xref: /linux/lib/rhashtable.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 	const unsigned int len = 1 << shift;
72 	unsigned int i;
73 
74 	ntbl = rcu_dereference_raw(ntbl->table);
75 	if (!ntbl)
76 		return;
77 
78 	if (size > len) {
79 		size >>= shift;
80 		for (i = 0; i < len; i++)
81 			nested_table_free(ntbl + i, size);
82 	}
83 
84 	kfree(ntbl);
85 }
86 
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89 	unsigned int size = tbl->size >> tbl->nest;
90 	unsigned int len = 1 << tbl->nest;
91 	union nested_table *ntbl;
92 	unsigned int i;
93 
94 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95 
96 	for (i = 0; i < len; i++)
97 		nested_table_free(ntbl + i, size);
98 
99 	kfree(ntbl);
100 }
101 
102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 	if (tbl->nest)
105 		nested_bucket_table_free(tbl);
106 
107 	free_bucket_spinlocks(tbl->locks);
108 	kvfree(tbl);
109 }
110 
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 	bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115 
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 					      union nested_table __rcu **prev,
118 					      unsigned int shifted,
119 					      unsigned int nhash)
120 {
121 	union nested_table *ntbl;
122 	int i;
123 
124 	ntbl = rcu_dereference(*prev);
125 	if (ntbl)
126 		return ntbl;
127 
128 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129 
130 	if (ntbl && shifted) {
131 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
132 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
133 					    (i << shifted) | nhash);
134 	}
135 
136 	rcu_assign_pointer(*prev, ntbl);
137 
138 	return ntbl;
139 }
140 
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 						      size_t nbuckets,
143 						      gfp_t gfp)
144 {
145 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 	struct bucket_table *tbl;
147 	size_t size;
148 
149 	if (nbuckets < (1 << (shift + 1)))
150 		return NULL;
151 
152 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153 
154 	tbl = kzalloc(size, gfp);
155 	if (!tbl)
156 		return NULL;
157 
158 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 				0, 0)) {
160 		kfree(tbl);
161 		return NULL;
162 	}
163 
164 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165 
166 	return tbl;
167 }
168 
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 					       size_t nbuckets,
171 					       gfp_t gfp)
172 {
173 	struct bucket_table *tbl = NULL;
174 	size_t size, max_locks;
175 	int i;
176 
177 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
178 	if (gfp != GFP_KERNEL)
179 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
180 	else
181 		tbl = kvzalloc(size, gfp);
182 
183 	size = nbuckets;
184 
185 	if (tbl == NULL && gfp != GFP_KERNEL) {
186 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
187 		nbuckets = 0;
188 	}
189 	if (tbl == NULL)
190 		return NULL;
191 
192 	tbl->size = size;
193 
194 	max_locks = size >> 1;
195 	if (tbl->nest)
196 		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
197 
198 	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
199 				   ht->p.locks_mul, gfp) < 0) {
200 		bucket_table_free(tbl);
201 		return NULL;
202 	}
203 
204 	INIT_LIST_HEAD(&tbl->walkers);
205 
206 	tbl->hash_rnd = get_random_u32();
207 
208 	for (i = 0; i < nbuckets; i++)
209 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
210 
211 	return tbl;
212 }
213 
214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
215 						  struct bucket_table *tbl)
216 {
217 	struct bucket_table *new_tbl;
218 
219 	do {
220 		new_tbl = tbl;
221 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
222 	} while (tbl);
223 
224 	return new_tbl;
225 }
226 
227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
228 {
229 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
230 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
231 		rht_dereference_rcu(old_tbl->future_tbl, ht));
232 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
233 	int err = -EAGAIN;
234 	struct rhash_head *head, *next, *entry;
235 	spinlock_t *new_bucket_lock;
236 	unsigned int new_hash;
237 
238 	if (new_tbl->nest)
239 		goto out;
240 
