1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Facebook 4 * Copyright (C) 2013-2014 Jens Axboe 5 */ 6 7 #include <linux/sched.h> 8 #include <linux/random.h> 9 #include <linux/sbitmap.h> 10 #include <linux/seq_file.h> 11 12 static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) 13 { 14 unsigned depth = sb->depth; 15 16 sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); 17 if (!sb->alloc_hint) 18 return -ENOMEM; 19 20 if (depth && !sb->round_robin) { 21 int i; 22 23 for_each_possible_cpu(i) 24 *per_cpu_ptr(sb->alloc_hint, i) = get_random_u32_below(depth); 25 } 26 return 0; 27 } 28 29 static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, 30 unsigned int depth) 31 { 32 unsigned hint; 33 34 hint = this_cpu_read(*sb->alloc_hint); 35 if (unlikely(hint >= depth)) { 36 hint = depth ? get_random_u32_below(depth) : 0; 37 this_cpu_write(*sb->alloc_hint, hint); 38 } 39 40 return hint; 41 } 42 43 static inline void update_alloc_hint_after_get(struct sbitmap *sb, 44 unsigned int depth, 45 unsigned int hint, 46 unsigned int nr) 47 { 48 if (nr == -1) { 49 /* If the map is full, a hint won't do us much good. */ 50 this_cpu_write(*sb->alloc_hint, 0); 51 } else if (nr == hint || unlikely(sb->round_robin)) { 52 /* Only update the hint if we used it. */ 53 hint = nr + 1; 54 if (hint >= depth - 1) 55 hint = 0; 56 this_cpu_write(*sb->alloc_hint, hint); 57 } 58 } 59 60 /* 61 * See if we have deferred clears that we can batch move 62 */ 63 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map, 64 unsigned int depth, unsigned int alloc_hint, bool wrap) 65 { 66 unsigned long mask, word_mask; 67 68 guard(raw_spinlock_irqsave)(&map->swap_lock); 69 70 if (!map->cleared) { 71 if (depth == 0) 72 return false; 73 74 word_mask = (~0UL) >> (BITS_PER_LONG - depth); 75 /* 76 * The current behavior is to always retry after moving 77 * ->cleared to word, and we change it to retry in case 78 * of any free bits. To avoid an infinite loop, we need 79 * to take wrap & alloc_hint into account, otherwise a 80 * soft lockup may occur. 81 */ 82 if (!wrap && alloc_hint) 83 word_mask &= ~((1UL << alloc_hint) - 1); 84 85 return (READ_ONCE(map->word) & word_mask) != word_mask; 86 } 87 88 /* 89 * First get a stable cleared mask, setting the old mask to 0. 90 */ 91 mask = xchg(&map->cleared, 0); 92 93 /* 94 * Now clear the masked bits in our free word 95 */ 96 atomic_long_andnot(mask, (atomic_long_t *)&map->word); 97 BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); 98 return true; 99 } 100 101 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, 102 gfp_t flags, int node, bool round_robin, 103 bool alloc_hint) 104 { 105 unsigned int bits_per_word; 106 int i; 107 108 if (shift < 0) 109 shift = sbitmap_calculate_shift(depth); 110 111 bits_per_word = 1U << shift; 112 if (bits_per_word > BITS_PER_LONG) 113 return -EINVAL; 114 115 sb->shift = shift; 116 sb->depth = depth; 117 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 118 sb->round_robin = round_robin; 119 120 if (depth == 0) { 121 sb->map = NULL; 122 return 0; 123 } 124 125 if (alloc_hint) { 126 if (init_alloc_hint(sb, flags)) 127 return -ENOMEM; 128 } else { 129 sb->alloc_hint = NULL; 130 } 131 132 sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node); 133 if (!sb->map) { 134 free_percpu(sb->alloc_hint); 135 return -ENOMEM; 136 } 137 138 for (i = 0; i < sb->map_nr; i++) 139 raw_spin_lock_init(&sb->map[i].swap_lock); 140 141 return 0; 142 } 143 EXPORT_SYMBOL_GPL(sbitmap_init_node); 144 145 void sbitmap_resize(struct sbitmap *sb, unsigned int depth) 146 { 147 