1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/mm.h> 25 #include <linux/jhash.h> 26 #include <linux/random.h> 27 #include <linux/rhashtable.h> 28 #include <linux/err.h> 29 #include <linux/export.h> 30 31 #define HASH_DEFAULT_SIZE 64UL 32 #define HASH_MIN_SIZE 4U 33 #define BUCKET_LOCKS_PER_CPU 128UL 34 35 static u32 head_hashfn(struct rhashtable *ht, 36 const struct bucket_table *tbl, 37 const struct rhash_head *he) 38 { 39 return rht_head_hashfn(ht, tbl, he, ht->p); 40 } 41 42 #ifdef CONFIG_PROVE_LOCKING 43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 44 45 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 46 { 47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 48 } 49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 50 51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 52 { 53 spinlock_t *lock = rht_bucket_lock(tbl, hash); 54 55 return (debug_locks) ? lockdep_is_held(lock) : 1; 56 } 57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 58 #else 59 #define ASSERT_RHT_MUTEX(HT) 60 #endif 61 62 63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl, 64 gfp_t gfp) 65 { 66 unsigned int i, size; 67 #if defined(CONFIG_PROVE_LOCKING) 68 unsigned int nr_pcpus = 2; 69 #else 70 unsigned int nr_pcpus = num_possible_cpus(); 71 #endif 72 73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); 74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); 75 76 /* Never allocate more than 0.5 locks per bucket */ 77 size = min_t(unsigned int, size, tbl->size >> 1); 78 79 if (sizeof(spinlock_t) != 0) { 80 #ifdef CONFIG_NUMA 81 if (size * sizeof(spinlock_t) > PAGE_SIZE && 82 gfp == GFP_KERNEL) 83 tbl->locks = vmalloc(size * sizeof(spinlock_t)); 84 else 85 #endif 86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t), 87 gfp); 88 if (!tbl->locks) 89 return -ENOMEM; 90 for (i = 0; i < size; i++) 91 spin_lock_init(&tbl->locks[i]); 92 } 93 tbl->locks_mask = size - 1; 94 95 return 0; 96 } 97 98 static void bucket_table_free(const struct bucket_table *tbl) 99 { 100 if (tbl) 101 kvfree(tbl->locks); 102 103 kvfree(tbl); 104 } 105 106 static void bucket_table_free_rcu(struct rcu_head *head) 107 { 108 bucket_table_free(container_of(head, struct bucket_table, rcu)); 109 } 110 111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 112 size_t nbuckets, 113 gfp_t gfp) 114 { 115 struct bucket_table *tbl = NULL; 116 size_t size; 117 int i; 118 119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) || 121 gfp != GFP_KERNEL) 122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY); 123 if (tbl == NULL && gfp == GFP_KERNEL) 124 tbl = vzalloc(size); 125 if (tbl == NULL) 126 return NULL; 127 128 tbl->size = nbuckets; 129 130 if (alloc_bucket_locks(ht, tbl, gfp) < 0) { 131 bucket_table_free(tbl); 132 return NULL; 133 } 134 135 INIT_LIST_HEAD(&tbl->walkers); 136 137 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 138 139 for (i = 0; i < nbuckets; i++) 140 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 141 142 return tbl; 143 } 144 145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 146 struct bucket_table *tbl) 147 { 148 struct bucket_table *new_tbl; 149 150 do { 151 new_tbl = tbl; 152 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 153 } while (tbl); 154 155 return new_tbl; 156 } 157 158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 159 { 160 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 161 struct bucket_table *new_tbl = rhashtable_last_table(ht, 162 rht_dereference_rcu(old_tbl->future_tbl, ht)); 163 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash]; 164 int err = -ENOENT; 165 struct rhash_head *head, *next, *entry; 166 spinlock_t *new_bucket_lock; 167 