xref: /linux/lib/sbitmap.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Copyright (C) 2016 Facebook
3  * Copyright (C) 2013-2014 Jens Axboe
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/sched.h>
19 #include <linux/random.h>
20 #include <linux/sbitmap.h>
21 #include <linux/seq_file.h>
22 
23 /*
24  * See if we have deferred clears that we can batch move
25  */
26 static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
27 {
28 	unsigned long mask, val;
29 	bool ret = false;
30 	unsigned long flags;
31 
32 	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
33 
34 	if (!sb->map[index].cleared)
35 		goto out_unlock;
36 
37 	/*
38 	 * First get a stable cleared mask, setting the old mask to 0.
39 	 */
40 	do {
41 		mask = sb->map[index].cleared;
42 	} while (cmpxchg(&sb->map[index].cleared, mask, 0) != mask);
43 
44 	/*
45 	 * Now clear the masked bits in our free word
46 	 */
47 	do {
48 		val = sb->map[index].word;
49 	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
50 
51 	ret = true;
52 out_unlock:
53 	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
54 	return ret;
55 }
56 
57 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
58 		      gfp_t flags, int node)
59 {
60 	unsigned int bits_per_word;
61 	unsigned int i;
62 
63 	if (shift < 0) {
64 		shift = ilog2(BITS_PER_LONG);
65 		/*
66 		 * If the bitmap is small, shrink the number of bits per word so
67 		 * we spread over a few cachelines, at least. If less than 4
68 		 * bits, just forget about it, it's not going to work optimally
69 		 * anyway.
70 		 */
71 		if (depth >= 4) {
72 			while ((4U << shift) > depth)
73 				shift--;
74 		}
75 	}
76 	bits_per_word = 1U << shift;
77 	if (bits_per_word > BITS_PER_LONG)
78 		return -EINVAL;
79 
80 	sb->shift = shift;
81 	sb->depth = depth;
82 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
83 
84 	if (depth == 0) {
85 		sb->map = NULL;
86 		return 0;
87 	}
88 
89 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
90 	if (!sb->map)
91 		return -ENOMEM;
92 
93 	for (i = 0; i < sb->map_nr; i++) {
94 		sb->map[i].depth = min(depth, bits_per_word);
95 		depth -= sb->map[i].depth;
96 		spin_lock_init(&sb->map[i].swap_lock);
97 	}
98 	return 0;
99 }
100 EXPORT_SYMBOL_GPL(sbitmap_init_node);
101 
102 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
103 {
104 	unsigned int bits_per_word = 1U << sb->shift;
105 	unsigned int i;
106 
107 	for (i = 0; i < sb->map_nr; i++)
108 		sbitmap_deferred_clear(sb, i);
109 
110 	sb->depth = depth;
111 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
112 
113 	for (i = 0; i < sb->map_nr; i++) {
114 		sb->map[i].depth = min(depth, bits_per_word);
115 		depth -= sb->map[i].depth;
116 	}
117 }
118 EXPORT_SYMBOL_GPL(sbitmap_resize);
119 
120 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
121 			      unsigned int hint, bool wrap)
122 {
123 	unsigned int orig_hint = hint;
124 	int nr;
125 
126 	while (1) {
127 		nr = find_next_zero_bit(word, depth, hint);
128 		if (unlikely(nr >= depth)) {
129 			/*
130 			 * We started with an offset, and we didn't reset the
131 			 * offset to 0 in a failure case, so start from 0 to
132 			 * exhaust the map.
133 			 */
134 			if (orig_hint && hint && wrap) {
135 				hint = orig_hint = 0;
136 				continue;
137 			}
138 			return -1;
139 		}
140 
141 		if (!test_and_set_bit_lock(nr, word))
142 			break;
143 
144 		hint = nr + 1;
145 		if (hint >= depth - 1)
146 			hint = 0;
147 	}
148 
149 	return nr;
150 }
151 
152 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
153 				     unsigned int alloc_hint, bool round_robin)
154 {
155 	int nr;
156 
157 	do {
158 		nr = __sbitmap_get_word(&sb->map[index].word,
159 					sb->map[index].depth, alloc_hint,
160 					!round_robin);
161 		if (nr != -1)
162 			break;
163 		if (!sbitmap_deferred_clear(sb, index))
164 			break;
165 	} while (1);
166 
167 	return nr;
168 }
169 
170 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
171 {
172 	unsigned int i, index;
173 	int nr = -1;
174 
175 	index = SB_NR_TO_INDEX(sb, alloc_hint);
176 
177 	/*
178 	 * Unless we're doing round robin tag allocation, just use the
179 	 * alloc_hint to find the right word index. No point in looping
180 	 * twice in find_next_zero_bit() for that case.
