1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resizable, Scalable, Concurrent Hash Table 4 * 5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 8 * 9 * Code partially derived from nft_hash 10 * Rewritten with rehash code from br_multicast plus single list 11 * pointer as suggested by Josh Triplett 12 */ 13 14 #include <linux/atomic.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/log2.h> 18 #include <linux/sched.h> 19 #include <linux/rculist.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/jhash.h> 24 #include <linux/random.h> 25 #include <linux/rhashtable.h> 26 #include <linux/err.h> 27 #include <linux/export.h> 28 29 #define HASH_DEFAULT_SIZE 64UL 30 #define HASH_MIN_SIZE 4U 31 32 union nested_table { 33 union nested_table __rcu *table; 34 struct rhash_lock_head *bucket; 35 }; 36 37 static u32 head_hashfn(struct rhashtable *ht, 38 const struct bucket_table *tbl, 39 const struct rhash_head *he) 40 { 41 return rht_head_hashfn(ht, tbl, he, ht->p); 42 } 43 44 #ifdef CONFIG_PROVE_LOCKING 45 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 46 47 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 48 { 49 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 50 } 51 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 52 53 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 54 { 55 if (!debug_locks) 56 return 1; 57 if (unlikely(tbl->nest)) 58 return 1; 59 return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); 60 } 61 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 62 #else 63 #define ASSERT_RHT_MUTEX(HT) 64 #endif 65 66 static inline union nested_table *nested_table_top( 67 const struct bucket_table *tbl) 68 { 69 /* The top-level bucket entry does not need RCU protection 70 * because it's set at the same time as tbl->nest. 71 */ 72 return (void *)rcu_dereference_protected(tbl->buckets[0], 1); 73 } 74 75 static void nested_table_free(union nested_table *ntbl, unsigned int size) 76 { 77 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 78 const unsigned int len = 1 << shift; 79 unsigned int i; 80 81 ntbl = rcu_dereference_protected(ntbl->table, 1); 82 if (!ntbl) 83 return; 84 85 if (size > len) { 86 size >>= shift; 87 for (i = 0; i < len; i++) 88 nested_table_free(ntbl + i, size); 89 } 90 91 kfree(ntbl); 92 } 93 94 static void nested_bucket_table_free(const struct bucket_table *tbl) 95 { 96 unsigned int size = tbl->size >> tbl->nest; 97 unsigned int len = 1 << tbl->nest; 98 union nested_table *ntbl; 99 unsigned int i; 100 101 ntbl = nested_table_top(tbl); 102 103 for (i = 0; i < len; i++) 104 nested_table_free(ntbl + i, size); 105 106 kfree(ntbl); 107 } 108 109 static void bucket_table_free(const struct bucket_table *tbl) 110 { 111 if (tbl->nest) 112 nested_bucket_table_free(tbl); 113 114 kvfree(tbl); 115 } 116 117 static void bucket_table_free_rcu(struct rcu_head *head) 118 { 119 bucket_table_free(container_of(head, struct bucket_table, rcu)); 120 } 121 122 static union nested_table *nested_table_alloc(struct rhashtable *ht, 123 union nested_table __rcu **prev, 124 bool leaf) 125 { 126 union nested_table *ntbl; 127 int i; 128 129 ntbl = rcu_dereference(*prev); 130 if (ntbl) 131 return ntbl; 132 133 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); 134 135 if (ntbl && leaf) { 136 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) 137 INIT_RHT_NULLS_HEAD(ntbl[i].bucket); 138 } 139 140 if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) 141 return ntbl; 142 /* Raced with another thread. */ 143 kfree(ntbl); 144 return rcu_dereference(*prev); 145 } 146 147 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 148 size_t nbuckets, 149 gfp_t gfp) 150 { 151 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 152 struct bucket_table *tbl; 153 size_t size; 154 155 if (nbuckets < (1 << (shift + 1))) 156 return NULL; 157 158 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 159 160 tbl = kzalloc(size, gfp); 161 if (!tbl) 162 return NULL; 163 164 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 165 false)) { 166 kfree(tbl); 167 return NULL; 168 } 169 170 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 