1 /* 2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> 3 * 4 * Scatterlist handling helpers. 5 * 6 * This source code is licensed under the GNU General Public License, 7 * Version 2. See the file COPYING for more details. 8 */ 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/scatterlist.h> 12 #include <linux/highmem.h> 13 14 /** 15 * sg_next - return the next scatterlist entry in a list 16 * @sg: The current sg entry 17 * 18 * Description: 19 * Usually the next entry will be @sg@ + 1, but if this sg element is part 20 * of a chained scatterlist, it could jump to the start of a new 21 * scatterlist array. 22 * 23 **/ 24 struct scatterlist *sg_next(struct scatterlist *sg) 25 { 26 #ifdef CONFIG_DEBUG_SG 27 BUG_ON(sg->sg_magic != SG_MAGIC); 28 #endif 29 if (sg_is_last(sg)) 30 return NULL; 31 32 sg++; 33 if (unlikely(sg_is_chain(sg))) 34 sg = sg_chain_ptr(sg); 35 36 return sg; 37 } 38 EXPORT_SYMBOL(sg_next); 39 40 /** 41 * sg_last - return the last scatterlist entry in a list 42 * @sgl: First entry in the scatterlist 43 * @nents: Number of entries in the scatterlist 44 * 45 * Description: 46 * Should only be used casually, it (currently) scans the entire list 47 * to get the last entry. 48 * 49 * Note that the @sgl@ pointer passed in need not be the first one, 50 * the important bit is that @nents@ denotes the number of entries that 51 * exist from @sgl@. 52 * 53 **/ 54 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) 55 { 56 #ifndef ARCH_HAS_SG_CHAIN 57 struct scatterlist *ret = &sgl[nents - 1]; 58 #else 59 struct scatterlist *sg, *ret = NULL; 60 unsigned int i; 61 62 for_each_sg(sgl, sg, nents, i) 63 ret = sg; 64 65 #endif 66 #ifdef CONFIG_DEBUG_SG 67 BUG_ON(sgl[0].sg_magic != SG_MAGIC); 68 BUG_ON(!sg_is_last(ret)); 69 #endif 70 return ret; 71 } 72 EXPORT_SYMBOL(sg_last); 73 74 /** 75 * sg_init_table - Initialize SG table 76 * @sgl: The SG table 77 * @nents: Number of entries in table 78 * 79 * Notes: 80 * If this is part of a chained sg table, sg_mark_end() should be 81 * used only on the last table part. 82 * 83 **/ 84 void sg_init_table(struct scatterlist *sgl, unsigned int nents) 85 { 86 memset(sgl, 0, sizeof(*sgl) * nents); 87 #ifdef CONFIG_DEBUG_SG 88 { 89 unsigned int i; 90 for (i = 0; i < nents; i++) 91 sgl[i].sg_magic = SG_MAGIC; 92 } 93 #endif 94 sg_mark_end(&sgl[nents - 1]); 95 } 96 EXPORT_SYMBOL(sg_init_table); 97 98 /** 99 * sg_init_one - Initialize a single entry sg list 100 * @sg: SG entry 101 * @buf: Virtual address for IO 102 * @buflen: IO length 103 * 104 **/ 105 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) 106 { 107 sg_init_table(sg, 1); 108 sg_set_buf(sg, buf, buflen); 109 } 110 EXPORT_SYMBOL(sg_init_one); 111 112 /* 113 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree 114 * helpers. 115 */ 116 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) 117 { 118 if (nents == SG_MAX_SINGLE_ALLOC) 119 return (struct scatterlist *) __get_free_page(gfp_mask); 120 else 121 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask); 122 } 123 124 static void sg_kfree(struct scatterlist *sg, unsigned int nents) 125 { 126 if (nents == SG_MAX_SINGLE_ALLOC) 127 free_page((unsigned long) sg); 128 else 129 kfree(sg); 130 } 131 132 /** 133 * __sg_free_table - Free a previously mapped sg table 134 * @table: The sg table header to use 135 * @max_ents: The maximum number of entries per single scatterlist 136 * @free_fn: Free function 137 * 138 * Description: 139 * Free an sg table previously allocated and setup with 140 * __sg_alloc_table(). The @max_ents value must be identical to 141 * that previously used with __sg_alloc_table(). 142 * 143 **/ 144 void __sg_free_table(struct sg_table *table, unsigned int max_ents, 145 sg_free_fn *free_fn) 146 { 147 struct scatterlist *sgl, *next; 148 149 if (unlikely(!table->sgl)) 150 return; 151 152 sgl = table->sgl; 153 while (table->orig_nents) { 154 unsigned int alloc_size = table->orig_nents; 155 unsigned int sg_size; 156 157 /* 158 * If we have more than max_ents segments left, 159 * then assign 'next' to the sg table after the current one. 160 * sg_size is then one less than alloc size, since the last 161 * element is the chain pointer. 