xref: /linux/lib/reed_solomon/reed_solomon.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * lib/reed_solomon/rslib.c
3  *
4  * Overview:
5  *   Generic Reed Solomon encoder / decoder library
6  *
7  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
8  *
9  * Reed Solomon code lifted from reed solomon library written by Phil Karn
10  * Copyright 2002 Phil Karn, KA9Q
11  *
12  * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  *
18  * Description:
19  *
20  * The generic Reed Solomon library provides runtime configurable
21  * encoding / decoding of RS codes.
22  * Each user must call init_rs to get a pointer to a rs_control
23  * structure for the given rs parameters. This structure is either
24  * generated or a already available matching control structure is used.
25  * If a structure is generated then the polynomial arrays for
26  * fast encoding / decoding are built. This can take some time so
27  * make sure not to call this function from a time critical path.
28  * Usually a module / driver should initialize the necessary
29  * rs_control structure on module / driver init and release it
30  * on exit.
31  * The encoding puts the calculated syndrome into a given syndrome
32  * buffer.
33  * The decoding is a two step process. The first step calculates
34  * the syndrome over the received (data + syndrome) and calls the
35  * second stage, which does the decoding / error correction itself.
36  * Many hw encoders provide a syndrome calculation over the received
37  * data + syndrome and can call the second stage directly.
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <linux/mutex.h>
48 #include <asm/semaphore.h>
49 
50 /* This list holds all currently allocated rs control structures */
51 static LIST_HEAD (rslist);
52 /* Protection for the list */
53 static DEFINE_MUTEX(rslistlock);
54 
55 /**
56  * rs_init - Initialize a Reed-Solomon codec
57  * @symsize:	symbol size, bits (1-8)
58  * @gfpoly:	Field generator polynomial coefficients
59  * @fcr:	first root of RS code generator polynomial, index form
60  * @prim:	primitive element to generate polynomial roots
61  * @nroots:	RS code generator polynomial degree (number of roots)
62  *
63  * Allocate a control structure and the polynom arrays for faster
64  * en/decoding. Fill the arrays according to the given parameters.
65  */
66 static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
67 				   int prim, int nroots)
68 {
69 	struct rs_control *rs;
70 	int i, j, sr, root, iprim;
71 
72 	/* Allocate the control structure */
73 	rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
74 	if (rs == NULL)
75 		return NULL;
76 
77 	INIT_LIST_HEAD(&rs->list);
78 
79 	rs->mm = symsize;
80 	rs->nn = (1 << symsize) - 1;
81 	rs->fcr = fcr;
82 	rs->prim = prim;
83 	rs->nroots = nroots;
84 	rs->gfpoly = gfpoly;
85 
86 	/* Allocate the arrays */
87 	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
88 	if (rs->alpha_to == NULL)
89 		goto errrs;
90 
91 	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
92 	if (rs->index_of == NULL)
93 		goto erralp;
94 
95 	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
96 	if(rs->genpoly == NULL)
97 		goto erridx;
98 
99 	/* Generate Galois field lookup tables */
100 	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
101 	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
102 	sr = 1;
103 	for (i = 0; i < rs->nn; i++) {
104 		rs->index_of[sr] = i;
105 		rs->alpha_to[i] = sr;
106 		sr <<= 1;
107 		if (sr & (1 << symsize))
108 			sr ^= gfpoly;
109 		sr &= rs->nn;
110 	}
111 	/* If it's not primitive, exit */
112 	if(sr != 1)
113 		goto errpol;
114 
115 	/* Find prim-th root of 1, used in decoding */
116 	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
117 	/* prim-th root of 1, index form */
118 	rs->iprim = iprim / prim;
119 
120 	/* Form RS code generator polynomial from its roots */
121 	rs->genpoly[0] = 1;
122 	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
123 		rs->genpoly[i + 1] = 1;
124 		/* Multiply rs->genpoly[] by  @**(root + x) */
125 		for (j = i; j > 0; j--) {
126 			if (rs->genpoly[j] != 0) {
127 				rs->genpoly[j] = rs->genpoly[j -1] ^
128 					rs->alpha_to[rs_modnn(rs,
129 					rs->index_of[rs->genpoly[j]] + root)];
130 			} else
131 				rs->genpoly[j] = rs->genpoly[j - 1];
132 		}
133 		/* rs->genpoly[0] can never be zero */
134 		rs->genpoly[0] =
135 			rs->alpha_to[rs_modnn(rs,
136 				rs->index_of[rs->genpoly[0]] + root)];
137 	}
138 	/* convert rs->genpoly[] to index form for quicker encoding */
139 	for (i = 0; i <= nroots; i++)
140 		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
141 	return rs;
142 
143 	/* Error exit */
144 errpol:
145 	kfree(rs->genpoly);
146 erridx:
147 	kfree(rs->index_of);
148 erralp:
149 	kfree(rs->alpha_to);
150 errrs:
151 	kfree(rs);
152 	return NULL;
153 }
154 
155 
156 /**
157  *  free_rs - Free the rs control structure, if it is no longer used
158  *  @rs:	the control structure which is not longer used by the
159  *		caller
160  */
161 void free_rs(struct rs_control *rs)
162 {
163 	mutex_lock(&rslistlock);
164 	rs->users--;
165 	if(!rs->users) {
166 		list_del(&rs->list);
167 		kfree(rs->alpha_to);
168 		kfree(rs->index_of);
