xref: /linux/lib/rhashtable.c (revision 7b6092ee7a4ce2d03dc65b87537889e8e1e0ab95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resizable, Scalable, Concurrent Hash Table
4  *
5  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
6  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
7  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8  *
9  * Code partially derived from nft_hash
10  * Rewritten with rehash code from br_multicast plus single list
11  * pointer as suggested by Josh Triplett
12  */
13 
14 #include <linux/atomic.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/log2.h>
18 #include <linux/sched.h>
19 #include <linux/rculist.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/jhash.h>
24 #include <linux/random.h>
25 #include <linux/rhashtable.h>
26 #include <linux/err.h>
27 #include <linux/export.h>
28 
29 #define HASH_DEFAULT_SIZE	64UL
30 #define HASH_MIN_SIZE		4U
31 
32 union nested_table {
33 	union nested_table __rcu *table;
34 	struct rhash_lock_head __rcu *bucket;
35 };
36 
37 static u32 head_hashfn(struct rhashtable *ht,
38 		       const struct bucket_table *tbl,
39 		       const struct rhash_head *he)
40 {
41 	return rht_head_hashfn(ht, tbl, he, ht->p);
42 }
43 
44 #ifdef CONFIG_PROVE_LOCKING
45 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
46 
47 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
48 {
49 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
50 }
51 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
52 
53 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
54 {
55 	if (!debug_locks)
56 		return 1;
57 	if (unlikely(tbl->nest))
58 		return 1;
59 	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
60 }
61 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
62 #else
63 #define ASSERT_RHT_MUTEX(HT)
64 #endif
65 
66 static inline union nested_table *nested_table_top(
67 	const struct bucket_table *tbl)
68 {
69 	/* The top-level bucket entry does not need RCU protection
70 	 * because it's set at the same time as tbl->nest.
71 	 */
72 	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
73 }
74 
75 static void nested_table_free(union nested_table *ntbl, unsigned int size)
76 {
77 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
78 	const unsigned int len = 1 << shift;
79 	unsigned int i;
80 
81 	ntbl = rcu_dereference_protected(ntbl->table, 1);
82 	if (!ntbl)
83 		return;
84 
85 	if (size > len) {
86 		size >>= shift;
87 		for (i = 0; i < len; i++)
88 			nested_table_free(ntbl + i, size);
89 	}
90 
91 	kfree(ntbl);
92 }
93 
94 static void nested_bucket_table_free(const struct bucket_table *tbl)
95 {
96 	unsigned int size = tbl->size >> tbl->nest;
97 	unsigned int len = 1 << tbl->nest;
98 	union nested_table *ntbl;
99 	unsigned int i;
100 
101 	ntbl = nested_table_top(tbl);
102 
103 	for (i = 0; i < len; i++)
104 		nested_table_free(ntbl + i, size);
105 
106 	kfree(ntbl);
107 }
108 
109 static void bucket_table_free(const struct bucket_table *tbl)
110 {
111 	if (tbl->nest)
112 		nested_bucket_table_free(tbl);
113 
114 	kvfree(tbl);
115 }
116 
117 static void bucket_table_free_rcu(struct rcu_head *head)
118 {
119 	bucket_table_free(container_of(head, struct bucket_table, rcu));
120 }
121 
122 static union nested_table *nested_table_alloc(struct rhashtable *ht,
123 					      union nested_table __rcu **prev,
124 					      bool leaf)
125 {
126 	union nested_table *ntbl;
127 	int i;
128 
129 	ntbl = rcu_dereference(*prev);
130 	if (ntbl)
131 		return ntbl;
132 
133 	ntbl = alloc_hooks_tag(ht->alloc_tag,
134 			kmalloc_noprof(PAGE_SIZE, GFP_ATOMIC|__GFP_ZERO));
135 
136 	if (ntbl && leaf) {
137 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
138 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
139 	}
140 
141 	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
142 		return ntbl;
143 	/* Raced with another thread. */
144 	kfree(ntbl);
145 	return rcu_dereference(*prev);
146 }
147 
148 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
149 						      size_t nbuckets,
150 						      gfp_t gfp)
151 {
152 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
153 	struct bucket_table *tbl;
154 	size_t size;
155 
156 	if (nbuckets < (1 << (shift + 1)))
157 		return NULL;
158 
159 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
160 
161 	tbl = alloc_hooks_tag(ht->alloc_tag,
162 			kmalloc_noprof(size, gfp|__GFP_ZERO));
163 	if (!tbl)
164 		return NULL;
165 
166 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
167 				false)) {
168 		kfree(tbl);
169 		return NULL;
170 	}
171 
