1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/mm.h> 25 #include <linux/jhash.h> 26 #include <linux/random.h> 27 #include <linux/rhashtable.h> 28 #include <linux/err.h> 29 #include <linux/export.h> 30 31 #define HASH_DEFAULT_SIZE 64UL 32 #define HASH_MIN_SIZE 4U 33 #define BUCKET_LOCKS_PER_CPU 128UL 34 35 static u32 head_hashfn(struct rhashtable *ht, 36 const struct bucket_table *tbl, 37 const struct rhash_head *he) 38 { 39 return rht_head_hashfn(ht, tbl, he, ht->p); 40 } 41 42 #ifdef CONFIG_PROVE_LOCKING 43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 44 45 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 46 { 47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 48 } 49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 50 51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 52 { 53 spinlock_t *lock = rht_bucket_lock(tbl, hash); 54 55 return (debug_locks) ? lockdep_is_held(lock) : 1; 56 } 57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 58 #else 59 #define ASSERT_RHT_MUTEX(HT) 60 #endif 61 62 63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl, 64 gfp_t gfp) 65 { 66 unsigned int i, size; 67 #if defined(CONFIG_PROVE_LOCKING) 68 unsigned int nr_pcpus = 2; 69 #else 70 unsigned int nr_pcpus = num_possible_cpus(); 71 #endif 72 73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); 74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); 75 76 /* Never allocate more than 0.5 locks per bucket */ 77 size = min_t(unsigned int, size, tbl->size >> 1); 78 79 if (sizeof(spinlock_t) != 0) { 80 #ifdef CONFIG_NUMA 81 if (size * sizeof(spinlock_t) > PAGE_SIZE && 82 gfp == GFP_KERNEL) 83 tbl->locks = vmalloc(size * sizeof(spinlock_t)); 84 else 85 #endif 86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t), 87 gfp); 88 if (!tbl->locks) 89 return -ENOMEM; 90 for (i = 0; i < size; i++) 91 spin_lock_init(&tbl->locks[i]); 92 } 93 tbl->locks_mask = size - 1; 94 95 return 0; 96 } 97 98 static void bucket_table_free(const struct bucket_table *tbl) 99 { 100 if (tbl) 101 kvfree(tbl->locks); 102 103 kvfree(tbl); 104 } 105 106 static void bucket_table_free_rcu(struct rcu_head *head) 107 { 108 bucket_table_free(container_of(head, struct bucket_table, rcu)); 109 } 110 111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 112 size_t nbuckets, 113 gfp_t gfp) 114 { 115 struct bucket_table *tbl = NULL; 116 size_t size; 117 int i; 118 119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) || 121 gfp != GFP_KERNEL) 122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY); 123 if (tbl == NULL && gfp == GFP_KERNEL) 124 tbl = vzalloc(size); 125 if (tbl == NULL) 126 return NULL; 127 128 tbl->size = nbuckets; 129 130 if (alloc_bucket_locks(ht, tbl, gfp) < 0) { 131 bucket_table_free(tbl); 132 return NULL; 133 } 134 135 INIT_LIST_HEAD(&tbl->walkers); 136 137 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 138 139 for (i = 0; i < nbuckets; i++) 140 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 141 142 return tbl; 143 } 144 145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 146 struct bucket_table *tbl) 147 { 148 struct bucket_table *new_tbl; 149 150 do { 151 new_tbl = tbl; 152 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 153 } while (tbl); 154 155 return new_tbl; 156 } 157 158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 159 { 160 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 161 struct bucket_table *new_tbl = rhashtable_last_table(ht, 162 rht_dereference_rcu(old_tbl->future_tbl, ht)); 163 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash]; 164 int err = -ENOENT; 165 struct rhash_head *head, *next, *entry; 166 spinlock_t *new_bucket_lock; 167 unsigned int new_hash; 168 