1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resizable, Scalable, Concurrent Hash Table 4 * 5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 8 * 9 * Code partially derived from nft_hash 10 * Rewritten with rehash code from br_multicast plus single list 11 * pointer as suggested by Josh Triplett 12 */ 13 14 #include <linux/atomic.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/log2.h> 18 #include <linux/sched.h> 19 #include <linux/rculist.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/jhash.h> 24 #include <linux/random.h> 25 #include <linux/rhashtable.h> 26 #include <linux/err.h> 27 #include <linux/export.h> 28 29 #define HASH_DEFAULT_SIZE 64UL 30 #define HASH_MIN_SIZE 4U 31 32 union nested_table { 33 union nested_table __rcu *table; 34 struct rhash_lock_head __rcu *bucket; 35 }; 36 37 static u32 head_hashfn(struct rhashtable *ht, 38 const struct bucket_table *tbl, 39 const struct rhash_head *he) 40 { 41 return rht_head_hashfn(ht, tbl, he, ht->p); 42 } 43 44 #ifdef CONFIG_PROVE_LOCKING 45 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 46 47 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 48 { 49 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 50 } 51 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 52 53 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 54 { 55 if (!debug_locks) 56 return 1; 57 if (unlikely(tbl->nest)) 58 return 1; 59 return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); 60 } 61 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 62 #else 63 #define ASSERT_RHT_MUTEX(HT) 64 #endif 65 66 static inline union nested_table *nested_table_top( 67 const struct bucket_table *tbl) 68 { 69 /* The top-level bucket entry does not need RCU protection 70 * because it's set at the same time as tbl->nest. 71 */ 72 return (void *)rcu_dereference_protected(tbl->buckets[0], 1); 73 } 74 75 static void nested_table_free(union nested_table *ntbl, unsigned int size) 76 { 77 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 78 const unsigned int len = 1 << shift; 79 unsigned int i; 80 81 ntbl = rcu_dereference_protected(ntbl->table, 1); 82 if (!ntbl) 83 return; 84 85 if (size > len) { 86 size >>= shift; 87 for (i = 0; i < len; i++) 88 nested_table_free(ntbl + i, size); 89 } 90 91 kfree(ntbl); 92 } 93 94 static void nested_bucket_table_free(const struct bucket_table *tbl) 95 { 96 unsigned int size = tbl->size >> tbl->nest; 97 unsigned int len = 1 << tbl->nest; 98 union nested_table *ntbl; 99 unsigned int i; 100 101 ntbl = nested_table_top(tbl); 102 103 for (i = 0; i < len; i++) 104 nested_table_free(ntbl + i, size); 105 106 kfree(ntbl); 107 } 108 109 static void bucket_table_free(const struct bucket_table *tbl) 110 { 111 if (tbl->nest) 112 nested_bucket_table_free(tbl); 113 114 kvfree(tbl); 115 } 116 117 static void bucket_table_free_rcu(struct rcu_head *head) 118 { 119 bucket_table_free(container_of(head, struct bucket_table, rcu)); 120 } 121 122 static union nested_table *nested_table_alloc(struct rhashtable *ht, 123 union nested_table __rcu **prev, 124 bool leaf) 125 { 126 union nested_table *ntbl; 127 int i; 128 129 ntbl = rcu_dereference(*prev); 130 if (ntbl) 131 return ntbl; 132 133 ntbl = alloc_hooks_tag(ht->alloc_tag, 134 kmalloc_noprof(PAGE_SIZE, GFP_ATOMIC|__GFP_ZERO)); 135 136 if (ntbl && leaf) { 137 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) 138 INIT_RHT_NULLS_HEAD(ntbl[i].bucket); 139 } 140 141 if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) 142 return ntbl; 143 /* Raced with another thread. */ 144 kfree(ntbl); 145 return rcu_dereference(*prev); 146 } 147 148 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 149 size_t nbuckets, 150 gfp_t gfp) 151 { 152 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 153 struct bucket_table *tbl; 154 size_t size; 155 156 if (nbuckets < (1 << (shift + 1))) 157 return NULL; 158 159 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 160 161 tbl = alloc_hooks_tag(ht->alloc_tag, 162 kmalloc_noprof(size, gfp|__GFP_ZERO)); 163 if (!tbl) 164 return NULL; 165 166 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 167 false)) { 168 kfree(tbl); 169 return NULL; 170 } 171 172 