172 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
173 
174 	return tbl;
175 }
176 
177 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
178 					       size_t nbuckets,
179 					       gfp_t gfp)
180 {
181 	struct bucket_table *tbl = NULL;
182 	size_t size;
183 	int i;
184 	static struct lock_class_key __key;
185 
186 	tbl = alloc_hooks_tag(ht->alloc_tag,
187 			kvmalloc_node_noprof(struct_size(tbl, buckets, nbuckets),
188 					     gfp|__GFP_ZERO, NUMA_NO_NODE));
189 
190 	size = nbuckets;
191 
192 	if (tbl == NULL && !gfpflags_allow_blocking(gfp)) {
193 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
194 		nbuckets = 0;
195 	}
196 
197 	if (tbl == NULL)
198 		return NULL;
199 
200 	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
201 
202 	tbl->size = size;
203 
204 	rcu_head_init(&tbl->rcu);
205 	INIT_LIST_HEAD(&tbl->walkers);
206 
207 	tbl->hash_rnd = get_random_u32();
208 
209 	for (i = 0; i < nbuckets; i++)
210 		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
211 
212 	return tbl;
213 }
214 
215 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
216 						  struct bucket_table *tbl)
217 {
218 	struct bucket_table *new_tbl;
219 
220 	do {
221 		new_tbl = tbl;
222 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
223 	} while (tbl);
224 
225 	return new_tbl;
226 }
227 
228 static int rhashtable_rehash_one(struct rhashtable *ht,
229 				 struct rhash_lock_head __rcu **bkt,
230 				 unsigned int old_hash)
231 {
232 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
233 	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
234 	int err = -EAGAIN;
235 	struct rhash_head *head, *next, *entry;
236 	struct rhash_head __rcu **pprev = NULL;
237 	unsigned int new_hash;
238 	unsigned long flags;
239 
240 	if (new_tbl->nest)
241 		goto out;
242 
243 	err = -ENOENT;
244 
245 	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
246 			  old_tbl, old_hash) {
247 		err = 0;
248 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
249 
250 		if (rht_is_a_nulls(next))
251 			break;
252 
253 		pprev = &entry->next;
254 	}
255 
256 	if (err)
257 		goto out;
258 
259 	new_hash = head_hashfn(ht, new_tbl, entry);
260 
261 	flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash],
262 				SINGLE_DEPTH_NESTING);
263 
264 	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
265 
266 	RCU_INIT_POINTER(entry->next, head);
267 
268 	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags);
269 
270 	if (pprev)
271 		rcu_assign_pointer(*pprev, next);
272 	else
273 		/* Need to preserved the bit lock. */
274 		rht_assign_locked(bkt, next);
275 
276 out:
277 	return err;
278 }
279 
280 static int rhashtable_rehash_chain(struct rhashtable *ht,
281 				    unsigned int old_hash)
282 {
283 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
284 	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
285 	unsigned long flags;
286 	int err;
287 
288 	if (!bkt)
289 		return 0;
290 	flags = rht_lock(old_tbl, bkt);
291 
292 	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
293 		;
294 
295 	if (err == -ENOENT)
296 		err = 0;
297 	rht_unlock(old_tbl, bkt, flags);
298 
299 	return err;
300 }
301 
302 static int rhashtable_rehash_attach(struct rhashtable *ht,
303 				    struct bucket_table *old_tbl,
304 				    struct bucket_table *new_tbl)
305 {
306 	/* Make insertions go into the new, empty table right away. Deletions
307 	 * and lookups will be attempted in both tables until we synchronize.
308 	 * As cmpxchg() provides strong barriers, we do not need
309 	 * rcu_assign_pointer().
310 	 */
311 
312 	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
313 		    new_tbl) != NULL)
314 		return -EEXIST;
315 
316 	return 0;
317 }
318 
319 static int rhashtable_rehash_table(struct rhashtable *ht)
320 {
321 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
322 	struct bucket_table *new_tbl;
323 	struct rhashtable_walker *walker;
324 	unsigned int old_hash;
325 	int err;
326 
327 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
328 	if (!new_tbl)
329 		return 0;
330 
331 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
332 		err = rhashtable_rehash_chain(ht, old_hash);
333 		if (err)
334 			return err;
335 		cond_resched();
336 	}
337 
338 	/* Publish the new table pointer. */
339 	rcu_assign_pointer(ht->tbl, new_tbl);
340 
341 	spin_lock(&ht->lock);
342 	list_for_each_entry(walker, &old_tbl->walkers, list)
343 		walker->tbl = NULL;
344 
345 	/* Wait for readers. All new readers will see the new
346 	 * table, and thus no references to the old table will
347 	 * remain.