unsigned int bits_per_word = 1U << sb->shift; 148 unsigned int i; 149 150 for (i = 0; i < sb->map_nr; i++) 151 sbitmap_deferred_clear(&sb->map[i], 0, 0, 0); 152 153 sb->depth = depth; 154 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); 155 } 156 EXPORT_SYMBOL_GPL(sbitmap_resize); 157 158 static int __sbitmap_get_word(unsigned long *word, unsigned long depth, 159 unsigned int hint, bool wrap) 160 { 161 int nr; 162 163 /* don't wrap if starting from 0 */ 164 wrap = wrap && hint; 165 166 while (1) { 167 nr = find_next_zero_bit(word, depth, hint); 168 if (unlikely(nr >= depth)) { 169 /* 170 * We started with an offset, and we didn't reset the 171 * offset to 0 in a failure case, so start from 0 to 172 * exhaust the map. 173 */ 174 if (hint && wrap) { 175 hint = 0; 176 continue; 177 } 178 return -1; 179 } 180 181 if (!test_and_set_bit_lock(nr, word)) 182 break; 183 184 hint = nr + 1; 185 if (hint >= depth - 1) 186 hint = 0; 187 } 188 189 return nr; 190 } 191 192 static int sbitmap_find_bit_in_word(struct sbitmap_word *map, 193 unsigned int depth, 194 unsigned int alloc_hint, 195 bool wrap) 196 { 197 int nr; 198 199 do { 200 nr = __sbitmap_get_word(&map->word, depth, 201 alloc_hint, wrap); 202 if (nr != -1) 203 break; 204 if (!sbitmap_deferred_clear(map, depth, alloc_hint, wrap)) 205 break; 206 } while (1); 207 208 return nr; 209 } 210 211 static unsigned int __map_depth_with_shallow(const struct sbitmap *sb, 212 int index, 213 unsigned int shallow_depth) 214 { 215 u64 shallow_word_depth; 216 unsigned int word_depth, reminder; 217 218 word_depth = __map_depth(sb, index); 219 if (shallow_depth >= sb->depth) 220 return word_depth; 221 222 shallow_word_depth = word_depth * shallow_depth; 223 reminder = do_div(shallow_word_depth, sb->depth); 224 225 if (reminder >= (index + 1) * word_depth) 226 shallow_word_depth++; 227 228 return (unsigned int)shallow_word_depth; 229 } 230 231 static int sbitmap_find_bit(struct sbitmap *sb, 232 unsigned int shallow_depth, 233 unsigned int index, 234 unsigned int alloc_hint, 235 bool wrap) 236 { 237 unsigned int i; 238 int nr = -1; 239 240 for (i = 0; i < sb->map_nr; i++) { 241 unsigned int depth = __map_depth_with_shallow(sb, index, 242 shallow_depth); 243 244 if (depth) 245 nr = sbitmap_find_bit_in_word(&sb->map[index], depth, 246 alloc_hint, wrap); 247 if (nr != -1) { 248 nr += index << sb->shift; 249 break; 250 } 251 252 /* Jump to next index. */ 253 alloc_hint = 0; 254 if (++index >= sb->map_nr) 255 index = 0; 256 } 257 258 return nr; 259 } 260 261 static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) 262 { 263 unsigned int index; 264 265 index = SB_NR_TO_INDEX(sb, alloc_hint); 266 267 /* 268 * Unless we're doing round robin tag allocation, just use the 269 * alloc_hint to find the right word index. No point in looping 270 * twice in find_next_zero_bit() for that case. 271 */ 272 if (sb->round_robin) 273 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 274 else 275 alloc_hint = 0; 276 277 return sbitmap_find_bit(sb, UINT_MAX, index, alloc_hint, 278 !sb->round_robin); 279 } 280 281 int sbitmap_get(struct sbitmap *sb) 282 { 283 int nr; 284 unsigned int hint, depth; 285 286 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 287 return -1; 288 289 depth = READ_ONCE(sb->depth); 290 hint = update_alloc_hint_before_get(sb, depth); 291 nr = __sbitmap_get(sb, hint); 292 update_alloc_hint_after_get(sb, depth, hint, nr); 293 294 return nr; 295 } 296 EXPORT_SYMBOL_GPL(sbitmap_get); 297 298 static int __sbitmap_get_shallow(struct sbitmap *sb, 299 unsigned int alloc_hint, 300 unsigned long shallow_depth) 301 { 302 unsigned int index; 303 304 index = SB_NR_TO_INDEX(sb, alloc_hint); 305 alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); 306 307 return sbitmap_find_bit(sb, shallow_depth, index, alloc_hint, true); 308 } 309 310 /** 311 * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, 312 * limiting the depth used from each word. 313 * @sb: Bitmap to allocate from. 314 * @shallow_depth: The maximum number of bits to allocate from the bitmap. 