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 173 174 return tbl; 175 } 176 177 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 178 size_t nbuckets, 179 gfp_t gfp) 180 { 181 struct bucket_table *tbl = NULL; 182 size_t size; 183 int i; 184 static struct lock_class_key __key; 185 186 tbl = alloc_hooks_tag(ht->alloc_tag, 187 kvmalloc_node_noprof(struct_size(tbl, buckets, nbuckets), 188 gfp|__GFP_ZERO, NUMA_NO_NODE)); 189 190 size = nbuckets; 191 192 if (tbl == NULL && !gfpflags_allow_blocking(gfp)) { 193 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 194 nbuckets = 0; 195 } 196 197 if (tbl == NULL) 198 return NULL; 199 200 lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); 201 202 tbl->size = size; 203 204 rcu_head_init(&tbl->rcu); 205 INIT_LIST_HEAD(&tbl->walkers); 206 207 tbl->hash_rnd = get_random_u32(); 208 209 for (i = 0; i < nbuckets; i++) 210 INIT_RHT_NULLS_HEAD(tbl->buckets[i]); 211 212 return tbl; 213 } 214 215 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 216 struct bucket_table *tbl) 217 { 218 struct bucket_table *new_tbl; 219 220 do { 221 new_tbl = tbl; 222 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 223 } while (tbl); 224 225 return new_tbl; 226 } 227 228 static int rhashtable_rehash_one(struct rhashtable *ht, 229 struct rhash_lock_head __rcu **bkt, 230 unsigned int old_hash) 231 { 232 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 233 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); 234 int err = -EAGAIN; 235 struct rhash_head *head, *next, *entry; 236 struct rhash_head __rcu **pprev = NULL; 237 unsigned int new_hash; 238 unsigned long flags; 239 240 if (new_tbl->nest) 241 goto out; 242 243 err = -ENOENT; 244 245 rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), 246 old_tbl, old_hash) { 247 err = 0; 248 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 249 250 if (rht_is_a_nulls(next)) 251 break; 252 253 pprev = &entry->next; 254 } 255 256 if (err) 257 goto out; 258 259 new_hash = head_hashfn(ht, new_tbl, entry); 260 261 flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], 262 SINGLE_DEPTH_NESTING); 263 264 head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); 265 266 RCU_INIT_POINTER(entry->next, head); 267 268 rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags); 269 270 if (pprev) 271 rcu_assign_pointer(*pprev, next); 272 else 273 /* Need to preserved the bit lock. */ 274 rht_assign_locked(bkt, next); 275 276 out: 277 return err; 278 } 279 280 static int rhashtable_rehash_chain(struct rhashtable *ht, 281 unsigned int old_hash) 282 { 283 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 284 struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash); 285 unsigned long flags; 286 int err; 287 288 if (!bkt) 289 return 0; 290 flags = rht_lock(old_tbl, bkt); 291 292 while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) 293 ; 294 295 if (err == -ENOENT) 296 err = 0; 297 rht_unlock(old_tbl, bkt, flags); 298 299 return err; 300 } 301 302 static int rhashtable_rehash_attach(struct rhashtable *ht, 303 struct bucket_table *old_tbl, 304 struct bucket_table *new_tbl) 305 { 306 /* Make insertions go into the new, empty table right away. Deletions 307 * and lookups will be attempted in both tables until we synchronize. 308 * As cmpxchg() provides strong barriers, we do not need 309 * rcu_assign_pointer(). 310 */ 311 312 if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, 313 new_tbl) != NULL) 314 return -EEXIST; 315 316 return 0; 317 } 318 319 static int rhashtable_rehash_table(struct rhashtable *ht) 320 { 321 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 322 struct bucket_table *new_tbl; 323 struct rhashtable_walker *walker; 324 unsigned int old_hash; 325 int err; 326 327 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 328 if (!new_tbl) 329 return 0; 330 331 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 332 err = rhashtable_rehash_chain(ht, old_hash); 333 if (err) 334 return err; 335 cond_resched(); 336 } 337 338 /* Publish the new table pointer. */ 339 rcu_assign_pointer(ht->tbl, new_tbl); 340 341 spin_lock(&ht->lock); 342 list_for_each_entry(walker, &old_tbl->walkers, list) 343 walker->tbl = NULL; 344 345 /* Wait for readers. All new readers will see the new 346 * table, and thus no references to the old table will 347 * remain. 