348 	 * We do this inside the locked region so that
349 	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
350 	 * to check if it should not re-link the table.
351 	 */
352 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
353 	spin_unlock(&ht->lock);
354 
355 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
356 }
357 
358 static int rhashtable_rehash_alloc(struct rhashtable *ht,
359 				   struct bucket_table *old_tbl,
360 				   unsigned int size)
361 {
362 	struct bucket_table *new_tbl;
363 	int err;
364 
365 	ASSERT_RHT_MUTEX(ht);
366 
367 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
368 	if (new_tbl == NULL)
369 		return -ENOMEM;
370 
371 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
372 	if (err)
373 		bucket_table_free(new_tbl);
374 
375 	return err;
376 }
377 
378 /**
379  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
380  * @ht:		the hash table to shrink
381  *
382  * This function shrinks the hash table to fit, i.e., the smallest
383  * size would not cause it to expand right away automatically.
384  *
385  * The caller must ensure that no concurrent resizing occurs by holding
386  * ht->mutex.
387  *
388  * The caller must ensure that no concurrent table mutations take place.
389  * It is however valid to have concurrent lookups if they are RCU protected.
390  *
391  * It is valid to have concurrent insertions and deletions protected by per
392  * bucket locks or concurrent RCU protected lookups and traversals.
393  */
394 static int rhashtable_shrink(struct rhashtable *ht)
395 {
396 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
397 	unsigned int nelems = atomic_read(&ht->nelems);
398 	unsigned int size = 0;
399 
400 	if (nelems)
401 		size = roundup_pow_of_two(nelems * 3 / 2);
402 	if (size < ht->p.min_size)
403 		size = ht->p.min_size;
404 
405 	if (old_tbl->size <= size)
406 		return 0;
407 
408 	if (rht_dereference(old_tbl->future_tbl, ht))
409 		return -EEXIST;
410 
411 	return rhashtable_rehash_alloc(ht, old_tbl, size);
412 }
413 
414 static void rht_deferred_worker(struct work_struct *work)
415 {
416 	struct rhashtable *ht;
417 	struct bucket_table *tbl;
418 	int err = 0;
419 
420 	ht = container_of(work, struct rhashtable, run_work);
421 	mutex_lock(&ht->mutex);
422 
423 	tbl = rht_dereference(ht->tbl, ht);
424 	tbl = rhashtable_last_table(ht, tbl);
425 
426 	if (rht_grow_above_75(ht, tbl))
427 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
428 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
429 		err = rhashtable_shrink(ht);
430 	else if (tbl->nest)
431 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
432 
433 	if (!err || err == -EEXIST) {
434 		int nerr;
435 
436 		nerr = rhashtable_rehash_table(ht);
437 		err = err ?: nerr;
438 	}
439 
440 	mutex_unlock(&ht->mutex);
441 
442 	if (err)
443 		schedule_work(&ht->run_work);
444 }
445 
446 static int rhashtable_insert_rehash(struct rhashtable *ht,
447 				    struct bucket_table *tbl)
448 {
449 	struct bucket_table *old_tbl;
450 	struct bucket_table *new_tbl;
451 	unsigned int size;
452 	int err;
453 
454 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
455 
456 	size = tbl->size;
457 
458 	err = -EBUSY;
459 
460 	if (rht_grow_above_75(ht, tbl))
461 		size *= 2;
462 	/* Do not schedule more than one rehash */
463 	else if (old_tbl != tbl)
464 		goto fail;
465 
466 	err = -ENOMEM;
467 
468 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
469 	if (new_tbl == NULL)
470 		goto fail;
471 
472 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
473 	if (err) {
474 		bucket_table_free(new_tbl);
475 		if (err == -EEXIST)
476 			err = 0;
477 	} else
478 		schedule_work(&ht->run_work);
479 
480 	return err;
481 
482 fail:
483 	/* Do not fail the insert if someone else did a rehash. */
484 	if (likely(rcu_access_pointer(tbl->future_tbl)))
485 		return 0;
486 
487 	/* Schedule async rehash to retry allocation in process context. */
488 	if (err == -ENOMEM)
489 		schedule_work(&ht->run_work);
490 
491 	return err;
492 }
493 
494 static void *rhashtable_lookup_one(struct rhashtable *ht,
495 				   struct rhash_lock_head __rcu **bkt,
496 				   struct bucket_table *tbl, unsigned int hash,
497 				   const void *key, struct rhash_head *obj)
498 {
499 	struct rhashtable_compare_arg arg = {
500 		.ht = ht,
501 		.key = key,
502 	};
503 	struct rhash_head __rcu **pprev = NULL;
504 	struct rhash_head *head;
505 	int elasticity;
506 
507 	elasticity = RHT_ELASTICITY;
508 	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
509 		struct rhlist_head *list;
510 		struct rhlist_head *plist;
511 
512 		elasticity--;
513 		if (!key ||
514 		    (ht->p.obj_cmpfn ?
