-positive) we need to inform kmemleak of all the
161 		 * intermediate allocations.
162 		 */
163 		void *ptr = (void *) __get_free_page(gfp_mask);
164 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
165 		return ptr;
166 	} else
167 		return kmalloc_array(nents, sizeof(struct scatterlist),
168 				     gfp_mask);
169 }
170 
171 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
172 {
173 	if (nents == SG_MAX_SINGLE_ALLOC) {
174 		kmemleak_free(sg);
175 		free_page((unsigned long) sg);
176 	} else
177 		kfree(sg);
178 }
179 
180 /**
181  * __sg_free_table - Free a previously mapped sg table
182  * @table:	The sg table header to use
183  * @max_ents:	The maximum number of entries per single scatterlist
184  * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
185  * @free_fn:	Free function
186  *
187  *  Description:
188  *    Free an sg table previously allocated and setup with
189  *    __sg_alloc_table().  The @max_ents value must be identical to
190  *    that previously used with __sg_alloc_table().
191  *
192  **/
193 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
194 		     bool skip_first_chunk, sg_free_fn *free_fn)
195 {
196 	struct scatterlist *sgl, *next;
197 
198 	if (unlikely(!table->sgl))
199 		return;
200 
201 	sgl = table->sgl;
202 	while (table->orig_nents) {
203 		unsigned int alloc_size = table->orig_nents;
204 		unsigned int sg_size;
205 
206 		/*
207 		 * If we have more than max_ents segments left,
208 		 * then assign 'next' to the sg table after the current one.
209 		 * sg_size is then one less than alloc size, since the last
210 		 * element is the chain pointer.
211 		 */
212 		if (alloc_size > max_ents) {
213 			next = sg_chain_ptr(&sgl[max_ents - 1]);
214 			alloc_size = max_ents;
215 			sg_size = alloc_size - 1;
216 		} else {
217 			sg_size = alloc_size;
218 			next = NULL;
219 		}
220 
221 		table->orig_nents -= sg_size;
222 		if (skip_first_chunk)
223 			skip_first_chunk = false;
224 		else
225 			free_fn(sgl, alloc_size);
226 		sgl = next;
227 	}
228 
229 	table->sgl = NULL;
230 }
231 EXPORT_SYMBOL(__sg_free_table);
232 
233 /**
234  * sg_free_table - Free a previously allocated sg table
235  * @table:	The mapped sg table header
236  *
237  **/
238 void sg_free_table(struct sg_table *table)
239 {
240 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
241 }
242 EXPORT_SYMBOL(sg_free_table);
243 
244 /**
245  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
246  * @table:	The sg table header to use
247  * @nents:	Number of entries in sg list
248  * @max_ents:	The maximum number of entries the allocator returns per call
249  * @gfp_mask:	GFP allocation mask
250  * @alloc_fn:	Allocator to use
251  *
252  * Description:
253  *   This function returns a @table @nents long. The allocator is
254  *   defined to return scatterlist chunks of maximum size @max_ents.
255  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
256  *   chained in units of @max_ents.
257  *
258  * Notes:
259  *   If this function returns non-0 (eg failure), the caller must call
260  *   __sg_free_table() to cleanup any leftover allocations.
261  *
262  **/
263 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
264 		     unsigned int max_ents, struct scatterlist *first_chunk,
265 		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
266 {
267 	struct scatterlist *sg, *prv;
268 	unsigned int left;
269 
270 	memset(table, 0, sizeof(*table));
271 
272 	if (nents == 0)
273 		return -EINVAL;
274 #ifndef CONFIG_ARCH_HAS_SG_CHAIN
275 	if (WARN_ON_ONCE(nents > max_ents))
276 		return -EINVAL;
277 #endif
278 
279 	left = nents;
280 	prv = NULL;
281 	do {
282 		unsigned int sg_size, alloc_size = left;
283 
284 		if (alloc_size > max_ents) {
285 			alloc_size = max_ents;
286 			sg_size = alloc_size - 1;
287 		} else
288 			sg_size = alloc_size;
289 
290 		left -= sg_size;
291 
292 		if (first_chunk) {
293 			sg = first_chunk;
294 			first_chunk = NULL;
295 		} else {
296 			sg = alloc_fn(alloc_size, gfp_mask);
297 		}
298 		if (unlikely(!sg)) {
299 			/*
300 			 * Adjust entry count to reflect that the last
301 			 * entry of the previous table won't be used for
302 			 * linkage.  Without this, sg_kfree() may get
303 			 * confused.