241 	err = -ENOENT;
242 
243 	rht_for_each(entry, old_tbl, old_hash) {
244 		err = 0;
245 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
246 
247 		if (rht_is_a_nulls(next))
248 			break;
249 
250 		pprev = &entry->next;
251 	}
252 
253 	if (err)
254 		goto out;
255 
256 	new_hash = head_hashfn(ht, new_tbl, entry);
257 
258 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
259 
260 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
261 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
262 				      new_tbl, new_hash);
263 
264 	RCU_INIT_POINTER(entry->next, head);
265 
266 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
267 	spin_unlock(new_bucket_lock);
268 
269 	rcu_assign_pointer(*pprev, next);
270 
271 out:
272 	return err;
273 }
274 
275 static int rhashtable_rehash_chain(struct rhashtable *ht,
276 				    unsigned int old_hash)
277 {
278 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
279 	spinlock_t *old_bucket_lock;
280 	int err;
281 
282 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
283 
284 	spin_lock_bh(old_bucket_lock);
285 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
286 		;
287 
288 	if (err == -ENOENT) {
289 		old_tbl->rehash++;
290 		err = 0;
291 	}
292 	spin_unlock_bh(old_bucket_lock);
293 
294 	return err;
295 }
296 
297 static int rhashtable_rehash_attach(struct rhashtable *ht,
298 				    struct bucket_table *old_tbl,
299 				    struct bucket_table *new_tbl)
300 {
301 	/* Protect future_tbl using the first bucket lock. */
302 	spin_lock_bh(old_tbl->locks);
303 
304 	/* Did somebody beat us to it? */
305 	if (rcu_access_pointer(old_tbl->future_tbl)) {
306 		spin_unlock_bh(old_tbl->locks);
307 		return -EEXIST;
308 	}
309 
310 	/* Make insertions go into the new, empty table right away. Deletions
311 	 * and lookups will be attempted in both tables until we synchronize.
312 	 */
313 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
314 
315 	spin_unlock_bh(old_tbl->locks);
316 
317 	return 0;
318 }
319 
320 static int rhashtable_rehash_table(struct rhashtable *ht)
321 {
322 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
323 	struct bucket_table *new_tbl;
324 	struct rhashtable_walker *walker;
325 	unsigned int old_hash;
326 	int err;
327 
328 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
329 	if (!new_tbl)
330 		return 0;
331 
332 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
333 		err = rhashtable_rehash_chain(ht, old_hash);
334 		if (err)
335 			return err;
336 	}
337 
338 	/* Publish the new table pointer. */
339 	rcu_assign_pointer(ht->tbl, new_tbl);
340 
341 	spin_lock(&ht->lock);
342 	list_for_each_entry(walker, &old_tbl->walkers, list)
343 		walker->tbl = NULL;
344 	spin_unlock(&ht->lock);
345 
346 	/* Wait for readers. All new readers will see the new
347 	 * table, and thus no references to the old table will
348 	 * remain.
349 	 */
350 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
351 
352 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
353 }
354 
355 static int rhashtable_rehash_alloc(struct rhashtable *ht,
356 				   struct bucket_table *old_tbl,
357 				   unsigned int size)
358 {
359 	struct bucket_table *new_tbl;
360 	int err;
361 
362 	ASSERT_RHT_MUTEX(ht);
363 
364 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
365 	if (new_tbl == NULL)
366 		return -ENOMEM;
367 
368 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
369 	if (err)
370 		bucket_table_free(new_tbl);
371 
372 	return err;
373 }
374 
375 /**
376  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
377  * @ht:		the hash table to shrink
378  *
379  * This function shrinks the hash table to fit, i.e., the smallest
380  * size would not cause it to expand right away automatically.
381  *
382  * The caller must ensure that no concurrent resizing occurs by holding
383  * ht->mutex.
384  *
385  * The caller must ensure that no concurrent table mutations take place.
386  * It is however valid to have concurrent lookups if they are RCU protected.
387  *
388  * It is valid to have concurrent insertions and deletions protected by per
389  * bucket locks or concurrent RCU protected lookups and traversals.