515 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
516 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
517 			pprev = &head->next;
518 			continue;
519 		}
520 
521 		if (!ht->rhlist)
522 			return rht_obj(ht, head);
523 
524 		list = container_of(obj, struct rhlist_head, rhead);
525 		plist = container_of(head, struct rhlist_head, rhead);
526 
527 		RCU_INIT_POINTER(list->next, plist);
528 		head = rht_dereference_bucket(head->next, tbl, hash);
529 		RCU_INIT_POINTER(list->rhead.next, head);
530 		if (pprev)
531 			rcu_assign_pointer(*pprev, obj);
532 		else
533 			/* Need to preserve the bit lock */
534 			rht_assign_locked(bkt, obj);
535 
536 		return NULL;
537 	}
538 
539 	if (elasticity <= 0)
540 		return ERR_PTR(-EAGAIN);
541 
542 	return ERR_PTR(-ENOENT);
543 }
544 
545 static struct bucket_table *rhashtable_insert_one(
546 	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
547 	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
548 	void *data)
549 {
550 	struct bucket_table *new_tbl;
551 	struct rhash_head *head;
552 
553 	if (!IS_ERR_OR_NULL(data))
554 		return ERR_PTR(-EEXIST);
555 
556 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
557 		return ERR_CAST(data);
558 
559 	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
560 	if (new_tbl)
561 		return new_tbl;
562 
563 	if (PTR_ERR(data) != -ENOENT)
564 		return ERR_CAST(data);
565 
566 	if (unlikely(rht_grow_above_max(ht, tbl)))
567 		return ERR_PTR(-E2BIG);
568 
569 	if (unlikely(rht_grow_above_100(ht, tbl)))
570 		return ERR_PTR(-EAGAIN);
571 
572 	head = rht_ptr(bkt, tbl, hash);
573 
574 	RCU_INIT_POINTER(obj->next, head);
575 	if (ht->rhlist) {
576 		struct rhlist_head *list;
577 
578 		list = container_of(obj, struct rhlist_head, rhead);
579 		RCU_INIT_POINTER(list->next, NULL);
580 	}
581 
582 	/* bkt is always the head of the list, so it holds
583 	 * the lock, which we need to preserve
584 	 */
585 	rht_assign_locked(bkt, obj);
586 
587 	return NULL;
588 }
589 
590 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
591 				   struct rhash_head *obj)
592 {
593 	struct bucket_table *new_tbl;
594 	struct bucket_table *tbl;
595 	struct rhash_lock_head __rcu **bkt;
596 	unsigned long flags;
597 	unsigned int hash;
598 	void *data;
599 
600 	new_tbl = rcu_dereference(ht->tbl);
601 
602 	do {
603 		tbl = new_tbl;
604 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
605 		if (rcu_access_pointer(tbl->future_tbl))
606 			/* Failure is OK */
607 			bkt = rht_bucket_var(tbl, hash);
608 		else
609 			bkt = rht_bucket_insert(ht, tbl, hash);
610 		if (bkt == NULL) {
611 			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
612 			data = ERR_PTR(-EAGAIN);
613 		} else {
614 			flags = rht_lock(tbl, bkt);
615 			data = rhashtable_lookup_one(ht, bkt, tbl,
616 						     hash, key, obj);
617 			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
618 							hash, obj, data);
619 			if (PTR_ERR(new_tbl) != -EEXIST)
620 				data = ERR_CAST(new_tbl);
621 
622 			rht_unlock(tbl, bkt, flags);
623 
624 			if (PTR_ERR(data) == -ENOENT && !new_tbl) {
625 				atomic_inc(&ht->nelems);
626 				if (rht_grow_above_75(ht, tbl))
627 					schedule_work(&ht->run_work);
628 			}
629 		}
630 	} while (!IS_ERR_OR_NULL(new_tbl));
631 
632 	if (PTR_ERR(data) == -EAGAIN)
633 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
634 			       -EAGAIN);
635 
636 	return data;
637 }
638 
639 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
640 			     struct rhash_head *obj)
641 {
642 	void *data;
643 
644 	do {
645 		rcu_read_lock();
646 		data = rhashtable_try_insert(ht, key, obj);
647 		rcu_read_unlock();
648 	} while (PTR_ERR(data) == -EAGAIN);
649 
650 	return data;
651 }
652 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
653 
654 /**
655  * rhashtable_walk_enter - Initialise an iterator
656  * @ht:		Table to walk over
657  * @iter:	Hash table Iterator
658  *
659  * This function prepares a hash table walk.
