xref: /linux/lib/raid6/test/test.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /* -*- linux-c -*- ------------------------------------------------------- *
2  *
3  *   Copyright 2002-2007 H. Peter Anvin - All Rights Reserved
4  *
5  *   This file is part of the Linux kernel, and is made available under
6  *   the terms of the GNU General Public License version 2 or (at your
7  *   option) any later version; incorporated herein by reference.
8  *
9  * ----------------------------------------------------------------------- */
10 
11 /*
12  * raid6test.c
13  *
14  * Test RAID-6 recovery with various algorithms
15  */
16 
17 #include <stdlib.h>
18 #include <stdio.h>
19 #include <string.h>
20 #include <linux/raid/pq.h>
21 
22 #define NDISKS		16	/* Including P and Q */
23 
24 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
25 struct raid6_calls raid6_call;
26 
27 char *dataptrs[NDISKS];
28 char data[NDISKS][PAGE_SIZE];
29 char recovi[PAGE_SIZE], recovj[PAGE_SIZE];
30 
31 static void makedata(int start, int stop)
32 {
33 	int i, j;
34 
35 	for (i = start; i <= stop; i++) {
36 		for (j = 0; j < PAGE_SIZE; j++)
37 			data[i][j] = rand();
38 
39 		dataptrs[i] = data[i];
40 	}
41 }
42 
43 static char disk_type(int d)
44 {
45 	switch (d) {
46 	case NDISKS-2:
47 		return 'P';
48 	case NDISKS-1:
49 		return 'Q';
50 	default:
51 		return 'D';
52 	}
53 }
54 
55 static int test_disks(int i, int j)
56 {
57 	int erra, errb;
58 
59 	memset(recovi, 0xf0, PAGE_SIZE);
60 	memset(recovj, 0xba, PAGE_SIZE);
61 
62 	dataptrs[i] = recovi;
63 	dataptrs[j] = recovj;
64 
65 	raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs);
66 
67 	erra = memcmp(data[i], recovi, PAGE_SIZE);
68 	errb = memcmp(data[j], recovj, PAGE_SIZE);
69 
70 	if (i < NDISKS-2 && j == NDISKS-1) {
71 		/* We don't implement the DQ failure scenario, since it's
72 		   equivalent to a RAID-5 failure (XOR, then recompute Q) */
73 		erra = errb = 0;
74 	} else {
75 		printf("algo=%-8s  faila=%3d(%c)  failb=%3d(%c)  %s\n",
76 		       raid6_call.name,
77 		       i, disk_type(i),
78 		       j, disk_type(j),
79 		       (!erra && !errb) ? "OK" :
80 		       !erra ? "ERRB" :
81 		       !errb ? "ERRA" : "ERRAB");
82 	}
83 
84 	dataptrs[i] = data[i];
85 	dataptrs[j] = data[j];
86 
87 	return erra || errb;
88 }
89 
90 int main(int argc, char *argv[])
91 {
92 	const struct raid6_calls *const *algo;
93 	const struct raid6_recov_calls *const *ra;
94 	int i, j, p1, p2;
95 	int err = 0;
96 
97 	makedata(0, NDISKS-1);
98 
99 	for (ra = raid6_recov_algos; *ra; ra++) {
100 		if ((*ra)->valid  && !(*ra)->valid())
101 			continue;
102 
103 		raid6_2data_recov = (*ra)->data2;
104 		raid6_datap_recov = (*ra)->datap;
105 
106 		printf("using recovery %s\n", (*ra)->name);
107 
108 		for (algo = raid6_algos; *algo; algo++) {
109 			if ((*algo)->valid && !(*algo)->valid())
110 				continue;
111 
112 			raid6_call = **algo;
113 
114 			/* Nuke syndromes */
115 			memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE);
116 
117 			/* Generate assumed good syndrome */
118 			raid6_call.gen_syndrome(NDISKS, PAGE_SIZE,
119 						(void **)&dataptrs);
120 
121 			for (i = 0; i < NDISKS-1; i++)
122 				for (j = i+1; j < NDISKS; j++)
123 					err += test_disks(i, j);
124 
125 			if (!raid6_call.xor_syndrome)
126 				continue;
127 
128 			for (p1 = 0; p1 < NDISKS-2; p1++)
129 				for (p2 = p1; p2 < NDISKS-2; p2++) {
130 
131 					/* Simulate rmw run */
132 					raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE,
133 								(void **)&dataptrs);
134 					makedata(p1, p2);
135 					raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE,
136                                                                 (void **)&dataptrs);
137 
138 					for (i = 0; i < NDISKS-1; i++)
139 						for (j = i+1; j < NDISKS; j++)
140 							err += test_disks(i, j);
141 				}
142 
143 		}
144 		printf("\n");
145 	}
146 
147 	printf("\n");
148 	/* Pick the best algorithm test */
149 	raid6_select_algo();
150 
151 	if (err)
152 		printf("\n*** ERRORS FOUND ***\n");
153 
154 	return err;
155 }
156