xref: /linux/lib/rhashtable.c (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 #include <linux/rhashtable.h>
32 
33 #define HASH_DEFAULT_SIZE	64UL
34 #define HASH_MIN_SIZE		4U
35 #define BUCKET_LOCKS_PER_CPU	32UL
36 
37 union nested_table {
38 	union nested_table __rcu *table;
39 	struct rhash_head __rcu *bucket;
40 };
41 
42 static u32 head_hashfn(struct rhashtable *ht,
43 		       const struct bucket_table *tbl,
44 		       const struct rhash_head *he)
45 {
46 	return rht_head_hashfn(ht, tbl, he, ht->p);
47 }
48 
49 #ifdef CONFIG_PROVE_LOCKING
50 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
51 
52 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
53 {
54 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
55 }
56 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
57 
58 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
59 {
60 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
61 
62 	return (debug_locks) ? lockdep_is_held(lock) : 1;
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68 
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72 	const unsigned int len = 1 << shift;
73 	unsigned int i;
74 
75 	ntbl = rcu_dereference_raw(ntbl->table);
76 	if (!ntbl)
77 		return;
78 
79 	if (size > len) {
80 		size >>= shift;
81 		for (i = 0; i < len; i++)
82 			nested_table_free(ntbl + i, size);
83 	}
84 
85 	kfree(ntbl);
86 }
87 
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90 	unsigned int size = tbl->size >> tbl->nest;
91 	unsigned int len = 1 << tbl->nest;
92 	union nested_table *ntbl;
93 	unsigned int i;
94 
95 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96 
97 	for (i = 0; i < len; i++)
98 		nested_table_free(ntbl + i, size);
99 
100 	kfree(ntbl);
101 }
102 
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105 	if (tbl->nest)
106 		nested_bucket_table_free(tbl);
107 
108 	free_bucket_spinlocks(tbl->locks);
109 	kvfree(tbl);
110 }
111 
112 static void bucket_table_free_rcu(struct rcu_head *head)
113 {
114 	bucket_table_free(container_of(head, struct bucket_table, rcu));
115 }
116 
117 static union nested_table *nested_table_alloc(struct rhashtable *ht,
118 					      union nested_table __rcu **prev,
119 					      bool leaf)
120 {
121 	union nested_table *ntbl;
122 	int i;
123 
124 	ntbl = rcu_dereference(*prev);
125 	if (ntbl)
126 		return ntbl;
127 
128 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129 
130 	if (ntbl && leaf) {
131 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
132 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
133 	}
134 
135 	rcu_assign_pointer(*prev, ntbl);
136 
137 	return ntbl;
138 }
139 
140 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
141 						      size_t nbuckets,
142 						      gfp_t gfp)
143 {
144 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
145 	struct bucket_table *tbl;
146 	size_t size;
147 
148 	if (nbuckets < (1 << (shift + 1)))
149 		return NULL;
150 
151 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
152 
153 	tbl = kzalloc(size, gfp);
154 	if (!tbl)
155 		return NULL;
156 
157 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
158 				false)) {
159 		kfree(tbl);
160 		return NULL;
161 	}
162 
163 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
164 
165 	return tbl;
166 }
167 
168 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
169 					       size_t nbuckets,
170 					       gfp_t gfp)
171 {
172 	struct bucket_table *tbl = NULL;
173 	size_t size, max_locks;
174 	int i;
175 
176 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
177 	if (gfp != GFP_KERNEL)
178 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
179 	else
180 		tbl = kvzalloc(size, gfp);
181 
182 	size = nbuckets;
183 
184 	if (tbl == NULL && gfp != GFP_KERNEL) {
185 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
186 		nbuckets = 0;
187 	}
188 	if (tbl == NULL)
189 		return NULL;
190 
191 	tbl->size = size;
192 
193 	max_locks = size >> 1;
194 	if (tbl->nest)
195 		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
196 
197 	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
198 				   ht->p.locks_mul, gfp) < 0) {
199 		bucket_table_free(tbl);
200 		return NULL;
201 	}
202 
203 	INIT_LIST_HEAD(&tbl->walkers);
204 
205 	tbl->hash_rnd = get_random_u32();
206 
207 	for (i = 0; i < nbuckets; i++)
208 		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
209 
210 	return tbl;
211 }
212 
213 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