315 * 316 * This rather specific operation allows for having multiple users with 317 * different allocation limits. E.g., there can be a high-priority class that 318 * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() 319 * with a @shallow_depth of (sb->depth >> 1). Then, the low-priority 320 * class can only allocate half of the total bits in the bitmap, preventing it 321 * from starving out the high-priority class. 322 * 323 * Return: Non-negative allocated bit number if successful, -1 otherwise. 324 */ 325 static int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) 326 { 327 int nr; 328 unsigned int hint, depth; 329 330 if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) 331 return -1; 332 333 depth = READ_ONCE(sb->depth); 334 hint = update_alloc_hint_before_get(sb, depth); 335 nr = __sbitmap_get_shallow(sb, hint, shallow_depth); 336 update_alloc_hint_after_get(sb, depth, hint, nr); 337 338 return nr; 339 } 340 341 bool sbitmap_any_bit_set(const struct sbitmap *sb) 342 { 343 unsigned int i; 344 345 for (i = 0; i < sb->map_nr; i++) { 346 if (sb->map[i].word & ~sb->map[i].cleared) 347 return true; 348 } 349 return false; 350 } 351 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); 352 353 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) 354 { 355 unsigned int i, weight = 0; 356 357 for (i = 0; i < sb->map_nr; i++) { 358 const struct sbitmap_word *word = &sb->map[i]; 359 unsigned int word_depth = __map_depth(sb, i); 360 361 if (set) 362 weight += bitmap_weight(&word->word, word_depth); 363 else 364 weight += bitmap_weight(&word->cleared, word_depth); 365 } 366 return weight; 367 } 368 369 static unsigned int sbitmap_cleared(const struct sbitmap *sb) 370 { 371 return __sbitmap_weight(sb, false); 372 } 373 374 unsigned int sbitmap_weight(const struct sbitmap *sb) 375 { 376 return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); 377 } 378 EXPORT_SYMBOL_GPL(sbitmap_weight); 379 380 void sbitmap_show(struct sbitmap *sb, struct seq_file *m) 381 { 382 seq_printf(m, "depth=%u\n", sb->depth); 383 seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); 384 seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); 385 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); 386 seq_printf(m, "map_nr=%u\n", sb->map_nr); 387 } 388 EXPORT_SYMBOL_GPL(sbitmap_show); 389 390 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) 391 { 392 if ((offset & 0xf) == 0) { 393 if (offset != 0) 394 seq_putc(m, '\n'); 395 seq_printf(m, "%08x:", offset); 396 } 397 if ((offset & 0x1) == 0) 398 seq_putc(m, ' '); 399 seq_printf(m, "%02x", byte); 400 } 401 402 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) 403 { 404 u8 byte = 0; 405 unsigned int byte_bits = 0; 406 unsigned int offset = 0; 407 int i; 408 409 for (i = 0; i < sb->map_nr; i++) { 410 unsigned long word = READ_ONCE(sb->map[i].word); 411 unsigned long cleared = READ_ONCE(sb->map[i].cleared); 412 unsigned int word_bits = __map_depth(sb, i); 413 414 word &= ~cleared; 415 416 while (word_bits > 0) { 417 unsigned int bits = min(8 - byte_bits, word_bits); 418 419 byte |= (word & (BIT(bits) - 1)) << byte_bits; 420 byte_bits += bits; 421 if (byte_bits == 8) { 422 emit_byte(m, offset, byte); 423 byte = 0; 424 byte_bits = 0; 425 offset++; 426 } 427 word >>= bits; 428 word_bits -= bits; 429 } 430 } 431 if (byte_bits) { 432 emit_byte(m, offset, byte); 433 offset++; 434 } 435 if (offset) 436 seq_putc(m, '\n'); 437 } 438 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); 439 440 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, 441 unsigned int depth) 442 { 443 return clamp_t(unsigned int, 444 min(depth, sbq->min_shallow_depth) / SBQ_WAIT_QUEUES, 445 1, SBQ_WAKE_BATCH); 446 } 447 448 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, 449 int shift, bool round_robin, gfp_t flags, int node) 450 { 451 int ret; 452 int i; 453 454 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, 455 round_robin, true); 456 if (ret) 457 return ret; 458 459 sbq->min_shallow_depth = UINT_MAX; 460 sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); 461 atomic_set(&sbq->wake_index, 0); 462 atomic_set(&sbq->ws_active, 0); 463 atomic_set(&sbq->completion_cnt, 0); 464 atomic_set(&sbq->wakeup_cnt, 0); 465 466 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); 467 if (!sbq->ws) { 468 sbitmap_free(&sbq->sb); 469 return -ENOMEM; 470 } 471 472 for (i = 0; i < SBQ_WAIT_QUEUES; i++) 473 init_waitqueue_head(&sbq->ws[i].wait); 474 475 return 0; 476 } 477 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); 478 479 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, 480 unsigned int depth) 481 { 482 unsigned int wake_batch; 483 484 wake_batch = sbq_calc_wake_batch(sbq, depth); 485 if (sbq->wake_batch != wake_batch) 486 WRITE_ONCE(sbq->wake_batch, wake_batch); 487 } 488 489 void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, 490 unsigned int users) 491 { 492 unsigned int wake_batch; 493 unsigned int depth = (sbq->sb.depth + users - 1) / users; 494 495 wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES, 496 1, SBQ_WAKE_BATCH); 497 498 WRITE_ONCE(sbq->wake_batch, wake_batch); 499 } 500 EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch); 501 502 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) 503 { 504 sbitmap_queue_update_wake_batch(sbq, depth); 505 sbitmap_resize(&sbq->sb, depth); 506 } 507 EXPORT_SYMBOL_GPL(sbitmap_queue_resize); 508 509 int __sbitmap_queue_get(struct sbitmap_queue *sbq) 510 { 511 return sbitmap_get(&sbq->sb); 512 } 513 EXPORT_SYMBOL_GPL(__sbitmap_queue_get); 514 515 unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, 516 unsigned int *offset) 517 { 518 struct sbitmap *sb = &sbq->sb; 519 unsigned int hint, depth; 520 unsigned long index, nr; 521 int i; 522 523 if (unlikely(sb->round_robin)) 524 return 0; 525 526 depth = READ_ONCE(sb->depth); 527 hint = update_alloc_hint_before_get(sb, depth); 528 529 index = SB_NR_TO_INDEX(sb, hint); 530 531 for (i = 0; i < sb->map_nr; i++) { 532 struct sbitmap_word *map = &sb->map[index]; 533 unsigned long get_mask; 534 unsigned int map_depth = __map_depth(sb, index); 535 unsigned long val; 536 537 sbitmap_deferred_clear(map, 0, 0, 0); 538 val = READ_ONCE(map->word); 539 if (val == (1UL << (map_depth - 1)) - 1) 540 goto next; 541 542 nr = find_first_zero_bit(&val, map_depth); 543 if (nr + nr_tags <= map_depth) { 544 atomic_long_t *ptr = (atomic_long_t *) &map->word; 545 546 get_mask = ((1UL << nr_tags) - 1) << nr; 547 while (!atomic_long_try_cmpxchg(ptr, &val, 548 get_mask | val)) 549 ; 550 get_mask = (get_mask & ~val) >> nr; 551 if (get_mask) { 552 *offset = nr + (index << sb->shift); 553 