169 rht_for_each(entry, old_tbl, old_hash) { 170 err = 0; 171 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 172 173 if (rht_is_a_nulls(next)) 174 break; 175 176 pprev = &entry->next; 177 } 178 179 if (err) 180 goto out; 181 182 new_hash = head_hashfn(ht, new_tbl, entry); 183 184 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 185 186 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 187 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 188 new_tbl, new_hash); 189 190 if (rht_is_a_nulls(head)) 191 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash); 192 else 193 RCU_INIT_POINTER(entry->next, head); 194 195 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 196 spin_unlock(new_bucket_lock); 197 198 rcu_assign_pointer(*pprev, next); 199 200 out: 201 return err; 202 } 203 204 static void rhashtable_rehash_chain(struct rhashtable *ht, 205 unsigned int old_hash) 206 { 207 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 208 spinlock_t *old_bucket_lock; 209 210 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 211 212 spin_lock_bh(old_bucket_lock); 213 while (!rhashtable_rehash_one(ht, old_hash)) 214 ; 215 old_tbl->rehash++; 216 spin_unlock_bh(old_bucket_lock); 217 } 218 219 static int rhashtable_rehash_attach(struct rhashtable *ht, 220 struct bucket_table *old_tbl, 221 struct bucket_table *new_tbl) 222 { 223 /* Protect future_tbl using the first bucket lock. */ 224 spin_lock_bh(old_tbl->locks); 225 226 /* Did somebody beat us to it? */ 227 if (rcu_access_pointer(old_tbl->future_tbl)) { 228 spin_unlock_bh(old_tbl->locks); 229 return -EEXIST; 230 } 231 232 /* Make insertions go into the new, empty table right away. Deletions 233 * and lookups will be attempted in both tables until we synchronize. 234 */ 235 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 236 237 /* Ensure the new table is visible to readers. */ 238 smp_wmb(); 239 240 spin_unlock_bh(old_tbl->locks); 241 242 return 0; 243 } 244 245 static int rhashtable_rehash_table(struct rhashtable *ht) 246 { 247 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 248 struct bucket_table *new_tbl; 249 struct rhashtable_walker *walker; 250 unsigned int old_hash; 251 252 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 253 if (!new_tbl) 254 return 0; 255 256 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) 257 rhashtable_rehash_chain(ht, old_hash); 258 259 /* Publish the new table pointer. */ 260 rcu_assign_pointer(ht->tbl, new_tbl); 261 262 spin_lock(&ht->lock); 263 list_for_each_entry(walker, &old_tbl->walkers, list) 264 walker->tbl = NULL; 265 spin_unlock(&ht->lock); 266 267 /* Wait for readers. All new readers will see the new 268 * table, and thus no references to the old table will 269 * remain. 270 */ 271 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 272 273 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 274 } 275 276 /** 277 * rhashtable_expand - Expand hash table while allowing concurrent lookups 278 * @ht: the hash table to expand 279 * 280 * A secondary bucket array is allocated and the hash entries are migrated. 281 * 282 * This function may only be called in a context where it is safe to call 283 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 284 * 285 * The caller must ensure that no concurrent resizing occurs by holding 286 * ht->mutex. 287 * 288 * It is valid to have concurrent insertions and deletions protected by per 289 * bucket locks or concurrent RCU protected lookups and traversals. 