162 */ 163 if (alloc_size > max_ents) { 164 next = sg_chain_ptr(&sgl[max_ents - 1]); 165 alloc_size = max_ents; 166 sg_size = alloc_size - 1; 167 } else { 168 sg_size = alloc_size; 169 next = NULL; 170 } 171 172 table->orig_nents -= sg_size; 173 free_fn(sgl, alloc_size); 174 sgl = next; 175 } 176 177 table->sgl = NULL; 178 } 179 EXPORT_SYMBOL(__sg_free_table); 180 181 /** 182 * sg_free_table - Free a previously allocated sg table 183 * @table: The mapped sg table header 184 * 185 **/ 186 void sg_free_table(struct sg_table *table) 187 { 188 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); 189 } 190 EXPORT_SYMBOL(sg_free_table); 191 192 /** 193 * __sg_alloc_table - Allocate and initialize an sg table with given allocator 194 * @table: The sg table header to use 195 * @nents: Number of entries in sg list 196 * @max_ents: The maximum number of entries the allocator returns per call 197 * @gfp_mask: GFP allocation mask 198 * @alloc_fn: Allocator to use 199 * 200 * Description: 201 * This function returns a @table @nents long. The allocator is 202 * defined to return scatterlist chunks of maximum size @max_ents. 203 * Thus if @nents is bigger than @max_ents, the scatterlists will be 204 * chained in units of @max_ents. 205 * 206 * Notes: 207 * If this function returns non-0 (eg failure), the caller must call 208 * __sg_free_table() to cleanup any leftover allocations. 209 * 210 **/ 211 int __sg_alloc_table(struct sg_table *table, unsigned int nents, 212 unsigned int max_ents, gfp_t gfp_mask, 213 sg_alloc_fn *alloc_fn) 214 { 215 struct scatterlist *sg, *prv; 216 unsigned int left; 217 218 #ifndef ARCH_HAS_SG_CHAIN 219 BUG_ON(nents > max_ents); 220 #endif 221 222 memset(table, 0, sizeof(*table)); 223 224 left = nents; 225 prv = NULL; 226 do { 227 unsigned int sg_size, alloc_size = left; 228 229 if (alloc_size > max_ents) { 230 alloc_size = max_ents; 231 sg_size = alloc_size - 1; 232 } else 233 sg_size = alloc_size; 234 235 left -= sg_size; 236 237 sg = alloc_fn(alloc_size, gfp_mask); 238 if (unlikely(!sg)) 239 return -ENOMEM; 240 241 sg_init_table(sg, alloc_size); 242 table->nents = table->orig_nents += sg_size; 243 244 /* 245 * If this is the first mapping, assign the sg table header. 246 * If this is not the first mapping, chain previous part. 247 */ 248 if (prv) 249 sg_chain(prv, max_ents, sg); 250 else 251 table->sgl = sg; 252 253 /* 254 * If no more entries after this one, mark the end 255 */ 256 if (!left) 257 sg_mark_end(&sg[sg_size - 1]); 258 259 /* 260 * only really needed for mempool backed sg allocations (like 261 * SCSI), a possible improvement here would be to pass the 262 * table pointer into the allocator and let that clear these 263 * flags 264 */ 265 gfp_mask &= ~__GFP_WAIT; 266 gfp_mask |= __GFP_HIGH; 267 prv = sg; 268 } while (left); 269 270 return 0; 271 } 272 EXPORT_SYMBOL(__sg_alloc_table); 273 274 /** 275 * sg_alloc_table - Allocate and initialize an sg table 276 * @table: The sg table header to use 277 * @nents: Number of entries in sg list 278 * @gfp_mask: GFP allocation mask 279 * 280 * Description: 281 * Allocate and initialize an sg table. If @nents@ is larger than 282 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. 283 * 284 **/ 285 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) 286 { 287 int ret; 288 289 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, 290 gfp_mask, sg_kmalloc); 291 if (unlikely(ret)) 292 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); 293 294 return ret; 295 } 296 EXPORT_SYMBOL(sg_alloc_table); 297 298 /** 299 * sg_miter_start - start mapping iteration over a sg list 300 * @miter: sg mapping iter to be started 301 * @sgl: sg list to iterate over 302 * @nents: number of sg entries 303 * 304 * Description: 305 * Starts mapping iterator @miter. 306 * 307 * Context: 308 * Don't care. 309 */ 310 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, 311 unsigned int nents, unsigned int flags) 312 { 313 memset(miter, 0, sizeof(struct sg_mapping_iter)); 314 315 miter->__sg = sgl; 316 miter->__nents = nents; 317 miter->__offset = 0; 318 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); 319 miter->__flags = flags; 320 } 321 EXPORT_SYMBOL(sg_miter_start); 322 323 /** 324 * sg_miter_next - proceed mapping iterator to the next mapping 325 * @miter: sg mapping iter to proceed 326 * 327 * Description: 328 * Proceeds @miter@ to the next mapping. @miter@ should have been 329 * started using sg_miter_start(). On successful return, 330 * @miter@->page, @miter@->addr and @miter@->length point to the 331 * current mapping. 332 * 333 * Context: 334 * IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till 335 * @miter@ is stopped. May sleep if !SG_MITER_ATOMIC. 