xref: /linux/lib/sbitmap.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 /*
13  * See if we have deferred clears that we can batch move
14  */
15 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
16 {
17 	unsigned long mask, val;
18 	bool ret = false;
19 	unsigned long flags;
20 
21 	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
22 
23 	if (!sb->map[index].cleared)
24 		goto out_unlock;
25 
26 	/*
27 	 * First get a stable cleared mask, setting the old mask to 0.
28 	 */
29 	do {
30 		mask = sb->map[index].cleared;
31 	} while (cmpxchg(&sb->map[index].cleared, mask, 0) != mask);
32 
33 	/*
34 	 * Now clear the masked bits in our free word
35 	 */
36 	do {
37 		val = sb->map[index].word;
38 	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
39 
40 	ret = true;
41 out_unlock:
42 	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
43 	return ret;
44 }
45 
46 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
47 		      gfp_t flags, int node)
48 {
49 	unsigned int bits_per_word;
50 	unsigned int i;
51 
52 	if (shift < 0) {
53 		shift = ilog2(BITS_PER_LONG);
54 		/*
55 		 * If the bitmap is small, shrink the number of bits per word so
56 		 * we spread over a few cachelines, at least. If less than 4
57 		 * bits, just forget about it, it's not going to work optimally
58 		 * anyway.
59 		 */
60 		if (depth >= 4) {
61 			while ((4U << shift) > depth)
62 				shift--;
63 		}
64 	}
65 	bits_per_word = 1U << shift;
66 	if (bits_per_word > BITS_PER_LONG)
67 		return -EINVAL;
68 
69 	sb->shift = shift;
70 	sb->depth = depth;
71 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
72 
73 	if (depth == 0) {
74 		sb->map = NULL;
75 		return 0;
76 	}
77 
78 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
79 	if (!sb->map)
80 		return -ENOMEM;
81 
82 	for (i = 0; i < sb->map_nr; i++) {
83 		sb->map[i].depth = min(depth, bits_per_word);
84 		depth -= sb->map[i].depth;
85 		spin_lock_init(&sb->map[i].swap_lock);
86 	}
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(sbitmap_init_node);
90 
91 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
92 {
93 	unsigned int bits_per_word = 1U << sb->shift;
94 	unsigned int i;
95 
96 	for (i = 0; i < sb->map_nr; i++)
97 		sbitmap_deferred_clear(sb, i);
98 
99 	sb->depth = depth;
100 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
101 
102 	for (i = 0; i < sb->map_nr; i++) {
103 		sb->map[i].depth = min(depth, bits_per_word);
104 		depth -= sb->map[i].depth;
105 	}
106 }
107 EXPORT_SYMBOL_GPL(sbitmap_resize);
108 
109 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
110 			      unsigned int hint, bool wrap)
111 {
112 	unsigned int orig_hint = hint;
113 	int nr;
114 
115 	while (1) {
116 		nr = find_next_zero_bit(word, depth, hint);
117 		if (unlikely(nr >= depth)) {
118 			/*
119 			 * We started with an offset, and we didn't reset the
120 			 * offset to 0 in a failure case, so start from 0 to
121 			 * exhaust the map.
122 			 */
123 			if (orig_hint && hint && wrap) {
124 				hint = orig_hint = 0;
125 				continue;
126 			}
127 			return -1;
128 		}
129 
130 		if (!test_and_set_bit_lock(nr, word))
131 			break;
132 
133 		hint = nr + 1;
134 		if (hint >= depth - 1)
135 			hint = 0;
136 	}
137 
138 	return nr;
139 }
140 
141 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
142 				     unsigned int alloc_hint, bool round_robin)
143 {
144 	int nr;
145 
146 	do {
147 		nr = __sbitmap_get_word(&sb->map[index].word,
148 					sb->map[index].depth, alloc_hint,
149 					!round_robin);
150 		if (nr != -1)
151 			break;
152 		if (!sbitmap_deferred_clear(sb, index))
153 			break;
154 	} while (1);
155 
156 	return nr;
157 }
158 
159 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
160 {
161 	unsigned int i, index;
162 	int nr = -1;
163 
164 	index = SB_NR_TO_INDEX(sb, alloc_hint);
165 
166 	/*
167 	 * Unless we're doing round robin tag allocation, just use the
168 	 * alloc_hint to find the right word index. No point in looping
169 	 * twice in find_next_zero_bit() for that case.