348 * We do this inside the locked region so that 349 * rhashtable_walk_stop() can use rcu_head_after_call_rcu() 350 * to check if it should not re-link the table. 351 */ 352 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 353 spin_unlock(&ht->lock); 354 355 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 356 } 357 358 static int rhashtable_rehash_alloc(struct rhashtable *ht, 359 struct bucket_table *old_tbl, 360 unsigned int size) 361 { 362 struct bucket_table *new_tbl; 363 int err; 364 365 ASSERT_RHT_MUTEX(ht); 366 367 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 368 if (new_tbl == NULL) 369 return -ENOMEM; 370 371 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 372 if (err) 373 bucket_table_free(new_tbl); 374 375 return err; 376 } 377 378 /** 379 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 380 * @ht: the hash table to shrink 381 * 382 * This function shrinks the hash table to fit, i.e., the smallest 383 * size would not cause it to expand right away automatically. 384 * 385 * The caller must ensure that no concurrent resizing occurs by holding 386 * ht->mutex. 387 * 388 * The caller must ensure that no concurrent table mutations take place. 389 * It is however valid to have concurrent lookups if they are RCU protected. 390 * 391 * It is valid to have concurrent insertions and deletions protected by per 392 * bucket locks or concurrent RCU protected lookups and traversals. 393 */ 394 static int rhashtable_shrink(struct rhashtable *ht) 395 { 396 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 397 unsigned int nelems = atomic_read(&ht->nelems); 398 unsigned int size = 0; 399 400 if (nelems) 401 size = roundup_pow_of_two(nelems * 3 / 2); 402 if (size < ht->p.min_size) 403 size = ht->p.min_size; 404 405 if (old_tbl->size <= size) 406 return 0; 407 408 if (rht_dereference(old_tbl->future_tbl, ht)) 409 return -EEXIST; 410 411 return rhashtable_rehash_alloc(ht, old_tbl, size); 412 } 413 414 static void rht_deferred_worker(struct work_struct *work) 415 { 416 struct rhashtable *ht; 417 struct bucket_table *tbl; 418 int err = 0; 419 420 ht = container_of(work, struct rhashtable, run_work); 421 mutex_lock(&ht->mutex); 422 423 tbl = rht_dereference(ht->tbl, ht); 424 tbl = rhashtable_last_table(ht, tbl); 425 426 if (rht_grow_above_75(ht, tbl)) 427 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 428 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 429 err = rhashtable_shrink(ht); 430 else if (tbl->nest) 431 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 432 433 if (!err || err == -EEXIST) { 434 int nerr; 435 436 nerr = rhashtable_rehash_table(ht); 437 err = err ?: nerr; 438 } 439 440 mutex_unlock(&ht->mutex); 441 442 if (err) 443 schedule_work(&ht->run_work); 444 } 445 446 static int rhashtable_insert_rehash(struct rhashtable *ht, 447 struct bucket_table *tbl) 448 { 449 struct bucket_table *old_tbl; 450 struct bucket_table *new_tbl; 451 unsigned int size; 452 int err; 453 454 old_tbl = rht_dereference_rcu(ht->tbl, ht); 455 456 size = tbl->size; 457 458 err = -EBUSY; 459 460 if (rht_grow_above_75(ht, tbl)) 461 size *= 2; 462 /* Do not schedule more than one rehash */ 463 else if (old_tbl != tbl) 464 goto fail; 465 466 err = -ENOMEM; 467 468 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); 469 if (new_tbl == NULL) 470 goto fail; 471 472 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 473 if (err) { 474 bucket_table_free(new_tbl); 475 if (err == -EEXIST) 476 err = 0; 477 } else 478 schedule_work(&ht->run_work); 479 480 return err; 481 482 fail: 483 /* Do not fail the insert if someone else did a rehash. */ 484 if (likely(rcu_access_pointer(tbl->future_tbl))) 485 return 0; 486 487 /* Schedule async rehash to retry allocation in process context. */ 488 if (err == -ENOMEM) 489 schedule_work(&ht->run_work); 490 491 return err; 492 } 493 494 static void *rhashtable_lookup_one(struct rhashtable *ht, 495 struct rhash_lock_head __rcu **bkt, 496 struct bucket_table *tbl, unsigned int hash, 497 const void *key, struct rhash_head *obj) 498 { 499 struct rhashtable_compare_arg arg = { 500 .ht = ht, 501 .key = key, 502 }; 503 struct rhash_head __rcu **pprev = NULL; 504 struct rhash_head *head; 505 int elasticity; 506 507 elasticity = RHT_ELASTICITY; 508 rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { 509 struct rhlist_head *list; 510 struct rhlist_head *plist; 511 512 elasticity--; 513 if (!key || 514 (ht->p.obj_cmpfn ? 