xref: /linux/lib/rhashtable.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #define HASH_DEFAULT_SIZE	64UL
32 #define HASH_MIN_SIZE		4U
33 #define BUCKET_LOCKS_PER_CPU	32UL
34 
35 static u32 head_hashfn(struct rhashtable *ht,
36 		       const struct bucket_table *tbl,
37 		       const struct rhash_head *he)
38 {
39 	return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41 
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44 
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50 
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
54 
55 	return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61 
62 
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 			      gfp_t gfp)
65 {
66 	unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 	unsigned int nr_pcpus = 2;
69 #else
70 	unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72 
73 	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
74 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75 
76 	/* Never allocate more than 0.5 locks per bucket */
77 	size = min_t(unsigned int, size, tbl->size >> 1);
78 
79 	if (sizeof(spinlock_t) != 0) {
80 		tbl->locks = NULL;
81 #ifdef CONFIG_NUMA
82 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
83 		    gfp == GFP_KERNEL)
84 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
85 #endif
86 		if (gfp != GFP_KERNEL)
87 			gfp |= __GFP_NOWARN | __GFP_NORETRY;
88 
89 		if (!tbl->locks)
90 			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
91 						   gfp);
92 		if (!tbl->locks)
93 			return -ENOMEM;
94 		for (i = 0; i < size; i++)
95 			spin_lock_init(&tbl->locks[i]);
96 	}
97 	tbl->locks_mask = size - 1;
98 
99 	return 0;
100 }
101 
102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 	if (tbl)
105 		kvfree(tbl->locks);
106 
107 	kvfree(tbl);
108 }
109 
110 static void bucket_table_free_rcu(struct rcu_head *head)
111 {
112 	bucket_table_free(container_of(head, struct bucket_table, rcu));
113 }
114 
115 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
116 					       size_t nbuckets,
117 					       gfp_t gfp)
118 {
119 	struct bucket_table *tbl = NULL;
120 	size_t size;
121 	int i;
122 
123 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
124 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
125 	    gfp != GFP_KERNEL)
126 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
127 	if (tbl == NULL && gfp == GFP_KERNEL)
128 		tbl = vzalloc(size);
129 	if (tbl == NULL)
130 		return NULL;
131 
132 	tbl->size = nbuckets;
133 
134 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
135 		bucket_table_free(tbl);
136 		return NULL;
137 	}
138 
139 	INIT_LIST_HEAD(&tbl->walkers);
140 
141 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
142 
143 	for (i = 0; i < nbuckets; i++)
144 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
145 
146 	return tbl;
147 }
148 
149 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
150 						  struct bucket_table *tbl)
151 {
152 	struct bucket_table *new_tbl;
153 
154 	do {
155 		new_tbl = tbl;
156 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
157 	} while (tbl);
158 
159 	return new_tbl;
160 }
161 
162 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
163 {
164 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
165 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
166 		rht_dereference_rcu(old_tbl->future_tbl, ht));
167 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
168 	int err = -ENOENT;
169 	struct rhash_head *head, *next, *entry;
170 	spinlock_t *new_bucket_lock;
171 	unsigned int new_hash;
172 
173 	rht_for_each(entry, old_tbl, old_hash) {
174 		err = 0;
175 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
176 
177 		if (rht_is_a_nulls(next))
178 			break;
179 
180 		pprev = &entry->next;
181 	}
182 
183 	if (err)
184 		goto out;
185 
186 	new_hash = head_hashfn(ht, new_tbl, entry);
187 
188 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
189 
190 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
191 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
192 				      new_tbl, new_hash);
193 
194 	RCU_INIT_POINTER(entry->next, head);
195 
196 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
197 	spin_unlock(new_bucket_lock);
198 
199 	rcu_assign_pointer(*pprev, next);
200 
201 out:
202 	return err;
203 }
204 
205 static void rhashtable_rehash_chain(struct rhashtable *ht,
206 				    unsigned int old_hash)
207 {
208 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
209 	spinlock_t *old_bucket_lock;
210 
211 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
212 
213 	spin_lock_bh(old_bucket_lock);
214 	while (!rhashtable_rehash_one(ht, old_hash))
215 		;
216 	old_tbl->rehash++;
217 	spin_unlock_bh(old_bucket_lock);
218 }
219 
220 static int rhashtable_rehash_attach(struct rhashtable *ht,
221 				    struct bucket_table *old_tbl,
222 				    struct bucket_table *new_tbl)
223 {
224 	/* Protect future_tbl using the first bucket lock. */
225 	spin_lock_bh(old_tbl->locks);
226 
227 	/* Did somebody beat us to it? */
228 	if (rcu_access_pointer(old_tbl->future_tbl)) {
229 		spin_unlock_bh(old_tbl->locks);
230 		return -EEXIST;
231 	}
232 
233 	/* Make insertions go into the new, empty table right away. Deletions
234 	 * and lookups will be attempted in both tables until we synchronize.