170 	 */
171 	if (round_robin)
172 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
173 	else
174 		alloc_hint = 0;
175 
176 	for (i = 0; i < sb->map_nr; i++) {
177 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
178 						round_robin);
179 		if (nr != -1) {
180 			nr += index << sb->shift;
181 			break;
182 		}
183 
184 		/* Jump to next index. */
185 		alloc_hint = 0;
186 		if (++index >= sb->map_nr)
187 			index = 0;
188 	}
189 
190 	return nr;
191 }
192 EXPORT_SYMBOL_GPL(sbitmap_get);
193 
194 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
195 			unsigned long shallow_depth)
196 {
197 	unsigned int i, index;
198 	int nr = -1;
199 
200 	index = SB_NR_TO_INDEX(sb, alloc_hint);
201 
202 	for (i = 0; i < sb->map_nr; i++) {
203 again:
204 		nr = __sbitmap_get_word(&sb->map[index].word,
205 					min(sb->map[index].depth, shallow_depth),
206 					SB_NR_TO_BIT(sb, alloc_hint), true);
207 		if (nr != -1) {
208 			nr += index << sb->shift;
209 			break;
210 		}
211 
212 		if (sbitmap_deferred_clear(sb, index))
213 			goto again;
214 
215 		/* Jump to next index. */
216 		index++;
217 		alloc_hint = index << sb->shift;
218 
219 		if (index >= sb->map_nr) {
220 			index = 0;
221 			alloc_hint = 0;
222 		}
223 	}
224 
225 	return nr;
226 }
227 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
228 
229 bool sbitmap_any_bit_set(const struct sbitmap *sb)
230 {
231 	unsigned int i;
232 
233 	for (i = 0; i < sb->map_nr; i++) {
234 		if (sb->map[i].word & ~sb->map[i].cleared)
235 			return true;
236 	}
237 	return false;
238 }
239 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
240 
241 bool sbitmap_any_bit_clear(const struct sbitmap *sb)
242 {
243 	unsigned int i;
244 
245 	for (i = 0; i < sb->map_nr; i++) {
246 		const struct sbitmap_word *word = &sb->map[i];
247 		unsigned long mask = word->word & ~word->cleared;
248 		unsigned long ret;
249 
250 		ret = find_first_zero_bit(&mask, word->depth);
251 		if (ret < word->depth)
252 			return true;
253 	}
254 	return false;
255 }
256 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
257 
258 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
259 {
260 	unsigned int i, weight = 0;
261 
262 	for (i = 0; i < sb->map_nr; i++) {
263 		const struct sbitmap_word *word = &sb->map[i];
264 
265 		if (set)
266 			weight += bitmap_weight(&word->word, word->depth);
267 		else
268 			weight += bitmap_weight(&word->cleared, word->depth);
269 	}
270 	return weight;
271 }
272 
273 static unsigned int sbitmap_weight(const struct sbitmap *sb)
274 {
275 	return __sbitmap_weight(sb, true);
276 }
277 
278 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
279 {
280 	return __sbitmap_weight(sb, false);
281 }
282 
283 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
284 {
285 	seq_printf(m, "depth=%u\n", sb->depth);
286 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
287 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
288 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
289 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
290 }
291 EXPORT_SYMBOL_GPL(sbitmap_show);
292 
293 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
294 {
295 	if ((offset & 0xf) == 0) {
296 		if (offset != 0)
297 			seq_putc(m, '\n');
298 		seq_printf(m, "%08x:", offset);
299 	}
300 	if ((offset & 0x1) == 0)
301 		seq_putc(m, ' ');
302 	seq_printf(m, "%02x", byte);
303 }
304 
305 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
306 {
307 	u8 byte = 0;
308 	unsigned int byte_bits = 0;
309 	unsigned int offset = 0;
310 	int i;
311 
312 	for (i = 0; i < sb->map_nr; i++) {
313 		unsigned long word = READ_ONCE(sb->map[i].word);
314 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
315 
316 		while (word_bits > 0) {
317 			unsigned int bits = min(8 - byte_bits, word_bits);
318 
319 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
320 			byte_bits += bits;
321 			if (byte_bits == 8) {
322 				emit_byte(m, offset, byte);
323 				byte = 0;
324 				byte_bits = 0;
325 				offset++;
326 			}
327 			word >>= bits;
328 			word_bits -= bits;
329 		}
330 	}
331 	if (byte_bits) {
332 		emit_byte(m, offset, byte);
333 		offset++;
334 	}
335 	if (offset)
336 		seq_putc(m, '\n');
337 }
338 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
339 
340 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
341 					unsigned int depth)
342 {
343 	unsigned int wake_batch;
344 	unsigned int shallow_depth;
345 
346 	/*
347 	 * For each batch, we wake up one queue. We need to make sure that our
348 	 * batch size is small enough that the full depth of the bitmap,
349 	 * potentially limited by a shallow depth, is enough to wake up all of
350 	 * the queues.