unsigned int new_hash; 168 169 rht_for_each(entry, old_tbl, old_hash) { 170 err = 0; 171 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 172 173 if (rht_is_a_nulls(next)) 174 break; 175 176 pprev = &entry->next; 177 } 178 179 if (err) 180 goto out; 181 182 new_hash = head_hashfn(ht, new_tbl, entry); 183 184 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 185 186 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 187 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 188 new_tbl, new_hash); 189 190 RCU_INIT_POINTER(entry->next, head); 191 192 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 193 spin_unlock(new_bucket_lock); 194 195 rcu_assign_pointer(*pprev, next); 196 197 out: 198 return err; 199 } 200 201 static void rhashtable_rehash_chain(struct rhashtable *ht, 202 unsigned int old_hash) 203 { 204 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 205 spinlock_t *old_bucket_lock; 206 207 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 208 209 spin_lock_bh(old_bucket_lock); 210 while (!rhashtable_rehash_one(ht, old_hash)) 211 ; 212 old_tbl->rehash++; 213 spin_unlock_bh(old_bucket_lock); 214 } 215 216 static int rhashtable_rehash_attach(struct rhashtable *ht, 217 struct bucket_table *old_tbl, 218 struct bucket_table *new_tbl) 219 { 220 /* Protect future_tbl using the first bucket lock. */ 221 spin_lock_bh(old_tbl->locks); 222 223 /* Did somebody beat us to it? */ 224 if (rcu_access_pointer(old_tbl->future_tbl)) { 225 spin_unlock_bh(old_tbl->locks); 226 return -EEXIST; 227 } 228 229 /* Make insertions go into the new, empty table right away. Deletions 230 * and lookups will be attempted in both tables until we synchronize. 231 */ 232 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 233 234 /* Ensure the new table is visible to readers. */ 235 smp_wmb(); 236 237 spin_unlock_bh(old_tbl->locks); 238 239 return 0; 240 } 241 242 static int rhashtable_rehash_table(struct rhashtable *ht) 243 { 244 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 245 struct bucket_table *new_tbl; 246 struct rhashtable_walker *walker; 247 unsigned int old_hash; 248 249 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 250 if (!new_tbl) 251 return 0; 252 253 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) 254 rhashtable_rehash_chain(ht, old_hash); 255 256 /* Publish the new table pointer. */ 257 rcu_assign_pointer(ht->tbl, new_tbl); 258 259 spin_lock(&ht->lock); 260 list_for_each_entry(walker, &old_tbl->walkers, list) 261 walker->tbl = NULL; 262 spin_unlock(&ht->lock); 263 264 /* Wait for readers. All new readers will see the new 265 * table, and thus no references to the old table will 266 * remain. 267 */ 268 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 269 270 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 271 } 272 273 /** 274 * rhashtable_expand - Expand hash table while allowing concurrent lookups 275 * @ht: the hash table to expand 276 * 277 * A secondary bucket array is allocated and the hash entries are migrated. 278 * 279 * This function may only be called in a context where it is safe to call 280 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 281 * 282 * The caller must ensure that no concurrent resizing occurs by holding 283 * ht->mutex. 284 * 285 * It is valid to have concurrent insertions and deletions protected by per 286 * bucket locks or concurrent RCU protected lookups and traversals. 