304 			 */
305 			if (prv)
306 				table->nents = ++table->orig_nents;
307 
308  			return -ENOMEM;
309 		}
310 
311 		sg_init_table(sg, alloc_size);
312 		table->nents = table->orig_nents += sg_size;
313 
314 		/*
315 		 * If this is the first mapping, assign the sg table header.
316 		 * If this is not the first mapping, chain previous part.
317 		 */
318 		if (prv)
319 			sg_chain(prv, max_ents, sg);
320 		else
321 			table->sgl = sg;
322 
323 		/*
324 		 * If no more entries after this one, mark the end
325 		 */
326 		if (!left)
327 			sg_mark_end(&sg[sg_size - 1]);
328 
329 		prv = sg;
330 	} while (left);
331 
332 	return 0;
333 }
334 EXPORT_SYMBOL(__sg_alloc_table);
335 
336 /**
337  * sg_alloc_table - Allocate and initialize an sg table
338  * @table:	The sg table header to use
339  * @nents:	Number of entries in sg list
340  * @gfp_mask:	GFP allocation mask
341  *
342  *  Description:
343  *    Allocate and initialize an sg table. If @nents@ is larger than
344  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
345  *
346  **/
347 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
348 {
349 	int ret;
350 
351 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
352 			       NULL, gfp_mask, sg_kmalloc);
353 	if (unlikely(ret))
354 		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
355 
356 	return ret;
357 }
358 EXPORT_SYMBOL(sg_alloc_table);
359 
360 /**
361  * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
362  *			         an array of pages
363  * @sgt:	 The sg table header to use
364  * @pages:	 Pointer to an array of page pointers
365  * @n_pages:	 Number of pages in the pages array
366  * @offset:      Offset from start of the first page to the start of a buffer
367  * @size:        Number of valid bytes in the buffer (after offset)
368  * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
369  * @gfp_mask:	 GFP allocation mask
370  *
371  *  Description:
372  *    Allocate and initialize an sg table from a list of pages. Contiguous
373  *    ranges of the pages are squashed into a single scatterlist node up to the
374  *    maximum size specified in @max_segment. An user may provide an offset at a
375  *    start and a size of valid data in a buffer specified by the page array.
376  *    The returned sg table is released by sg_free_table.
377  *
378  * Returns:
379  *   0 on success, negative error on failure
380  */
381 int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
382 				unsigned int n_pages, unsigned int offset,
383 				unsigned long size, unsigned int max_segment,
384 				gfp_t gfp_mask)
385 {
386 	unsigned int chunks, cur_page, seg_len, i;
387 	int ret;
388 	struct scatterlist *s;
389 
390 	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
391 		return -EINVAL;
392 
393 	/* compute number of contiguous chunks */
394 	chunks = 1;
395 	seg_len = 0;
396 	for (i = 1; i < n_pages; i++) {
397 		seg_len += PAGE_SIZE;
398 		if (seg_len >= max_segment ||
399 		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
400 			chunks++;
401 			seg_len = 0;
402 		}
403 	}
404 
405 	ret = sg_alloc_table(sgt, chunks, gfp_mask);
406 	if (unlikely(ret))
407 		return ret;
408 
409 	/* merging chunks and putting them into the scatterlist */
410 	cur_page = 0;
411 	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
412 		unsigned int j, chunk_size;
413 
414 		/* look for the end of the current chunk */
415 		seg_len = 0;
416 		for (j = cur_page + 1; j < n_pages; j++) {
417 			seg_len += PAGE_SIZE;
418 			if (seg_len >= max_segment ||
419 			    page_to_pfn(pages[j]) !=
420 			    page_to_pfn(pages[j - 1]) + 1)
421 				break;
422 		}
423 
424 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
425 		sg_set_page(s, pages[cur_page],
426 			    min_t(unsigned long, size, chunk_size), offset);
427 		size -= chunk_size;
428 		offset = 0;
429 		cur_page = j;
430 	}
431 
432 	return 0;
433 }
434 EXPORT_SYMBOL(__sg_alloc_table_from_pages);
435 
436 /**
437  * sg_alloc_table_from_pages - Allocate and initialize an sg table from
438  *			       an array of pages
439  * @sgt:	 The sg table header to use
440  * @pages:	 Pointer to an array of page pointers
441  * @n_pages:	 Number of pages in the pages array
442  * @offset:      Offset from start of the first page to the start of a buffer
443  * @size:        Number of valid bytes in the buffer (after offset)
444  * @gfp_mask:	 GFP allocation mask
445  *
446  *  Description:
447  *    Allocate and initialize an sg table from a list of pages. Contiguous
448  *    ranges of the pages are squashed into a single scatterlist node. A user
449  *    may provide an offset at a start and a size of valid data in a buffer
450  *    specified by the page array. The returned sg table is released by
451  *    sg_free_table.