171 172 return tbl; 173 } 174 175 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 176 size_t nbuckets, 177 gfp_t gfp) 178 { 179 struct bucket_table *tbl = NULL; 180 size_t size; 181 int i; 182 static struct lock_class_key __key; 183 184 tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp); 185 186 size = nbuckets; 187 188 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { 189 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 190 nbuckets = 0; 191 } 192 193 if (tbl == NULL) 194 return NULL; 195 196 lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); 197 198 tbl->size = size; 199 200 rcu_head_init(&tbl->rcu); 201 INIT_LIST_HEAD(&tbl->walkers); 202 203 tbl->hash_rnd = get_random_u32(); 204 205 for (i = 0; i < nbuckets; i++) 206 INIT_RHT_NULLS_HEAD(tbl->buckets[i]); 207 208 return tbl; 209 } 210 211 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 212 struct bucket_table *tbl) 213 { 214 struct bucket_table *new_tbl; 215 216 do { 217 new_tbl = tbl; 218 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 219 } while (tbl); 220 221 return new_tbl; 222 } 223 224 static int rhashtable_rehash_one(struct rhashtable *ht, 225 struct rhash_lock_head **bkt, 226 unsigned int old_hash) 227 { 228 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 229 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); 230 int err = -EAGAIN; 231 struct rhash_head *head, *next, *entry; 232 struct rhash_head __rcu **pprev = NULL; 233 unsigned int new_hash; 234 235 if (new_tbl->nest) 236 goto out; 237 238 err = -ENOENT; 239 240 rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), 241 old_tbl, old_hash) { 242 err = 0; 243 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 244 245 if (rht_is_a_nulls(next)) 246 break; 247 248 pprev = &entry->next; 249 } 250 251 if (err) 252 goto out; 253 254 new_hash = head_hashfn(ht, new_tbl, entry); 255 256 rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING); 257 258 head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); 259 260 RCU_INIT_POINTER(entry->next, head); 261 262 rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry); 263 264 if (pprev) 265 rcu_assign_pointer(*pprev, next); 266 else 267 /* Need to preserved the bit lock. */ 268 rht_assign_locked(bkt, next); 269 270 out: 271 return err; 272 } 273 274 static int rhashtable_rehash_chain(struct rhashtable *ht, 275 unsigned int old_hash) 276 { 277 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 278 struct rhash_lock_head **bkt = rht_bucket_var(old_tbl, old_hash); 279 int err; 280 281 if (!bkt) 282 return 0; 283 rht_lock(old_tbl, bkt); 284 285 while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) 286 ; 287 288 if (err == -ENOENT) 289 err = 0; 290 rht_unlock(old_tbl, bkt); 291 292 return err; 293 } 294 295 static int rhashtable_rehash_attach(struct rhashtable *ht, 296 struct bucket_table *old_tbl, 297 struct bucket_table *new_tbl) 298 { 299 /* Make insertions go into the new, empty table right away. Deletions 300 * and lookups will be attempted in both tables until we synchronize. 301 * As cmpxchg() provides strong barriers, we do not need 302 * rcu_assign_pointer(). 303 */ 304 305 if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, 306 new_tbl) != NULL) 307 return -EEXIST; 308 309 return 0; 310 } 311 312 static int rhashtable_rehash_table(struct rhashtable *ht) 313 { 314 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 315 struct bucket_table *new_tbl; 316 struct rhashtable_walker *walker; 317 unsigned int old_hash; 318 int err; 319 320 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 321 if (!new_tbl) 322 return 0; 323 324 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 325 err = rhashtable_rehash_chain(ht, old_hash); 326 if (err) 327 return err; 328 cond_resched(); 329 } 330 331 /* Publish the new table pointer. */ 332 rcu_assign_pointer(ht->tbl, new_tbl); 333 334 spin_lock(&ht->lock); 335 list_for_each_entry(walker, &old_tbl->walkers, list) 336 walker->tbl = NULL; 337 338 /* Wait for readers. All new readers will see the new 339 * table, and thus no references to the old table will 340 * remain. 