update_alloc_hint_after_get(sb, depth, hint, 554 *offset + nr_tags - 1); 555 return get_mask; 556 } 557 } 558 next: 559 /* Jump to next index. */ 560 if (++index >= sb->map_nr) 561 index = 0; 562 } 563 564 return 0; 565 } 566 567 int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, 568 unsigned int shallow_depth) 569 { 570 WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); 571 572 return sbitmap_get_shallow(&sbq->sb, shallow_depth); 573 } 574 EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow); 575 576 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, 577 unsigned int min_shallow_depth) 578 { 579 sbq->min_shallow_depth = min_shallow_depth; 580 sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); 581 } 582 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); 583 584 static void __sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr) 585 { 586 int i, wake_index, woken; 587 588 if (!atomic_read(&sbq->ws_active)) 589 return; 590 591 wake_index = atomic_read(&sbq->wake_index); 592 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 593 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 594 595 /* 596 * Advance the index before checking the current queue. 597 * It improves fairness, by ensuring the queue doesn't 598 * need to be fully emptied before trying to wake up 599 * from the next one. 600 */ 601 wake_index = sbq_index_inc(wake_index); 602 603 if (waitqueue_active(&ws->wait)) { 604 woken = wake_up_nr(&ws->wait, nr); 605 if (woken == nr) 606 break; 607 nr -= woken; 608 } 609 } 610 611 if (wake_index != atomic_read(&sbq->wake_index)) 612 atomic_set(&sbq->wake_index, wake_index); 613 } 614 615 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr) 616 { 617 unsigned int wake_batch = READ_ONCE(sbq->wake_batch); 618 unsigned int wakeups; 619 620 if (!atomic_read(&sbq->ws_active)) 621 return; 622 623 atomic_add(nr, &sbq->completion_cnt); 624 wakeups = atomic_read(&sbq->wakeup_cnt); 625 626 do { 627 if (atomic_read(&sbq->completion_cnt) - wakeups < wake_batch) 628 return; 629 } while (!atomic_try_cmpxchg(&sbq->wakeup_cnt, 630 &wakeups, wakeups + wake_batch)); 631 632 __sbitmap_queue_wake_up(sbq, wake_batch); 633 } 634 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); 635 636 static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) 637 { 638 if (likely(!sb->round_robin && tag < sb->depth)) 639 data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); 640 } 641 642 void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, 643 int *tags, int nr_tags) 644 { 645 struct sbitmap *sb = &sbq->sb; 646 unsigned long *addr = NULL; 647 unsigned long mask = 0; 648 int i; 649 650 smp_mb__before_atomic(); 651 for (i = 0; i < nr_tags; i++) { 652 const int tag = tags[i] - offset; 653 unsigned long *this_addr; 654 655 /* since we're clearing a batch, skip the deferred map */ 656 this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; 657 if (!addr) { 658 addr = this_addr; 659 } else if (addr != this_addr) { 660 atomic_long_andnot(mask, (atomic_long_t *) addr); 661 mask = 0; 662 addr = this_addr; 663 } 664 mask |= (1UL << SB_NR_TO_BIT(sb, tag)); 665 } 666 667 if (mask) 668 atomic_long_andnot(mask, (atomic_long_t *) addr); 669 670 smp_mb__after_atomic(); 671 sbitmap_queue_wake_up(sbq, nr_tags); 672 sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), 673 tags[nr_tags - 1] - offset); 674 } 675 676 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, 677 unsigned int cpu) 678 { 679 /* 680 * Once the clear bit is set, the bit may be allocated out. 681 * 682 * Orders READ/WRITE on the associated