660  *
661  * Note that if you restart a walk after rhashtable_walk_stop you
662  * may see the same object twice.  Also, you may miss objects if
663  * there are removals in between rhashtable_walk_stop and the next
664  * call to rhashtable_walk_start.
665  *
666  * For a completely stable walk you should construct your own data
667  * structure outside the hash table.
668  *
669  * This function may be called from any process context, including
670  * non-preemptable context, but cannot be called from softirq or
671  * hardirq context.
672  *
673  * You must call rhashtable_walk_exit after this function returns.
674  */
675 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
676 {
677 	iter->ht = ht;
678 	iter->p = NULL;
679 	iter->slot = 0;
680 	iter->skip = 0;
681 	iter->end_of_table = 0;
682 
683 	spin_lock(&ht->lock);
684 	iter->walker.tbl =
685 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
686 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
687 	spin_unlock(&ht->lock);
688 }
689 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
690 
691 /**
692  * rhashtable_walk_exit - Free an iterator
693  * @iter:	Hash table Iterator
694  *
695  * This function frees resources allocated by rhashtable_walk_enter.
696  */
697 void rhashtable_walk_exit(struct rhashtable_iter *iter)
698 {
699 	spin_lock(&iter->ht->lock);
700 	if (iter->walker.tbl)
701 		list_del(&iter->walker.list);
702 	spin_unlock(&iter->ht->lock);
703 }
704 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
705 
706 /**
707  * rhashtable_walk_start_check - Start a hash table walk
708  * @iter:	Hash table iterator
709  *
710  * Start a hash table walk at the current iterator position.  Note that we take
711  * the RCU lock in all cases including when we return an error.  So you must
712  * always call rhashtable_walk_stop to clean up.
713  *
714  * Returns zero if successful.
715  *
716  * Returns -EAGAIN if resize event occurred.  Note that the iterator
717  * will rewind back to the beginning and you may use it immediately
718  * by calling rhashtable_walk_next.
719  *
720  * rhashtable_walk_start is defined as an inline variant that returns
721  * void. This is preferred in cases where the caller would ignore
722  * resize events and always continue.
723  */
724 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
725 	__acquires(RCU)
726 {
727 	struct rhashtable *ht = iter->ht;
728 	bool rhlist = ht->rhlist;
729 
730 	rcu_read_lock();
731 
732 	spin_lock(&ht->lock);
733 	if (iter->walker.tbl)
734 		list_del(&iter->walker.list);
735 	spin_unlock(&ht->lock);
736 
737 	if (iter->end_of_table)
738 		return 0;
739 	if (!iter->walker.tbl) {
740 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
741 		iter->slot = 0;
742 		iter->skip = 0;
743 		return -EAGAIN;
744 	}
745 
746 	if (iter->p && !rhlist) {
747 		/*
748 		 * We need to validate that 'p' is still in the table, and
749 		 * if so, update 'skip'
750 		 */
751 		struct rhash_head *p;
752 		int skip = 0;
753 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
754 			skip++;
755 			if (p == iter->p) {
756 				iter->skip = skip;
757 				goto found;
758 			}
759 		}
760 		iter->p = NULL;
761 	} else if (iter->p && rhlist) {
762 		/* Need to validate that 'list' is still in the table, and
763 		 * if so, update 'skip' and 'p'.
764 		 */
765 		struct rhash_head *p;
766 		struct rhlist_head *list;
767 		int skip = 0;
768 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
769 			for (list = container_of(p, struct rhlist_head, rhead);
770 			     list;
771 			     list = rcu_dereference(list->next)) {
772 				skip++;
773 				if (list == iter->list) {
774 					iter->p = p;
775 					iter->skip = skip;
776 					goto found;
777 				}
778 			}
779 		}
780 		iter->p = NULL;
781 	}
782 found:
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
786 
787 /**
788  * __rhashtable_walk_find_next - Find the next element in a table (or the first
789  * one in case of a new walk).
790  *
791  * @iter:	Hash table iterator
792  *
793  * Returns the found object or NULL when the end of the table is reached.
794  *
795  * Returns -EAGAIN if resize event occurred.