390  */
391 static int rhashtable_shrink(struct rhashtable *ht)
392 {
393 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
394 	unsigned int nelems = atomic_read(&ht->nelems);
395 	unsigned int size = 0;
396 
397 	if (nelems)
398 		size = roundup_pow_of_two(nelems * 3 / 2);
399 	if (size < ht->p.min_size)
400 		size = ht->p.min_size;
401 
402 	if (old_tbl->size <= size)
403 		return 0;
404 
405 	if (rht_dereference(old_tbl->future_tbl, ht))
406 		return -EEXIST;
407 
408 	return rhashtable_rehash_alloc(ht, old_tbl, size);
409 }
410 
411 static void rht_deferred_worker(struct work_struct *work)
412 {
413 	struct rhashtable *ht;
414 	struct bucket_table *tbl;
415 	int err = 0;
416 
417 	ht = container_of(work, struct rhashtable, run_work);
418 	mutex_lock(&ht->mutex);
419 
420 	tbl = rht_dereference(ht->tbl, ht);
421 	tbl = rhashtable_last_table(ht, tbl);
422 
423 	if (rht_grow_above_75(ht, tbl))
424 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
425 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
426 		err = rhashtable_shrink(ht);
427 	else if (tbl->nest)
428 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
429 
430 	if (!err)
431 		err = rhashtable_rehash_table(ht);
432 
433 	mutex_unlock(&ht->mutex);
434 
435 	if (err)
436 		schedule_work(&ht->run_work);
437 }
438 
439 static int rhashtable_insert_rehash(struct rhashtable *ht,
440 				    struct bucket_table *tbl)
441 {
442 	struct bucket_table *old_tbl;
443 	struct bucket_table *new_tbl;
444 	unsigned int size;
445 	int err;
446 
447 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
448 
449 	size = tbl->size;
450 
451 	err = -EBUSY;
452 
453 	if (rht_grow_above_75(ht, tbl))
454 		size *= 2;
455 	/* Do not schedule more than one rehash */
456 	else if (old_tbl != tbl)
457 		goto fail;
458 
459 	err = -ENOMEM;
460 
461 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
462 	if (new_tbl == NULL)
463 		goto fail;
464 
465 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
466 	if (err) {
467 		bucket_table_free(new_tbl);
468 		if (err == -EEXIST)
469 			err = 0;
470 	} else
471 		schedule_work(&ht->run_work);
472 
473 	return err;
474 
475 fail:
476 	/* Do not fail the insert if someone else did a rehash. */
477 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
478 		return 0;
479 
480 	/* Schedule async rehash to retry allocation in process context. */
481 	if (err == -ENOMEM)
482 		schedule_work(&ht->run_work);
483 
484 	return err;
485 }
486 
487 static void *rhashtable_lookup_one(struct rhashtable *ht,
488 				   struct bucket_table *tbl, unsigned int hash,
489 				   const void *key, struct rhash_head *obj)
490 {
491 	struct rhashtable_compare_arg arg = {
492 		.ht = ht,
493 		.key = key,
494 	};
495 	struct rhash_head __rcu **pprev;
496 	struct rhash_head *head;
497 	int elasticity;
498 
499 	elasticity = RHT_ELASTICITY;
500 	pprev = rht_bucket_var(tbl, hash);
501 	rht_for_each_continue(head, *pprev, tbl, hash) {
502 		struct rhlist_head *list;
503 		struct rhlist_head *plist;
504 
505 		elasticity--;
506 		if (!key ||
507 		    (ht->p.obj_cmpfn ?
