xref: /linux/lib/raid6/sse1.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* -*- linux-c -*- ------------------------------------------------------- *
2  *
3  *   Copyright 2002 H. Peter Anvin - All Rights Reserved
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation, Inc., 53 Temple Place Ste 330,
8  *   Boston MA 02111-1307, USA; either version 2 of the License, or
9  *   (at your option) any later version; incorporated herein by reference.
10  *
11  * ----------------------------------------------------------------------- */
12 
13 /*
14  * raid6/sse1.c
15  *
16  * SSE-1/MMXEXT implementation of RAID-6 syndrome functions
17  *
18  * This is really an MMX implementation, but it requires SSE-1 or
19  * AMD MMXEXT for prefetch support and a few other features.  The
20  * support for nontemporal memory accesses is enough to make this
21  * worthwhile as a separate implementation.
22  */
23 
24 #ifdef CONFIG_X86_32
25 
26 #include <linux/raid/pq.h>
27 #include "x86.h"
28 
29 /* Defined in raid6/mmx.c */
30 extern const struct raid6_mmx_constants {
31 	u64 x1d;
32 } raid6_mmx_constants;
33 
34 static int raid6_have_sse1_or_mmxext(void)
35 {
36 	/* Not really boot_cpu but "all_cpus" */
37 	return boot_cpu_has(X86_FEATURE_MMX) &&
38 		(boot_cpu_has(X86_FEATURE_XMM) ||
39 		 boot_cpu_has(X86_FEATURE_MMXEXT));
40 }
41 
42 /*
43  * Plain SSE1 implementation
44  */
45 static void raid6_sse11_gen_syndrome(int disks, size_t bytes, void **ptrs)
46 {
47 	u8 **dptr = (u8 **)ptrs;
48 	u8 *p, *q;
49 	int d, z, z0;
50 
51 	z0 = disks - 3;		/* Highest data disk */
52 	p = dptr[z0+1];		/* XOR parity */
53 	q = dptr[z0+2];		/* RS syndrome */
54 
55 	kernel_fpu_begin();
56 
57 	asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d));
58 	asm volatile("pxor %mm5,%mm5");	/* Zero temp */
59 
60 	for ( d = 0 ; d < bytes ; d += 8 ) {
61 		asm volatile("prefetchnta %0" : : "m" (dptr[z0][d]));
62 		asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */
63 		asm volatile("prefetchnta %0" : : "m" (dptr[z0-1][d]));
64 		asm volatile("movq %mm2,%mm4");	/* Q[0] */
65 		asm volatile("movq %0,%%mm6" : : "m" (dptr[z0-1][d]));
66 		for ( z = z0-2 ; z >= 0 ; z-- ) {
67 			asm volatile("prefetchnta %0" : : "m" (dptr[z][d]));
68 			asm volatile("pcmpgtb %mm4,%mm5");
69 			asm volatile("paddb %mm4,%mm4");
70 			asm volatile("pand %mm0,%mm5");
71 			asm volatile("pxor %mm5,%mm4");
72 			asm volatile("pxor %mm5,%mm5");
73 			asm volatile("pxor %mm6,%mm2");
74 			asm volatile("pxor %mm6,%mm4");
75 			asm volatile("movq %0,%%mm6" : : "m" (dptr[z][d]));
76 		}
77 		asm volatile("pcmpgtb %mm4,%mm5");
78 		asm volatile("paddb %mm4,%mm4");
79 		asm volatile("pand %mm0,%mm5");
80 		asm volatile("pxor %mm5,%mm4");
81 		asm volatile("pxor %mm5,%mm5");
82 		asm volatile("pxor %mm6,%mm2");
83 		asm volatile("pxor %mm6,%mm4");
84 
85 		asm volatile("movntq %%mm2,%0" : "=m" (p[d]));
86 		asm volatile("movntq %%mm4,%0" : "=m" (q[d]));
87 	}
88 
89 	asm volatile("sfence" : : : "memory");
90 	kernel_fpu_end();
91 }
92 
93 const struct raid6_calls raid6_sse1x1 = {
94 	raid6_sse11_gen_syndrome,
95 	NULL,			/* XOR not yet implemented */
96 	raid6_have_sse1_or_mmxext,
97 	"sse1x1",
98 	1			/* Has cache hints */
99 };
100 
101 /*
102  * Unrolled-by-2 SSE1 implementation
103  */
104 static void raid6_sse12_gen_syndrome(int disks, size_t bytes, void **ptrs)
105 {
106 	u8 **dptr = (u8 **)ptrs;
107 	u8 *p, *q;
108 	int d, z, z0;
109 
110 	z0 = disks - 3;		/* Highest data disk */
111 	p = dptr[z0+1];		/* XOR parity */
112 	q = dptr[z0+2];		/* RS syndrome */
113 
114 	kernel_fpu_begin();
115 
116 	asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d));
117 	asm volatile("pxor %mm5,%mm5");	/* Zero temp */
118 	asm volatile("pxor %mm7,%mm7"); /* Zero temp */
119 
120 	/* We uniformly assume a single prefetch covers at least 16 bytes */
121 	for ( d = 0 ; d < bytes ; d += 16 ) {
122 		asm volatile("prefetchnta %0" : : "m" (dptr[z0][d]));
123 		asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */
124 		asm volatile("movq %0,%%mm3" : : "m" (dptr[z0][d+8])); /* P[1] */
125 		asm volatile("movq %mm2,%mm4");	/* Q[0] */
126 		asm volatile("movq %mm3,%mm6"); /* Q[1] */
127 		for ( z = z0-1 ; z >= 0 ; z-- ) {
128 			asm volatile("prefetchnta %0" : : "m" (dptr[z][d]));
129 			asm volatile("pcmpgtb %mm4,%mm5");
130 			asm volatile("pcmpgtb %mm6,%mm7");
131 			asm volatile("paddb %mm4,%mm4");
132 			asm volatile("paddb %mm6,%mm6");
133 			asm volatile("pand %mm0,%mm5");
134 			asm volatile("pand %mm0,%mm7");
135 			asm volatile("pxor %mm5,%mm4");
136 			asm volatile("pxor %mm7,%mm6");
137 			asm volatile("movq %0,%%mm5" : : "m" (dptr[z][d]));
138 			asm volatile("movq %0,%%mm7" : : "m" (dptr[z][d+8]));
139 			asm volatile("pxor %mm5,%mm2");
140 			asm volatile("pxor %mm7,%mm3");
141 			asm volatile("pxor %mm5,%mm4");
142 			asm volatile("pxor %mm7,%mm6");
143 			asm volatile("pxor %mm5,%mm5");
144 			asm volatile("pxor %mm7,%mm7");
145 		}
146 		asm volatile("movntq %%mm2,%0" : "=m" (p[d]));
147 		asm volatile("movntq %%mm3,%0" : "=m" (p[d+8]));
148 		asm volatile("movntq %%mm4,%0" : "=m" (q[d]));
149 		asm volatile("movntq %%mm6,%0" : "=m" (q[d+8]));
150 	}
151 
152 	asm volatile("sfence" : :: "memory");
153 	kernel_fpu_end();
154 }
155 
156 const struct raid6_calls raid6_sse1x2 = {
157 	raid6_sse12_gen_syndrome,
158 	NULL,			/* XOR not yet implemented */
159 	raid6_have_sse1_or_mmxext,
160 	"sse1x2",
161 	1			/* Has cache hints */
162 };
163 
164 #endif
165