xref: /linux/lib/rbtree.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6 
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11 
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16 
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 
21   linux/lib/rbtree.c
22 */
23 
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26 
27 /*
28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29  *
30  *  1) A node is either red or black
31  *  2) The root is black
32  *  3) All leaves (NULL) are black
33  *  4) Both children of every red node are black
34  *  5) Every simple path from root to leaves contains the same number
35  *     of black nodes.
36  *
37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  *  consecutive red nodes in a path and every red node is therefore followed by
39  *  a black. So if B is the number of black nodes on every simple path (as per
40  *  5), then the longest possible path due to 4 is 2B.
41  *
42  *  We shall indicate color with case, where black nodes are uppercase and red
43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  *  parentheses and have some accompanying text comment.
45  */
46 
47 static inline void rb_set_black(struct rb_node *rb)
48 {
49 	rb->__rb_parent_color |= RB_BLACK;
50 }
51 
52 static inline struct rb_node *rb_red_parent(struct rb_node *red)
53 {
54 	return (struct rb_node *)red->__rb_parent_color;
55 }
56 
57 /*
58  * Helper function for rotations:
59  * - old's parent and color get assigned to new
60  * - old gets assigned new as a parent and 'color' as a color.
61  */
62 static inline void
63 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
64 			struct rb_root *root, int color)
65 {
66 	struct rb_node *parent = rb_parent(old);
67 	new->__rb_parent_color = old->__rb_parent_color;
68 	rb_set_parent_color(old, new, color);
69 	__rb_change_child(old, new, parent, root);
70 }
71 
72 static __always_inline void
73 __rb_insert(struct rb_node *node, struct rb_root *root,
74 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
75 {
76 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
77 
78 	while (true) {
79 		/*
80 		 * Loop invariant: node is red
81 		 *
82 		 * If there is a black parent, we are done.
83 		 * Otherwise, take some corrective action as we don't
84 		 * want a red root or two consecutive red nodes.
85 		 */
86 		if (!parent) {
87 			rb_set_parent_color(node, NULL, RB_BLACK);
88 			break;
89 		} else if (rb_is_black(parent))
90 			break;
91 
92 		gparent = rb_red_parent(parent);
93 
94 		tmp = gparent->rb_right;
95 		if (parent != tmp) {	/* parent == gparent->rb_left */
96 			if (tmp && rb_is_red(tmp)) {
97 				/*
98 				 * Case 1 - color flips
99 				 *
100 				 *       G            g
101 				 *      / \          / \
102 				 *     p   u  -->   P   U
103 				 *    /            /
104 				 *   n            N
105 				 *
106 				 * However, since g's parent might be red, and
107 				 * 4) does not allow this, we need to recurse
108 				 * at g.
109 				 */
110 				rb_set_parent_color(tmp, gparent, RB_BLACK);
111 				rb_set_parent_color(parent, gparent, RB_BLACK);
112 				node = gparent;
113 				parent = rb_parent(node);
114 				rb_set_parent_color(node, parent, RB_RED);
115 				continue;
116 			}
117 
118 			tmp = parent->rb_right;
119 			if (node == tmp) {
120 				/*
121 				 * Case 2 - left rotate at parent
122 				 *
123 				 *      G             G
124 				 *     / \           / \
125 				 *    p   U  -->    n   U
126 				 *     \           /
127 				 *      n         p
128 				 *
129 				 * This still leaves us in violation of 4), the
130 				 * continuation into Case 3 will fix that.