508 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
509 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
510 			pprev = &head->next;
511 			continue;
512 		}
513 
514 		if (!ht->rhlist)
515 			return rht_obj(ht, head);
516 
517 		list = container_of(obj, struct rhlist_head, rhead);
518 		plist = container_of(head, struct rhlist_head, rhead);
519 
520 		RCU_INIT_POINTER(list->next, plist);
521 		head = rht_dereference_bucket(head->next, tbl, hash);
522 		RCU_INIT_POINTER(list->rhead.next, head);
523 		rcu_assign_pointer(*pprev, obj);
524 
525 		return NULL;
526 	}
527 
528 	if (elasticity <= 0)
529 		return ERR_PTR(-EAGAIN);
530 
531 	return ERR_PTR(-ENOENT);
532 }
533 
534 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
535 						  struct bucket_table *tbl,
536 						  unsigned int hash,
537 						  struct rhash_head *obj,
538 						  void *data)
539 {
540 	struct rhash_head __rcu **pprev;
541 	struct bucket_table *new_tbl;
542 	struct rhash_head *head;
543 
544 	if (!IS_ERR_OR_NULL(data))
545 		return ERR_PTR(-EEXIST);
546 
547 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
548 		return ERR_CAST(data);
549 
550 	new_tbl = rcu_dereference(tbl->future_tbl);
551 	if (new_tbl)
552 		return new_tbl;
553 
554 	if (PTR_ERR(data) != -ENOENT)
555 		return ERR_CAST(data);
556 
557 	if (unlikely(rht_grow_above_max(ht, tbl)))
558 		return ERR_PTR(-E2BIG);
559 
560 	if (unlikely(rht_grow_above_100(ht, tbl)))
561 		return ERR_PTR(-EAGAIN);
562 
563 	pprev = rht_bucket_insert(ht, tbl, hash);
564 	if (!pprev)
565 		return ERR_PTR(-ENOMEM);
566 
567 	head = rht_dereference_bucket(*pprev, tbl, hash);
568 
569 	RCU_INIT_POINTER(obj->next, head);
570 	if (ht->rhlist) {
571 		struct rhlist_head *list;
572 
573 		list = container_of(obj, struct rhlist_head, rhead);
574 		RCU_INIT_POINTER(list->next, NULL);
575 	}
576 
577 	rcu_assign_pointer(*pprev, obj);
578 
579 	atomic_inc(&ht->nelems);
580 	if (rht_grow_above_75(ht, tbl))
581 		schedule_work(&ht->run_work);
582 
583 	return NULL;
584 }
585 
586 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
587 				   struct rhash_head *obj)
588 {
589 	struct bucket_table *new_tbl;
590 	struct bucket_table *tbl;
591 	unsigned int hash;
592 	spinlock_t *lock;
593 	void *data;
594 
595 	tbl = rcu_dereference(ht->tbl);
596 
597 	/* All insertions must grab the oldest table containing
598 	 * the hashed bucket that is yet to be rehashed.
599 	 */
600 	for (;;) {
601 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
602 		lock = rht_bucket_lock(tbl, hash);
603 		spin_lock_bh(lock);
604 
605 		if (tbl->rehash <= hash)
606 			break;
607 
608 		spin_unlock_bh(lock);
609 		tbl = rcu_dereference(tbl->future_tbl);
610 	}
611 
612 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
613 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
614 	if (PTR_ERR(new_tbl) != -EEXIST)
615 		data = ERR_CAST(new_tbl);
616 
617 	while (!IS_ERR_OR_NULL(new_tbl)) {
618 		tbl = new_tbl;
619 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
620 		spin_lock_nested(rht_bucket_lock(tbl, hash),
621 				 SINGLE_DEPTH_NESTING);
622 
623 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
624 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
625 		if (PTR_ERR(new_tbl) != -EEXIST)
626 			data = ERR_CAST(new_tbl);
627 
628 		spin_unlock(rht_bucket_lock(tbl, hash));
629 	}
630 
631 	spin_unlock_bh(lock);
632 
633 	if (PTR_ERR(data) == -EAGAIN)
634 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
635 			       -EAGAIN);
636 
637 	return data;
638 }
639 
640 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
641 			     struct rhash_head *obj)
642 {
643 	void *data;
644 
645 	do {
646 		rcu_read_lock();
647 		data = rhashtable_try_insert(ht, key, obj);
648 		rcu_read_unlock();
649 	} while (PTR_ERR(data) == -EAGAIN);
650 
651 	return data;
652 }
653 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
654 
655 /**
656  * rhashtable_walk_enter - Initialise an iterator
657  * @ht:		Table to walk over
658  * @iter:	Hash table Iterator
659  *
660  * This function prepares a hash table walk.
661  *
662  * Note that if you restart a walk after rhashtable_walk_stop you
663  * may see the same object twice.  Also, you may miss objects if
664  * there are removals in between rhashtable_walk_stop and the next
665  * call to rhashtable_walk_start.