235 	 */
236 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
237 
238 	spin_unlock_bh(old_tbl->locks);
239 
240 	return 0;
241 }
242 
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246 	struct bucket_table *new_tbl;
247 	struct rhashtable_walker *walker;
248 	unsigned int old_hash;
249 
250 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251 	if (!new_tbl)
252 		return 0;
253 
254 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255 		rhashtable_rehash_chain(ht, old_hash);
256 
257 	/* Publish the new table pointer. */
258 	rcu_assign_pointer(ht->tbl, new_tbl);
259 
260 	spin_lock(&ht->lock);
261 	list_for_each_entry(walker, &old_tbl->walkers, list)
262 		walker->tbl = NULL;
263 	spin_unlock(&ht->lock);
264 
265 	/* Wait for readers. All new readers will see the new
266 	 * table, and thus no references to the old table will
267 	 * remain.
268 	 */
269 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270 
271 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273 
274 /**
275  * rhashtable_expand - Expand hash table while allowing concurrent lookups
276  * @ht:		the hash table to expand
277  *
278  * A secondary bucket array is allocated and the hash entries are migrated.
279  *
280  * This function may only be called in a context where it is safe to call
281  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282  *
283  * The caller must ensure that no concurrent resizing occurs by holding
284  * ht->mutex.
285  *
286  * It is valid to have concurrent insertions and deletions protected by per
287  * bucket locks or concurrent RCU protected lookups and traversals.
288  */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292 	int err;
293 
294 	ASSERT_RHT_MUTEX(ht);
295 
296 	old_tbl = rhashtable_last_table(ht, old_tbl);
297 
298 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299 	if (new_tbl == NULL)
300 		return -ENOMEM;
301 
302 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303 	if (err)
304 		bucket_table_free(new_tbl);
305 
306 	return err;
307 }
308 
309 /**
310  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311  * @ht:		the hash table to shrink
312  *
313  * This function shrinks the hash table to fit, i.e., the smallest
314  * size would not cause it to expand right away automatically.
315  *
316  * The caller must ensure that no concurrent resizing occurs by holding
317  * ht->mutex.
318  *
319  * The caller must ensure that no concurrent table mutations take place.
320  * It is however valid to have concurrent lookups if they are RCU protected.
321  *
322  * It is valid to have concurrent insertions and deletions protected by per
323  * bucket locks or concurrent RCU protected lookups and traversals.