341 * We do this inside the locked region so that 342 * rhashtable_walk_stop() can use rcu_head_after_call_rcu() 343 * to check if it should not re-link the table. 344 */ 345 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 346 spin_unlock(&ht->lock); 347 348 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 349 } 350 351 static int rhashtable_rehash_alloc(struct rhashtable *ht, 352 struct bucket_table *old_tbl, 353 unsigned int size) 354 { 355 struct bucket_table *new_tbl; 356 int err; 357 358 ASSERT_RHT_MUTEX(ht); 359 360 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 361 if (new_tbl == NULL) 362 return -ENOMEM; 363 364 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 365 if (err) 366 bucket_table_free(new_tbl); 367 368 return err; 369 } 370 371 /** 372 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 373 * @ht: the hash table to shrink 374 * 375 * This function shrinks the hash table to fit, i.e., the smallest 376 * size would not cause it to expand right away automatically. 377 * 378 * The caller must ensure that no concurrent resizing occurs by holding 379 * ht->mutex. 380 * 381 * The caller must ensure that no concurrent table mutations take place. 382 * It is however valid to have concurrent lookups if they are RCU protected. 383 * 384 * It is valid to have concurrent insertions and deletions protected by per 385 * bucket locks or concurrent RCU protected lookups and traversals. 386 */ 387 static int rhashtable_shrink(struct rhashtable *ht) 388 { 389 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 390 unsigned int nelems = atomic_read(&ht->nelems); 391 unsigned int size = 0; 392 393 if (nelems) 394 size = roundup_pow_of_two(nelems * 3 / 2); 395 if (size < ht->p.min_size) 396 size = ht->p.min_size; 397 398 if (old_tbl->size <= size) 399 return 0; 400 401 if (rht_dereference(old_tbl->future_tbl, ht)) 402 return -EEXIST; 403 404 return rhashtable_rehash_alloc(ht, old_tbl, size); 405 } 406 407 static void rht_deferred_worker(struct work_struct *work) 408 { 409 struct rhashtable *ht; 410 struct bucket_table *tbl; 411 int err = 0; 412 413 ht = container_of(work, struct rhashtable, run_work); 414 mutex_lock(&ht->mutex); 415 416 tbl = rht_dereference(ht->tbl, ht); 417 tbl = rhashtable_last_table(ht, tbl); 418 419 if (rht_grow_above_75(ht, tbl)) 420 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 421 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 422 err = rhashtable_shrink(ht); 423 else if (tbl->nest) 424 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 425 426 if (!err || err == -EEXIST) { 427 int nerr; 428 429 nerr = rhashtable_rehash_table(ht); 430 err = err ?: nerr; 431 } 432 433 mutex_unlock(&ht->mutex); 434 435 if (err) 436 schedule_work(&ht->run_work); 437 } 438 439 static int rhashtable_insert_rehash(struct rhashtable *ht, 440 struct bucket_table *tbl) 441 { 442 struct bucket_table *old_tbl; 443 struct bucket_table *new_tbl; 444 unsigned int size; 445 int err; 446 447 old_tbl = rht_dereference_rcu(ht->tbl, ht); 448 449 size = tbl->size; 450 451 err = -EBUSY; 452 453 if (rht_grow_above_75(ht, tbl)) 454 size *= 2; 455 /* Do not schedule more than one rehash */ 456 else if (old_tbl != tbl) 457 goto fail; 458 459 err = -ENOMEM; 460 461 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); 462 if (new_tbl == NULL) 463 goto fail; 464 465 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 466 if (err) { 467 bucket_table_free(new_tbl); 468 if (err == -EEXIST) 469 err = 0; 470 } else 471 schedule_work(&ht->run_work); 472 473 return err; 474 475 fail: 476 /* Do not fail the insert if someone else did a rehash. */ 477 if (likely(rcu_access_pointer(tbl->future_tbl))) 478 return 0; 479 480 /* Schedule async rehash to retry allocation in process context. */ 481 if (err == -ENOMEM) 482 schedule_work(&ht->run_work); 483 484 return err; 485 } 486 487 static void *rhashtable_lookup_one(struct rhashtable *ht, 488 struct rhash_lock_head **bkt, 489 struct bucket_table *tbl, unsigned int hash, 490 const void *key, struct rhash_head *obj) 491 { 492 struct rhashtable_compare_arg arg = { 493 .ht = ht, 494 .key = key, 495 }; 496 struct rhash_head __rcu **pprev = NULL; 497 struct rhash_head *head; 498 int elasticity; 499 500 elasticity = RHT_ELASTICITY; 501 rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { 502 struct rhlist_head *list; 503 struct rhlist_head *plist; 504 505 elasticity--; 506 if (!key || 507 (ht->p.obj_cmpfn ? 