181 	 */
182 	if (round_robin)
183 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
184 	else
185 		alloc_hint = 0;
186 
187 	for (i = 0; i < sb->map_nr; i++) {
188 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
189 						round_robin);
190 		if (nr != -1) {
191 			nr += index << sb->shift;
192 			break;
193 		}
194 
195 		/* Jump to next index. */
196 		alloc_hint = 0;
197 		if (++index >= sb->map_nr)
198 			index = 0;
199 	}
200 
201 	return nr;
202 }
203 EXPORT_SYMBOL_GPL(sbitmap_get);
204 
205 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
206 			unsigned long shallow_depth)
207 {
208 	unsigned int i, index;
209 	int nr = -1;
210 
211 	index = SB_NR_TO_INDEX(sb, alloc_hint);
212 
213 	for (i = 0; i < sb->map_nr; i++) {
214 again:
215 		nr = __sbitmap_get_word(&sb->map[index].word,
216 					min(sb->map[index].depth, shallow_depth),
217 					SB_NR_TO_BIT(sb, alloc_hint), true);
218 		if (nr != -1) {
219 			nr += index << sb->shift;
220 			break;
221 		}
222 
223 		if (sbitmap_deferred_clear(sb, index))
224 			goto again;
225 
226 		/* Jump to next index. */
227 		index++;
228 		alloc_hint = index << sb->shift;
229 
230 		if (index >= sb->map_nr) {
231 			index = 0;
232 			alloc_hint = 0;
233 		}
234 	}
235 
236 	return nr;
237 }
238 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
239 
240 bool sbitmap_any_bit_set(const struct sbitmap *sb)
241 {
242 	unsigned int i;
243 
244 	for (i = 0; i < sb->map_nr; i++) {
245 		if (sb->map[i].word & ~sb->map[i].cleared)
246 			return true;
247 	}
248 	return false;
249 }
250 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
251 
252 bool sbitmap_any_bit_clear(const struct sbitmap *sb)
253 {
254 	unsigned int i;
255 
256 	for (i = 0; i < sb->map_nr; i++) {
257 		const struct sbitmap_word *word = &sb->map[i];
258 		unsigned long mask = word->word & ~word->cleared;
259 		unsigned long ret;
260 
261 		ret = find_first_zero_bit(&mask, word->depth);
262 		if (ret < word->depth)
263 			return true;
264 	}
265 	return false;
266 }
267 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
268 
269 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
270 {
271 	unsigned int i, weight = 0;
272 
273 	for (i = 0; i < sb->map_nr; i++) {
274 		const struct sbitmap_word *word = &sb->map[i];
275 
276 		if (set)
277 			weight += bitmap_weight(&word->word, word->depth);
278 		else
279 			weight += bitmap_weight(&word->cleared, word->depth);
280 	}
281 	return weight;
282 }
283 
284 static unsigned int sbitmap_weight(const struct sbitmap *sb)
285 {
286 	return __sbitmap_weight(sb, true);
287 }
288 
289 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
290 {
291 	return __sbitmap_weight(sb, false);
292 }
293 
294 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
295 {
296 	seq_printf(m, "depth=%u\n", sb->depth);
297 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
298 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
299 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
300 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
301 }
302 EXPORT_SYMBOL_GPL(sbitmap_show);
303 
304 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
305 {
306 	if ((offset & 0xf) == 0) {
307 		if (offset != 0)
308 			seq_putc(m, '\n');
309 		seq_printf(m, "%08x:", offset);
310 	}
311 	if ((offset & 0x1) == 0)
312 		seq_putc(m, ' ');
313 	seq_printf(m, "%02x", byte);
314 }
315 
316 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
317 {
318 	u8 byte = 0;
319 	unsigned int byte_bits = 0;
320 	unsigned int offset = 0;
321 	int i;
322 
323 	for (i = 0; i < sb->map_nr; i++) {
324 		unsigned long word = READ_ONCE(sb->map[i].word);
325 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
326 
327 		while (word_bits > 0) {
328 			unsigned int bits = min(8 - byte_bits, word_bits);
329 
330 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
331 			byte_bits += bits;
332 			if (byte_bits == 8) {
333 				emit_byte(m, offset, byte);
334 				byte = 0;
335 				byte_bits = 0;
336 				offset++;
337 			}
338 			word >>= bits;
339 			word_bits -= bits;
340 		}
341 	}
342 	if (byte_bits) {
343 		emit_byte(m, offset, byte);
344 		offset++;
345 	}
346 	if (offset)
347 		seq_putc(m, '\n');
348 }
349 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
350 
351 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
352 					unsigned int depth)
353 {
354 	unsigned int wake_batch;
355 	unsigned int shallow_depth;
356 
357 	/*
358 	 * For each batch, we wake up one queue. We need to make sure that our
359 	 * batch size is small enough that the full depth of the bitmap,
360 	 * potentially limited by a shallow depth, is enough to wake up all of
361 	 * the queues.