instance(such as request 683 * of blk_mq) by this bit for avoiding race with re-allocation, 684 * and its pair is the memory barrier implied in __sbitmap_get_word. 685 * 686 * One invariant is that the clear bit has to be zero when the bit 687 * is in use. 688 */ 689 smp_mb__before_atomic(); 690 sbitmap_deferred_clear_bit(&sbq->sb, nr); 691 692 /* 693 * Pairs with the memory barrier in set_current_state() to ensure the 694 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker 695 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the 696 * waiter. See the comment on waitqueue_active(). 697 */ 698 smp_mb__after_atomic(); 699 sbitmap_queue_wake_up(sbq, 1); 700 sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); 701 } 702 EXPORT_SYMBOL_GPL(sbitmap_queue_clear); 703 704 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) 705 { 706 int i, wake_index; 707 708 /* 709 * Pairs with the memory barrier in set_current_state() like in 710 * sbitmap_queue_wake_up(). 711 */ 712 smp_mb(); 713 wake_index = atomic_read(&sbq->wake_index); 714 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 715 struct sbq_wait_state *ws = &sbq->ws[wake_index]; 716 717 if (waitqueue_active(&ws->wait)) 718 wake_up(&ws->wait); 719 720 wake_index = sbq_index_inc(wake_index); 721 } 722 } 723 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); 724 725 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) 726 { 727 bool first; 728 int i; 729 730 sbitmap_show(&sbq->sb, m); 731 732 seq_puts(m, "alloc_hint={"); 733 first = true; 734 for_each_possible_cpu(i) { 735 if (!first) 736 seq_puts(m, ", "); 737 first = false; 738 seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); 739 } 740 seq_puts(m, "}\n"); 741 742 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); 743 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); 744 seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); 745 746 seq_puts(m, "ws={\n"); 747 for (i = 0; i < SBQ_WAIT_QUEUES; i++) { 748 struct sbq_wait_state *ws = &sbq->ws[i]; 749 seq_printf(m, "\t{.wait=%s},\n", 750 waitqueue_active(&ws->wait) ? "active" : "inactive"); 751 } 752 seq_puts(m, "}\n"); 753 754 seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); 755 seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); 756 } 757 EXPORT_SYMBOL_GPL(sbitmap_queue_show); 758 759 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, 760 struct sbq_wait_state *ws, 761 struct sbq_wait *sbq_wait) 762 { 763 if (!sbq_wait->sbq) { 764 sbq_wait->sbq = sbq; 765 atomic_inc(&sbq->ws_active); 766 add_wait_queue(&ws->wait, &sbq_wait->wait); 767 } 768 } 769 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); 770 771 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) 772 { 773 list_del_init(&sbq_wait->wait.entry); 774 if (sbq_wait->sbq) { 775 atomic_dec(&sbq_wait->sbq->ws_active); 776 sbq_wait->sbq = NULL; 777 } 778 } 779 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); 780 781 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, 782 struct sbq_wait_state *ws, 783 struct sbq_wait *sbq_wait, int state) 784 { 785 if (!sbq_wait->sbq) { 786 atomic_inc(&sbq->ws_active); 787 sbq_wait->sbq = sbq; 788 } 789 prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); 790 } 791 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); 792 793 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, 794 struct sbq_wait *sbq_wait) 795 { 796 finish_wait(&ws->wait, &sbq_wait->wait); 797 if (sbq_wait->sbq) { 798 atomic_dec(&sbq->ws_active); 799 sbq_wait->sbq = NULL; 800 } 801 } 802 EXPORT_SYMBOL_GPL(sbitmap_finish_wait); 803