508 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 509 rhashtable_compare(&arg, rht_obj(ht, head)))) { 510 pprev = &head->next; 511 continue; 512 } 513 514 if (!ht->rhlist) 515 return rht_obj(ht, head); 516 517 list = container_of(obj, struct rhlist_head, rhead); 518 plist = container_of(head, struct rhlist_head, rhead); 519 520 RCU_INIT_POINTER(list->next, plist); 521 head = rht_dereference_bucket(head->next, tbl, hash); 522 RCU_INIT_POINTER(list->rhead.next, head); 523 if (pprev) 524 rcu_assign_pointer(*pprev, obj); 525 else 526 /* Need to preserve the bit lock */ 527 rht_assign_locked(bkt, obj); 528 529 return NULL; 530 } 531 532 if (elasticity <= 0) 533 return ERR_PTR(-EAGAIN); 534 535 return ERR_PTR(-ENOENT); 536 } 537 538 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht, 539 struct rhash_lock_head **bkt, 540 struct bucket_table *tbl, 541 unsigned int hash, 542 struct rhash_head *obj, 543 void *data) 544 { 545 struct bucket_table *new_tbl; 546 struct rhash_head *head; 547 548 if (!IS_ERR_OR_NULL(data)) 549 return ERR_PTR(-EEXIST); 550 551 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 552 return ERR_CAST(data); 553 554 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 555 if (new_tbl) 556 return new_tbl; 557 558 if (PTR_ERR(data) != -ENOENT) 559 return ERR_CAST(data); 560 561 if (unlikely(rht_grow_above_max(ht, tbl))) 562 return ERR_PTR(-E2BIG); 563 564 if (unlikely(rht_grow_above_100(ht, tbl))) 565 return ERR_PTR(-EAGAIN); 566 567 head = rht_ptr(bkt, tbl, hash); 568 569 RCU_INIT_POINTER(obj->next, head); 570 if (ht->rhlist) { 571 struct rhlist_head *list; 572 573 list = container_of(obj, struct rhlist_head, rhead); 574 RCU_INIT_POINTER(list->next, NULL); 575 } 576 577 /* bkt is always the head of the list, so it holds 578 * the lock, which we need to preserve 579 */ 580 rht_assign_locked(bkt, obj); 581 582 atomic_inc(&ht->nelems); 583 if (rht_grow_above_75(ht, tbl)) 584 schedule_work(&ht->run_work); 585 586 return NULL; 587 } 588 589 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 590 struct rhash_head *obj) 591 { 592 struct bucket_table *new_tbl; 593 struct bucket_table *tbl; 594 struct rhash_lock_head **bkt; 595 unsigned int hash; 596 void *data; 597 598 new_tbl = rcu_dereference(ht->tbl); 599 600 do { 601 tbl = new_tbl; 602 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 603 if (rcu_access_pointer(tbl->future_tbl)) 604 /* Failure is OK */ 605 bkt = rht_bucket_var(tbl, hash); 606 else 607 bkt = rht_bucket_insert(ht, tbl, hash); 608 if (bkt == NULL) { 609 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 610 data = ERR_PTR(-EAGAIN); 611 } else { 612 rht_lock(tbl, bkt); 613 data = rhashtable_lookup_one(ht, bkt, tbl, 614 hash, key, obj); 615 new_tbl = rhashtable_insert_one(ht, bkt, tbl, 616 hash, obj, data); 617 if (PTR_ERR(new_tbl) != -EEXIST) 618 data = ERR_CAST(new_tbl); 619 620 rht_unlock(tbl, bkt); 621 } 622 } while (!IS_ERR_OR_NULL(new_tbl)); 623 624 if (PTR_ERR(data) == -EAGAIN) 625 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 626 -EAGAIN); 627 628 return data; 629 } 630 631 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 632 struct rhash_head *obj) 633 { 634 void *data; 635 636 do { 637 rcu_read_lock(); 638 data = rhashtable_try_insert(ht, key, obj); 639 rcu_read_unlock(); 640 } while (PTR_ERR(data) == -EAGAIN); 641 642 return data; 643 } 644 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 645 646 /** 647 * rhashtable_walk_enter - Initialise an iterator 648 * @ht: Table to walk over 649 * @iter: Hash table Iterator 650 * 651 * This function prepares a hash table walk. 652 * 653 * Note that if you restart a walk after rhashtable_walk_stop you 654 * may see the same object twice. Also, you may miss objects if 655 * there are removals in between rhashtable_walk_stop and the next 656 * call to rhashtable_walk_start. 