362 	 *
363 	 * Each full word of the bitmap has bits_per_word bits, and there might
364 	 * be a partial word. There are depth / bits_per_word full words and
365 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
366 	 *
367 	 * bits_per_word = 1 << shift
368 	 * depth / bits_per_word = depth >> shift
369 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
370 	 *
371 	 * Each word can be limited to sbq->min_shallow_depth bits.
372 	 */
373 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
374 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
375 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
376 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
377 			     SBQ_WAKE_BATCH);
378 
379 	return wake_batch;
380 }
381 
382 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
383 			    int shift, bool round_robin, gfp_t flags, int node)
384 {
385 	int ret;
386 	int i;
387 
388 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
389 	if (ret)
390 		return ret;
391 
392 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
393 	if (!sbq->alloc_hint) {
394 		sbitmap_free(&sbq->sb);
395 		return -ENOMEM;
396 	}
397 
398 	if (depth && !round_robin) {
399 		for_each_possible_cpu(i)
400 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
401 	}
402 
403 	sbq->min_shallow_depth = UINT_MAX;
404 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
405 	atomic_set(&sbq->wake_index, 0);
406 	atomic_set(&sbq->ws_active, 0);
407 
408 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
409 	if (!sbq->ws) {
410 		free_percpu(sbq->alloc_hint);
411 		sbitmap_free(&sbq->sb);
412 		return -ENOMEM;
413 	}
414 
415 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
416 		init_waitqueue_head(&sbq->ws[i].wait);
417 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
418 	}
419 
420 	sbq->round_robin = round_robin;
421 	return 0;
422 }
423 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
424 
425 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
426 					    unsigned int depth)
427 {
428 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
429 	int i;
430 
431 	if (sbq->wake_batch != wake_batch) {
432 		WRITE_ONCE(sbq->wake_batch, wake_batch);
433 		/*
434 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
435 		 * to ensure that the batch size is updated before the wait
436 		 * counts.
437 		 */
438 		smp_mb__before_atomic();
439 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
440 			atomic_set(&sbq->ws[i].wait_cnt, 1);
441 	}
442 }
443 
444 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
445 {
446 	sbitmap_queue_update_wake_batch(sbq, depth);
447 	sbitmap_resize(&sbq->sb, depth);
448 }
449 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
450 
451 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
452 {
453 	unsigned int hint, depth;
454 	int nr;
455 
456 	hint = this_cpu_read(*sbq->alloc_hint);
457 	depth = READ_ONCE(sbq->sb.depth);
458 	if (unlikely(hint >= depth)) {
459 		hint = depth ? prandom_u32() % depth : 0;
460 		this_cpu_write(*sbq->alloc_hint, hint);
461 	}
462 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
463 
464 	if (nr == -1) {
465 		/* If the map is full, a hint won't do us much good. */
466 		this_cpu_write(*sbq->alloc_hint, 0);
467 	} else if (nr == hint || unlikely(sbq->round_robin)) {
468 		/* Only update the hint if we used it. */
469 		hint = nr + 1;
470 		if (hint >= depth - 1)
471 			hint = 0;
472 		this_cpu_write(*sbq->alloc_hint, hint);
473 	}
474 
475 	return nr;
476 }
477 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
478 
479 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
480 				unsigned int shallow_depth)
481 {
482 	unsigned int hint, depth;
483 	int nr;
484 
485 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
486 
487 	hint = this_cpu_read(*sbq->alloc_hint);
488 	depth = READ_ONCE(sbq->sb.depth);
489 	if (unlikely(hint >= depth)) {
490 		hint = depth ? prandom_u32() % depth : 0;
491 		this_cpu_write(*sbq->alloc_hint, hint);
492 	}
493 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
494 
495 	if (nr == -1) {
496 		/* If the map is full, a hint won't do us much good. */
497 		this_cpu_write(*sbq->alloc_hint, 0);
498 	} else if (nr == hint || unlikely(sbq->round_robin)) {
499 		/* Only update the hint if we used it. */
500 		hint = nr + 1;
501 		if (hint >= depth - 1)
502 			hint = 0;
503 		this_cpu_write(*sbq->alloc_hint, hint);
504 	}
505 
506 	return nr;
507 }
508 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
509 
510 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
511 				     unsigned int min_shallow_depth)
512 {
513 	sbq->min_shallow_depth = min_shallow_depth;
514 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
515 }
516 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
517 
518 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
519 {
520 	int i, wake_index;
521 
522 	if (!atomic_read(&sbq->ws_active))
523 		return NULL;
524 
525 	wake_index = atomic_read(&sbq->wake_index);
526 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
527 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
528 
529 		if (waitqueue_active(&ws->wait)) {
530 			int o = atomic_read(&sbq->wake_index);
531 
532 			if (wake_index != o)
533 				atomic_cmpxchg(&sbq->wake_index, o, wake_index);
534 			return ws;
535 		}
536 
537 		wake_index = sbq_index_inc(wake_index);
538 	}
539 
540 	return NULL;
541 }
542 
543 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
544 {
545 	struct sbq_wait_state *ws;
546 	unsigned int wake_batch;
547 	int wait_cnt;
548 
549 	ws = sbq_wake_ptr(sbq);
550 	if (!ws)
551 		return false;
552 
553 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
554 	if (wait_cnt <= 0) {
555 		int ret;
556 
557 		wake_batch = READ_ONCE(sbq->wake_batch);
558 
559 		/*
560 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
561 		 * ensure that we see the batch size update before the wait
562 		 * count is reset.