287 */ 288 static int rhashtable_expand(struct rhashtable *ht) 289 { 290 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 291 int err; 292 293 ASSERT_RHT_MUTEX(ht); 294 295 old_tbl = rhashtable_last_table(ht, old_tbl); 296 297 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL); 298 if (new_tbl == NULL) 299 return -ENOMEM; 300 301 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 302 if (err) 303 bucket_table_free(new_tbl); 304 305 return err; 306 } 307 308 /** 309 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 310 * @ht: the hash table to shrink 311 * 312 * This function shrinks the hash table to fit, i.e., the smallest 313 * size would not cause it to expand right away automatically. 314 * 315 * The caller must ensure that no concurrent resizing occurs by holding 316 * ht->mutex. 317 * 318 * The caller must ensure that no concurrent table mutations take place. 319 * It is however valid to have concurrent lookups if they are RCU protected. 320 * 321 * It is valid to have concurrent insertions and deletions protected by per 322 * bucket locks or concurrent RCU protected lookups and traversals. 323 */ 324 static int rhashtable_shrink(struct rhashtable *ht) 325 { 326 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 327 unsigned int size; 328 int err; 329 330 ASSERT_RHT_MUTEX(ht); 331 332 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2); 333 if (size < ht->p.min_size) 334 size = ht->p.min_size; 335 336 if (old_tbl->size <= size) 337 return 0; 338 339 if (rht_dereference(old_tbl->future_tbl, ht)) 340 return -EEXIST; 341 342 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 343 if (new_tbl == NULL) 344 return -ENOMEM; 345 346 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 347 if (err) 348 bucket_table_free(new_tbl); 349 350 return err; 351 } 352 353 static void rht_deferred_worker(struct work_struct *work) 354 { 355 struct rhashtable *ht; 356 struct bucket_table *tbl; 357 int err = 0; 358 359 ht = container_of(work, struct rhashtable, run_work); 360 mutex_lock(&ht->mutex); 361 362 tbl = rht_dereference(ht->tbl, ht); 363 tbl = rhashtable_last_table(ht, tbl); 364 365 if (rht_grow_above_75(ht, tbl)) 366 rhashtable_expand(ht); 367 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 368 rhashtable_shrink(ht); 369 370 err = rhashtable_rehash_table(ht); 371 372 mutex_unlock(&ht->mutex); 373 374 if (err) 375 schedule_work(&ht->run_work); 376 } 377 378 static bool rhashtable_check_elasticity(struct rhashtable *ht, 379 struct bucket_table *tbl, 380 unsigned int hash) 381 { 382 unsigned int elasticity = ht->elasticity; 383 struct rhash_head *head; 384 385 rht_for_each(head, tbl, hash) 386 if (!--elasticity) 387 return true; 388 389 return false; 390 } 391 392 int rhashtable_insert_rehash(struct rhashtable *ht) 393 { 394 struct bucket_table *old_tbl; 395 struct bucket_table *new_tbl; 396 struct bucket_table *tbl; 397 unsigned int size; 398 int err; 399 400 old_tbl = rht_dereference_rcu(ht->tbl, ht); 401 tbl = rhashtable_last_table(ht, old_tbl); 402 403 size = tbl->size; 404 405 if (rht_grow_above_75(ht, tbl)) 406 size *= 2; 407 /* Do not schedule more than one rehash */ 408 else if (old_tbl != tbl) 409 return -EBUSY; 410 411 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC); 412 if (new_tbl == NULL) { 413 /* Schedule async resize/rehash to try allocation 414 * non-atomic context. 415 */ 416 schedule_work(&ht->run_work); 417 return -ENOMEM; 418 } 419 420 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 421 if (err) { 422 bucket_table_free(new_tbl); 423 if (err == -EEXIST) 424 err = 0; 425 } else 426 schedule_work(&ht->run_work); 427 428 return err; 429 } 430 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash); 431 432 int rhashtable_insert_slow(struct rhashtable *ht, const void *key, 433 struct rhash_head *obj, 434 struct bucket_table *tbl) 435 { 436 struct rhash_head *head; 437 unsigned int hash; 438 int err; 439 440 tbl = rhashtable_last_table(ht, tbl); 441 hash = head_hashfn(ht, tbl, obj); 442 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING); 443 444 err = -EEXIST; 445 if (key && rhashtable_lookup_fast(ht, key, ht->p)) 446 goto exit; 447 448 err = -E2BIG; 449 if (unlikely(rht_grow_above_max(ht, tbl))) 450 goto exit; 451 452 err = -EAGAIN; 453 if (rhashtable_check_elasticity(ht, tbl, hash) || 454 rht_grow_above_100(ht, tbl)) 455 goto exit; 456 457 err = 0; 458 459 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); 460 461 RCU_INIT_POINTER(obj->next, head); 462 463 rcu_assign_pointer(tbl->buckets[hash], obj); 464 465 atomic_inc(&ht->nelems); 466 467 exit: 468 spin_unlock(rht_bucket_lock(tbl, hash)); 469 470 return err; 471 } 472 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 473 474 /** 475 * rhashtable_walk_init - Initialise an iterator 476 * @ht: Table to walk over 477 * @iter: Hash table Iterator 478 * 479 * This function prepares a hash table walk. 480 * 481 * Note that if you restart a walk after rhashtable_walk_stop you 482 * may see the same object twice. Also, you may miss objects if 483 * there are removals in between rhashtable_walk_stop and the next 484 * call to rhashtable_walk_start. 485 * 486 * For a completely stable walk you should construct your own data 487 * structure outside the hash table. 488 * 489 * This function may sleep so you must not call it from interrupt 490 * context or with spin locks held. 491 * 492 * You must call rhashtable_walk_exit if this function returns 493 * successfully. 494 */ 495 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) 496 { 497 iter->ht = ht; 498 iter->p = NULL; 499 iter->slot = 0; 500 iter->skip = 0; 501 502 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); 503 if (!iter->walker) 504 return -ENOMEM; 505 506 mutex_lock(&ht->mutex); 507 iter->walker->tbl = rht_dereference(ht->tbl, ht); 508 list_add(&iter->walker->list, &iter->walker->tbl->walkers); 509 mutex_unlock(&ht->mutex); 510 511 return 0; 512 } 513 EXPORT_SYMBOL_GPL(rhashtable_walk_init); 514 515 /** 516 * rhashtable_walk_exit - Free an iterator 517 * @iter: Hash table Iterator 518 * 519 * This function frees resources allocated by rhashtable_walk_init. 520 */ 521 void rhashtable_walk_exit(struct rhashtable_iter *iter) 522 { 523 mutex_lock(&iter->ht->mutex); 524 if (iter->walker->tbl) 525 list_del(&iter->walker->list); 526 mutex_unlock(&iter->ht->mutex); 527 kfree(iter->walker); 528 } 529 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 530 531 /** 532 * rhashtable_walk_start - Start a hash table walk 533 * @iter: Hash table iterator 534 * 535 * Start a hash table walk. Note that we take the RCU lock in all 536 * cases including when we return an error. So you must always call 537 * rhashtable_walk_stop to clean up. 538 * 539 * Returns zero if successful. 540 * 541 * Returns -EAGAIN if resize event occured. Note that the iterator 542 * will rewind back to the beginning and you may use it immediately 543 * by calling rhashtable_walk_next. 544 */ 545 int rhashtable_walk_start(struct rhashtable_iter *iter) 546 __acquires(RCU) 547 { 548 struct rhashtable *ht = iter->ht; 549 550 mutex_lock(&ht->mutex); 551 552 if (iter->walker->tbl) 553 list_del(&iter->walker->list); 554 555 rcu_read_lock(); 556 557 mutex_unlock(&ht->mutex); 558 559 if (!iter->walker->tbl) { 560 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht); 561 return -EAGAIN; 562 } 563 564 return 0; 565 } 566 EXPORT_SYMBOL_GPL(rhashtable_walk_start); 567 568 /** 569 * rhashtable_walk_next - Return the next object and advance the iterator 570 * @iter: Hash table iterator 571 * 572 * Note that you must call rhashtable_walk_stop when you are finished 573 * with the walk. 574 * 575 * Returns the next object or NULL when the end of the table is reached. 