796  */
797 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
798 {
799 	struct bucket_table *tbl = iter->walker.tbl;
800 	struct rhlist_head *list = iter->list;
801 	struct rhashtable *ht = iter->ht;
802 	struct rhash_head *p = iter->p;
803 	bool rhlist = ht->rhlist;
804 
805 	if (!tbl)
806 		return NULL;
807 
808 	for (; iter->slot < tbl->size; iter->slot++) {
809 		int skip = iter->skip;
810 
811 		rht_for_each_rcu(p, tbl, iter->slot) {
812 			if (rhlist) {
813 				list = container_of(p, struct rhlist_head,
814 						    rhead);
815 				do {
816 					if (!skip)
817 						goto next;
818 					skip--;
819 					list = rcu_dereference(list->next);
820 				} while (list);
821 
822 				continue;
823 			}
824 			if (!skip)
825 				break;
826 			skip--;
827 		}
828 
829 next:
830 		if (!rht_is_a_nulls(p)) {
831 			iter->skip++;
832 			iter->p = p;
833 			iter->list = list;
834 			return rht_obj(ht, rhlist ? &list->rhead : p);
835 		}
836 
837 		iter->skip = 0;
838 	}
839 
840 	iter->p = NULL;
841 
842 	/* Ensure we see any new tables. */
843 	smp_rmb();
844 
845 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
846 	if (iter->walker.tbl) {
847 		iter->slot = 0;
848 		iter->skip = 0;
849 		return ERR_PTR(-EAGAIN);
850 	} else {
851 		iter->end_of_table = true;
852 	}
853 
854 	return NULL;
855 }
856 
857 /**
858  * rhashtable_walk_next - Return the next object and advance the iterator
859  * @iter:	Hash table iterator
860  *
861  * Note that you must call rhashtable_walk_stop when you are finished
862  * with the walk.
863  *
864  * Returns the next object or NULL when the end of the table is reached.
865  *
866  * Returns -EAGAIN if resize event occurred.  Note that the iterator
867  * will rewind back to the beginning and you may continue to use it.
868  */
869 void *rhashtable_walk_next(struct rhashtable_iter *iter)
870 {
871 	struct rhlist_head *list = iter->list;
872 	struct rhashtable *ht = iter->ht;
873 	struct rhash_head *p = iter->p;
874 	bool rhlist = ht->rhlist;
875 
876 	if (p) {
877 		if (!rhlist || !(list = rcu_dereference(list->next))) {
878 			p = rcu_dereference(p->next);
879 			list = container_of(p, struct rhlist_head, rhead);
880 		}
881 		if (!rht_is_a_nulls(p)) {
882 			iter->skip++;
883 			iter->p = p;
884 			iter->list = list;
885 			return rht_obj(ht, rhlist ? &list->rhead : p);
886 		}
887 
888 		/* At the end of this slot, switch to next one and then find
889 		 * next entry from that point.
890 		 */
891 		iter->skip = 0;
892 		iter->slot++;
893 	}
894 
895 	return __rhashtable_walk_find_next(iter);
896 }
897 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
898 
899 /**
900  * rhashtable_walk_peek - Return the next object but don't advance the iterator
901  * @iter:	Hash table iterator
902  *
903  * Returns the next object or NULL when the end of the table is reached.
904  *
905  * Returns -EAGAIN if resize event occurred.  Note that the iterator
906  * will rewind back to the beginning and you may continue to use it.
907  */
908 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
909 {
910 	struct rhlist_head *list = iter->list;
911 	struct rhashtable *ht = iter->ht;
912 	struct rhash_head *p = iter->p;
913 
914 	if (p)
915 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
916 
917 	/* No object found in current iter, find next one in the table. */
918 
919 	if (iter->skip) {
920 		/* A nonzero skip value points to the next entry in the table
921 		 * beyond that last one that was found. Decrement skip so
922 		 * we find the current value. __rhashtable_walk_find_next
923 		 * will restore the original value of skip assuming that
924 		 * the table hasn't changed.
925 		 */
926 		iter->skip--;
927 	}
928 
929 	return __rhashtable_walk_find_next(iter);
930 }
931 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
932 
933 /**
934  * rhashtable_walk_stop - Finish a hash table walk
935  * @iter:	Hash table iterator
936  *
937  * Finish a hash table walk.  Does not reset the iterator to the start of the
938  * hash table.