324  */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328 	unsigned int nelems = atomic_read(&ht->nelems);
329 	unsigned int size = 0;
330 	int err;
331 
332 	ASSERT_RHT_MUTEX(ht);
333 
334 	if (nelems)
335 		size = roundup_pow_of_two(nelems * 3 / 2);
336 	if (size < ht->p.min_size)
337 		size = ht->p.min_size;
338 
339 	if (old_tbl->size <= size)
340 		return 0;
341 
342 	if (rht_dereference(old_tbl->future_tbl, ht))
343 		return -EEXIST;
344 
345 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
346 	if (new_tbl == NULL)
347 		return -ENOMEM;
348 
349 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
350 	if (err)
351 		bucket_table_free(new_tbl);
352 
353 	return err;
354 }
355 
356 static void rht_deferred_worker(struct work_struct *work)
357 {
358 	struct rhashtable *ht;
359 	struct bucket_table *tbl;
360 	int err = 0;
361 
362 	ht = container_of(work, struct rhashtable, run_work);
363 	mutex_lock(&ht->mutex);
364 
365 	tbl = rht_dereference(ht->tbl, ht);
366 	tbl = rhashtable_last_table(ht, tbl);
367 
368 	if (rht_grow_above_75(ht, tbl))
369 		rhashtable_expand(ht);
370 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
371 		rhashtable_shrink(ht);
372 
373 	err = rhashtable_rehash_table(ht);
374 
375 	mutex_unlock(&ht->mutex);
376 
377 	if (err)
378 		schedule_work(&ht->run_work);
379 }
380 
381 static int rhashtable_insert_rehash(struct rhashtable *ht,
382 				    struct bucket_table *tbl)
383 {
384 	struct bucket_table *old_tbl;
385 	struct bucket_table *new_tbl;
386 	unsigned int size;
387 	int err;
388 
389 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
390 
391 	size = tbl->size;
392 
393 	err = -EBUSY;
394 
395 	if (rht_grow_above_75(ht, tbl))
396 		size *= 2;
397 	/* Do not schedule more than one rehash */
398 	else if (old_tbl != tbl)
399 		goto fail;
400 
401 	err = -ENOMEM;
402 
403 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
404 	if (new_tbl == NULL)
405 		goto fail;
406 
407 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
408 	if (err) {
409 		bucket_table_free(new_tbl);
410 		if (err == -EEXIST)
411 			err = 0;
412 	} else
413 		schedule_work(&ht->run_work);
414 
415 	return err;
416 
417 fail:
418 	/* Do not fail the insert if someone else did a rehash. */
419 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
420 		return 0;
421 
422 	/* Schedule async rehash to retry allocation in process context. */
423 	if (err == -ENOMEM)
424 		schedule_work(&ht->run_work);
425 
426 	return err;
427 }
428 
429 static void *rhashtable_lookup_one(struct rhashtable *ht,
430 				   struct bucket_table *tbl, unsigned int hash,
431 				   const void *key, struct rhash_head *obj)
432 {
433 	struct rhashtable_compare_arg arg = {
434 		.ht = ht,
435 		.key = key,
436 	};
437 	struct rhash_head __rcu **pprev;
438 	struct rhash_head *head;
439 	int elasticity;
440 
441 	elasticity = ht->elasticity;
442 	pprev = &tbl->buckets[hash];
443 	rht_for_each(head, tbl, hash) {
444 		struct rhlist_head *list;
445 		struct rhlist_head *plist;
446 
447 		elasticity--;
448 		if (!key ||
449 		    (ht->p.obj_cmpfn ?
450 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
451 		     rhashtable_compare(&arg, rht_obj(ht, head))))
452 			continue;
453 
454 		if (!ht->rhlist)
455 			return rht_obj(ht, head);
456 
457 		list = container_of(obj, struct rhlist_head, rhead);
458 		plist = container_of(head, struct rhlist_head, rhead);
459 
460 		RCU_INIT_POINTER(list->next, plist);
461 		head = rht_dereference_bucket(head->next, tbl, hash);
462 		RCU_INIT_POINTER(list->rhead.next, head);
463 		rcu_assign_pointer(*pprev, obj);
464 
465 		return NULL;
466 	}
467 
468 	if (elasticity <= 0)
469 		return ERR_PTR(-EAGAIN);
470 
471 	return ERR_PTR(-ENOENT);
472 }
473 
474 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
475 						  struct bucket_table *tbl,
476 						  unsigned int hash,
477 						  struct rhash_head *obj,
478 						  void *data)
479 {
480 	struct bucket_table *new_tbl;
481 	struct rhash_head *head;
482 
483 	if (!IS_ERR_OR_NULL(data))
484 		return ERR_PTR(-EEXIST);
485 