131 				 */
132 				parent->rb_right = tmp = node->rb_left;
133 				node->rb_left = parent;
134 				if (tmp)
135 					rb_set_parent_color(tmp, parent,
136 							    RB_BLACK);
137 				rb_set_parent_color(parent, node, RB_RED);
138 				augment_rotate(parent, node);
139 				parent = node;
140 				tmp = node->rb_right;
141 			}
142 
143 			/*
144 			 * Case 3 - right rotate at gparent
145 			 *
146 			 *        G           P
147 			 *       / \         / \
148 			 *      p   U  -->  n   g
149 			 *     /                 \
150 			 *    n                   U
151 			 */
152 			gparent->rb_left = tmp;  /* == parent->rb_right */
153 			parent->rb_right = gparent;
154 			if (tmp)
155 				rb_set_parent_color(tmp, gparent, RB_BLACK);
156 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157 			augment_rotate(gparent, parent);
158 			break;
159 		} else {
160 			tmp = gparent->rb_left;
161 			if (tmp && rb_is_red(tmp)) {
162 				/* Case 1 - color flips */
163 				rb_set_parent_color(tmp, gparent, RB_BLACK);
164 				rb_set_parent_color(parent, gparent, RB_BLACK);
165 				node = gparent;
166 				parent = rb_parent(node);
167 				rb_set_parent_color(node, parent, RB_RED);
168 				continue;
169 			}
170 
171 			tmp = parent->rb_left;
172 			if (node == tmp) {
173 				/* Case 2 - right rotate at parent */
174 				parent->rb_left = tmp = node->rb_right;
175 				node->rb_right = parent;
176 				if (tmp)
177 					rb_set_parent_color(tmp, parent,
178 							    RB_BLACK);
179 				rb_set_parent_color(parent, node, RB_RED);
180 				augment_rotate(parent, node);
181 				parent = node;
182 				tmp = node->rb_left;
183 			}
184 
185 			/* Case 3 - left rotate at gparent */
186 			gparent->rb_right = tmp;  /* == parent->rb_left */
187 			parent->rb_left = gparent;
188 			if (tmp)
189 				rb_set_parent_color(tmp, gparent, RB_BLACK);
190 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191 			augment_rotate(gparent, parent);
192 			break;
193 		}
194 	}
195 }
196 
197 __always_inline void
198 __rb_erase_color(struct rb_node *parent, struct rb_root *root,
199 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
200 {
201 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
202 
203 	while (true) {
204 		/*
205 		 * Loop invariants:
206 		 * - node is black (or NULL on first iteration)
207 		 * - node is not the root (parent is not NULL)
208 		 * - All leaf paths going through parent and node have a
209 		 *   black node count that is 1 lower than other leaf paths.
210 		 */
211 		sibling = parent->rb_right;
212 		if (node != sibling) {	/* node == parent->rb_left */
213 			if (rb_is_red(sibling)) {
214 				/*
215 				 * Case 1 - left rotate at parent
216 				 *
217 				 *     P               S
218 				 *    / \             / \
219 				 *   N   s    -->    p   Sr
220 				 *      / \         / \
221 				 *     Sl  Sr      N   Sl
222 				 */
223 				parent->rb_right = tmp1 = sibling->rb_left;
224 				sibling->rb_left = parent;
225 				rb_set_parent_color(tmp1, parent, RB_BLACK);
226 				__rb_rotate_set_parents(parent, sibling, root,
227 							RB_RED);
228 				augment_rotate(parent, sibling);
229 				sibling = tmp1;
230 			}
231 			tmp1 = sibling->rb_right;
232 			if (!tmp1 || rb_is_black(tmp1)) {
233 				tmp2 = sibling->rb_left;
234 				if (!tmp2 || rb_is_black(tmp2)) {
235 					/*
236 					 * Case 2 - sibling color flip
237 					 * (p could be either color here)
238 					 *
239 					 *    (p)           (p)
240 					 *    / \           / \
241 					 *   N   S    -->  N   s
242 					 *      / \           / \
243 					 *     Sl  Sr        Sl  Sr
244 					 *
245 					 * This leaves us violating 5) which
246 					 * can be fixed by flipping p to black
247 					 * if it was red, or by recursing at p.
248 					 * p is red when coming from Case 1.