515 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 516 rhashtable_compare(&arg, rht_obj(ht, head)))) { 517 pprev = &head->next; 518 continue; 519 } 520 521 if (!ht->rhlist) 522 return rht_obj(ht, head); 523 524 list = container_of(obj, struct rhlist_head, rhead); 525 plist = container_of(head, struct rhlist_head, rhead); 526 527 RCU_INIT_POINTER(list->next, plist); 528 head = rht_dereference_bucket(head->next, tbl, hash); 529 RCU_INIT_POINTER(list->rhead.next, head); 530 if (pprev) 531 rcu_assign_pointer(*pprev, obj); 532 else 533 /* Need to preserve the bit lock */ 534 rht_assign_locked(bkt, obj); 535 536 return NULL; 537 } 538 539 if (elasticity <= 0) 540 return ERR_PTR(-EAGAIN); 541 542 return ERR_PTR(-ENOENT); 543 } 544 545 static struct bucket_table *rhashtable_insert_one( 546 struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, 547 struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj, 548 void *data) 549 { 550 struct bucket_table *new_tbl; 551 struct rhash_head *head; 552 553 if (!IS_ERR_OR_NULL(data)) 554 return ERR_PTR(-EEXIST); 555 556 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 557 return ERR_CAST(data); 558 559 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 560 if (new_tbl) 561 return new_tbl; 562 563 if (PTR_ERR(data) != -ENOENT) 564 return ERR_CAST(data); 565 566 if (unlikely(rht_grow_above_max(ht, tbl))) 567 return ERR_PTR(-E2BIG); 568 569 if (unlikely(rht_grow_above_100(ht, tbl))) 570 return ERR_PTR(-EAGAIN); 571 572 head = rht_ptr(bkt, tbl, hash); 573 574 RCU_INIT_POINTER(obj->next, head); 575 if (ht->rhlist) { 576 struct rhlist_head *list; 577 578 list = container_of(obj, struct rhlist_head, rhead); 579 RCU_INIT_POINTER(list->next, NULL); 580 } 581 582 /* bkt is always the head of the list, so it holds 583 * the lock, which we need to preserve 584 */ 585 rht_assign_locked(bkt, obj); 586 587 return NULL; 588 } 589 590 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 591 struct rhash_head *obj) 592 { 593 struct bucket_table *new_tbl; 594 struct bucket_table *tbl; 595 struct rhash_lock_head __rcu **bkt; 596 unsigned long flags; 597 unsigned int hash; 598 void *data; 599 600 new_tbl = rcu_dereference(ht->tbl); 601 602 do { 603 tbl = new_tbl; 604 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 605 if (rcu_access_pointer(tbl->future_tbl)) 606 /* Failure is OK */ 607 bkt = rht_bucket_var(tbl, hash); 608 else 609 bkt = rht_bucket_insert(ht, tbl, hash); 610 if (bkt == NULL) { 611 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 612 data = ERR_PTR(-EAGAIN); 613 } else { 614 flags = rht_lock(tbl, bkt); 615 data = rhashtable_lookup_one(ht, bkt, tbl, 616 hash, key, obj); 617 new_tbl = rhashtable_insert_one(ht, bkt, tbl, 618 hash, obj, data); 619 if (PTR_ERR(new_tbl) != -EEXIST) 620 data = ERR_CAST(new_tbl); 621 622 rht_unlock(tbl, bkt, flags); 623 624 if (PTR_ERR(data) == -ENOENT && !new_tbl) { 625 atomic_inc(&ht->nelems); 626 if (rht_grow_above_75(ht, tbl)) 627 schedule_work(&ht->run_work); 628 } 629 } 630 } while (!IS_ERR_OR_NULL(new_tbl)); 631 632 if (PTR_ERR(data) == -EAGAIN) 633 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 634 -EAGAIN); 635 636 return data; 637 } 638 639 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 640 struct rhash_head *obj) 641 { 642 void *data; 643 644 do { 645 rcu_read_lock(); 646 data = rhashtable_try_insert(ht, key, obj); 647 rcu_read_unlock(); 648 } while (PTR_ERR(data) == -EAGAIN); 649 650 return data; 651 } 652 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 653 654 /** 655 * rhashtable_walk_enter - Initialise an iterator 656 * @ht: Table to walk over 657 * @iter: Hash table Iterator 658 * 659 * This function prepares a hash table walk. 660 * 661 * Note that if you restart a walk after rhashtable_walk_stop you 662 * may see the same object twice. Also, you may miss objects if 663 * there are removals in between rhashtable_walk_stop and the next 664 * call to rhashtable_walk_start. 