666  *
667  * For a completely stable walk you should construct your own data
668  * structure outside the hash table.
669  *
670  * This function may sleep so you must not call it from interrupt
671  * context or with spin locks held.
672  *
673  * You must call rhashtable_walk_exit after this function returns.
674  */
675 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
676 {
677 	iter->ht = ht;
678 	iter->p = NULL;
679 	iter->slot = 0;
680 	iter->skip = 0;
681 	iter->end_of_table = 0;
682 
683 	spin_lock(&ht->lock);
684 	iter->walker.tbl =
685 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
686 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
687 	spin_unlock(&ht->lock);
688 }
689 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
690 
691 /**
692  * rhashtable_walk_exit - Free an iterator
693  * @iter:	Hash table Iterator
694  *
695  * This function frees resources allocated by rhashtable_walk_init.
696  */
697 void rhashtable_walk_exit(struct rhashtable_iter *iter)
698 {
699 	spin_lock(&iter->ht->lock);
700 	if (iter->walker.tbl)
701 		list_del(&iter->walker.list);
702 	spin_unlock(&iter->ht->lock);
703 }
704 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
705 
706 /**
707  * rhashtable_walk_start_check - Start a hash table walk
708  * @iter:	Hash table iterator
709  *
710  * Start a hash table walk at the current iterator position.  Note that we take
711  * the RCU lock in all cases including when we return an error.  So you must
712  * always call rhashtable_walk_stop to clean up.
713  *
714  * Returns zero if successful.
715  *
716  * Returns -EAGAIN if resize event occured.  Note that the iterator
717  * will rewind back to the beginning and you may use it immediately
718  * by calling rhashtable_walk_next.
719  *
720  * rhashtable_walk_start is defined as an inline variant that returns
721  * void. This is preferred in cases where the caller would ignore
722  * resize events and always continue.
723  */
724 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
725 	__acquires(RCU)
726 {
727 	struct rhashtable *ht = iter->ht;
728 
729 	rcu_read_lock();
730 
731 	spin_lock(&ht->lock);
732 	if (iter->walker.tbl)
733 		list_del(&iter->walker.list);
734 	spin_unlock(&ht->lock);
735 
736 	if (!iter->walker.tbl && !iter->end_of_table) {
737 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
738 		return -EAGAIN;
739 	}
740 
741 	return 0;
742 }
743 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
744 
745 /**
746  * __rhashtable_walk_find_next - Find the next element in a table (or the first
747  * one in case of a new walk).
748  *
749  * @iter:	Hash table iterator
750  *
751  * Returns the found object or NULL when the end of the table is reached.
752  *
753  * Returns -EAGAIN if resize event occurred.
754  */
755 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
756 {
757 	struct bucket_table *tbl = iter->walker.tbl;
758 	struct rhlist_head *list = iter->list;
759 	struct rhashtable *ht = iter->ht;
760 	struct rhash_head *p = iter->p;
761 	bool rhlist = ht->rhlist;
762 
763 	if (!tbl)
764 		return NULL;
765 
766 	for (; iter->slot < tbl->size; iter->slot++) {
767 		int skip = iter->skip;
768 
769 		rht_for_each_rcu(p, tbl, iter->slot) {
770 			if (rhlist) {
771 				list = container_of(p, struct rhlist_head,
772 						    rhead);
773 				do {
774 					if (!skip)
775 						goto next;
776 					skip--;
777 					list = rcu_dereference(list->next);
778 				} while (list);
779 
780 				continue;
781 			}
782 			if (!skip)
783 				break;
784 			skip--;
785 		}
786 
787 next:
788 		if (!rht_is_a_nulls(p)) {
789 			iter->skip++;
790 			iter->p = p;
791 			iter->list = list;
792 			return rht_obj(ht, rhlist ? &list->rhead : p);
793 		}
794 
795 		iter->skip = 0;
796 	}
797 
798 	iter->p = NULL;
799 
800 	/* Ensure we see any new tables. */
801 	smp_rmb();
802 
803 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
804 	if (iter->walker.tbl) {
805 		iter->slot = 0;
806 		iter->skip = 0;
807 		return ERR_PTR(-EAGAIN);
808 	} else {
809 		iter->end_of_table = true;
810 	}
811 
812 	return NULL;
813 }
814 
815 /**
816  * rhashtable_walk_next - Return the next object and advance the iterator
817  * @iter:	Hash table iterator
818  *
819  * Note that you must call rhashtable_walk_stop when you are finished
820  * with the walk.