486 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
487 		return ERR_CAST(data);
488 
489 	new_tbl = rcu_dereference(tbl->future_tbl);
490 	if (new_tbl)
491 		return new_tbl;
492 
493 	if (PTR_ERR(data) != -ENOENT)
494 		return ERR_CAST(data);
495 
496 	if (unlikely(rht_grow_above_max(ht, tbl)))
497 		return ERR_PTR(-E2BIG);
498 
499 	if (unlikely(rht_grow_above_100(ht, tbl)))
500 		return ERR_PTR(-EAGAIN);
501 
502 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
503 
504 	RCU_INIT_POINTER(obj->next, head);
505 	if (ht->rhlist) {
506 		struct rhlist_head *list;
507 
508 		list = container_of(obj, struct rhlist_head, rhead);
509 		RCU_INIT_POINTER(list->next, NULL);
510 	}
511 
512 	rcu_assign_pointer(tbl->buckets[hash], obj);
513 
514 	atomic_inc(&ht->nelems);
515 	if (rht_grow_above_75(ht, tbl))
516 		schedule_work(&ht->run_work);
517 
518 	return NULL;
519 }
520 
521 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
522 				   struct rhash_head *obj)
523 {
524 	struct bucket_table *new_tbl;
525 	struct bucket_table *tbl;
526 	unsigned int hash;
527 	spinlock_t *lock;
528 	void *data;
529 
530 	tbl = rcu_dereference(ht->tbl);
531 
532 	/* All insertions must grab the oldest table containing
533 	 * the hashed bucket that is yet to be rehashed.
534 	 */
535 	for (;;) {
536 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
537 		lock = rht_bucket_lock(tbl, hash);
538 		spin_lock_bh(lock);
539 
540 		if (tbl->rehash <= hash)
541 			break;
542 
543 		spin_unlock_bh(lock);
544 		tbl = rcu_dereference(tbl->future_tbl);
545 	}
546 
547 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
548 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
549 	if (PTR_ERR(new_tbl) != -EEXIST)
550 		data = ERR_CAST(new_tbl);
551 
552 	while (!IS_ERR_OR_NULL(new_tbl)) {
553 		tbl = new_tbl;
554 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
555 		spin_lock_nested(rht_bucket_lock(tbl, hash),
556 				 SINGLE_DEPTH_NESTING);
557 
558 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
559 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
560 		if (PTR_ERR(new_tbl) != -EEXIST)
561 			data = ERR_CAST(new_tbl);
562 
563 		spin_unlock(rht_bucket_lock(tbl, hash));
564 	}
565 
566 	spin_unlock_bh(lock);
567 
568 	if (PTR_ERR(data) == -EAGAIN)
569 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
570 			       -EAGAIN);
571 
572 	return data;
573 }
574 
575 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
576 			     struct rhash_head *obj)
577 {
578 	void *data;
579 
580 	do {
581 		rcu_read_lock();
582 		data = rhashtable_try_insert(ht, key, obj);
583 		rcu_read_unlock();
584 	} while (PTR_ERR(data) == -EAGAIN);
585 
586 	return data;
587 }
588 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
589 
590 /**
591  * rhashtable_walk_enter - Initialise an iterator
592  * @ht:		Table to walk over
593  * @iter:	Hash table Iterator
594  *
595  * This function prepares a hash table walk.
596  *
597  * Note that if you restart a walk after rhashtable_walk_stop you
598  * may see the same object twice.  Also, you may miss objects if
599  * there are removals in between rhashtable_walk_stop and the next
600  * call to rhashtable_walk_start.
601  *
602  * For a completely stable walk you should construct your own data
603  * structure outside the hash table.
604  *
605  * This function may sleep so you must not call it from interrupt
606  * context or with spin locks held.
607  *
608  * You must call rhashtable_walk_exit after this function returns.
609  */
610 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
611 {
612 	iter->ht = ht;
613 	iter->p = NULL;
614 	iter->slot = 0;
615 	iter->skip = 0;
616 
617 	spin_lock(&ht->lock);
618 	iter->walker.tbl =
619 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
620 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
621 	spin_unlock(&ht->lock);
622 }
623 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
624 
625 /**
626  * rhashtable_walk_exit - Free an iterator
627  * @iter:	Hash table Iterator
628  *
629  * This function frees resources allocated by rhashtable_walk_init.