576 * 577 * Returns -EAGAIN if resize event occured. Note that the iterator 578 * will rewind back to the beginning and you may continue to use it. 579 */ 580 void *rhashtable_walk_next(struct rhashtable_iter *iter) 581 { 582 struct bucket_table *tbl = iter->walker->tbl; 583 struct rhashtable *ht = iter->ht; 584 struct rhash_head *p = iter->p; 585 586 if (p) { 587 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); 588 goto next; 589 } 590 591 for (; iter->slot < tbl->size; iter->slot++) { 592 int skip = iter->skip; 593 594 rht_for_each_rcu(p, tbl, iter->slot) { 595 if (!skip) 596 break; 597 skip--; 598 } 599 600 next: 601 if (!rht_is_a_nulls(p)) { 602 iter->skip++; 603 iter->p = p; 604 return rht_obj(ht, p); 605 } 606 607 iter->skip = 0; 608 } 609 610 iter->p = NULL; 611 612 /* Ensure we see any new tables. */ 613 smp_rmb(); 614 615 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht); 616 if (iter->walker->tbl) { 617 iter->slot = 0; 618 iter->skip = 0; 619 return ERR_PTR(-EAGAIN); 620 } 621 622 return NULL; 623 } 624 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 625 626 /** 627 * rhashtable_walk_stop - Finish a hash table walk 628 * @iter: Hash table iterator 629 * 630 * Finish a hash table walk. 631 */ 632 void rhashtable_walk_stop(struct rhashtable_iter *iter) 633 __releases(RCU) 634 { 635 struct rhashtable *ht; 636 struct bucket_table *tbl = iter->walker->tbl; 637 638 if (!tbl) 639 goto out; 640 641 ht = iter->ht; 642 643 spin_lock(&ht->lock); 644 if (tbl->rehash < tbl->size) 645 list_add(&iter->walker->list, &tbl->walkers); 646 else 647 iter->walker->tbl = NULL; 648 spin_unlock(&ht->lock); 649 650 iter->p = NULL; 651 652 out: 653 rcu_read_unlock(); 654 } 655 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 656 657 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 658 { 659 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 660 (unsigned long)params->min_size); 661 } 662 663 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 664 { 665 return jhash2(key, length, seed); 666 } 667 668 /** 669 * rhashtable_init - initialize a new hash table 670 * @ht: hash table to be initialized 671 * @params: configuration parameters 672 * 673 * Initializes a new hash table based on the provided configuration 674 * parameters. A table can be configured either with a variable or 675 * fixed length key: 676 * 677 * Configuration Example 1: Fixed length keys 678 * struct test_obj { 679 * int key; 680 * void * my_member; 681 * struct rhash_head node; 682 * }; 683 * 684 * struct rhashtable_params params = { 685 * .head_offset = offsetof(struct test_obj, node), 686 * .key_offset = offsetof(struct test_obj, key), 687 * .key_len = sizeof(int), 688 * .hashfn = jhash, 689 * .nulls_base = (1U << RHT_BASE_SHIFT), 690 * }; 691 * 692 * Configuration Example 2: Variable length keys 693 * struct test_obj { 694 * [...] 695 * struct rhash_head node; 696 * }; 697 * 698 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 699 * { 700 * struct test_obj *obj = data; 701 * 702 * return [... hash ...]; 703 * } 704 * 705 * struct rhashtable_params params = { 706 * .head_offset = offsetof(struct test_obj, node), 707 * .hashfn = jhash, 708 * .obj_hashfn = my_hash_fn, 709 * }; 710 */ 711 int rhashtable_init(struct rhashtable *ht, 712 const struct rhashtable_params *params) 713 { 714 struct bucket_table *tbl; 715 size_t size; 716 717 size = HASH_DEFAULT_SIZE; 718 719 if ((!params->key_len && !params->obj_hashfn) || 720 (params->obj_hashfn && !params->obj_cmpfn)) 721 return -EINVAL; 722 723 