821  *
822  * Returns the next object or NULL when the end of the table is reached.
823  *
824  * Returns -EAGAIN if resize event occurred.  Note that the iterator
825  * will rewind back to the beginning and you may continue to use it.
826  */
827 void *rhashtable_walk_next(struct rhashtable_iter *iter)
828 {
829 	struct rhlist_head *list = iter->list;
830 	struct rhashtable *ht = iter->ht;
831 	struct rhash_head *p = iter->p;
832 	bool rhlist = ht->rhlist;
833 
834 	if (p) {
835 		if (!rhlist || !(list = rcu_dereference(list->next))) {
836 			p = rcu_dereference(p->next);
837 			list = container_of(p, struct rhlist_head, rhead);
838 		}
839 		if (!rht_is_a_nulls(p)) {
840 			iter->skip++;
841 			iter->p = p;
842 			iter->list = list;
843 			return rht_obj(ht, rhlist ? &list->rhead : p);
844 		}
845 
846 		/* At the end of this slot, switch to next one and then find
847 		 * next entry from that point.
848 		 */
849 		iter->skip = 0;
850 		iter->slot++;
851 	}
852 
853 	return __rhashtable_walk_find_next(iter);
854 }
855 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
856 
857 /**
858  * rhashtable_walk_peek - Return the next object but don't advance the iterator
859  * @iter:	Hash table iterator
860  *
861  * Returns the next object or NULL when the end of the table is reached.
862  *
863  * Returns -EAGAIN if resize event occurred.  Note that the iterator
864  * will rewind back to the beginning and you may continue to use it.
865  */
866 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
867 {
868 	struct rhlist_head *list = iter->list;
869 	struct rhashtable *ht = iter->ht;
870 	struct rhash_head *p = iter->p;
871 
872 	if (p)
873 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
874 
875 	/* No object found in current iter, find next one in the table. */
876 
877 	if (iter->skip) {
878 		/* A nonzero skip value points to the next entry in the table
879 		 * beyond that last one that was found. Decrement skip so
880 		 * we find the current value. __rhashtable_walk_find_next
881 		 * will restore the original value of skip assuming that
882 		 * the table hasn't changed.
883 		 */
884 		iter->skip--;
885 	}
886 
887 	return __rhashtable_walk_find_next(iter);
888 }
889 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
890 
891 /**
892  * rhashtable_walk_stop - Finish a hash table walk
893  * @iter:	Hash table iterator
894  *
895  * Finish a hash table walk.  Does not reset the iterator to the start of the
896  * hash table.
897  */
898 void rhashtable_walk_stop(struct rhashtable_iter *iter)
899 	__releases(RCU)
900 {
901 	struct rhashtable *ht;
902 	struct bucket_table *tbl = iter->walker.tbl;
903 
904 	if (!tbl)
905 		goto out;
906 
907 	ht = iter->ht;
908 
909 	spin_lock(&ht->lock);
910 	if (tbl->rehash < tbl->size)
911 		list_add(&iter->walker.list, &tbl->walkers);
912 	else
913 		iter->walker.tbl = NULL;
914 	spin_unlock(&ht->lock);
915 
916 	iter->p = NULL;
917 
918 out:
919 	rcu_read_unlock();
920 }
921 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
922 
923 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
924 {
925 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
926 		   (unsigned long)params->min_size);
927 }
928 
929 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
930 {
931 	return jhash2(key, length, seed);
932 }
933 
934 /**
935  * rhashtable_init - initialize a new hash table
936  * @ht:		hash table to be initialized
937  * @params:	configuration parameters
938  *
939  * Initializes a new hash table based on the provided configuration
940  * parameters. A table can be configured either with a variable or
941  * fixed length key:
942  *
943  * Configuration Example 1: Fixed length keys
944  * struct test_obj {
945  *	int			key;
946  *	void *			my_member;
947  *	struct rhash_head	node;
948  * };
949  *
950  * struct rhashtable_params params = {
951  *	.head_offset = offsetof(struct test_obj, node),
952  *	.key_offset = offsetof(struct test_obj, key),
953  *	.key_len = sizeof(int),
954  *	.hashfn = jhash,
955  *	.nulls_base = (1U << RHT_BASE_SHIFT),
956  * };
957  *
958  * Configuration Example 2: Variable length keys
959  * struct test_obj {
960  *	[...]