290 */ 291 static int rhashtable_expand(struct rhashtable *ht) 292 { 293 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 294 int err; 295 296 ASSERT_RHT_MUTEX(ht); 297 298 old_tbl = rhashtable_last_table(ht, old_tbl); 299 300 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL); 301 if (new_tbl == NULL) 302 return -ENOMEM; 303 304 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 305 if (err) 306 bucket_table_free(new_tbl); 307 308 return err; 309 } 310 311 /** 312 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 313 * @ht: the hash table to shrink 314 * 315 * This function shrinks the hash table to fit, i.e., the smallest 316 * size would not cause it to expand right away automatically. 317 * 318 * The caller must ensure that no concurrent resizing occurs by holding 319 * ht->mutex. 320 * 321 * The caller must ensure that no concurrent table mutations take place. 322 * It is however valid to have concurrent lookups if they are RCU protected. 323 * 324 * It is valid to have concurrent insertions and deletions protected by per 325 * bucket locks or concurrent RCU protected lookups and traversals. 326 */ 327 static int rhashtable_shrink(struct rhashtable *ht) 328 { 329 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 330 unsigned int size; 331 int err; 332 333 ASSERT_RHT_MUTEX(ht); 334 335 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2); 336 if (size < ht->p.min_size) 337 size = ht->p.min_size; 338 339 if (old_tbl->size <= size) 340 return 0; 341 342 if (rht_dereference(old_tbl->future_tbl, ht)) 343 return -EEXIST; 344 345 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 346 if (new_tbl == NULL) 347 return -ENOMEM; 348 349 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 350 if (err) 351 bucket_table_free(new_tbl); 352 353 return err; 354 } 355 356 static void rht_deferred_worker(struct work_struct *work) 357 { 358 struct rhashtable *ht; 359 struct bucket_table *tbl; 360 int err = 0; 361 362 ht = container_of(work, struct rhashtable, run_work); 363 mutex_lock(&ht->mutex); 364 365 tbl = rht_dereference(ht->tbl, ht); 366 tbl = rhashtable_last_table(ht, tbl); 367 368 if (rht_grow_above_75(ht, tbl)) 369 rhashtable_expand(ht); 370 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 371 rhashtable_shrink(ht); 372 373 err = rhashtable_rehash_table(ht); 374 375 mutex_unlock(&ht->mutex); 376 377 if (err) 378 schedule_work(&ht->run_work); 379 } 380 381 static bool rhashtable_check_elasticity(struct rhashtable *ht, 382 struct bucket_table *tbl, 383 unsigned int hash) 384 { 385 unsigned int elasticity = ht->elasticity; 386 struct rhash_head *head; 387 388 rht_for_each(head, tbl, hash) 389 if (!--elasticity) 390 return true; 391 392 return false; 393 } 394 395 int rhashtable_insert_rehash(struct rhashtable *ht) 396 { 397 struct bucket_table *old_tbl; 398 struct bucket_table *new_tbl; 399 struct bucket_table *tbl; 400 unsigned int size; 401 int err; 402 403 old_tbl = rht_dereference_rcu(ht->tbl, ht); 404 tbl = rhashtable_last_table(ht, old_tbl); 405 406 size = tbl->size; 407 408 if (rht_grow_above_75(ht, tbl)) 409 size *= 2; 410 /* Do not schedule more than one rehash */ 411 else if (old_tbl != tbl) 412 return -EBUSY; 413 414 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC); 415 if (new_tbl == NULL) { 416 /* Schedule async resize/rehash to try allocation 417 * non-atomic context. 