657 * 658 * For a completely stable walk you should construct your own data 659 * structure outside the hash table. 660 * 661 * This function may be called from any process context, including 662 * non-preemptable context, but cannot be called from softirq or 663 * hardirq context. 664 * 665 * You must call rhashtable_walk_exit after this function returns. 666 */ 667 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 668 { 669 iter->ht = ht; 670 iter->p = NULL; 671 iter->slot = 0; 672 iter->skip = 0; 673 iter->end_of_table = 0; 674 675 spin_lock(&ht->lock); 676 iter->walker.tbl = 677 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 678 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 679 spin_unlock(&ht->lock); 680 } 681 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 682 683 /** 684 * rhashtable_walk_exit - Free an iterator 685 * @iter: Hash table Iterator 686 * 687 * This function frees resources allocated by rhashtable_walk_enter. 688 */ 689 void rhashtable_walk_exit(struct rhashtable_iter *iter) 690 { 691 spin_lock(&iter->ht->lock); 692 if (iter->walker.tbl) 693 list_del(&iter->walker.list); 694 spin_unlock(&iter->ht->lock); 695 } 696 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 697 698 /** 699 * rhashtable_walk_start_check - Start a hash table walk 700 * @iter: Hash table iterator 701 * 702 * Start a hash table walk at the current iterator position. Note that we take 703 * the RCU lock in all cases including when we return an error. So you must 704 * always call rhashtable_walk_stop to clean up. 705 * 706 * Returns zero if successful. 707 * 708 * Returns -EAGAIN if resize event occured. Note that the iterator 709 * will rewind back to the beginning and you may use it immediately 710 * by calling rhashtable_walk_next. 711 * 712 * rhashtable_walk_start is defined as an inline variant that returns 713 * void. This is preferred in cases where the caller would ignore 714 * resize events and always continue. 715 */ 716 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 717 __acquires(RCU) 718 { 719 struct rhashtable *ht = iter->ht; 720 bool rhlist = ht->rhlist; 721 722 rcu_read_lock(); 723 724 spin_lock(&ht->lock); 725 if (iter->walker.tbl) 726 list_del(&iter->walker.list); 727 spin_unlock(&ht->lock); 728 729 if (iter->end_of_table) 730 return 0; 731 if (!iter->walker.tbl) { 732 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 733 iter->slot = 0; 734 iter->skip = 0; 735 return -EAGAIN; 736 } 737 738 if (iter->p && !rhlist) { 739 /* 740 * We need to validate that 'p' is still in the table, and 741 * if so, update 'skip' 742 */ 743 struct rhash_head *p; 744 int skip = 0; 745 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 746 skip++; 747 if (p == iter->p) { 748 iter->skip = skip; 749 goto found; 750 } 751 } 752 iter->p = NULL; 753 } else if (iter->p && rhlist) { 754 /* Need to validate that 'list' is still in the table, and 755 * if so, update 'skip' and 'p'. 756 */ 757 struct rhash_head *p; 758 struct rhlist_head *list; 759 int skip = 0; 760 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 761 for (list = container_of(p, struct rhlist_head, rhead); 762 list; 763 list = rcu_dereference(list->next)) { 764 skip++; 765 if (list == iter->list) { 766 iter->p = p; 767 iter->skip = skip; 768 goto found; 769 } 770 } 771 } 772 iter->p = NULL; 773 } 774 found: 775 return 0; 776 } 777 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 778 779 /** 780 * __rhashtable_walk_find_next - Find the next element in a table (or the first 781 * one in case of a new walk). 782 * 783 * @iter: Hash table iterator 784 * 785 * Returns the found object or NULL when the end of the table is reached. 786 * 787 * Returns -EAGAIN if resize event occurred. 