961  *	struct rhash_head	node;
962  * };
963  *
964  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
965  * {
966  *	struct test_obj *obj = data;
967  *
968  *	return [... hash ...];
969  * }
970  *
971  * struct rhashtable_params params = {
972  *	.head_offset = offsetof(struct test_obj, node),
973  *	.hashfn = jhash,
974  *	.obj_hashfn = my_hash_fn,
975  * };
976  */
977 int rhashtable_init(struct rhashtable *ht,
978 		    const struct rhashtable_params *params)
979 {
980 	struct bucket_table *tbl;
981 	size_t size;
982 
983 	size = HASH_DEFAULT_SIZE;
984 
985 	if ((!params->key_len && !params->obj_hashfn) ||
986 	    (params->obj_hashfn && !params->obj_cmpfn))
987 		return -EINVAL;
988 
989 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
990 		return -EINVAL;
991 
992 	memset(ht, 0, sizeof(*ht));
993 	mutex_init(&ht->mutex);
994 	spin_lock_init(&ht->lock);
995 	memcpy(&ht->p, params, sizeof(*params));
996 
997 	if (params->min_size)
998 		ht->p.min_size = roundup_pow_of_two(params->min_size);
999 
1000 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1001 	ht->max_elems = 1u << 31;
1002 
1003 	if (params->max_size) {
1004 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1005 		if (ht->p.max_size < ht->max_elems / 2)
1006 			ht->max_elems = ht->p.max_size * 2;
1007 	}
1008 
1009 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1010 
1011 	if (params->nelem_hint)
1012 		size = rounded_hashtable_size(&ht->p);
1013 
1014 	if (params->locks_mul)
1015 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1016 	else
1017 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1018 
1019 	ht->key_len = ht->p.key_len;
1020 	if (!params->hashfn) {
1021 		ht->p.hashfn = jhash;
1022 
1023 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1024 			ht->key_len /= sizeof(u32);
1025 			ht->p.hashfn = rhashtable_jhash2;
1026 		}
1027 	}
1028 
1029 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1030 	if (tbl == NULL)
1031 		return -ENOMEM;
1032 
1033 	atomic_set(&ht->nelems, 0);
1034 
1035 	RCU_INIT_POINTER(ht->tbl, tbl);
1036 
1037 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1038 
1039 	return 0;
1040 }
1041 EXPORT_SYMBOL_GPL(rhashtable_init);
1042 
1043 /**
1044  * rhltable_init - initialize a new hash list table
1045  * @hlt:	hash list table to be initialized
1046  * @params:	configuration parameters
1047  *
1048  * Initializes a new hash list table.
1049  *
1050  * See documentation for rhashtable_init.