630  */
631 void rhashtable_walk_exit(struct rhashtable_iter *iter)
632 {
633 	spin_lock(&iter->ht->lock);
634 	if (iter->walker.tbl)
635 		list_del(&iter->walker.list);
636 	spin_unlock(&iter->ht->lock);
637 }
638 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
639 
640 /**
641  * rhashtable_walk_start - Start a hash table walk
642  * @iter:	Hash table iterator
643  *
644  * Start a hash table walk.  Note that we take the RCU lock in all
645  * cases including when we return an error.  So you must always call
646  * rhashtable_walk_stop to clean up.
647  *
648  * Returns zero if successful.
649  *
650  * Returns -EAGAIN if resize event occured.  Note that the iterator
651  * will rewind back to the beginning and you may use it immediately
652  * by calling rhashtable_walk_next.
653  */
654 int rhashtable_walk_start(struct rhashtable_iter *iter)
655 	__acquires(RCU)
656 {
657 	struct rhashtable *ht = iter->ht;
658 
659 	rcu_read_lock();
660 
661 	spin_lock(&ht->lock);
662 	if (iter->walker.tbl)
663 		list_del(&iter->walker.list);
664 	spin_unlock(&ht->lock);
665 
666 	if (!iter->walker.tbl) {
667 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
668 		return -EAGAIN;
669 	}
670 
671 	return 0;
672 }
673 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
674 
675 /**
676  * rhashtable_walk_next - Return the next object and advance the iterator
677  * @iter:	Hash table iterator
678  *
679  * Note that you must call rhashtable_walk_stop when you are finished
680  * with the walk.
681  *
682  * Returns the next object or NULL when the end of the table is reached.
683  *
684  * Returns -EAGAIN if resize event occured.  Note that the iterator
685  * will rewind back to the beginning and you may continue to use it.
686  */
687 void *rhashtable_walk_next(struct rhashtable_iter *iter)
688 {
689 	struct bucket_table *tbl = iter->walker.tbl;
690 	struct rhlist_head *list = iter->list;
691 	struct rhashtable *ht = iter->ht;
692 	struct rhash_head *p = iter->p;
693 	bool rhlist = ht->rhlist;
694 
695 	if (p) {
696 		if (!rhlist || !(list = rcu_dereference(list->next))) {
697 			p = rcu_dereference(p->next);
698 			list = container_of(p, struct rhlist_head, rhead);
699 		}
700 		goto next;
701 	}
702 
703 	for (; iter->slot < tbl->size; iter->slot++) {
704 		int skip = iter->skip;
705 
706 		rht_for_each_rcu(p, tbl, iter->slot) {
707 			if (rhlist) {
708 				list = container_of(p, struct rhlist_head,
709 						    rhead);
710 				do {
711 					if (!skip)
712 						goto next;
713 					skip--;
714 					list = rcu_dereference(list->next);
715 				} while (list);
716 
717 				continue;
718 			}
719 			if (!skip)
720 				break;
721 			skip--;
722 		}
723 
724 next:
725 		if (!rht_is_a_nulls(p)) {
726 			iter->skip++;
727 			iter->p = p;
728 			iter->list = list;
729 			return rht_obj(ht, rhlist ? &list->rhead : p);
730 		}
731 
732 		iter->skip = 0;
733 	}
734 
735 	iter->p = NULL;
736 
737 	/* Ensure we see any new tables. */
738 	smp_rmb();
739 
740 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
741 	if (iter->walker.tbl) {
742 		iter->slot = 0;
743 		iter->skip = 0;
744 		return ERR_PTR(-EAGAIN);
745 	}
746 
747 	return NULL;
748 }
749 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
750 
751 /**
752  * rhashtable_walk_stop - Finish a hash table walk
753  * @iter:	Hash table iterator
754  *
755  * Finish a hash table walk.