788 */ 789 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 790 { 791 struct bucket_table *tbl = iter->walker.tbl; 792 struct rhlist_head *list = iter->list; 793 struct rhashtable *ht = iter->ht; 794 struct rhash_head *p = iter->p; 795 bool rhlist = ht->rhlist; 796 797 if (!tbl) 798 return NULL; 799 800 for (; iter->slot < tbl->size; iter->slot++) { 801 int skip = iter->skip; 802 803 rht_for_each_rcu(p, tbl, iter->slot) { 804 if (rhlist) { 805 list = container_of(p, struct rhlist_head, 806 rhead); 807 do { 808 if (!skip) 809 goto next; 810 skip--; 811 list = rcu_dereference(list->next); 812 } while (list); 813 814 continue; 815 } 816 if (!skip) 817 break; 818 skip--; 819 } 820 821 next: 822 if (!rht_is_a_nulls(p)) { 823 iter->skip++; 824 iter->p = p; 825 iter->list = list; 826 return rht_obj(ht, rhlist ? &list->rhead : p); 827 } 828 829 iter->skip = 0; 830 } 831 832 iter->p = NULL; 833 834 /* Ensure we see any new tables. */ 835 smp_rmb(); 836 837 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 838 if (iter->walker.tbl) { 839 iter->slot = 0; 840 iter->skip = 0; 841 return ERR_PTR(-EAGAIN); 842 } else { 843 iter->end_of_table = true; 844 } 845 846 return NULL; 847 } 848 849 /** 850 * rhashtable_walk_next - Return the next object and advance the iterator 851 * @iter: Hash table iterator 852 * 853 * Note that you must call rhashtable_walk_stop when you are finished 854 * with the walk. 855 * 856 * Returns the next object or NULL when the end of the table is reached. 857 * 858 * Returns -EAGAIN if resize event occurred. Note that the iterator 859 * will rewind back to the beginning and you may continue to use it. 860 */ 861 void *rhashtable_walk_next(struct rhashtable_iter *iter) 862 { 863 struct rhlist_head *list = iter->list; 864 struct rhashtable *ht = iter->ht; 865 struct rhash_head *p = iter->p; 866 bool rhlist = ht->rhlist; 867 868 if (p) { 869 if (!rhlist || !(list = rcu_dereference(list->next))) { 870 p = rcu_dereference(p->next); 871 list = container_of(p, struct rhlist_head, rhead); 872 } 873 if (!rht_is_a_nulls(p)) { 874 iter->skip++; 875 iter->p = p; 876 iter->list = list; 877 return rht_obj(ht, rhlist ? &list->rhead : p); 878 } 879 880 /* At the end of this slot, switch to next one and then find 881 * next entry from that point. 882 */ 883 iter->skip = 0; 884 iter->slot++; 885 } 886 887 return __rhashtable_walk_find_next(iter); 888 } 889 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 890 891 /** 892 * rhashtable_walk_peek - Return the next object but don't advance the iterator 893 * @iter: Hash table iterator 894 * 895 * Returns the next object or NULL when the end of the table is reached. 896 * 897 * Returns -EAGAIN if resize event occurred. Note that the iterator 898 * will rewind back to the beginning and you may continue to use it. 899 */ 900 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 901 { 902 struct rhlist_head *list = iter->list; 903 struct rhashtable *ht = iter->ht; 904 struct rhash_head *p = iter->p; 905 906 if (p) 907 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 908 909 /* No object found in current iter, find next one in the table. */ 910 911 if (iter->skip) { 912 /* A nonzero skip value points to the next entry in the table 913 * beyond that last one that was found. Decrement skip so 914 * we find the current value. __rhashtable_walk_find_next 915 * will restore the original value of skip assuming that 916 * the table hasn't changed. 917 */ 918 iter->skip--; 919 } 920 921 return __rhashtable_walk_find_next(iter); 922 } 923 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 924 925 /** 926 * rhashtable_walk_stop - Finish a hash table walk 927 * @iter: Hash table iterator 928 * 929 * Finish a hash table walk. Does not reset the iterator to the start of the 930 * hash table. 931 */ 932 void rhashtable_walk_stop(struct rhashtable_iter *iter) 933 __releases(RCU) 934 { 935 struct rhashtable *ht; 936 struct bucket_table *tbl = iter->walker.tbl; 937 938 if (!tbl) 939 goto out; 940 941 ht = iter->ht; 942 943 spin_lock(&ht->lock); 944 if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) 945 /* This bucket table is being freed, don't re-link it. */ 946 iter->walker.tbl = NULL; 947 else 948 list_add(&iter->walker.list, &tbl->walkers); 949 spin_unlock(&ht->lock); 950 951 out: 952 rcu_read_unlock(); 953 } 954 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 955 956 