939  */
940 void rhashtable_walk_stop(struct rhashtable_iter *iter)
941 	__releases(RCU)
942 {
943 	struct rhashtable *ht;
944 	struct bucket_table *tbl = iter->walker.tbl;
945 
946 	if (!tbl)
947 		goto out;
948 
949 	ht = iter->ht;
950 
951 	spin_lock(&ht->lock);
952 	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
953 		/* This bucket table is being freed, don't re-link it. */
954 		iter->walker.tbl = NULL;
955 	else
956 		list_add(&iter->walker.list, &tbl->walkers);
957 	spin_unlock(&ht->lock);
958 
959 out:
960 	rcu_read_unlock();
961 }
962 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
963 
964 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
965 {
966 	size_t retsize;
967 
968 	if (params->nelem_hint)
969 		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
970 			      (unsigned long)params->min_size);
971 	else
972 		retsize = max(HASH_DEFAULT_SIZE,
973 			      (unsigned long)params->min_size);
974 
975 	return retsize;
976 }
977 
978 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
979 {
980 	return jhash2(key, length, seed);
981 }
982 
983 /**
984  * rhashtable_init - initialize a new hash table
985  * @ht:		hash table to be initialized
986  * @params:	configuration parameters
987  *
988  * Initializes a new hash table based on the provided configuration
989  * parameters. A table can be configured either with a variable or
990  * fixed length key:
991  *
992  * Configuration Example 1: Fixed length keys
993  * struct test_obj {
994  *	int			key;
995  *	void *			my_member;
996  *	struct rhash_head	node;
997  * };
998  *
999  * struct rhashtable_params params = {
1000  *	.head_offset = offsetof(struct test_obj, node),
1001  *	.key_offset = offsetof(struct test_obj, key),
1002  *	.key_len = sizeof(int),
1003  *	.hashfn = jhash,
1004  * };
1005  *
1006  * Configuration Example 2: Variable length keys
1007  * struct test_obj {
1008  *	[...]
1009  *	struct rhash_head	node;
1010  * };
1011  *
1012  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1013  * {
1014  *	struct test_obj *obj = data;
1015  *
1016  *	return [... hash ...];
1017  * }
1018  *
1019  * struct rhashtable_params params = {
1020  *	.head_offset = offsetof(struct test_obj, node),
1021  *	.hashfn = jhash,
1022  *	.obj_hashfn = my_hash_fn,
1023  * };
1024  */
1025 int rhashtable_init_noprof(struct rhashtable *ht,
1026 		    const struct rhashtable_params *params)
1027 {
1028 	struct bucket_table *tbl;
1029 	size_t size;
1030 
1031 	if ((!params->key_len && !params->obj_hashfn) ||
1032 	    (params->obj_hashfn && !params->obj_cmpfn))
1033 		return -EINVAL;
1034 
1035 	memset(ht, 0, sizeof(*ht));
1036 	mutex_init(&ht->mutex);
1037 	spin_lock_init(&ht->lock);
1038 	memcpy(&ht->p, params, sizeof(*params));
1039 
1040 	alloc_tag_record(ht->alloc_tag);
1041 
1042 	if (params->min_size)
1043 		ht->p.min_size = roundup_pow_of_two(params->min_size);
1044 
1045 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1046 	ht->max_elems = 1u << 31;
1047 
1048 	if (params->max_size) {
1049 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1050 		if (ht->p.max_size < ht->max_elems / 2)
1051 			ht->max_elems = ht->p.max_size * 2;
1052 	}
1053 
1054 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1055 
1056 	size = rounded_hashtable_size(&ht->p);
1057 
1058 	ht->key_len = ht->p.key_len;
1059 	if (!params->hashfn) {
1060 		ht->p.hashfn = jhash;
1061 
1062 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1063 			ht->key_len /= sizeof(u32);
1064 			ht->p.hashfn = rhashtable_jhash2;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * This is api initialization and thus we need to guarantee the
1070 	 * initial rhashtable allocation. Upon failure, retry with the
1071 	 * smallest possible size with __GFP_NOFAIL semantics.
1072 	 */
1073 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1074 	if (unlikely(tbl == NULL)) {
1075 		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1076 		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1077 	}
1078 
1079 	atomic_set(&ht->nelems, 0);
1080 
1081 	RCU_INIT_POINTER(ht->tbl, tbl);
1082 
1083 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(rhashtable_init_noprof);
1088 
1089 /**
1090  * rhltable_init - initialize a new hash list table
1091  * @hlt:	hash list table to be initialized
1092  * @params:	configuration parameters
1093  *
1094  * Initializes a new hash list table.
1095  *
1096  * See documentation for rhashtable_init.