336 * 337 * Returns: 338 * true if @miter contains the next mapping. false if end of sg 339 * list is reached. 340 */ 341 bool sg_miter_next(struct sg_mapping_iter *miter) 342 { 343 unsigned int off, len; 344 345 /* check for end and drop resources from the last iteration */ 346 if (!miter->__nents) 347 return false; 348 349 sg_miter_stop(miter); 350 351 /* get to the next sg if necessary. __offset is adjusted by stop */ 352 while (miter->__offset == miter->__sg->length) { 353 if (--miter->__nents) { 354 miter->__sg = sg_next(miter->__sg); 355 miter->__offset = 0; 356 } else 357 return false; 358 } 359 360 /* map the next page */ 361 off = miter->__sg->offset + miter->__offset; 362 len = miter->__sg->length - miter->__offset; 363 364 miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT); 365 off &= ~PAGE_MASK; 366 miter->length = min_t(unsigned int, len, PAGE_SIZE - off); 367 miter->consumed = miter->length; 368 369 if (miter->__flags & SG_MITER_ATOMIC) 370 miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off; 371 else 372 miter->addr = kmap(miter->page) + off; 373 374 return true; 375 } 376 EXPORT_SYMBOL(sg_miter_next); 377 378 /** 379 * sg_miter_stop - stop mapping iteration 380 * @miter: sg mapping iter to be stopped 381 * 382 * Description: 383 * Stops mapping iterator @miter. @miter should have been started 384 * started using sg_miter_start(). A stopped iteration can be 385 * resumed by calling sg_miter_next() on it. This is useful when 386 * resources (kmap) need to be released during iteration. 387 * 388 * Context: 389 * IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise. 390 */ 391 void sg_miter_stop(struct sg_mapping_iter *miter) 392 { 393 WARN_ON(miter->consumed > miter->length); 394 395 /* drop resources from the last iteration */ 396 if (miter->addr) { 397 miter->__offset += miter->consumed; 398 399 if (miter->__flags & SG_MITER_TO_SG) 400 flush_kernel_dcache_page(miter->page); 401 402 if (miter->__flags & SG_MITER_ATOMIC) { 403 WARN_ON(!irqs_disabled()); 404 kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ); 405 } else 406 kunmap(miter->page); 407 408 miter->page = NULL; 409 miter->addr = NULL; 410 miter->length = 0; 411 miter->consumed = 0; 412 } 413 } 414 EXPORT_SYMBOL(sg_miter_stop); 415 416 /** 417 * sg_copy_buffer - Copy data between a linear buffer and an SG list 418 * @sgl: The SG list 419 * @nents: Number of SG entries 420 * @buf: Where to copy from 421 * @buflen: The number of bytes to copy 422 * @to_buffer: transfer direction (non zero == from an sg list to a 423 * buffer, 0 == from a buffer to an sg list 424 * 425 * Returns the number of copied bytes. 426 * 427 **/ 428 static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, 429 void *buf, size_t buflen, int to_buffer) 430 { 431 unsigned int offset = 0; 432 struct sg_mapping_iter miter; 433 unsigned long flags; 434 unsigned int sg_flags = SG_MITER_ATOMIC; 435 436 if (to_buffer) 437 sg_flags |= SG_MITER_FROM_SG; 438 else 439 sg_flags |= SG_MITER_TO_SG; 440 441 sg_miter_start(&miter, sgl, nents, sg_flags); 442 443 local_irq_save(flags); 444 445 while (sg_miter_next(&miter) && offset < buflen) { 446 unsigned int len; 447 448 len = min(miter.length, buflen - offset); 449 450 if (to_buffer) 451 memcpy(buf + offset, miter.addr, len); 452 else 453 memcpy(miter.addr, buf + offset, len); 454 455 offset += len; 456 } 457 458 sg_miter_stop(&miter); 459 460 local_irq_restore(flags); 461 return offset; 462 } 463 464 /** 465 * sg_copy_from_buffer - Copy from a linear buffer to an SG list 466 * @sgl: The SG list 467 * @nents: Number of SG entries 468 * @buf: Where to copy from 469 * @buflen: The number of bytes to copy 470 * 471 * Returns the number of copied bytes. 472 * 473 **/ 474 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, 475 void *buf, size_t buflen) 476 { 477 return sg_copy_buffer(sgl, nents, buf, buflen, 0); 478 } 479 EXPORT_SYMBOL(sg_copy_from_buffer); 480 481 /** 482 * sg_copy_to_buffer - Copy from an SG list to a linear buffer 483 * @sgl: The SG list 484 * @nents: Number of SG entries 485 * @buf: Where to copy to 486 * @buflen: The number of bytes to copy 487 * 488 * Returns the number of copied bytes. 489 * 490 **/ 491 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, 492 void *buf, size_t buflen) 493 { 494 return sg_copy_buffer(sgl, nents, buf, buflen, 1); 495 } 496 EXPORT_SYMBOL(sg_copy_to_buffer); 497