214 						  struct bucket_table *tbl)
215 {
216 	struct bucket_table *new_tbl;
217 
218 	do {
219 		new_tbl = tbl;
220 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
221 	} while (tbl);
222 
223 	return new_tbl;
224 }
225 
226 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
227 {
228 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
229 	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
230 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
231 	int err = -EAGAIN;
232 	struct rhash_head *head, *next, *entry;
233 	spinlock_t *new_bucket_lock;
234 	unsigned int new_hash;
235 
236 	if (new_tbl->nest)
237 		goto out;
238 
239 	err = -ENOENT;
240 
241 	rht_for_each(entry, old_tbl, old_hash) {
242 		err = 0;
243 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
244 
245 		if (rht_is_a_nulls(next))
246 			break;
247 
248 		pprev = &entry->next;
249 	}
250 
251 	if (err)
252 		goto out;
253 
254 	new_hash = head_hashfn(ht, new_tbl, entry);
255 
256 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
257 
258 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
259 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
260 				      new_tbl, new_hash);
261 
262 	RCU_INIT_POINTER(entry->next, head);
263 
264 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
265 	spin_unlock(new_bucket_lock);
266 
267 	rcu_assign_pointer(*pprev, next);
268 
269 out:
270 	return err;
271 }
272 
273 static int rhashtable_rehash_chain(struct rhashtable *ht,
274 				    unsigned int old_hash)
275 {
276 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
277 	spinlock_t *old_bucket_lock;
278 	int err;
279 
280 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
281 
282 	spin_lock_bh(old_bucket_lock);
283 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
284 		;
285 
286 	if (err == -ENOENT) {
287 		old_tbl->rehash++;
288 		err = 0;
289 	}
290 	spin_unlock_bh(old_bucket_lock);
291 
292 	return err;
293 }
294 
295 static int rhashtable_rehash_attach(struct rhashtable *ht,
296 				    struct bucket_table *old_tbl,
297 				    struct bucket_table *new_tbl)
298 {
299 	/* Make insertions go into the new, empty table right away. Deletions
300 	 * and lookups will be attempted in both tables until we synchronize.
301 	 * As cmpxchg() provides strong barriers, we do not need
302 	 * rcu_assign_pointer().
303 	 */
304 
305 	if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
306 		return -EEXIST;
307 
308 	return 0;
309 }
310 
311 static int rhashtable_rehash_table(struct rhashtable *ht)
312 {
313 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
314 	struct bucket_table *new_tbl;
315 	struct rhashtable_walker *walker;
316 	unsigned int old_hash;
317 	int err;
318 
319 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
320 	if (!new_tbl)
321 		return 0;
322 
323 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
324 		err = rhashtable_rehash_chain(ht, old_hash);
325 		if (err)
326 			return err;
327 		cond_resched();
328 	}
329 
330 	/* Publish the new table pointer. */
331 	rcu_assign_pointer(ht->tbl, new_tbl);
332 
333 	spin_lock(&ht->lock);
334 	list_for_each_entry(walker, &old_tbl->walkers, list)
335 		walker->tbl = NULL;
336 	spin_unlock(&ht->lock);
337 
338 	/* Wait for readers. All new readers will see the new
339 	 * table, and thus no references to the old table will
340 	 * remain.
341 	 */
342 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
343 
344 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
345 }
346 
347 static int rhashtable_rehash_alloc(struct rhashtable *ht,
348 				   struct bucket_table *old_tbl,
349 				   unsigned int size)
350 {
351 	struct bucket_table *new_tbl;
352 	int err;
353 
354 	ASSERT_RHT_MUTEX(ht);
355 
356 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
357 	if (new_tbl == NULL)
358 		return -ENOMEM;
359 
360 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
361 	if (err)
362 		bucket_table_free(new_tbl);
363 
364 	return err;
365 }
366 
367 /**
368  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
369  * @ht:		the hash table to shrink
370  *
371  * This function shrinks the hash table to fit, i.e., the smallest
372  * size would not cause it to expand right away automatically.
373  *
374  * The caller must ensure that no concurrent resizing occurs by holding
375  * ht->mutex.
376  *
377  * The caller must ensure that no concurrent table mutations take place.
378  * It is however valid to have concurrent lookups if they are RCU protected.