756  */
757 void rhashtable_walk_stop(struct rhashtable_iter *iter)
758 	__releases(RCU)
759 {
760 	struct rhashtable *ht;
761 	struct bucket_table *tbl = iter->walker.tbl;
762 
763 	if (!tbl)
764 		goto out;
765 
766 	ht = iter->ht;
767 
768 	spin_lock(&ht->lock);
769 	if (tbl->rehash < tbl->size)
770 		list_add(&iter->walker.list, &tbl->walkers);
771 	else
772 		iter->walker.tbl = NULL;
773 	spin_unlock(&ht->lock);
774 
775 	iter->p = NULL;
776 
777 out:
778 	rcu_read_unlock();
779 }
780 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
781 
782 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
783 {
784 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
785 		   (unsigned long)params->min_size);
786 }
787 
788 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
789 {
790 	return jhash2(key, length, seed);
791 }
792 
793 /**
794  * rhashtable_init - initialize a new hash table
795  * @ht:		hash table to be initialized
796  * @params:	configuration parameters
797  *
798  * Initializes a new hash table based on the provided configuration
799  * parameters. A table can be configured either with a variable or
800  * fixed length key:
801  *
802  * Configuration Example 1: Fixed length keys
803  * struct test_obj {
804  *	int			key;
805  *	void *			my_member;
806  *	struct rhash_head	node;
807  * };
808  *
809  * struct rhashtable_params params = {
810  *	.head_offset = offsetof(struct test_obj, node),
811  *	.key_offset = offsetof(struct test_obj, key),
812  *	.key_len = sizeof(int),
813  *	.hashfn = jhash,
814  *	.nulls_base = (1U << RHT_BASE_SHIFT),
815  * };
816  *
817  * Configuration Example 2: Variable length keys
818  * struct test_obj {
819  *	[...]
820  *	struct rhash_head	node;
821  * };
822  *
823  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
824  * {
825  *	struct test_obj *obj = data;
826  *
827  *	return [... hash ...];
828  * }
829  *
830  * struct rhashtable_params params = {
831  *	.head_offset = offsetof(struct test_obj, node),
832  *	.hashfn = jhash,
833  *	.obj_hashfn = my_hash_fn,
834  * };
835  */
836 int rhashtable_init(struct rhashtable *ht,
837 		    const struct rhashtable_params *params)
838 {
839 	struct bucket_table *tbl;
840 	size_t size;
841 
842 	size = HASH_DEFAULT_SIZE;
843 
844 	if ((!params->key_len && !params->obj_hashfn) ||
845 	    (params->obj_hashfn && !params->obj_cmpfn))
846 		return -EINVAL;
847 
848 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
849 		return -EINVAL;
850 
851 	memset(ht, 0, sizeof(*ht));
852 	mutex_init(&ht->mutex);
853 	spin_lock_init(&ht->lock);
854 	memcpy(&ht->p, params, sizeof(*params));
855 
856 	if (params->min_size)
857 		ht->p.min_size = roundup_pow_of_two(params->min_size);
858 
859 	if (params->max_size)
860 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
861 
862 	if (params->insecure_max_entries)
863 		ht->p.insecure_max_entries =
864 			rounddown_pow_of_two(params->insecure_max_entries);
865 	else
866 		ht->p.insecure_max_entries = ht->p.max_size * 2;
867 
868 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
869 
870 	if (params->nelem_hint)
871 		size = rounded_hashtable_size(&ht->p);
872 
873 	/* The maximum (not average) chain length grows with the
874 	 * size of the hash table, at a rate of (log N)/(log log N).
875 	 * The value of 16 is selected so that even if the hash
876 	 * table grew to 2^32 you would not expect the maximum
877 	 * chain length to exceed it unless we are under attack
878 	 * (or extremely unlucky).
879 	 *
880 	 * As this limit is only to detect attacks, we don't need
881 	 * to set it to a lower value as you'd need the chain
882 	 * length to vastly exceed 16 to have any real effect
883 	 * on the system.