351 	 *
352 	 * Each full word of the bitmap has bits_per_word bits, and there might
353 	 * be a partial word. There are depth / bits_per_word full words and
354 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
355 	 *
356 	 * bits_per_word = 1 << shift
357 	 * depth / bits_per_word = depth >> shift
358 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
359 	 *
360 	 * Each word can be limited to sbq->min_shallow_depth bits.
361 	 */
362 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
363 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
364 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
365 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
366 			     SBQ_WAKE_BATCH);
367 
368 	return wake_batch;
369 }
370 
371 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
372 			    int shift, bool round_robin, gfp_t flags, int node)
373 {
374 	int ret;
375 	int i;
376 
377 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
378 	if (ret)
379 		return ret;
380 
381 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
382 	if (!sbq->alloc_hint) {
383 		sbitmap_free(&sbq->sb);
384 		return -ENOMEM;
385 	}
386 
387 	if (depth && !round_robin) {
388 		for_each_possible_cpu(i)
389 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
390 	}
391 
392 	sbq->min_shallow_depth = UINT_MAX;
393 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
394 	atomic_set(&sbq->wake_index, 0);
395 	atomic_set(&sbq->ws_active, 0);
396 
397 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
398 	if (!sbq->ws) {
399 		free_percpu(sbq->alloc_hint);
400 		sbitmap_free(&sbq->sb);
401 		return -ENOMEM;
402 	}
403 
404 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
405 		init_waitqueue_head(&sbq->ws[i].wait);
406 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
407 	}
408 
409 	sbq->round_robin = round_robin;
410 	return 0;
411 }
412 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
413 
414 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
415 					    unsigned int depth)
416 {
417 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
418 	int i;
419 
420 	if (sbq->wake_batch != wake_batch) {
421 		WRITE_ONCE(sbq->wake_batch, wake_batch);
422 		/*
423 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
424 		 * to ensure that the batch size is updated before the wait
425 		 * counts.
426 		 */
427 		smp_mb();
428 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
429 			atomic_set(&sbq->ws[i].wait_cnt, 1);
430 	}
431 }
432 
433 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
434 {
435 	sbitmap_queue_update_wake_batch(sbq, depth);
436 	sbitmap_resize(&sbq->sb, depth);
437 }
438 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
439 
440 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
441 {
442 	unsigned int hint, depth;
443 	int nr;
444 
445 	hint = this_cpu_read(*sbq->alloc_hint);
446 	depth = READ_ONCE(sbq->sb.depth);
447 	if (unlikely(hint >= depth)) {
448 		hint = depth ? prandom_u32() % depth : 0;
449 		this_cpu_write(*sbq->alloc_hint, hint);
450 	}
451 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
452 
453 	if (nr == -1) {
454 		/* If the map is full, a hint won't do us much good. */
455 		this_cpu_write(*sbq->alloc_hint, 0);
456 	} else if (nr == hint || unlikely(sbq->round_robin)) {
457 		/* Only update the hint if we used it. */
458 		hint = nr + 1;
459 		if (hint >= depth - 1)
460 			hint = 0;
461 		this_cpu_write(*sbq->alloc_hint, hint);
462 	}
463 
464 	return nr;
465 }
466 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
467 
468 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
469 				unsigned int shallow_depth)
470 {
471 	unsigned int hint, depth;
472 	int nr;
473 
474 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
475 
476 	hint = this_cpu_read(*sbq->alloc_hint);
477 	depth = READ_ONCE(sbq->sb.depth);
478 	if (unlikely(hint >= depth)) {
479 		hint = depth ? prandom_u32() % depth : 0;
480 		this_cpu_write(*sbq->alloc_hint, hint);
481 	}
482 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
483 
484 	if (nr == -1) {
485 		/* If the map is full, a hint won't do us much good. */
486 		this_cpu_write(*sbq->alloc_hint, 0);
487 	} else if (nr == hint || unlikely(sbq->round_robin)) {
488 		/* Only update the hint if we used it. */
489 		hint = nr + 1;
490 		if (hint >= depth - 1)
491 			hint = 0;
492 		this_cpu_write(*sbq->alloc_hint, hint);
493 	}
494 
495 	return nr;
496 }
497 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
498 
499 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
500 				     unsigned int min_shallow_depth)
501 {
502 	sbq->min_shallow_depth = min_shallow_depth;
503 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
504 }
505 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
506 
507 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
508 {
509 	int i, wake_index;
510 
511 	if (!atomic_read(&sbq->ws_active))
512 		return NULL;
513 
514 	wake_index = atomic_read(&sbq->wake_index);
515 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
516 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
517 
518 		if (waitqueue_active(&ws->wait)) {
519 			int o = atomic_read(&sbq->wake_index);
520 
521 			if (wake_index != o)
522 				atomic_cmpxchg(&sbq->wake_index, o, wake_index);
523 			return ws;
524 		}
525 
526 		wake_index = sbq_index_inc(wake_index);
527 	}
528 
529 	return NULL;
530 }
531 
532 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
533 {
534 	struct sbq_wait_state *ws;
535 	unsigned int wake_batch;
536 	int wait_cnt;
537 
538 	ws = sbq_wake_ptr(sbq);
539 	if (!ws)
540 		return false;
541 
542 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
543 	if (wait_cnt <= 0) {
544 		int ret;
545 
546 		wake_batch = READ_ONCE(sbq->wake_batch);
547 
548 		/*
549 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
550 		 * ensure that we see the batch size update before the wait
551 		 * count is reset.