379  *
380  * It is valid to have concurrent insertions and deletions protected by per
381  * bucket locks or concurrent RCU protected lookups and traversals.
382  */
383 static int rhashtable_shrink(struct rhashtable *ht)
384 {
385 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
386 	unsigned int nelems = atomic_read(&ht->nelems);
387 	unsigned int size = 0;
388 
389 	if (nelems)
390 		size = roundup_pow_of_two(nelems * 3 / 2);
391 	if (size < ht->p.min_size)
392 		size = ht->p.min_size;
393 
394 	if (old_tbl->size <= size)
395 		return 0;
396 
397 	if (rht_dereference(old_tbl->future_tbl, ht))
398 		return -EEXIST;
399 
400 	return rhashtable_rehash_alloc(ht, old_tbl, size);
401 }
402 
403 static void rht_deferred_worker(struct work_struct *work)
404 {
405 	struct rhashtable *ht;
406 	struct bucket_table *tbl;
407 	int err = 0;
408 
409 	ht = container_of(work, struct rhashtable, run_work);
410 	mutex_lock(&ht->mutex);
411 
412 	tbl = rht_dereference(ht->tbl, ht);
413 	tbl = rhashtable_last_table(ht, tbl);
414 
415 	if (rht_grow_above_75(ht, tbl))
416 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
417 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
418 		err = rhashtable_shrink(ht);
419 	else if (tbl->nest)
420 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
421 
422 	if (!err)
423 		err = rhashtable_rehash_table(ht);
424 
425 	mutex_unlock(&ht->mutex);
426 
427 	if (err)
428 		schedule_work(&ht->run_work);
429 }
430 
431 static int rhashtable_insert_rehash(struct rhashtable *ht,
432 				    struct bucket_table *tbl)
433 {
434 	struct bucket_table *old_tbl;
435 	struct bucket_table *new_tbl;
436 	unsigned int size;
437 	int err;
438 
439 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
440 
441 	size = tbl->size;
442 
443 	err = -EBUSY;
444 
445 	if (rht_grow_above_75(ht, tbl))
446 		size *= 2;
447 	/* Do not schedule more than one rehash */
448 	else if (old_tbl != tbl)
449 		goto fail;
450 
451 	err = -ENOMEM;
452 
453 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
454 	if (new_tbl == NULL)
455 		goto fail;
456 
457 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
458 	if (err) {
459 		bucket_table_free(new_tbl);
460 		if (err == -EEXIST)
461 			err = 0;
462 	} else
463 		schedule_work(&ht->run_work);
464 
465 	return err;
466 
467 fail:
468 	/* Do not fail the insert if someone else did a rehash. */
469 	if (likely(rcu_access_pointer(tbl->future_tbl)))
470 		return 0;
471 
472 	/* Schedule async rehash to retry allocation in process context. */
473 	if (err == -ENOMEM)
474 		schedule_work(&ht->run_work);
475 
476 	return err;
477 }
478 
479 static void *rhashtable_lookup_one(struct rhashtable *ht,
480 				   struct bucket_table *tbl, unsigned int hash,
481 				   const void *key, struct rhash_head *obj)
482 {
483 	struct rhashtable_compare_arg arg = {
484 		.ht = ht,
485 		.key = key,
486 	};
487 	struct rhash_head __rcu **pprev;
488 	struct rhash_head *head;
489 	int elasticity;
490 
491 	elasticity = RHT_ELASTICITY;
492 	pprev = rht_bucket_var(tbl, hash);
493 	rht_for_each_continue(head, *pprev, tbl, hash) {
494 		struct rhlist_head *list;
495 		struct rhlist_head *plist;
496 
497 		elasticity--;
498 		if (!key ||
499 		    (ht->p.obj_cmpfn ?