563 		 */
564 		smp_mb__before_atomic();
565 
566 		/*
567 		 * For concurrent callers of this, the one that failed the
568 		 * atomic_cmpxhcg() race should call this function again
569 		 * to wakeup a new batch on a different 'ws'.
570 		 */
571 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
572 		if (ret == wait_cnt) {
573 			sbq_index_atomic_inc(&sbq->wake_index);
574 			wake_up_nr(&ws->wait, wake_batch);
575 			return false;
576 		}
577 
578 		return true;
579 	}
580 
581 	return false;
582 }
583 
584 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
585 {
586 	while (__sbq_wake_up(sbq))
587 		;
588 }
589 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
590 
591 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
592 			 unsigned int cpu)
593 {
594 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
595 
596 	/*
597 	 * Pairs with the memory barrier in set_current_state() to ensure the
598 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
599 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
600 	 * waiter. See the comment on waitqueue_active().
601 	 */
602 	smp_mb__after_atomic();
603 	sbitmap_queue_wake_up(sbq);
604 
605 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
606 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
607 }
608 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
609 
610 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
611 {
612 	int i, wake_index;
613 
614 	/*
615 	 * Pairs with the memory barrier in set_current_state() like in
616 	 * sbitmap_queue_wake_up().
617 	 */
618 	smp_mb();
619 	wake_index = atomic_read(&sbq->wake_index);
620 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
621 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
622 
623 		if (waitqueue_active(&ws->wait))
624 			wake_up(&ws->wait);
625 
626 		wake_index = sbq_index_inc(wake_index);
627 	}
628 }
629 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
630 
631 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
632 {
633 	bool first;
634 	int i;
635 
636 	sbitmap_show(&sbq->sb, m);
637 
638 	seq_puts(m, "alloc_hint={");
639 	first = true;
640 	for_each_possible_cpu(i) {
641 		if (!first)
642 			seq_puts(m, ", ");
643 		first = false;
644 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
645 	}
646 	seq_puts(m, "}\n");
647 
648 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
649 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
650 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
651 
652 	seq_puts(m, "ws={\n");
653 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
654 		struct sbq_wait_state *ws = &sbq->ws[i];
655 
656 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
657 			   atomic_read(&ws->wait_cnt),
658 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
659 	}
660 	seq_puts(m, "}\n");
661 
662 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
663 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
664 }
665 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
666 
667 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
668 			    struct sbq_wait_state *ws,
669 			    struct sbq_wait *sbq_wait)
670 {
671 	if (!sbq_wait->sbq) {
672 		sbq_wait->sbq = sbq;
673 		atomic_inc(&sbq->ws_active);
674 	}
675 	add_wait_queue(&ws->wait, &sbq_wait->wait);
676 }
677 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
678 
679 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
680 {
681 	list_del_init(&sbq_wait->wait.entry);
682 	if (sbq_wait->sbq) {
683 		atomic_dec(&sbq_wait->sbq->ws_active);
684 		sbq_wait->sbq = NULL;
685 	}
686 }
687 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
688 
689 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
690 			     struct sbq_wait_state *ws,
691 			     struct sbq_wait *sbq_wait, int state)
692 {
693 	if (!sbq_wait->sbq) {
694 		atomic_inc(&sbq->ws_active);
695 		sbq_wait->sbq = sbq;
696 	}
697 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
698 }
699 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
700 
701 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
702 			 struct sbq_wait *sbq_wait)
703 {
704 	finish_wait(&ws->wait, &sbq_wait->wait);
705 	if (sbq_wait->sbq) {
706 		atomic_dec(&sbq->ws_active);
707 		sbq_wait->sbq = NULL;
708 	}
709 }
710 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
711