552 		 */
553 		smp_mb__before_atomic();
554 
555 		/*
556 		 * For concurrent callers of this, the one that failed the
557 		 * atomic_cmpxhcg() race should call this function again
558 		 * to wakeup a new batch on a different 'ws'.
559 		 */
560 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
561 		if (ret == wait_cnt) {
562 			sbq_index_atomic_inc(&sbq->wake_index);
563 			wake_up_nr(&ws->wait, wake_batch);
564 			return false;
565 		}
566 
567 		return true;
568 	}
569 
570 	return false;
571 }
572 
573 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
574 {
575 	while (__sbq_wake_up(sbq))
576 		;
577 }
578 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
579 
580 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
581 			 unsigned int cpu)
582 {
583 	/*
584 	 * Once the clear bit is set, the bit may be allocated out.
585 	 *
586 	 * Orders READ/WRITE on the asssociated instance(such as request
587 	 * of blk_mq) by this bit for avoiding race with re-allocation,
588 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
589 	 *
590 	 * One invariant is that the clear bit has to be zero when the bit
591 	 * is in use.
592 	 */
593 	smp_mb__before_atomic();
594 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
595 
596 	/*
597 	 * Pairs with the memory barrier in set_current_state() to ensure the
598 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
599 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
600 	 * waiter. See the comment on waitqueue_active().
601 	 */
602 	smp_mb__after_atomic();
603 	sbitmap_queue_wake_up(sbq);
604 
605 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
606 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
607 }
608 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
609 
610 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
611 {
612 	int i, wake_index;
613 
614 	/*
615 	 * Pairs with the memory barrier in set_current_state() like in
616 	 * sbitmap_queue_wake_up().
617 	 */
618 	smp_mb();
619 	wake_index = atomic_read(&sbq->wake_index);
620 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
621 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
622 
623 		if (waitqueue_active(&ws->wait))
624 			wake_up(&ws->wait);
625 
626 		wake_index = sbq_index_inc(wake_index);
627 	}
628 }
629 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
630 
631 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
632 {
633 	bool first;
634 	int i;
635 
636 	sbitmap_show(&sbq->sb, m);
637 
638 	seq_puts(m, "alloc_hint={");
639 	first = true;
640 	for_each_possible_cpu(i) {
641 		if (!first)
642 			seq_puts(m, ", ");
643 		first = false;
644 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
645 	}
646 	seq_puts(m, "}\n");
647 
648 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
649 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
650 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
651 
652 	seq_puts(m, "ws={\n");
653 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
654 		struct sbq_wait_state *ws = &sbq->ws[i];
655 
656 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
657 			   atomic_read(&ws->wait_cnt),
658 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
659 	}
660 	seq_puts(m, "}\n");
661 
662 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
663 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
664 }
665 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
666 
667 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
668 			    struct sbq_wait_state *ws,
669 			    struct sbq_wait *sbq_wait)
670 {
671 	if (!sbq_wait->sbq) {
672 		sbq_wait->sbq = sbq;
673 		atomic_inc(&sbq->ws_active);
674 	}
675 	add_wait_queue(&ws->wait, &sbq_wait->wait);
676 }
677 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
678 
679 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
680 {
681 	list_del_init(&sbq_wait->wait.entry);
682 	if (sbq_wait->sbq) {
683 		atomic_dec(&sbq_wait->sbq->ws_active);
684 		sbq_wait->sbq = NULL;
685 	}
686 }
687 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
688 
689 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
690 			     struct sbq_wait_state *ws,
691 			     struct sbq_wait *sbq_wait, int state)
692 {
693 	if (!sbq_wait->sbq) {
694 		atomic_inc(&sbq->ws_active);
695 		sbq_wait->sbq = sbq;
696 	}
697 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
698 }
699 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
700 
701 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
702 			 struct sbq_wait *sbq_wait)
703 {
704 	finish_wait(&ws->wait, &sbq_wait->wait);
705 	if (sbq_wait->sbq) {
706 		atomic_dec(&sbq->ws_active);
707 		sbq_wait->sbq = NULL;
708 	}
709 }
710 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
711