249 					 */
250 					rb_set_parent_color(sibling, parent,
251 							    RB_RED);
252 					if (rb_is_red(parent))
253 						rb_set_black(parent);
254 					else {
255 						node = parent;
256 						parent = rb_parent(node);
257 						if (parent)
258 							continue;
259 					}
260 					break;
261 				}
262 				/*
263 				 * Case 3 - right rotate at sibling
264 				 * (p could be either color here)
265 				 *
266 				 *   (p)           (p)
267 				 *   / \           / \
268 				 *  N   S    -->  N   Sl
269 				 *     / \             \
270 				 *    sl  Sr            s
271 				 *                       \
272 				 *                        Sr
273 				 */
274 				sibling->rb_left = tmp1 = tmp2->rb_right;
275 				tmp2->rb_right = sibling;
276 				parent->rb_right = tmp2;
277 				if (tmp1)
278 					rb_set_parent_color(tmp1, sibling,
279 							    RB_BLACK);
280 				augment_rotate(sibling, tmp2);
281 				tmp1 = sibling;
282 				sibling = tmp2;
283 			}
284 			/*
285 			 * Case 4 - left rotate at parent + color flips
286 			 * (p and sl could be either color here.
287 			 *  After rotation, p becomes black, s acquires
288 			 *  p's color, and sl keeps its color)
289 			 *
290 			 *      (p)             (s)
291 			 *      / \             / \
292 			 *     N   S     -->   P   Sr
293 			 *        / \         / \
294 			 *      (sl) sr      N  (sl)
295 			 */
296 			parent->rb_right = tmp2 = sibling->rb_left;
297 			sibling->rb_left = parent;
298 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
299 			if (tmp2)
300 				rb_set_parent(tmp2, parent);
301 			__rb_rotate_set_parents(parent, sibling, root,
302 						RB_BLACK);
303 			augment_rotate(parent, sibling);
304 			break;
305 		} else {
306 			sibling = parent->rb_left;
307 			if (rb_is_red(sibling)) {
308 				/* Case 1 - right rotate at parent */
309 				parent->rb_left = tmp1 = sibling->rb_right;
310 				sibling->rb_right = parent;
311 				rb_set_parent_color(tmp1, parent, RB_BLACK);
312 				__rb_rotate_set_parents(parent, sibling, root,
313 							RB_RED);
314 				augment_rotate(parent, sibling);
315 				sibling = tmp1;
316 			}
317 			tmp1 = sibling->rb_left;
318 			if (!tmp1 || rb_is_black(tmp1)) {
319 				tmp2 = sibling->rb_right;
320 				if (!tmp2 || rb_is_black(tmp2)) {
321 					/* Case 2 - sibling color flip */
322 					rb_set_parent_color(sibling, parent,
323 							    RB_RED);
324 					if (rb_is_red(parent))
325 						rb_set_black(parent);
326 					else {
327 						node = parent;
328 						parent = rb_parent(node);
329 						if (parent)
330 							continue;
331 					}
332 					break;
333 				}
334 				/* Case 3 - right rotate at sibling */
335 				sibling->rb_right = tmp1 = tmp2->rb_left;
336 				tmp2->rb_left = sibling;
337 				parent->rb_left = tmp2;
338 				if (tmp1)
339 					rb_set_parent_color(tmp1, sibling,
340 							    RB_BLACK);
341 				augment_rotate(sibling, tmp2);
342 				tmp1 = sibling;
343 				sibling = tmp2;
344 			}
345 			/* Case 4 - left rotate at parent + color flips */
346 			parent->rb_left = tmp2 = sibling->rb_right;
347 			sibling->rb_right = parent;
348 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
349 			if (tmp2)
350 				rb_set_parent(tmp2, parent);
351 			__rb_rotate_set_parents(parent, sibling, root,
352 						RB_BLACK);
353 			augment_rotate(parent, sibling);
354 			break;
355 		}
356 	}
357 }
358 EXPORT_SYMBOL(__rb_erase_color);
359 
360 /*
361  * Non-augmented rbtree manipulation functions.
362  *
363  * We use dummy augmented callbacks here, and have the compiler optimize them
364  * out of the rb_insert_color() and rb_erase() function definitions.