665 * 666 * For a completely stable walk you should construct your own data 667 * structure outside the hash table. 668 * 669 * This function may be called from any process context, including 670 * non-preemptable context, but cannot be called from softirq or 671 * hardirq context. 672 * 673 * You must call rhashtable_walk_exit after this function returns. 674 */ 675 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 676 { 677 iter->ht = ht; 678 iter->p = NULL; 679 iter->slot = 0; 680 iter->skip = 0; 681 iter->end_of_table = 0; 682 683 spin_lock(&ht->lock); 684 iter->walker.tbl = 685 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 686 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 687 spin_unlock(&ht->lock); 688 } 689 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 690 691 /** 692 * rhashtable_walk_exit - Free an iterator 693 * @iter: Hash table Iterator 694 * 695 * This function frees resources allocated by rhashtable_walk_enter. 696 */ 697 void rhashtable_walk_exit(struct rhashtable_iter *iter) 698 { 699 spin_lock(&iter->ht->lock); 700 if (iter->walker.tbl) 701 list_del(&iter->walker.list); 702 spin_unlock(&iter->ht->lock); 703 } 704 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 705 706 /** 707 * rhashtable_walk_start_check - Start a hash table walk 708 * @iter: Hash table iterator 709 * 710 * Start a hash table walk at the current iterator position. Note that we take 711 * the RCU lock in all cases including when we return an error. So you must 712 * always call rhashtable_walk_stop to clean up. 713 * 714 * Returns zero if successful. 715 * 716 * Returns -EAGAIN if resize event occurred. Note that the iterator 717 * will rewind back to the beginning and you may use it immediately 718 * by calling rhashtable_walk_next. 719 * 720 * rhashtable_walk_start is defined as an inline variant that returns 721 * void. This is preferred in cases where the caller would ignore 722 * resize events and always continue. 723 */ 724 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 725 __acquires(RCU) 726 { 727 struct rhashtable *ht = iter->ht; 728 bool rhlist = ht->rhlist; 729 730 rcu_read_lock(); 731 732 spin_lock(&ht->lock); 733 if (iter->walker.tbl) 734 list_del(&iter->walker.list); 735 spin_unlock(&ht->lock); 736 737 if (iter->end_of_table) 738 return 0; 739 if (!iter->walker.tbl) { 740 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 741 iter->slot = 0; 742 iter->skip = 0; 743 return -EAGAIN; 744 } 745 746 if (iter->p && !rhlist) { 747 /* 748 * We need to validate that 'p' is still in the table, and 749 * if so, update 'skip' 750 */ 751 struct rhash_head *p; 752 int skip = 0; 753 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 754 skip++; 755 if (p == iter->p) { 756 iter->skip = skip; 757 goto found; 758 } 759 } 760 iter->p = NULL; 761 } else if (iter->p && rhlist) { 762 /* Need to validate that 'list' is still in the table, and 763 * if so, update 'skip' and 'p'. 764 */ 765 struct rhash_head *p; 766 struct rhlist_head *list; 767 int skip = 0; 768 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 769 for (list = container_of(p, struct rhlist_head, rhead); 770 list; 771 list = rcu_dereference(list->next)) { 772 skip++; 773 if (list == iter->list) { 774 iter->p = p; 775 iter->skip = skip; 776 goto found; 777 } 778 } 779 } 780 iter->p = NULL; 781 } 782 found: 783 return 0; 784 } 785 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 786 787 /** 788 * __rhashtable_walk_find_next - Find the next element in a table (or the first 789 * one in case of a new walk). 790 * 791 * @iter: Hash table iterator 792 * 793 * Returns the found object or NULL when the end of the table is reached. 794 * 795 * Returns -EAGAIN if resize event occurred. 