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 957 { 958 size_t retsize; 959 960 if (params->nelem_hint) 961 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 962 (unsigned long)params->min_size); 963 else 964 retsize = max(HASH_DEFAULT_SIZE, 965 (unsigned long)params->min_size); 966 967 return retsize; 968 } 969 970 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 971 { 972 return jhash2(key, length, seed); 973 } 974 975 /** 976 * rhashtable_init - initialize a new hash table 977 * @ht: hash table to be initialized 978 * @params: configuration parameters 979 * 980 * Initializes a new hash table based on the provided configuration 981 * parameters. A table can be configured either with a variable or 982 * fixed length key: 983 * 984 * Configuration Example 1: Fixed length keys 985 * struct test_obj { 986 * int key; 987 * void * my_member; 988 * struct rhash_head node; 989 * }; 990 * 991 * struct rhashtable_params params = { 992 * .head_offset = offsetof(struct test_obj, node), 993 * .key_offset = offsetof(struct test_obj, key), 994 * .key_len = sizeof(int), 995 * .hashfn = jhash, 996 * }; 997 * 998 * Configuration Example 2: Variable length keys 999 * struct test_obj { 1000 * [...] 1001 * struct rhash_head node; 1002 * }; 1003 * 1004 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 1005 * { 1006 * struct test_obj *obj = data; 1007 * 1008 * return [... hash ...]; 1009 * } 1010 * 1011 * struct rhashtable_params params = { 1012 * .head_offset = offsetof(struct test_obj, node), 1013 * .hashfn = jhash, 1014 * .obj_hashfn = my_hash_fn, 1015 * }; 1016 */ 1017 int rhashtable_init(struct rhashtable *ht, 1018 const struct rhashtable_params *params) 1019 { 1020 struct bucket_table *tbl; 1021 size_t size; 1022 1023 if ((!params->key_len && !params->obj_hashfn) || 1024 (params->obj_hashfn && !params->obj_cmpfn)) 1025 return -EINVAL; 1026 1027 memset(ht, 0, sizeof(*ht)); 1028 mutex_init(&ht->mutex); 1029 spin_lock_init(&ht->lock); 1030 memcpy(&ht->p, params, sizeof(*params)); 1031 1032 if (params->min_size) 1033 ht->p.min_size = roundup_pow_of_two(params->min_size); 1034 1035 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1036 ht->max_elems = 1u << 31; 1037 1038 if (params->max_size) { 1039 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1040 if (ht->p.max_size < ht->max_elems / 2) 1041 ht->max_elems = ht->p.max_size * 2; 1042 } 1043 1044 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1045 1046 size = rounded_hashtable_size(&ht->p); 1047 1048 ht->key_len = ht->p.key_len; 1049 if (!params->hashfn) { 1050 ht->p.hashfn = jhash; 1051 1052 if (!(ht->key_len & (sizeof(u32) - 1))) { 1053 ht->key_len /= sizeof(u32); 1054 ht->p.hashfn = rhashtable_jhash2; 1055 } 1056 } 1057 1058 /* 1059 * This is api initialization and thus we need to guarantee the 1060 * initial rhashtable allocation. Upon failure, retry with the 1061 * smallest possible size with __GFP_NOFAIL semantics. 1062 */ 1063 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1064 if (unlikely(tbl == NULL)) { 1065 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1066 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); 1067 } 1068 1069 atomic_set(&ht->nelems, 0); 1070 1071 RCU_INIT_POINTER(ht->tbl, tbl); 1072 1073 INIT_WORK(&ht->run_work, rht_deferred_worker); 1074 1075 return 0; 1076 } 1077 EXPORT_SYMBOL_GPL(rhashtable_init); 1078 1079 /** 1080 * rhltable_init - initialize a new hash list table 1081 * @hlt: hash list table to be initialized 1082 * @params: configuration parameters 1083 * 1084 * Initializes a new hash list table. 