452  *
453  * Returns:
454  *   0 on success, negative error on failure
455  */
456 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
457 			      unsigned int n_pages, unsigned int offset,
458 			      unsigned long size, gfp_t gfp_mask)
459 {
460 	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
461 					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
462 }
463 EXPORT_SYMBOL(sg_alloc_table_from_pages);
464 
465 #ifdef CONFIG_SGL_ALLOC
466 
467 /**
468  * sgl_alloc_order - allocate a scatterlist and its pages
469  * @length: Length in bytes of the scatterlist. Must be at least one
470  * @order: Second argument for alloc_pages()
471  * @chainable: Whether or not to allocate an extra element in the scatterlist
472  *	for scatterlist chaining purposes
473  * @gfp: Memory allocation flags
474  * @nent_p: [out] Number of entries in the scatterlist that have pages
475  *
476  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
477  */
478 struct scatterlist *sgl_alloc_order(unsigned long long length,
479 				    unsigned int order, bool chainable,
480 				    gfp_t gfp, unsigned int *nent_p)
481 {
482 	struct scatterlist *sgl, *sg;
483 	struct page *page;
484 	unsigned int nent, nalloc;
485 	u32 elem_len;
486 
487 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
488 	/* Check for integer overflow */
489 	if (length > (nent << (PAGE_SHIFT + order)))
490 		return NULL;
491 	nalloc = nent;
492 	if (chainable) {
493 		/* Check for integer overflow */
494 		if (nalloc + 1 < nalloc)
495 			return NULL;
496 		nalloc++;
497 	}
498 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
499 			    (gfp & ~GFP_DMA) | __GFP_ZERO);
500 	if (!sgl)
501 		return NULL;
502 
503 	sg_init_table(sgl, nalloc);
504 	sg = sgl;
505 	while (length) {
506 		elem_len = min_t(u64, length, PAGE_SIZE << order);
507 		page = alloc_pages(gfp, order);
508 		if (!page) {
509 			sgl_free(sgl);
510 			return NULL;
511 		}
512 
513 		sg_set_page(sg, page, elem_len, 0);
514 		length -= elem_len;
515 		sg = sg_next(sg);
516 	}
517 	WARN_ONCE(length, "length = %lld\n", length);
518 	if (nent_p)
519 		*nent_p = nent;
520 	return sgl;
521 }
522 EXPORT_SYMBOL(sgl_alloc_order);
523 
524 /**
525  * sgl_alloc - allocate a scatterlist and its pages
526  * @length: Length in bytes of the scatterlist
527  * @gfp: Memory allocation flags
528  * @nent_p: [out] Number of entries in the scatterlist
529  *
530  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
531  */
532 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
533 			      unsigned int *nent_p)
534 {
535 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
536 }
537 EXPORT_SYMBOL(sgl_alloc);
538 
539 /**
540  * sgl_free_n_order - free a scatterlist and its pages
541  * @sgl: Scatterlist with one or more elements
542  * @nents: Maximum number of elements to free
543  * @order: Second argument for __free_pages()
544  *
545  * Notes:
546  * - If several scatterlists have been chained and each chain element is
547  *   freed separately then it's essential to set nents correctly to avoid that a
548  *   page would get freed twice.