500 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
501 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
502 			pprev = &head->next;
503 			continue;
504 		}
505 
506 		if (!ht->rhlist)
507 			return rht_obj(ht, head);
508 
509 		list = container_of(obj, struct rhlist_head, rhead);
510 		plist = container_of(head, struct rhlist_head, rhead);
511 
512 		RCU_INIT_POINTER(list->next, plist);
513 		head = rht_dereference_bucket(head->next, tbl, hash);
514 		RCU_INIT_POINTER(list->rhead.next, head);
515 		rcu_assign_pointer(*pprev, obj);
516 
517 		return NULL;
518 	}
519 
520 	if (elasticity <= 0)
521 		return ERR_PTR(-EAGAIN);
522 
523 	return ERR_PTR(-ENOENT);
524 }
525 
526 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
527 						  struct bucket_table *tbl,
528 						  unsigned int hash,
529 						  struct rhash_head *obj,
530 						  void *data)
531 {
532 	struct rhash_head __rcu **pprev;
533 	struct bucket_table *new_tbl;
534 	struct rhash_head *head;
535 
536 	if (!IS_ERR_OR_NULL(data))
537 		return ERR_PTR(-EEXIST);
538 
539 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
540 		return ERR_CAST(data);
541 
542 	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
543 	if (new_tbl)
544 		return new_tbl;
545 
546 	if (PTR_ERR(data) != -ENOENT)
547 		return ERR_CAST(data);
548 
549 	if (unlikely(rht_grow_above_max(ht, tbl)))
550 		return ERR_PTR(-E2BIG);
551 
552 	if (unlikely(rht_grow_above_100(ht, tbl)))
553 		return ERR_PTR(-EAGAIN);
554 
555 	pprev = rht_bucket_insert(ht, tbl, hash);
556 	if (!pprev)
557 		return ERR_PTR(-ENOMEM);
558 
559 	head = rht_dereference_bucket(*pprev, tbl, hash);
560 
561 	RCU_INIT_POINTER(obj->next, head);
562 	if (ht->rhlist) {
563 		struct rhlist_head *list;
564 
565 		list = container_of(obj, struct rhlist_head, rhead);
566 		RCU_INIT_POINTER(list->next, NULL);
567 	}
568 
569 	rcu_assign_pointer(*pprev, obj);
570 
571 	atomic_inc(&ht->nelems);
572 	if (rht_grow_above_75(ht, tbl))
573 		schedule_work(&ht->run_work);
574 
575 	return NULL;
576 }
577 
578 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
579 				   struct rhash_head *obj)
580 {
581 	struct bucket_table *new_tbl;
582 	struct bucket_table *tbl;
583 	unsigned int hash;
584 	spinlock_t *lock;
585 	void *data;
586 
587 	tbl = rcu_dereference(ht->tbl);
588 
589 	/* All insertions must grab the oldest table containing
590 	 * the hashed bucket that is yet to be rehashed.
591 	 */
592 	for (;;) {
593 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
594 		lock = rht_bucket_lock(tbl, hash);
595 		spin_lock_bh(lock);
596 
597 		if (tbl->rehash <= hash)
598 			break;
599 
600 		spin_unlock_bh(lock);
601 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
602 	}
603 
604 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
605 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
606 	if (PTR_ERR(new_tbl) != -EEXIST)
607 		data = ERR_CAST(new_tbl);
608 
609 	while (!IS_ERR_OR_NULL(new_tbl)) {
610 		tbl = new_tbl;
611 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
612 		spin_lock_nested(rht_bucket_lock(tbl, hash),
613 				 SINGLE_DEPTH_NESTING);
614 
615 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
616 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
617 		if (PTR_ERR(new_tbl) != -EEXIST)
618 			data = ERR_CAST(new_tbl);
619 
620 		spin_unlock(rht_bucket_lock(tbl, hash));
621 	}
622 
623 	spin_unlock_bh(lock);
624 
625 	if (PTR_ERR(data) == -EAGAIN)
626 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
627 			       -EAGAIN);
628 
629 	return data;
630 }
631 
632 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
633 			     struct rhash_head *obj)
634 {
635 	void *data;
636 
637 	do {
638 		rcu_read_lock();
639 		data = rhashtable_try_insert(ht, key, obj);
640 		rcu_read_unlock();
641 	} while (PTR_ERR(data) == -EAGAIN);
642 
643 	return data;
644 }
645 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
646 
647 /**
648  * rhashtable_walk_enter - Initialise an iterator
649  * @ht:		Table to walk over
650  * @iter:	Hash table Iterator
651  *
652  * This function prepares a hash table walk.
653  *
654  * Note that if you restart a walk after rhashtable_walk_stop you
655  * may see the same object twice.  Also, you may miss objects if
656  * there are removals in between rhashtable_walk_stop and the next
657  * call to rhashtable_walk_start.