1085 * 1086 * See documentation for rhashtable_init. 1087 */ 1088 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) 1089 { 1090 int err; 1091 1092 err = rhashtable_init(&hlt->ht, params); 1093 hlt->ht.rhlist = true; 1094 return err; 1095 } 1096 EXPORT_SYMBOL_GPL(rhltable_init); 1097 1098 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1099 void (*free_fn)(void *ptr, void *arg), 1100 void *arg) 1101 { 1102 struct rhlist_head *list; 1103 1104 if (!ht->rhlist) { 1105 free_fn(rht_obj(ht, obj), arg); 1106 return; 1107 } 1108 1109 list = container_of(obj, struct rhlist_head, rhead); 1110 do { 1111 obj = &list->rhead; 1112 list = rht_dereference(list->next, ht); 1113 free_fn(rht_obj(ht, obj), arg); 1114 } while (list); 1115 } 1116 1117 /** 1118 * rhashtable_free_and_destroy - free elements and destroy hash table 1119 * @ht: the hash table to destroy 1120 * @free_fn: callback to release resources of element 1121 * @arg: pointer passed to free_fn 1122 * 1123 * Stops an eventual async resize. If defined, invokes free_fn for each 1124 * element to releasal resources. Please note that RCU protected 1125 * readers may still be accessing the elements. Releasing of resources 1126 * must occur in a compatible manner. Then frees the bucket array. 1127 * 1128 * This function will eventually sleep to wait for an async resize 1129 * to complete. The caller is responsible that no further write operations 1130 * occurs in parallel. 1131 */ 1132 void rhashtable_free_and_destroy(struct rhashtable *ht, 1133 void (*free_fn)(void *ptr, void *arg), 1134 void *arg) 1135 { 1136 struct bucket_table *tbl, *next_tbl; 1137 unsigned int i; 1138 1139 cancel_work_sync(&ht->run_work); 1140 1141 mutex_lock(&ht->mutex); 1142 tbl = rht_dereference(ht->tbl, ht); 1143 restart: 1144 if (free_fn) { 1145 for (i = 0; i < tbl->size; i++) { 1146 struct rhash_head *pos, *next; 1147 1148 cond_resched(); 1149 for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), 1150 next = !rht_is_a_nulls(pos) ? 1151 rht_dereference(pos->next, ht) : NULL; 1152 !rht_is_a_nulls(pos); 1153 pos = next, 1154 next = !rht_is_a_nulls(pos) ? 1155 rht_dereference(pos->next, ht) : NULL) 1156 rhashtable_free_one(ht, pos, free_fn, arg); 1157 } 1158 } 1159 1160 next_tbl = rht_dereference(tbl->future_tbl, ht); 1161 bucket_table_free(tbl); 1162 if (next_tbl) { 1163 tbl = next_tbl; 1164 goto restart; 1165 } 1166 mutex_unlock(&ht->mutex); 1167 } 1168 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1169 1170 void rhashtable_destroy(struct rhashtable *ht) 1171 { 1172 return rhashtable_free_and_destroy(ht, NULL, NULL); 1173 } 1174 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1175 1176 struct rhash_lock_head **__rht_bucket_nested(const struct bucket_table *tbl, 1177 unsigned int hash) 1178 { 1179 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1180 unsigned int index = hash & ((1 << tbl->nest) - 1); 1181 unsigned int size = tbl->size >> tbl->nest; 1182 unsigned int subhash = hash; 1183 union nested_table *ntbl; 1184 1185 ntbl = nested_table_top(tbl); 1186 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1187 subhash >>= tbl->nest; 1188 1189 while (ntbl && size > (1 << shift)) { 1190 index = subhash & ((1 << shift) - 1); 1191 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1192 tbl, hash); 1193 size >>= shift; 1194 subhash >>= shift; 1195 } 1196 1197 if (!ntbl) 1198 return NULL; 1199 1200 return &ntbl[subhash].bucket; 1201 1202 } 1203 EXPORT_SYMBOL_GPL(__rht_bucket_nested); 1204 1205 struct rhash_lock_head **rht_bucket_nested(const struct bucket_table *tbl, 1206 unsigned int hash) 1207 { 1208 static struct rhash_lock_head *rhnull; 1209 1210 if (!rhnull) 1211 INIT_RHT_NULLS_HEAD(rhnull); 1212 return __rht_bucket_nested(tbl, hash) ?: &rhnull; 1213 } 1214 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1215 1216 struct rhash_lock_head **rht_bucket_nested_insert(struct rhashtable *ht, 1217 struct bucket_table *tbl, 1218 unsigned int hash) 1219 { 1220 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1221 unsigned int index = hash & ((1 << tbl->nest) - 1); 1222 unsigned int size = tbl->size >> tbl->nest; 1223 union nested_table *ntbl; 1224 1225 ntbl = nested_table_top(tbl); 1226 hash >>= tbl->nest; 1227 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1228 size <= (1 << shift)); 1229 1230 while (ntbl && size > (1 << shift)) { 1231 index = hash & ((1 << shift) - 1); 1232 size >>= shift; 1233 hash >>= shift; 1234 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1235 size <= (1 << shift)); 1236 } 1237 1238 if (!ntbl) 1239 return NULL; 1240 1241 return &ntbl[hash].bucket; 1242 1243 } 1244 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1245