796 */ 797 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 798 { 799 struct bucket_table *tbl = iter->walker.tbl; 800 struct rhlist_head *list = iter->list; 801 struct rhashtable *ht = iter->ht; 802 struct rhash_head *p = iter->p; 803 bool rhlist = ht->rhlist; 804 805 if (!tbl) 806 return NULL; 807 808 for (; iter->slot < tbl->size; iter->slot++) { 809 int skip = iter->skip; 810 811 rht_for_each_rcu(p, tbl, iter->slot) { 812 if (rhlist) { 813 list = container_of(p, struct rhlist_head, 814 rhead); 815 do { 816 if (!skip) 817 goto next; 818 skip--; 819 list = rcu_dereference(list->next); 820 } while (list); 821 822 continue; 823 } 824 if (!skip) 825 break; 826 skip--; 827 } 828 829 next: 830 if (!rht_is_a_nulls(p)) { 831 iter->skip++; 832 iter->p = p; 833 iter->list = list; 834 return rht_obj(ht, rhlist ? &list->rhead : p); 835 } 836 837 iter->skip = 0; 838 } 839 840 iter->p = NULL; 841 842 /* Ensure we see any new tables. */ 843 smp_rmb(); 844 845 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 846 if (iter->walker.tbl) { 847 iter->slot = 0; 848 iter->skip = 0; 849 return ERR_PTR(-EAGAIN); 850 } else { 851 iter->end_of_table = true; 852 } 853 854 return NULL; 855 } 856 857 /** 858 * rhashtable_walk_next - Return the next object and advance the iterator 859 * @iter: Hash table iterator 860 * 861 * Note that you must call rhashtable_walk_stop when you are finished 862 * with the walk. 863 * 864 * Returns the next object or NULL when the end of the table is reached. 865 * 866 * Returns -EAGAIN if resize event occurred. Note that the iterator 867 * will rewind back to the beginning and you may continue to use it. 868 */ 869 void *rhashtable_walk_next(struct rhashtable_iter *iter) 870 { 871 struct rhlist_head *list = iter->list; 872 struct rhashtable *ht = iter->ht; 873 struct rhash_head *p = iter->p; 874 bool rhlist = ht->rhlist; 875 876 if (p) { 877 if (!rhlist || !(list = rcu_dereference(list->next))) { 878 p = rcu_dereference(p->next); 879 list = container_of(p, struct rhlist_head, rhead); 880 } 881 if (!rht_is_a_nulls(p)) { 882 iter->skip++; 883 iter->p = p; 884 iter->list = list; 885 return rht_obj(ht, rhlist ? &list->rhead : p); 886 } 887 888 /* At the end of this slot, switch to next one and then find 889 * next entry from that point. 890 */ 891 iter->skip = 0; 892 iter->slot++; 893 } 894 895 return __rhashtable_walk_find_next(iter); 896 } 897 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 898 899 /** 900 * rhashtable_walk_peek - Return the next object but don't advance the iterator 901 * @iter: Hash table iterator 902 * 903 * Returns the next object or NULL when the end of the table is reached. 904 * 905 * Returns -EAGAIN if resize event occurred. Note that the iterator 906 * will rewind back to the beginning and you may continue to use it. 907 */ 908 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 909 { 910 struct rhlist_head *list = iter->list; 911 struct rhashtable *ht = iter->ht; 912 struct rhash_head *p = iter->p; 913 914 if (p) 915 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 916 917 /* No object found in current iter, find next one in the table. */ 918 919 if (iter->skip) { 920 /* A nonzero skip value points to the next entry in the table 921 * beyond that last one that was found. Decrement skip so 922 * we find the current value. __rhashtable_walk_find_next 923 * will restore the original value of skip assuming that 924 * the table hasn't changed. 925 */ 926 iter->skip--; 927 } 928 929 return __rhashtable_walk_find_next(iter); 930 } 931 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 932 933 /** 934 * rhashtable_walk_stop - Finish a hash table walk 935 * @iter: Hash table iterator 936 * 937 * Finish a hash table walk. Does not reset the iterator to the start of the 938 * hash table. 939 */ 940 void rhashtable_walk_stop(struct rhashtable_iter *iter) 941 __releases(RCU) 942 { 943 struct rhashtable *ht; 944 struct bucket_table *tbl = iter->walker.tbl; 945 946 if (!tbl) 947 goto out; 948 949 ht = iter->ht; 950 951 spin_lock(&ht->lock); 952 if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) 953 /* This bucket table is being freed, don't re-link it. */ 954 iter->walker.tbl = NULL; 955 else 956 list_add(&iter->walker.list, &tbl->walkers); 957 spin_unlock(&ht->lock); 958 959 out: 960 rcu_read_unlock(); 961 } 962 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 963 964 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 