658  *
659  * For a completely stable walk you should construct your own data
660  * structure outside the hash table.
661  *
662  * This function may be called from any process context, including
663  * non-preemptable context, but cannot be called from softirq or
664  * hardirq context.
665  *
666  * You must call rhashtable_walk_exit after this function returns.
667  */
668 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
669 {
670 	iter->ht = ht;
671 	iter->p = NULL;
672 	iter->slot = 0;
673 	iter->skip = 0;
674 	iter->end_of_table = 0;
675 
676 	spin_lock(&ht->lock);
677 	iter->walker.tbl =
678 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
679 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
680 	spin_unlock(&ht->lock);
681 }
682 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
683 
684 /**
685  * rhashtable_walk_exit - Free an iterator
686  * @iter:	Hash table Iterator
687  *
688  * This function frees resources allocated by rhashtable_walk_init.
689  */
690 void rhashtable_walk_exit(struct rhashtable_iter *iter)
691 {
692 	spin_lock(&iter->ht->lock);
693 	if (iter->walker.tbl)
694 		list_del(&iter->walker.list);
695 	spin_unlock(&iter->ht->lock);
696 }
697 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
698 
699 /**
700  * rhashtable_walk_start_check - Start a hash table walk
701  * @iter:	Hash table iterator
702  *
703  * Start a hash table walk at the current iterator position.  Note that we take
704  * the RCU lock in all cases including when we return an error.  So you must
705  * always call rhashtable_walk_stop to clean up.
706  *
707  * Returns zero if successful.
708  *
709  * Returns -EAGAIN if resize event occured.  Note that the iterator
710  * will rewind back to the beginning and you may use it immediately
711  * by calling rhashtable_walk_next.
712  *
713  * rhashtable_walk_start is defined as an inline variant that returns
714  * void. This is preferred in cases where the caller would ignore
715  * resize events and always continue.
716  */
717 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
718 	__acquires(RCU)
719 {
720 	struct rhashtable *ht = iter->ht;
721 	bool rhlist = ht->rhlist;
722 
723 	rcu_read_lock();
724 
725 	spin_lock(&ht->lock);
726 	if (iter->walker.tbl)
727 		list_del(&iter->walker.list);
728 	spin_unlock(&ht->lock);
729 
730 	if (iter->end_of_table)
731 		return 0;
732 	if (!iter->walker.tbl) {
733 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
734 		iter->slot = 0;
735 		iter->skip = 0;
736 		return -EAGAIN;
737 	}
738 
739 	if (iter->p && !rhlist) {
740 		/*
741 		 * We need to validate that 'p' is still in the table, and
742 		 * if so, update 'skip'
743 		 */
744 		struct rhash_head *p;
745 		int skip = 0;
746 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
747 			skip++;
748 			if (p == iter->p) {
749 				iter->skip = skip;
750 				goto found;
751 			}
752 		}
753 		iter->p = NULL;
754 	} else if (iter->p && rhlist) {
755 		/* Need to validate that 'list' is still in the table, and
756 		 * if so, update 'skip' and 'p'.
757 		 */
758 		struct rhash_head *p;
759 		struct rhlist_head *list;
760 		int skip = 0;
761 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
762 			for (list = container_of(p, struct rhlist_head, rhead);
763 			     list;
764 			     list = rcu_dereference(list->next)) {
765 				skip++;
766 				if (list == iter->list) {
767 					iter->p = p;
768 					skip = skip;
769 					goto found;
770 				}
771 			}
772 		}
773 		iter->p = NULL;
774 	}
775 found:
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
779 
780 /**
781  * __rhashtable_walk_find_next - Find the next element in a table (or the first
782  * one in case of a new walk).
783  *
784  * @iter:	Hash table iterator
785  *
786  * Returns the found object or NULL when the end of the table is reached.
787  *
788  * Returns -EAGAIN if resize event occurred.