1097  */
1098 int rhltable_init_noprof(struct rhltable *hlt, const struct rhashtable_params *params)
1099 {
1100 	int err;
1101 
1102 	err = rhashtable_init_noprof(&hlt->ht, params);
1103 	hlt->ht.rhlist = true;
1104 	return err;
1105 }
1106 EXPORT_SYMBOL_GPL(rhltable_init_noprof);
1107 
1108 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1109 				void (*free_fn)(void *ptr, void *arg),
1110 				void *arg)
1111 {
1112 	struct rhlist_head *list;
1113 
1114 	if (!ht->rhlist) {
1115 		free_fn(rht_obj(ht, obj), arg);
1116 		return;
1117 	}
1118 
1119 	list = container_of(obj, struct rhlist_head, rhead);
1120 	do {
1121 		obj = &list->rhead;
1122 		list = rht_dereference(list->next, ht);
1123 		free_fn(rht_obj(ht, obj), arg);
1124 	} while (list);
1125 }
1126 
1127 /**
1128  * rhashtable_free_and_destroy - free elements and destroy hash table
1129  * @ht:		the hash table to destroy
1130  * @free_fn:	callback to release resources of element
1131  * @arg:	pointer passed to free_fn
1132  *
1133  * Stops an eventual async resize. If defined, invokes free_fn for each
1134  * element to releasal resources. Please note that RCU protected
1135  * readers may still be accessing the elements. Releasing of resources
1136  * must occur in a compatible manner. Then frees the bucket array.
1137  *
1138  * This function will eventually sleep to wait for an async resize
1139  * to complete. The caller is responsible that no further write operations
1140  * occurs in parallel.
1141  */
1142 void rhashtable_free_and_destroy(struct rhashtable *ht,
1143 				 void (*free_fn)(void *ptr, void *arg),
1144 				 void *arg)
1145 {
1146 	struct bucket_table *tbl, *next_tbl;
1147 	unsigned int i;
1148 
1149 	cancel_work_sync(&ht->run_work);
1150 
1151 	mutex_lock(&ht->mutex);
1152 	tbl = rht_dereference(ht->tbl, ht);
1153 restart:
1154 	if (free_fn) {
1155 		for (i = 0; i < tbl->size; i++) {
1156 			struct rhash_head *pos, *next;
1157 
1158 			cond_resched();
1159 			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1160 			     next = !rht_is_a_nulls(pos) ?
1161 					rht_dereference(pos->next, ht) : NULL;
1162 			     !rht_is_a_nulls(pos);
1163 			     pos = next,
1164 			     next = !rht_is_a_nulls(pos) ?
1165 					rht_dereference(pos->next, ht) : NULL)
1166 				rhashtable_free_one(ht, pos, free_fn, arg);
1167 		}
1168 	}
1169 
1170 	next_tbl = rht_dereference(tbl->future_tbl, ht);
1171 	bucket_table_free(tbl);
1172 	if (next_tbl) {
1173 		tbl = next_tbl;
1174 		goto restart;
1175 	}
1176 	mutex_unlock(&ht->mutex);
1177 }
1178 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1179 
1180 void rhashtable_destroy(struct rhashtable *ht)
1181 {
1182 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1183 }
1184 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1185 
1186 struct rhash_lock_head __rcu **__rht_bucket_nested(
1187 	const struct bucket_table *tbl, unsigned int hash)
1188 {
1189 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1190 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1191 	unsigned int size = tbl->size >> tbl->nest;
1192 	unsigned int subhash = hash;
1193 	union nested_table *ntbl;
1194 
1195 	ntbl = nested_table_top(tbl);
1196 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1197 	subhash >>= tbl->nest;
1198 
1199 	while (ntbl && size > (1 << shift)) {
1200 		index = subhash & ((1 << shift) - 1);
1201 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1202 						  tbl, hash);
1203 		size >>= shift;
1204 		subhash >>= shift;
1205 	}
1206 
1207 	if (!ntbl)
1208 		return NULL;
1209 
1210 	return &ntbl[subhash].bucket;
1211 
1212 }
1213 EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1214 
1215 struct rhash_lock_head __rcu **rht_bucket_nested(
1216 	const struct bucket_table *tbl, unsigned int hash)
1217 {
1218 	static struct rhash_lock_head __rcu *rhnull;
1219 
1220 	if (!rhnull)
1221 		INIT_RHT_NULLS_HEAD(rhnull);
1222 	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1223 }
1224 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1225 
1226 struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1227 	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
1228 {
1229 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1230 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1231 	unsigned int size = tbl->size >> tbl->nest;
1232 	union nested_table *ntbl;
1233 
1234 	ntbl = nested_table_top(tbl);
1235 	hash >>= tbl->nest;
1236 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1237 				  size <= (1 << shift));
1238 
1239 	while (ntbl && size > (1 << shift)) {
1240 		index = hash & ((1 << shift) - 1);
1241 		size >>= shift;
1242 		hash >>= shift;
1243 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1244 					  size <= (1 << shift));
1245 	}
1246 
1247 	if (!ntbl)
1248 		return NULL;
1249 
1250 	return &ntbl[hash].bucket;
1251 
1252 }
1253 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1254