965 { 966 size_t retsize; 967 968 if (params->nelem_hint) 969 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 970 (unsigned long)params->min_size); 971 else 972 retsize = max(HASH_DEFAULT_SIZE, 973 (unsigned long)params->min_size); 974 975 return retsize; 976 } 977 978 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 979 { 980 return jhash2(key, length, seed); 981 } 982 983 /** 984 * rhashtable_init - initialize a new hash table 985 * @ht: hash table to be initialized 986 * @params: configuration parameters 987 * 988 * Initializes a new hash table based on the provided configuration 989 * parameters. A table can be configured either with a variable or 990 * fixed length key: 991 * 992 * Configuration Example 1: Fixed length keys 993 * struct test_obj { 994 * int key; 995 * void * my_member; 996 * struct rhash_head node; 997 * }; 998 * 999 * struct rhashtable_params params = { 1000 * .head_offset = offsetof(struct test_obj, node), 1001 * .key_offset = offsetof(struct test_obj, key), 1002 * .key_len = sizeof(int), 1003 * .hashfn = jhash, 1004 * }; 1005 * 1006 * Configuration Example 2: Variable length keys 1007 * struct test_obj { 1008 * [...] 1009 * struct rhash_head node; 1010 * }; 1011 * 1012 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 1013 * { 1014 * struct test_obj *obj = data; 1015 * 1016 * return [... hash ...]; 1017 * } 1018 * 1019 * struct rhashtable_params params = { 1020 * .head_offset = offsetof(struct test_obj, node), 1021 * .hashfn = jhash, 1022 * .obj_hashfn = my_hash_fn, 1023 * }; 1024 */ 1025 int rhashtable_init_noprof(struct rhashtable *ht, 1026 const struct rhashtable_params *params) 1027 { 1028 struct bucket_table *tbl; 1029 size_t size; 1030 1031 if ((!params->key_len && !params->obj_hashfn) || 1032 (params->obj_hashfn && !params->obj_cmpfn)) 1033 return -EINVAL; 1034 1035 memset(ht, 0, sizeof(*ht)); 1036 mutex_init(&ht->mutex); 1037 spin_lock_init(&ht->lock); 1038 memcpy(&ht->p, params, sizeof(*params)); 1039 1040 alloc_tag_record(ht->alloc_tag); 1041 1042 if (params->min_size) 1043 ht->p.min_size = roundup_pow_of_two(params->min_size); 1044 1045 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1046 ht->max_elems = 1u << 31; 1047 1048 if (params->max_size) { 1049 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1050 if (ht->p.max_size < ht->max_elems / 2) 1051 ht->max_elems = ht->p.max_size * 2; 1052 } 1053 1054 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1055 1056 size = rounded_hashtable_size(&ht->p); 1057 1058 ht->key_len = ht->p.key_len; 1059 if (!params->hashfn) { 1060 ht->p.hashfn = jhash; 1061 1062 if (!(ht->key_len & (sizeof(u32) - 1))) { 1063 ht->key_len /= sizeof(u32); 1064 ht->p.hashfn = rhashtable_jhash2; 1065 } 1066 } 1067 1068 /* 1069 * This is api initialization and thus we need to guarantee the 1070 * initial rhashtable allocation. Upon failure, retry with the 1071 * smallest possible size with __GFP_NOFAIL semantics. 1072 */ 1073 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1074 if (unlikely(tbl == NULL)) { 1075 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1076 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); 1077 } 1078 1079 atomic_set(&ht->nelems, 0); 1080 1081 RCU_INIT_POINTER(ht->tbl, tbl); 1082 1083 INIT_WORK(&ht->run_work, rht_deferred_worker); 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL_GPL(rhashtable_init_noprof); 1088 1089 /** 1090 * rhltable_init - initialize a new hash list table 1091 * @hlt: hash list table to be initialized 1092 * @params: configuration parameters 1093 * 1094 * Initializes a new hash list table. 