789  */
790 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
791 {
792 	struct bucket_table *tbl = iter->walker.tbl;
793 	struct rhlist_head *list = iter->list;
794 	struct rhashtable *ht = iter->ht;
795 	struct rhash_head *p = iter->p;
796 	bool rhlist = ht->rhlist;
797 
798 	if (!tbl)
799 		return NULL;
800 
801 	for (; iter->slot < tbl->size; iter->slot++) {
802 		int skip = iter->skip;
803 
804 		rht_for_each_rcu(p, tbl, iter->slot) {
805 			if (rhlist) {
806 				list = container_of(p, struct rhlist_head,
807 						    rhead);
808 				do {
809 					if (!skip)
810 						goto next;
811 					skip--;
812 					list = rcu_dereference(list->next);
813 				} while (list);
814 
815 				continue;
816 			}
817 			if (!skip)
818 				break;
819 			skip--;
820 		}
821 
822 next:
823 		if (!rht_is_a_nulls(p)) {
824 			iter->skip++;
825 			iter->p = p;
826 			iter->list = list;
827 			return rht_obj(ht, rhlist ? &list->rhead : p);
828 		}
829 
830 		iter->skip = 0;
831 	}
832 
833 	iter->p = NULL;
834 
835 	/* Ensure we see any new tables. */
836 	smp_rmb();
837 
838 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
839 	if (iter->walker.tbl) {
840 		iter->slot = 0;
841 		iter->skip = 0;
842 		return ERR_PTR(-EAGAIN);
843 	} else {
844 		iter->end_of_table = true;
845 	}
846 
847 	return NULL;
848 }
849 
850 /**
851  * rhashtable_walk_next - Return the next object and advance the iterator
852  * @iter:	Hash table iterator
853  *
854  * Note that you must call rhashtable_walk_stop when you are finished
855  * with the walk.
856  *
857  * Returns the next object or NULL when the end of the table is reached.
858  *
859  * Returns -EAGAIN if resize event occurred.  Note that the iterator
860  * will rewind back to the beginning and you may continue to use it.
861  */
862 void *rhashtable_walk_next(struct rhashtable_iter *iter)
863 {
864 	struct rhlist_head *list = iter->list;
865 	struct rhashtable *ht = iter->ht;
866 	struct rhash_head *p = iter->p;
867 	bool rhlist = ht->rhlist;
868 
869 	if (p) {
870 		if (!rhlist || !(list = rcu_dereference(list->next))) {
871 			p = rcu_dereference(p->next);
872 			list = container_of(p, struct rhlist_head, rhead);
873 		}
874 		if (!rht_is_a_nulls(p)) {
875 			iter->skip++;
876 			iter->p = p;
877 			iter->list = list;
878 			return rht_obj(ht, rhlist ? &list->rhead : p);
879 		}
880 
881 		/* At the end of this slot, switch to next one and then find
882 		 * next entry from that point.
883 		 */
884 		iter->skip = 0;
885 		iter->slot++;
886 	}
887 
888 	return __rhashtable_walk_find_next(iter);
889 }
890 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
891 
892 /**
893  * rhashtable_walk_peek - Return the next object but don't advance the iterator
894  * @iter:	Hash table iterator
895  *
896  * Returns the next object or NULL when the end of the table is reached.
897  *
898  * Returns -EAGAIN if resize event occurred.  Note that the iterator
899  * will rewind back to the beginning and you may continue to use it.
900  */
901 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
902 {
903 	struct rhlist_head *list = iter->list;
904 	struct rhashtable *ht = iter->ht;
905 	struct rhash_head *p = iter->p;
906 
907 	if (p)
908 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
909 
910 	/* No object found in current iter, find next one in the table. */
911 
912 	if (iter->skip) {
913 		/* A nonzero skip value points to the next entry in the table
914 		 * beyond that last one that was found. Decrement skip so
915 		 * we find the current value. __rhashtable_walk_find_next
916 		 * will restore the original value of skip assuming that
917 		 * the table hasn't changed.
918 		 */
919 		iter->skip--;
920 	}
921 
922 	return __rhashtable_walk_find_next(iter);
923 }
924 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
925 
926 /**
927  * rhashtable_walk_stop - Finish a hash table walk
928  * @iter:	Hash table iterator
929  *
930  * Finish a hash table walk.  Does not reset the iterator to the start of the
931  * hash table.