418 */ 419 schedule_work(&ht->run_work); 420 return -ENOMEM; 421 } 422 423 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 424 if (err) { 425 bucket_table_free(new_tbl); 426 if (err == -EEXIST) 427 err = 0; 428 } else 429 schedule_work(&ht->run_work); 430 431 return err; 432 } 433 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash); 434 435 int rhashtable_insert_slow(struct rhashtable *ht, const void *key, 436 struct rhash_head *obj, 437 struct bucket_table *tbl) 438 { 439 struct rhash_head *head; 440 unsigned int hash; 441 int err; 442 443 tbl = rhashtable_last_table(ht, tbl); 444 hash = head_hashfn(ht, tbl, obj); 445 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING); 446 447 err = -EEXIST; 448 if (key && rhashtable_lookup_fast(ht, key, ht->p)) 449 goto exit; 450 451 err = -E2BIG; 452 if (unlikely(rht_grow_above_max(ht, tbl))) 453 goto exit; 454 455 err = -EAGAIN; 456 if (rhashtable_check_elasticity(ht, tbl, hash) || 457 rht_grow_above_100(ht, tbl)) 458 goto exit; 459 460 err = 0; 461 462 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); 463 464 RCU_INIT_POINTER(obj->next, head); 465 466 rcu_assign_pointer(tbl->buckets[hash], obj); 467 468 atomic_inc(&ht->nelems); 469 470 exit: 471 spin_unlock(rht_bucket_lock(tbl, hash)); 472 473 return err; 474 } 475 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 476 477 /** 478 * rhashtable_walk_init - Initialise an iterator 479 * @ht: Table to walk over 480 * @iter: Hash table Iterator 481 * 482 * This function prepares a hash table walk. 483 * 484 * Note that if you restart a walk after rhashtable_walk_stop you 485 * may see the same object twice. Also, you may miss objects if 486 * there are removals in between rhashtable_walk_stop and the next 487 * call to rhashtable_walk_start. 488 * 489 * For a completely stable walk you should construct your own data 490 * structure outside the hash table. 491 * 492 * This function may sleep so you must not call it from interrupt 493 * context or with spin locks held. 494 * 495 * You must call rhashtable_walk_exit if this function returns 496 * successfully. 497 */ 498 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) 499 { 500 iter->ht = ht; 501 iter->p = NULL; 502 iter->slot = 0; 503 iter->skip = 0; 504 505 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); 506 if (!iter->walker) 507 return -ENOMEM; 508 509 mutex_lock(&ht->mutex); 510 iter->walker->tbl = rht_dereference(ht->tbl, ht); 511 list_add(&iter->walker->list, &iter->walker->tbl->walkers); 512 mutex_unlock(&ht->mutex); 513 514 return 0; 515 } 516 EXPORT_SYMBOL_GPL(rhashtable_walk_init); 517 518 /** 519 * rhashtable_walk_exit - Free an iterator 520 * @iter: Hash table Iterator 521 * 522 * This function frees resources allocated by rhashtable_walk_init. 523 */ 524 void rhashtable_walk_exit(struct rhashtable_iter *iter) 525 { 526 mutex_lock(&iter->ht->mutex); 527 if (iter->walker->tbl) 528 list_del(&iter->walker->list); 529 mutex_unlock(&iter->ht->mutex); 530 kfree(iter->walker); 531 } 532 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 533 534 /** 535 * rhashtable_walk_start - Start a hash table walk 536 * @iter: Hash table iterator 537 * 538 * Start a hash table walk. Note that we take the RCU lock in all 539 * cases including when we return an error. So you must always call 540 * rhashtable_walk_stop to clean up. 541 * 542 * Returns zero if successful. 543 * 544 * Returns -EAGAIN if resize event occured. Note that the iterator 545 * will rewind back to the beginning and you may use it immediately 546 * by calling rhashtable_walk_next. 547 */ 548 int rhashtable_walk_start(struct rhashtable_iter *iter) 549 __acquires(RCU) 550 { 551 struct rhashtable *ht = iter->ht; 552 553 mutex_lock(&ht->mutex); 554 555 if (iter->walker->tbl) 556 list_del(&iter->walker->list); 557 558 rcu_read_lock(); 559 560 mutex_unlock(&ht->mutex); 561 562 if (!iter->walker->tbl) { 563 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht); 564 return -EAGAIN; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(rhashtable_walk_start); 570 571 /** 572 * rhashtable_walk_next - Return the next object and advance the iterator 573 * @iter: Hash table iterator 574 * 575 * Note that you must call rhashtable_walk_stop when you are finished 576 * with the walk. 577 * 578 * Returns the next object or NULL when the end of the table is reached. 