169 		kfree(rs->genpoly);
170 		kfree(rs);
171 	}
172 	mutex_unlock(&rslistlock);
173 }
174 
175 /**
176  * init_rs - Find a matching or allocate a new rs control structure
177  *  @symsize:	the symbol size (number of bits)
178  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
179  *		with the 0th coefficient in the low order bit. The polynomial
180  *		must be primitive;
181  *  @fcr:  	the first consecutive root of the rs code generator polynomial
182  *		in index form
183  *  @prim:	primitive element to generate polynomial roots
184  *  @nroots:	RS code generator polynomial degree (number of roots)
185  */
186 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
187 			   int nroots)
188 {
189 	struct list_head	*tmp;
190 	struct rs_control	*rs;
191 
192 	/* Sanity checks */
193 	if (symsize < 1)
194 		return NULL;
195 	if (fcr < 0 || fcr >= (1<<symsize))
196     		return NULL;
197 	if (prim <= 0 || prim >= (1<<symsize))
198     		return NULL;
199 	if (nroots < 0 || nroots >= (1<<symsize))
200 		return NULL;
201 
202 	mutex_lock(&rslistlock);
203 
204 	/* Walk through the list and look for a matching entry */
205 	list_for_each(tmp, &rslist) {
206 		rs = list_entry(tmp, struct rs_control, list);
207 		if (symsize != rs->mm)
208 			continue;
209 		if (gfpoly != rs->gfpoly)
210 			continue;
211 		if (fcr != rs->fcr)
212 			continue;
213 		if (prim != rs->prim)
214 			continue;
215 		if (nroots != rs->nroots)
216 			continue;
217 		/* We have a matching one already */
218 		rs->users++;
219 		goto out;
220 	}
221 
222 	/* Create a new one */
223 	rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
224 	if (rs) {
225 		rs->users = 1;
226 		list_add(&rs->list, &rslist);
227 	}
228 out:
229 	mutex_unlock(&rslistlock);
230 	return rs;
231 }
232 
233 #ifdef CONFIG_REED_SOLOMON_ENC8
234 /**
235  *  encode_rs8 - Calculate the parity for data values (8bit data width)
236  *  @rs:	the rs control structure
237  *  @data:	data field of a given type
238  *  @len:	data length
239  *  @par:	parity data, must be initialized by caller (usually all 0)
240  *  @invmsk:	invert data mask (will be xored on data)
241  *
242  *  The parity uses a uint16_t data type to enable
243  *  symbol size > 8. The calling code must take care of encoding of the
244  *  syndrome result for storage itself.
245  */
246 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
247 	       uint16_t invmsk)
248 {
249 #include "encode_rs.c"
250 }
251 EXPORT_SYMBOL_GPL(encode_rs8);
252 #endif
253 
254 #ifdef CONFIG_REED_SOLOMON_DEC8
255 /**
256  *  decode_rs8 - Decode codeword (8bit data width)
257  *  @rs:	the rs control structure
258  *  @data:	data field of a given type
259  *  @par:	received parity data field
260  *  @len:	data length
261  *  @s:		syndrome data field (if NULL, syndrome is calculated)
262  *  @no_eras:	number of erasures
263  *  @eras_pos:	position of erasures, can be NULL
264  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
265  *  @corr:	buffer to store correction bitmask on eras_pos
266  *
267  *  The syndrome and parity uses a uint16_t data type to enable
268  *  symbol size > 8. The calling code must take care of decoding of the
269  *  syndrome result and the received parity before calling this code.
270  */
271 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
272 	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
273 	       uint16_t *corr)
274 {
275 #include "decode_rs.c"
276 }
277 EXPORT_SYMBOL_GPL(decode_rs8);
278 #endif
279 
280 #ifdef CONFIG_REED_SOLOMON_ENC16
281 /**
282  *  encode_rs16 - Calculate the parity for data values (16bit data width)
283  *  @rs:	the rs control structure
284  *  @data:	data field of a given type
285  *  @len:	data length
286  *  @par:	parity data, must be initialized by caller (usually all 0)
287  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
288  *
289  *  Each field in the data array contains up to symbol size bits of valid data.
290  */
291 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
292 	uint16_t invmsk)
293 {
294 #include "encode_rs.c"
295 }
296 EXPORT_SYMBOL_GPL(encode_rs16);
297 #endif
298 
299 #ifdef CONFIG_REED_SOLOMON_DEC16
300 /**
301  *  decode_rs16 - Decode codeword (16bit data width)
302  *  @rs:	the rs control structure
303  *  @data:	data field of a given type
304  *  @par:	received parity data field
305  *  @len:	data length
306  *  @s:		syndrome data field (if NULL, syndrome is calculated)
307  *  @no_eras:	number of erasures
308  *  @eras_pos:	position of erasures, can be NULL
309  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
310  *  @corr:	buffer to store correction bitmask on eras_pos
311  *
312  *  Each field in the data array contains up to symbol size bits of valid data.
313  */
314 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
315 		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
316 		uint16_t *corr)
317 {
318 #include "decode_rs.c"
319 }
320 EXPORT_SYMBOL_GPL(decode_rs16);
321 #endif
322 
323 EXPORT_SYMBOL_GPL(init_rs);
324 EXPORT_SYMBOL_GPL(free_rs);
325 
326 MODULE_LICENSE("GPL");
327 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
328 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
329 
330