1095 * 1096 * See documentation for rhashtable_init. 1097 */ 1098 int rhltable_init_noprof(struct rhltable *hlt, const struct rhashtable_params *params) 1099 { 1100 int err; 1101 1102 err = rhashtable_init_noprof(&hlt->ht, params); 1103 hlt->ht.rhlist = true; 1104 return err; 1105 } 1106 EXPORT_SYMBOL_GPL(rhltable_init_noprof); 1107 1108 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1109 void (*free_fn)(void *ptr, void *arg), 1110 void *arg) 1111 { 1112 struct rhlist_head *list; 1113 1114 if (!ht->rhlist) { 1115 free_fn(rht_obj(ht, obj), arg); 1116 return; 1117 } 1118 1119 list = container_of(obj, struct rhlist_head, rhead); 1120 do { 1121 obj = &list->rhead; 1122 list = rht_dereference(list->next, ht); 1123 free_fn(rht_obj(ht, obj), arg); 1124 } while (list); 1125 } 1126 1127 /** 1128 * rhashtable_free_and_destroy - free elements and destroy hash table 1129 * @ht: the hash table to destroy 1130 * @free_fn: callback to release resources of element 1131 * @arg: pointer passed to free_fn 1132 * 1133 * Stops an eventual async resize. If defined, invokes free_fn for each 1134 * element to releasal resources. Please note that RCU protected 1135 * readers may still be accessing the elements. Releasing of resources 1136 * must occur in a compatible manner. Then frees the bucket array. 1137 * 1138 * This function will eventually sleep to wait for an async resize 1139 * to complete. The caller is responsible that no further write operations 1140 * occurs in parallel. 1141 */ 1142 void rhashtable_free_and_destroy(struct rhashtable *ht, 1143 void (*free_fn)(void *ptr, void *arg), 1144 void *arg) 1145 { 1146 struct bucket_table *tbl, *next_tbl; 1147 unsigned int i; 1148 1149 cancel_work_sync(&ht->run_work); 1150 1151 mutex_lock(&ht->mutex); 1152 tbl = rht_dereference(ht->tbl, ht); 1153 restart: 1154 if (free_fn) { 1155 for (i = 0; i < tbl->size; i++) { 1156 struct rhash_head *pos, *next; 1157 1158 cond_resched(); 1159 for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), 1160 next = !rht_is_a_nulls(pos) ? 1161 rht_dereference(pos->next, ht) : NULL; 1162 !rht_is_a_nulls(pos); 1163 pos = next, 1164 next = !rht_is_a_nulls(pos) ? 1165 rht_dereference(pos->next, ht) : NULL) 1166 rhashtable_free_one(ht, pos, free_fn, arg); 1167 } 1168 } 1169 1170 next_tbl = rht_dereference(tbl->future_tbl, ht); 1171 bucket_table_free(tbl); 1172 if (next_tbl) { 1173 tbl = next_tbl; 1174 goto restart; 1175 } 1176 mutex_unlock(&ht->mutex); 1177 } 1178 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1179 1180 void rhashtable_destroy(struct rhashtable *ht) 1181 { 1182 return rhashtable_free_and_destroy(ht, NULL, NULL); 1183 } 1184 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1185 1186 struct rhash_lock_head __rcu **__rht_bucket_nested( 1187 const struct bucket_table *tbl, unsigned int hash) 1188 { 1189 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1190 unsigned int index = hash & ((1 << tbl->nest) - 1); 1191 unsigned int size = tbl->size >> tbl->nest; 1192 unsigned int subhash = hash; 1193 union nested_table *ntbl; 1194 1195 ntbl = nested_table_top(tbl); 1196 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1197 subhash >>= tbl->nest; 1198 1199 while (ntbl && size > (1 << shift)) { 1200 index = subhash & ((1 << shift) - 1); 1201 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1202 tbl, hash); 1203 size >>= shift; 1204 subhash >>= shift; 1205 } 1206 1207 if (!ntbl) 1208 return NULL; 1209 1210 return &ntbl[subhash].bucket; 1211 1212 } 1213 EXPORT_SYMBOL_GPL(__rht_bucket_nested); 1214 1215 struct rhash_lock_head __rcu **rht_bucket_nested( 1216 const struct bucket_table *tbl, unsigned int hash) 1217 { 1218 static struct rhash_lock_head __rcu *rhnull; 1219 1220 if (!rhnull) 1221 INIT_RHT_NULLS_HEAD(rhnull); 1222 return __rht_bucket_nested(tbl, hash) ?: &rhnull; 1223 } 1224 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1225 1226 struct rhash_lock_head __rcu **rht_bucket_nested_insert( 1227 struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) 1228 { 1229 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1230 unsigned int index = hash & ((1 << tbl->nest) - 1); 1231 unsigned int size = tbl->size >> tbl->nest; 1232 union nested_table *ntbl; 1233 1234 ntbl = nested_table_top(tbl); 1235 hash >>= tbl->nest; 1236 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1237 size <= (1 << shift)); 1238 1239 while (ntbl && size > (1 << shift)) { 1240 index = hash & ((1 << shift) - 1); 1241 size >>= shift; 1242 hash >>= shift; 1243 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1244 size <= (1 << shift)); 1245 } 1246 1247 if (!ntbl) 1248 return NULL; 1249 1250 return &ntbl[hash].bucket; 1251 1252 } 1253 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1254