579 * 580 * Returns -EAGAIN if resize event occured. Note that the iterator 581 * will rewind back to the beginning and you may continue to use it. 582 */ 583 void *rhashtable_walk_next(struct rhashtable_iter *iter) 584 { 585 struct bucket_table *tbl = iter->walker->tbl; 586 struct rhashtable *ht = iter->ht; 587 struct rhash_head *p = iter->p; 588 void *obj = NULL; 589 590 if (p) { 591 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); 592 goto next; 593 } 594 595 for (; iter->slot < tbl->size; iter->slot++) { 596 int skip = iter->skip; 597 598 rht_for_each_rcu(p, tbl, iter->slot) { 599 if (!skip) 600 break; 601 skip--; 602 } 603 604 next: 605 if (!rht_is_a_nulls(p)) { 606 iter->skip++; 607 iter->p = p; 608 obj = rht_obj(ht, p); 609 goto out; 610 } 611 612 iter->skip = 0; 613 } 614 615 /* Ensure we see any new tables. */ 616 smp_rmb(); 617 618 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht); 619 if (iter->walker->tbl) { 620 iter->slot = 0; 621 iter->skip = 0; 622 return ERR_PTR(-EAGAIN); 623 } 624 625 iter->p = NULL; 626 627 out: 628 629 return obj; 630 } 631 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 632 633 /** 634 * rhashtable_walk_stop - Finish a hash table walk 635 * @iter: Hash table iterator 636 * 637 * Finish a hash table walk. 638 */ 639 void rhashtable_walk_stop(struct rhashtable_iter *iter) 640 __releases(RCU) 641 { 642 struct rhashtable *ht; 643 struct bucket_table *tbl = iter->walker->tbl; 644 645 if (!tbl) 646 goto out; 647 648 ht = iter->ht; 649 650 spin_lock(&ht->lock); 651 if (tbl->rehash < tbl->size) 652 list_add(&iter->walker->list, &tbl->walkers); 653 else 654 iter->walker->tbl = NULL; 655 spin_unlock(&ht->lock); 656 657 iter->p = NULL; 658 659 out: 660 rcu_read_unlock(); 661 } 662 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 663 664 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 665 { 666 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 667 (unsigned long)params->min_size); 668 } 669 670 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 671 { 672 return jhash2(key, length, seed); 673 } 674 675 /** 676 * rhashtable_init - initialize a new hash table 677 * @ht: hash table to be initialized 678 * @params: configuration parameters 679 * 680 * Initializes a new hash table based on the provided configuration 681 * parameters. A table can be configured either with a variable or 682 * fixed length key: 683 * 684 * Configuration Example 1: Fixed length keys 685 * struct test_obj { 686 * int key; 687 * void * my_member; 688 * struct rhash_head node; 689 * }; 690 * 691 * struct rhashtable_params params = { 692 * .head_offset = offsetof(struct test_obj, node), 693 * .key_offset = offsetof(struct test_obj, key), 694 * .key_len = sizeof(int), 695 * .hashfn = jhash, 696 * .nulls_base = (1U << RHT_BASE_SHIFT), 697 * }; 698 * 699 * Configuration Example 2: Variable length keys 700 * struct test_obj { 701 * [...] 702 * struct rhash_head node; 703 * }; 704 * 705 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 706 * { 707 * struct test_obj *obj = data; 708 * 709 * return [... hash ...]; 710 * } 711 * 712 * struct rhashtable_params params = { 713 * .head_offset = offsetof(struct test_obj, node), 714 * .hashfn = jhash, 715 * .obj_hashfn = my_hash_fn, 716 * }; 717 */ 718 int rhashtable_init(struct rhashtable *ht, 719 const struct rhashtable_params *params) 720 { 721 struct bucket_table *tbl; 722 size_t size; 723 724 size = HASH_DEFAULT_SIZE; 725 726 if ((!params->key_len && !params->obj_hashfn) || 727 (params->obj_hashfn && !params->obj_cmpfn)) 728 return -EINVAL; 729 730 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 731 return -EINVAL; 732 733 if (params->nelem_hint) 734 size = rounded_hashtable_size(params); 735 736 memset(ht, 0, sizeof(*ht)); 737 mutex_init(&ht->mutex); 738 spin_lock_init(&ht->lock); 739 memcpy(&ht->p, params, sizeof(*params)); 740 741 if (params->min_size) 742 ht->p.min_size = roundup_pow_of_two(params->min_size); 743 744 if (params->max_size) 745 ht->p.max_size = rounddown_pow_of_two(params->max_size); 746 747 if (params->insecure_max_entries) 748 ht->p.insecure_max_entries = 749 rounddown_pow_of_two(params->insecure_max_entries); 750 else 751 ht->p.insecure_max_entries = ht->p.max_size * 2; 752 753 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE); 754 755 /* The maximum (not average) chain length grows with the 756 * size of the hash table, at a rate of (log N)/(log log N). 757 * The value of 16 is selected so that even if the hash 758 * table grew to 2^32 you would not expect the maximum 759 * chain length to exceed it unless we are under attack 760 * (or extremely unlucky). 761 * 762 * As this limit is only to detect attacks, we don't need 763 * to set it to a lower value as you'd need the chain 764 * length to vastly exceed 16 to have any real effect 765 * on the system. 766 */ 767 if (!params->insecure_elasticity) 768 ht->elasticity = 16; 769 770 if (params->locks_mul) 771 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 772 else 773 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 774 775 ht->key_len = ht->p.key_len; 776 if (!params->hashfn) { 777 ht->p.hashfn = jhash; 778 779 if (!(ht->key_len & (sizeof(u32) - 1))) { 780 ht->key_len /= sizeof(u32); 781 ht->p.hashfn = rhashtable_jhash2; 782 } 783 } 784 785 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 786 if (tbl == NULL) 787 return -ENOMEM; 788 789 atomic_set(&ht->nelems, 0); 790 791 RCU_INIT_POINTER(ht->tbl, tbl); 792 793 INIT_WORK(&ht->run_work, rht_deferred_worker); 794 795 return 0; 796 } 797 EXPORT_SYMBOL_GPL(rhashtable_init); 798 799 /** 800 * rhashtable_free_and_destroy - free elements and destroy hash table 801 * @ht: the hash table to destroy 802 * @free_fn: callback to release resources of element 803 * @arg: pointer passed to free_fn 804 * 805 * Stops an eventual async resize. If defined, invokes free_fn for each 806 * element to releasal resources. Please note that RCU protected 807 * readers may still be accessing the elements. Releasing of resources 808 * must occur in a compatible manner. Then frees the bucket array. 809 * 810 * This function will eventually sleep to wait for an async resize 811 * to complete. The caller is responsible that no further write operations 812 * occurs in parallel. 813 */ 814 void rhashtable_free_and_destroy(struct rhashtable *ht, 815 void (*free_fn)(void *ptr, void *arg), 816 void *arg) 817 { 818 const struct bucket_table *tbl; 819 unsigned int i; 820 821 cancel_work_sync(&ht->run_work); 822 823 mutex_lock(&ht->mutex); 824 tbl = rht_dereference(ht->tbl, ht); 825 if (free_fn) { 826 for (i = 0; i < tbl->size; i++) { 827 struct rhash_head *pos, *next; 828 829 for (pos = rht_dereference(tbl->buckets[i], ht), 830 next = !rht_is_a_nulls(pos) ? 831 rht_dereference(pos->next, ht) : NULL; 832 !rht_is_a_nulls(pos); 833 pos = next, 834 next = !rht_is_a_nulls(pos) ? 835 rht_dereference(pos->next, ht) : NULL) 836 free_fn(rht_obj(ht, pos), arg); 837 } 838 } 839 840 bucket_table_free(tbl); 841 mutex_unlock(&ht->mutex); 842 } 843 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 844 845 void rhashtable_destroy(struct rhashtable *ht) 846 { 847 return rhashtable_free_and_destroy(ht, NULL, NULL); 848 } 849 EXPORT_SYMBOL_GPL(rhashtable_destroy); 850