549  * - All pages in a chained scatterlist can be freed at once by setting @nents
550  *   to a high number.
551  */
552 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
553 {
554 	struct scatterlist *sg;
555 	struct page *page;
556 	int i;
557 
558 	for_each_sg(sgl, sg, nents, i) {
559 		if (!sg)
560 			break;
561 		page = sg_page(sg);
562 		if (page)
563 			__free_pages(page, order);
564 	}
565 	kfree(sgl);
566 }
567 EXPORT_SYMBOL(sgl_free_n_order);
568 
569 /**
570  * sgl_free_order - free a scatterlist and its pages
571  * @sgl: Scatterlist with one or more elements
572  * @order: Second argument for __free_pages()
573  */
574 void sgl_free_order(struct scatterlist *sgl, int order)
575 {
576 	sgl_free_n_order(sgl, INT_MAX, order);
577 }
578 EXPORT_SYMBOL(sgl_free_order);
579 
580 /**
581  * sgl_free - free a scatterlist and its pages
582  * @sgl: Scatterlist with one or more elements
583  */
584 void sgl_free(struct scatterlist *sgl)
585 {
586 	sgl_free_order(sgl, 0);
587 }
588 EXPORT_SYMBOL(sgl_free);
589 
590 #endif /* CONFIG_SGL_ALLOC */
591 
592 void __sg_page_iter_start(struct sg_page_iter *piter,
593 			  struct scatterlist *sglist, unsigned int nents,
594 			  unsigned long pgoffset)
595 {
596 	piter->__pg_advance = 0;
597 	piter->__nents = nents;
598 
599 	piter->sg = sglist;
600 	piter->sg_pgoffset = pgoffset;
601 }
602 EXPORT_SYMBOL(__sg_page_iter_start);
603 
604 static int sg_page_count(struct scatterlist *sg)
605 {
606 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
607 }
608 
609 bool __sg_page_iter_next(struct sg_page_iter *piter)
610 {
611 	if (!piter->__nents || !piter->sg)
612 		return false;
613 
614 	piter->sg_pgoffset += piter->__pg_advance;
615 	piter->__pg_advance = 1;
616 
617 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
618 		piter->sg_pgoffset -= sg_page_count(piter->sg);
619 		piter->sg = sg_next(piter->sg);
620 		if (!--piter->__nents || !piter->sg)
621 			return false;
622 	}
623 
624 	return true;
625 }
626 EXPORT_SYMBOL(__sg_page_iter_next);
627 
628 /**
629  * sg_miter_start - start mapping iteration over a sg list
630  * @miter: sg mapping iter to be started
631  * @sgl: sg list to iterate over
632  * @nents: number of sg entries
633  *
634  * Description:
635  *   Starts mapping iterator @miter.
636  *
637  * Context:
638  *   Don't care.
639  */
640 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
641 		    unsigned int nents, unsigned int flags)
642 {
643 	memset(miter, 0, sizeof(struct sg_mapping_iter));
644 
645 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
646 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
647 	miter->__flags = flags;
648 }
649 EXPORT_SYMBOL(sg_miter_start);
650 
651 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
652 {
653 	if (!miter->__remaining) {
654 		struct scatterlist *sg;
655 		unsigned long pgoffset;
656 
657 		if (!__sg_page_iter_next(&miter->piter))
658 			return false;
659 
660 		sg = miter->piter.sg;
661 		pgoffset = miter->piter.sg_pgoffset;
662 
663 		miter->__offset = pgoffset ? 0 : sg->offset;
664 		miter->__remaining = sg->offset + sg->length -
665 				(pgoffset << PAGE_SHIFT) - miter->__offset;
666 		miter->__remaining = min_t(unsigned long, miter->__remaining,
667 					   PAGE_SIZE - miter->__offset);
668 	}
669 
670 	return true;
671 }
672 
673 /**
674  * sg_miter_skip - reposition mapping iterator
675  * @miter: sg mapping iter to be skipped
676  * @offset: number of bytes to plus the current location
677  *
678  * Description:
679  *   Sets the offset of @miter to its current location plus @offset bytes.