1051  */
1052 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1053 {
1054 	int err;
1055 
1056 	/* No rhlist NULLs marking for now. */
1057 	if (params->nulls_base)
1058 		return -EINVAL;
1059 
1060 	err = rhashtable_init(&hlt->ht, params);
1061 	hlt->ht.rhlist = true;
1062 	return err;
1063 }
1064 EXPORT_SYMBOL_GPL(rhltable_init);
1065 
1066 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1067 				void (*free_fn)(void *ptr, void *arg),
1068 				void *arg)
1069 {
1070 	struct rhlist_head *list;
1071 
1072 	if (!ht->rhlist) {
1073 		free_fn(rht_obj(ht, obj), arg);
1074 		return;
1075 	}
1076 
1077 	list = container_of(obj, struct rhlist_head, rhead);
1078 	do {
1079 		obj = &list->rhead;
1080 		list = rht_dereference(list->next, ht);
1081 		free_fn(rht_obj(ht, obj), arg);
1082 	} while (list);
1083 }
1084 
1085 /**
1086  * rhashtable_free_and_destroy - free elements and destroy hash table
1087  * @ht:		the hash table to destroy
1088  * @free_fn:	callback to release resources of element
1089  * @arg:	pointer passed to free_fn
1090  *
1091  * Stops an eventual async resize. If defined, invokes free_fn for each
1092  * element to releasal resources. Please note that RCU protected
1093  * readers may still be accessing the elements. Releasing of resources
1094  * must occur in a compatible manner. Then frees the bucket array.
1095  *
1096  * This function will eventually sleep to wait for an async resize
1097  * to complete. The caller is responsible that no further write operations
1098  * occurs in parallel.
1099  */
1100 void rhashtable_free_and_destroy(struct rhashtable *ht,
1101 				 void (*free_fn)(void *ptr, void *arg),
1102 				 void *arg)
1103 {
1104 	struct bucket_table *tbl;
1105 	unsigned int i;
1106 
1107 	cancel_work_sync(&ht->run_work);
1108 
1109 	mutex_lock(&ht->mutex);
1110 	tbl = rht_dereference(ht->tbl, ht);
1111 	if (free_fn) {
1112 		for (i = 0; i < tbl->size; i++) {
1113 			struct rhash_head *pos, *next;
1114 
1115 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1116 			     next = !rht_is_a_nulls(pos) ?
1117 					rht_dereference(pos->next, ht) : NULL;
1118 			     !rht_is_a_nulls(pos);
1119 			     pos = next,
1120 			     next = !rht_is_a_nulls(pos) ?
1121 					rht_dereference(pos->next, ht) : NULL)
1122 				rhashtable_free_one(ht, pos, free_fn, arg);
1123 		}
1124 	}
1125 
1126 	bucket_table_free(tbl);
1127 	mutex_unlock(&ht->mutex);
1128 }
1129 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1130 
1131 void rhashtable_destroy(struct rhashtable *ht)
1132 {
1133 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1134 }
1135 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1136 
1137 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1138 					    unsigned int hash)
1139 {
1140 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1141 	static struct rhash_head __rcu *rhnull =
1142 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1143 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1144 	unsigned int size = tbl->size >> tbl->nest;
1145 	unsigned int subhash = hash;
1146 	union nested_table *ntbl;
1147 
1148 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1149 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1150 	subhash >>= tbl->nest;
1151 
1152 	while (ntbl && size > (1 << shift)) {
1153 		index = subhash & ((1 << shift) - 1);
1154 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1155 						  tbl, hash);
1156 		size >>= shift;
1157 		subhash >>= shift;
1158 	}
1159 
1160 	if (!ntbl)
1161 		return &rhnull;
1162 
1163 	return &ntbl[subhash].bucket;
1164 
1165 }
1166 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1167 
1168 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1169 						   struct bucket_table *tbl,
1170 						   unsigned int hash)
1171 {
1172 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1173 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1174 	unsigned int size = tbl->size >> tbl->nest;
1175 	union nested_table *ntbl;
1176 	unsigned int shifted;
1177 	unsigned int nhash;
1178 
1179 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1180 	hash >>= tbl->nest;
1181 	nhash = index;
1182 	shifted = tbl->nest;
1183 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1184 				  size <= (1 << shift) ? shifted : 0, nhash);
1185 
1186 	while (ntbl && size > (1 << shift)) {
1187 		index = hash & ((1 << shift) - 1);
1188 		size >>= shift;
1189 		hash >>= shift;
1190 		nhash |= index << shifted;
1191 		shifted += shift;
1192 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1193 					  size <= (1 << shift) ? shifted : 0,
1194 					  nhash);
1195 	}
1196 
1197 	if (!ntbl)
1198 		return NULL;
1199 
1200 	return &ntbl[hash].bucket;
1201 
1202 }
1203 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1204