932  */
933 void rhashtable_walk_stop(struct rhashtable_iter *iter)
934 	__releases(RCU)
935 {
936 	struct rhashtable *ht;
937 	struct bucket_table *tbl = iter->walker.tbl;
938 
939 	if (!tbl)
940 		goto out;
941 
942 	ht = iter->ht;
943 
944 	spin_lock(&ht->lock);
945 	if (tbl->rehash < tbl->size)
946 		list_add(&iter->walker.list, &tbl->walkers);
947 	else
948 		iter->walker.tbl = NULL;
949 	spin_unlock(&ht->lock);
950 
951 out:
952 	rcu_read_unlock();
953 }
954 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
955 
956 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
957 {
958 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
959 		   (unsigned long)params->min_size);
960 }
961 
962 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
963 {
964 	return jhash2(key, length, seed);
965 }
966 
967 /**
968  * rhashtable_init - initialize a new hash table
969  * @ht:		hash table to be initialized
970  * @params:	configuration parameters
971  *
972  * Initializes a new hash table based on the provided configuration
973  * parameters. A table can be configured either with a variable or
974  * fixed length key:
975  *
976  * Configuration Example 1: Fixed length keys
977  * struct test_obj {
978  *	int			key;
979  *	void *			my_member;
980  *	struct rhash_head	node;
981  * };
982  *
983  * struct rhashtable_params params = {
984  *	.head_offset = offsetof(struct test_obj, node),
985  *	.key_offset = offsetof(struct test_obj, key),
986  *	.key_len = sizeof(int),
987  *	.hashfn = jhash,
988  * };
989  *
990  * Configuration Example 2: Variable length keys
991  * struct test_obj {
992  *	[...]
993  *	struct rhash_head	node;
994  * };
995  *
996  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
997  * {
998  *	struct test_obj *obj = data;
999  *
1000  *	return [... hash ...];
1001  * }
1002  *
1003  * struct rhashtable_params params = {
1004  *	.head_offset = offsetof(struct test_obj, node),
1005  *	.hashfn = jhash,
1006  *	.obj_hashfn = my_hash_fn,
1007  * };
1008  */
1009 int rhashtable_init(struct rhashtable *ht,
1010 		    const struct rhashtable_params *params)
1011 {
1012 	struct bucket_table *tbl;
1013 	size_t size;
1014 
1015 	size = HASH_DEFAULT_SIZE;
1016 
1017 	if ((!params->key_len && !params->obj_hashfn) ||
1018 	    (params->obj_hashfn && !params->obj_cmpfn))
1019 		return -EINVAL;
1020 
1021 	memset(ht, 0, sizeof(*ht));
1022 	mutex_init(&ht->mutex);
1023 	spin_lock_init(&ht->lock);
1024 	memcpy(&ht->p, params, sizeof(*params));
1025 
1026 	if (params->min_size)
1027 		ht->p.min_size = roundup_pow_of_two(params->min_size);
1028 
1029 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1030 	ht->max_elems = 1u << 31;
1031 
1032 	if (params->max_size) {
1033 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1034 		if (ht->p.max_size < ht->max_elems / 2)
1035 			ht->max_elems = ht->p.max_size * 2;
1036 	}
1037 
1038 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1039 
1040 	if (params->nelem_hint)
1041 		size = rounded_hashtable_size(&ht->p);
1042 
1043 	if (params->locks_mul)
1044 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1045 	else
1046 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1047 
1048 	ht->key_len = ht->p.key_len;
1049 	if (!params->hashfn) {
1050 		ht->p.hashfn = jhash;
1051 
1052 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1053 			ht->key_len /= sizeof(u32);
1054 			ht->p.hashfn = rhashtable_jhash2;
1055 		}
1056 	}
1057 
1058 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1059 	if (tbl == NULL)
1060 		return -ENOMEM;
1061 
1062 	atomic_set(&ht->nelems, 0);
1063 
1064 	RCU_INIT_POINTER(ht->tbl, tbl);
1065 
1066 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1067 
1068 	return 0;
1069 }
1070 EXPORT_SYMBOL_GPL(rhashtable_init);
1071 
1072 /**
1073  * rhltable_init - initialize a new hash list table
1074  * @hlt:	hash list table to be initialized
1075  * @params:	configuration parameters
1076  *
1077  * Initializes a new hash list table.
1078  *
1079  * See documentation for rhashtable_init.