680  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
681  *   stops @miter.
682  *
683  * Context:
684  *   Don't care if @miter is stopped, or not proceeded yet.
685  *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
686  *
687  * Returns:
688  *   true if @miter contains the valid mapping.  false if end of sg
689  *   list is reached.
690  */
691 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
692 {
693 	sg_miter_stop(miter);
694 
695 	while (offset) {
696 		off_t consumed;
697 
698 		if (!sg_miter_get_next_page(miter))
699 			return false;
700 
701 		consumed = min_t(off_t, offset, miter->__remaining);
702 		miter->__offset += consumed;
703 		miter->__remaining -= consumed;
704 		offset -= consumed;
705 	}
706 
707 	return true;
708 }
709 EXPORT_SYMBOL(sg_miter_skip);
710 
711 /**
712  * sg_miter_next - proceed mapping iterator to the next mapping
713  * @miter: sg mapping iter to proceed
714  *
715  * Description:
716  *   Proceeds @miter to the next mapping.  @miter should have been started
717  *   using sg_miter_start().  On successful return, @miter->page,
718  *   @miter->addr and @miter->length point to the current mapping.
719  *
720  * Context:
721  *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
722  *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
723  *
724  * Returns:
725  *   true if @miter contains the next mapping.  false if end of sg
726  *   list is reached.
727  */
728 bool sg_miter_next(struct sg_mapping_iter *miter)
729 {
730 	sg_miter_stop(miter);
731 
732 	/*
733 	 * Get to the next page if necessary.
734 	 * __remaining, __offset is adjusted by sg_miter_stop
735 	 */
736 	if (!sg_miter_get_next_page(miter))
737 		return false;
738 
739 	miter->page = sg_page_iter_page(&miter->piter);
740 	miter->consumed = miter->length = miter->__remaining;
741 
742 	if (miter->__flags & SG_MITER_ATOMIC)
743 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
744 	else
745 		miter->addr = kmap(miter->page) + miter->__offset;
746 
747 	return true;
748 }
749 EXPORT_SYMBOL(sg_miter_next);
750 
751 /**
752  * sg_miter_stop - stop mapping iteration
753  * @miter: sg mapping iter to be stopped
754  *
755  * Description:
756  *   Stops mapping iterator @miter.  @miter should have been started
757  *   using sg_miter_start().  A stopped iteration can be resumed by
758  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
759  *   need to be released during iteration.
760  *
761  * Context:
762  *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
763  *   otherwise.
764  */
765 void sg_miter_stop(struct sg_mapping_iter *miter)
766 {
767 	WARN_ON(miter->consumed > miter->length);
768 
769 	/* drop resources from the last iteration */
770 	if (miter->addr) {
771 		miter->__offset += miter->consumed;
772 		miter->__remaining -= miter->consumed;
773 
774 		if ((miter->__flags & SG_MITER_TO_SG) &&
775 		    !PageSlab(miter->page))
776 			flush_kernel_dcache_page(miter->page);
777 
778 		if (miter->__flags & SG_MITER_ATOMIC) {
779 			WARN_ON_ONCE(preemptible());
780 			kunmap_atomic(miter->addr);
781 		} else
782 			kunmap(miter->page);
783 
784 		miter->page = NULL;
785 		miter->addr = NULL;
786 		miter->length = 0;
787 		miter->consumed = 0;
788 	}
789 }
790 EXPORT_SYMBOL(sg_miter_stop);
791 
792 /**
793  * sg_copy_buffer - Copy data between a linear buffer and an SG list
794  * @sgl:		 The SG list
795  * @nents:		 Number of SG entries
796  * @buf:		 Where to copy from
797  * @buflen:		 The number of bytes to copy
798  * @skip:		 Number of bytes to skip before copying
799  * @to_buffer:		 transfer direction (true == from an sg list to a
800  *			 buffer, false == from a buffer to an sg list
801  *
802  * Returns the number of copied bytes.