884 	 */
885 	if (!params->insecure_elasticity)
886 		ht->elasticity = 16;
887 
888 	if (params->locks_mul)
889 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
890 	else
891 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
892 
893 	ht->key_len = ht->p.key_len;
894 	if (!params->hashfn) {
895 		ht->p.hashfn = jhash;
896 
897 		if (!(ht->key_len & (sizeof(u32) - 1))) {
898 			ht->key_len /= sizeof(u32);
899 			ht->p.hashfn = rhashtable_jhash2;
900 		}
901 	}
902 
903 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
904 	if (tbl == NULL)
905 		return -ENOMEM;
906 
907 	atomic_set(&ht->nelems, 0);
908 
909 	RCU_INIT_POINTER(ht->tbl, tbl);
910 
911 	INIT_WORK(&ht->run_work, rht_deferred_worker);
912 
913 	return 0;
914 }
915 EXPORT_SYMBOL_GPL(rhashtable_init);
916 
917 /**
918  * rhltable_init - initialize a new hash list table
919  * @hlt:	hash list table to be initialized
920  * @params:	configuration parameters
921  *
922  * Initializes a new hash list table.
923  *
924  * See documentation for rhashtable_init.
925  */
926 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
927 {
928 	int err;
929 
930 	/* No rhlist NULLs marking for now. */
931 	if (params->nulls_base)
932 		return -EINVAL;
933 
934 	err = rhashtable_init(&hlt->ht, params);
935 	hlt->ht.rhlist = true;
936 	return err;
937 }
938 EXPORT_SYMBOL_GPL(rhltable_init);
939 
940 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
941 				void (*free_fn)(void *ptr, void *arg),
942 				void *arg)
943 {
944 	struct rhlist_head *list;
945 
946 	if (!ht->rhlist) {
947 		free_fn(rht_obj(ht, obj), arg);
948 		return;
949 	}
950 
951 	list = container_of(obj, struct rhlist_head, rhead);
952 	do {
953 		obj = &list->rhead;
954 		list = rht_dereference(list->next, ht);
955 		free_fn(rht_obj(ht, obj), arg);
956 	} while (list);
957 }
958 
959 /**
960  * rhashtable_free_and_destroy - free elements and destroy hash table
961  * @ht:		the hash table to destroy
962  * @free_fn:	callback to release resources of element
963  * @arg:	pointer passed to free_fn
964  *
965  * Stops an eventual async resize. If defined, invokes free_fn for each
966  * element to releasal resources. Please note that RCU protected
967  * readers may still be accessing the elements. Releasing of resources
968  * must occur in a compatible manner. Then frees the bucket array.
969  *
970  * This function will eventually sleep to wait for an async resize
971  * to complete. The caller is responsible that no further write operations
972  * occurs in parallel.
973  */
974 void rhashtable_free_and_destroy(struct rhashtable *ht,
975 				 void (*free_fn)(void *ptr, void *arg),
976 				 void *arg)
977 {
978 	const struct bucket_table *tbl;
979 	unsigned int i;
980 
981 	cancel_work_sync(&ht->run_work);
982 
983 	mutex_lock(&ht->mutex);
984 	tbl = rht_dereference(ht->tbl, ht);
985 	if (free_fn) {
986 		for (i = 0; i < tbl->size; i++) {
987 			struct rhash_head *pos, *next;
988 
989 			for (pos = rht_dereference(tbl->buckets[i], ht),
990 			     next = !rht_is_a_nulls(pos) ?
991 					rht_dereference(pos->next, ht) : NULL;
992 			     !rht_is_a_nulls(pos);
993 			     pos = next,
994 			     next = !rht_is_a_nulls(pos) ?
995 					rht_dereference(pos->next, ht) : NULL)
996 				rhashtable_free_one(ht, pos, free_fn, arg);
997 		}
998 	}
999 
1000 	bucket_table_free(tbl);
1001 	mutex_unlock(&ht->mutex);
1002 }
1003 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1004 
1005 void rhashtable_destroy(struct rhashtable *ht)
1006 {
1007 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1008 }
1009 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1010