1080  */
1081 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1082 {
1083 	int err;
1084 
1085 	err = rhashtable_init(&hlt->ht, params);
1086 	hlt->ht.rhlist = true;
1087 	return err;
1088 }
1089 EXPORT_SYMBOL_GPL(rhltable_init);
1090 
1091 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1092 				void (*free_fn)(void *ptr, void *arg),
1093 				void *arg)
1094 {
1095 	struct rhlist_head *list;
1096 
1097 	if (!ht->rhlist) {
1098 		free_fn(rht_obj(ht, obj), arg);
1099 		return;
1100 	}
1101 
1102 	list = container_of(obj, struct rhlist_head, rhead);
1103 	do {
1104 		obj = &list->rhead;
1105 		list = rht_dereference(list->next, ht);
1106 		free_fn(rht_obj(ht, obj), arg);
1107 	} while (list);
1108 }
1109 
1110 /**
1111  * rhashtable_free_and_destroy - free elements and destroy hash table
1112  * @ht:		the hash table to destroy
1113  * @free_fn:	callback to release resources of element
1114  * @arg:	pointer passed to free_fn
1115  *
1116  * Stops an eventual async resize. If defined, invokes free_fn for each
1117  * element to releasal resources. Please note that RCU protected
1118  * readers may still be accessing the elements. Releasing of resources
1119  * must occur in a compatible manner. Then frees the bucket array.
1120  *
1121  * This function will eventually sleep to wait for an async resize
1122  * to complete. The caller is responsible that no further write operations
1123  * occurs in parallel.
1124  */
1125 void rhashtable_free_and_destroy(struct rhashtable *ht,
1126 				 void (*free_fn)(void *ptr, void *arg),
1127 				 void *arg)
1128 {
1129 	struct bucket_table *tbl;
1130 	unsigned int i;
1131 
1132 	cancel_work_sync(&ht->run_work);
1133 
1134 	mutex_lock(&ht->mutex);
1135 	tbl = rht_dereference(ht->tbl, ht);
1136 	if (free_fn) {
1137 		for (i = 0; i < tbl->size; i++) {
1138 			struct rhash_head *pos, *next;
1139 
1140 			cond_resched();
1141 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1142 			     next = !rht_is_a_nulls(pos) ?
1143 					rht_dereference(pos->next, ht) : NULL;
1144 			     !rht_is_a_nulls(pos);
1145 			     pos = next,
1146 			     next = !rht_is_a_nulls(pos) ?
1147 					rht_dereference(pos->next, ht) : NULL)
1148 				rhashtable_free_one(ht, pos, free_fn, arg);
1149 		}
1150 	}
1151 
1152 	bucket_table_free(tbl);
1153 	mutex_unlock(&ht->mutex);
1154 }
1155 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1156 
1157 void rhashtable_destroy(struct rhashtable *ht)
1158 {
1159 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1162 
1163 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1164 					    unsigned int hash)
1165 {
1166 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1167 	static struct rhash_head __rcu *rhnull =
1168 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1169 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1170 	unsigned int size = tbl->size >> tbl->nest;
1171 	unsigned int subhash = hash;
1172 	union nested_table *ntbl;
1173 
1174 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1175 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1176 	subhash >>= tbl->nest;
1177 
1178 	while (ntbl && size > (1 << shift)) {
1179 		index = subhash & ((1 << shift) - 1);
1180 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1181 						  tbl, hash);
1182 		size >>= shift;
1183 		subhash >>= shift;
1184 	}
1185 
1186 	if (!ntbl)
1187 		return &rhnull;
1188 
1189 	return &ntbl[subhash].bucket;
1190 
1191 }
1192 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1193 
1194 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1195 						   struct bucket_table *tbl,
1196 						   unsigned int hash)
1197 {
1198 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1199 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1200 	unsigned int size = tbl->size >> tbl->nest;
1201 	union nested_table *ntbl;
1202 
1203 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1204 	hash >>= tbl->nest;
1205 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1206 				  size <= (1 << shift));
1207 
1208 	while (ntbl && size > (1 << shift)) {
1209 		index = hash & ((1 << shift) - 1);
1210 		size >>= shift;
1211 		hash >>= shift;
1212 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1213 					  size <= (1 << shift));
1214 	}
1215 
1216 	if (!ntbl)
1217 		return NULL;
1218 
1219 	return &ntbl[hash].bucket;
1220 
1221 }
1222 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1223