803  *
804  **/
805 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
806 		      size_t buflen, off_t skip, bool to_buffer)
807 {
808 	unsigned int offset = 0;
809 	struct sg_mapping_iter miter;
810 	unsigned int sg_flags = SG_MITER_ATOMIC;
811 
812 	if (to_buffer)
813 		sg_flags |= SG_MITER_FROM_SG;
814 	else
815 		sg_flags |= SG_MITER_TO_SG;
816 
817 	sg_miter_start(&miter, sgl, nents, sg_flags);
818 
819 	if (!sg_miter_skip(&miter, skip))
820 		return false;
821 
822 	while ((offset < buflen) && sg_miter_next(&miter)) {
823 		unsigned int len;
824 
825 		len = min(miter.length, buflen - offset);
826 
827 		if (to_buffer)
828 			memcpy(buf + offset, miter.addr, len);
829 		else
830 			memcpy(miter.addr, buf + offset, len);
831 
832 		offset += len;
833 	}
834 
835 	sg_miter_stop(&miter);
836 
837 	return offset;
838 }
839 EXPORT_SYMBOL(sg_copy_buffer);
840 
841 /**
842  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
843  * @sgl:		 The SG list
844  * @nents:		 Number of SG entries
845  * @buf:		 Where to copy from
846  * @buflen:		 The number of bytes to copy
847  *
848  * Returns the number of copied bytes.
849  *
850  **/
851 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
852 			   const void *buf, size_t buflen)
853 {
854 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
855 }
856 EXPORT_SYMBOL(sg_copy_from_buffer);
857 
858 /**
859  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
860  * @sgl:		 The SG list
861  * @nents:		 Number of SG entries
862  * @buf:		 Where to copy to
863  * @buflen:		 The number of bytes to copy
864  *
865  * Returns the number of copied bytes.
866  *
867  **/
868 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
869 			 void *buf, size_t buflen)
870 {
871 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
872 }
873 EXPORT_SYMBOL(sg_copy_to_buffer);
874 
875 /**
876  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
877  * @sgl:		 The SG list
878  * @nents:		 Number of SG entries
879  * @buf:		 Where to copy from
880  * @buflen:		 The number of bytes to copy
881  * @skip:		 Number of bytes to skip before copying
882  *
883  * Returns the number of copied bytes.
884  *
885  **/
886 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
887 			    const void *buf, size_t buflen, off_t skip)
888 {
889 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
890 }
891 EXPORT_SYMBOL(sg_pcopy_from_buffer);
892 
893 /**
894  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
895  * @sgl:		 The SG list
896  * @nents:		 Number of SG entries
897  * @buf:		 Where to copy to
898  * @buflen:		 The number of bytes to copy
899  * @skip:		 Number of bytes to skip before copying
900  *
901  * Returns the number of copied bytes.
902  *
903  **/
904 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
905 			  void *buf, size_t buflen, off_t skip)
906 {
907 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
908 }
909 EXPORT_SYMBOL(sg_pcopy_to_buffer);
910 
911 /**
912  * sg_zero_buffer - Zero-out a part of a SG list
913  * @sgl:		 The SG list
914  * @nents:		 Number of SG entries
915  * @buflen:		 The number of bytes to zero out
916  * @skip:		 Number of bytes to skip before zeroing
917  *
918  * Returns the number of bytes zeroed.
919  **/
920 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
921 		       size_t buflen, off_t skip)
922 {
923 	unsigned int offset = 0;
924 	struct sg_mapping_iter miter;
925 	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
926 
927 	sg_miter_start(&miter, sgl, nents, sg_flags);
928 
929 	if (!sg_miter_skip(&miter, skip))
930 		return false;
931 
932 	while (offset < buflen && sg_miter_next(&miter)) {
933 		unsigned int len;
934 
935 		len = min(miter.length, buflen - offset);
936 		memset(miter.addr, 0, len);
937 
938 		offset += len;
939 	}
940 
941 	sg_miter_stop(&miter);
942 	return offset;
943 }
944 EXPORT_SYMBOL(sg_zero_buffer);
945