365  */
366 
367 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
368 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
369 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
370 
371 static const struct rb_augment_callbacks dummy_callbacks = {
372 	dummy_propagate, dummy_copy, dummy_rotate
373 };
374 
375 void rb_insert_color(struct rb_node *node, struct rb_root *root)
376 {
377 	__rb_insert(node, root, dummy_rotate);
378 }
379 EXPORT_SYMBOL(rb_insert_color);
380 
381 void rb_erase(struct rb_node *node, struct rb_root *root)
382 {
383 	rb_erase_augmented(node, root, &dummy_callbacks);
384 }
385 EXPORT_SYMBOL(rb_erase);
386 
387 /*
388  * Augmented rbtree manipulation functions.
389  *
390  * This instantiates the same __always_inline functions as in the non-augmented
391  * case, but this time with user-defined callbacks.
392  */
393 
394 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
395 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
396 {
397 	__rb_insert(node, root, augment_rotate);
398 }
399 EXPORT_SYMBOL(__rb_insert_augmented);
400 
401 /*
402  * This function returns the first node (in sort order) of the tree.
403  */
404 struct rb_node *rb_first(const struct rb_root *root)
405 {
406 	struct rb_node	*n;
407 
408 	n = root->rb_node;
409 	if (!n)
410 		return NULL;
411 	while (n->rb_left)
412 		n = n->rb_left;
413 	return n;
414 }
415 EXPORT_SYMBOL(rb_first);
416 
417 struct rb_node *rb_last(const struct rb_root *root)
418 {
419 	struct rb_node	*n;
420 
421 	n = root->rb_node;
422 	if (!n)
423 		return NULL;
424 	while (n->rb_right)
425 		n = n->rb_right;
426 	return n;
427 }
428 EXPORT_SYMBOL(rb_last);
429 
430 struct rb_node *rb_next(const struct rb_node *node)
431 {
432 	struct rb_node *parent;
433 
434 	if (RB_EMPTY_NODE(node))
435 		return NULL;
436 
437 	/*
438 	 * If we have a right-hand child, go down and then left as far
439 	 * as we can.
440 	 */
441 	if (node->rb_right) {
442 		node = node->rb_right;
443 		while (node->rb_left)
444 			node=node->rb_left;
445 		return (struct rb_node *)node;
446 	}
447 
448 	/*
449 	 * No right-hand children. Everything down and left is smaller than us,
450 	 * so any 'next' node must be in the general direction of our parent.
451 	 * Go up the tree; any time the ancestor is a right-hand child of its
452 	 * parent, keep going up. First time it's a left-hand child of its
453 	 * parent, said parent is our 'next' node.
454 	 */
455 	while ((parent = rb_parent(node)) && node == parent->rb_right)
456 		node = parent;
457 
458 	return parent;
459 }
460 EXPORT_SYMBOL(rb_next);
461 
462 struct rb_node *rb_prev(const struct rb_node *node)
463 {
464 	struct rb_node *parent;
465 
466 	if (RB_EMPTY_NODE(node))
467 		return NULL;
468 
469 	/*
470 	 * If we have a left-hand child, go down and then right as far
471 	 * as we can.
472 	 */
473 	if (node->rb_left) {
474 		node = node->rb_left;
475 		while (node->rb_right)
476 			node=node->rb_right;
477 		return (struct rb_node *)node;
478 	}
479 
480 	/*
481 	 * No left-hand children. Go up till we find an ancestor which
482 	 * is a right-hand child of its parent.
483 	 */
484 	while ((parent = rb_parent(node)) && node == parent->rb_left)
485 		node = parent;
486 
487 	return parent;
488 }
489 EXPORT_SYMBOL(rb_prev);
490 
491 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
492 		     struct rb_root *root)
493 {
494 	struct rb_node *parent = rb_parent(victim);
495 
496 	/* Set the surrounding nodes to point to the replacement */
497 	__rb_change_child(victim, new, parent, root);
498 	if (victim->rb_left)
499 		rb_set_parent(victim->rb_left, new);
500 	if (victim->rb_right)
501 		rb_set_parent(victim->rb_right, new);
502 
503 	/* Copy the pointers/colour from the victim to the replacement */
504 	*new = *victim;
505 }
506 EXPORT_SYMBOL(rb_replace_node);
507