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 724 return -EINVAL; 725 726 if (params->nelem_hint) 727 size = rounded_hashtable_size(params); 728 729 memset(ht, 0, sizeof(*ht)); 730 mutex_init(&ht->mutex); 731 spin_lock_init(&ht->lock); 732 memcpy(&ht->p, params, sizeof(*params)); 733 734 if (params->min_size) 735 ht->p.min_size = roundup_pow_of_two(params->min_size); 736 737 if (params->max_size) 738 ht->p.max_size = rounddown_pow_of_two(params->max_size); 739 740 if (params->insecure_max_entries) 741 ht->p.insecure_max_entries = 742 rounddown_pow_of_two(params->insecure_max_entries); 743 else 744 ht->p.insecure_max_entries = ht->p.max_size * 2; 745 746 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE); 747 748 /* The maximum (not average) chain length grows with the 749 * size of the hash table, at a rate of (log N)/(log log N). 750 * The value of 16 is selected so that even if the hash 751 * table grew to 2^32 you would not expect the maximum 752 * chain length to exceed it unless we are under attack 753 * (or extremely unlucky). 754 * 755 * As this limit is only to detect attacks, we don't need 756 * to set it to a lower value as you'd need the chain 757 * length to vastly exceed 16 to have any real effect 758 * on the system. 759 */ 760 if (!params->insecure_elasticity) 761 ht->elasticity = 16; 762 763 if (params->locks_mul) 764 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 765 else 766 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 767 768 ht->key_len = ht->p.key_len; 769 if (!params->hashfn) { 770 ht->p.hashfn = jhash; 771 772 if (!(ht->key_len & (sizeof(u32) - 1))) { 773 ht->key_len /= sizeof(u32); 774 ht->p.hashfn = rhashtable_jhash2; 775 } 776 } 777 778 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 779 if (tbl == NULL) 780 return -ENOMEM; 781 782 atomic_set(&ht->nelems, 0); 783 784 RCU_INIT_POINTER(ht->tbl, tbl); 785 786 INIT_WORK(&ht->run_work, rht_deferred_worker); 787 788 return 0; 789 } 790 EXPORT_SYMBOL_GPL(rhashtable_init); 791 792 /** 793 * rhashtable_free_and_destroy - free elements and destroy hash table 794 * @ht: the hash table to destroy 795 * @free_fn: callback to release resources of element 796 * @arg: pointer passed to free_fn 797 * 798 * Stops an eventual async resize. If defined, invokes free_fn for each 799 * element to releasal resources. Please note that RCU protected 800 * readers may still be accessing the elements. Releasing of resources 801 * must occur in a compatible manner. Then frees the bucket array. 802 * 803 * This function will eventually sleep to wait for an async resize 804 * to complete. The caller is responsible that no further write operations 805 * occurs in parallel. 806 */ 807 void rhashtable_free_and_destroy(struct rhashtable *ht, 808 void (*free_fn)(void *ptr, void *arg), 809 void *arg) 810 { 811 const struct bucket_table *tbl; 812 unsigned int i; 813 814 cancel_work_sync(&ht->run_work); 815 816 mutex_lock(&ht->mutex); 817 tbl = rht_dereference(ht->tbl, ht); 818 if (free_fn) { 819 for (i = 0; i < tbl->size; i++) { 820 struct rhash_head *pos, *next; 821 822 for (pos = rht_dereference(tbl->buckets[i], ht), 823 next = !rht_is_a_nulls(pos) ? 824 rht_dereference(pos->next, ht) : NULL; 825 !rht_is_a_nulls(pos); 826 pos = next, 827 next = !rht_is_a_nulls(pos) ? 828 rht_dereference(pos->next, ht) : NULL) 829 free_fn(rht_obj(ht, pos), arg); 830 } 831 } 832 833 bucket_table_free(tbl); 834 mutex_unlock(&ht->mutex); 835 } 836 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 837 838 void rhashtable_destroy(struct rhashtable *ht) 839 { 840 return rhashtable_free_and_destroy(ht, NULL, NULL); 841 } 842 EXPORT_SYMBOL_GPL(rhashtable_destroy); 843