xref: /linux/lib/radix-tree.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h>		/* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 
41 
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44 
45 /*
46  * Radix tree node cache.
47  */
48 static struct kmem_cache *radix_tree_node_cachep;
49 
50 /*
51  * The radix tree is variable-height, so an insert operation not only has
52  * to build the branch to its corresponding item, it also has to build the
53  * branch to existing items if the size has to be increased (by
54  * radix_tree_extend).
55  *
56  * The worst case is a zero height tree with just a single item at index 0,
57  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59  * Hence:
60  */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62 
63 /*
64  * The IDR does not have to be as high as the radix tree since it uses
65  * signed integers, not unsigned longs.
66  */
67 #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
69 						RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
71 
72 /*
73  * The IDA is even shorter since it uses a bitmap at the last level.
74  */
75 #define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
77 						RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
79 
80 /*
81  * Per-cpu pool of preloaded nodes
82  */
83 struct radix_tree_preload {
84 	unsigned nr;
85 	/* nodes->parent points to next preallocated node */
86 	struct radix_tree_node *nodes;
87 };
88 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
89 
90 static inline struct radix_tree_node *entry_to_node(void *ptr)
91 {
92 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93 }
94 
95 static inline void *node_to_entry(void *ptr)
96 {
97 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
98 }
99 
100 #define RADIX_TREE_RETRY	node_to_entry(NULL)
101 
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
104 static inline
105 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
106 {
107 	void __rcu **ptr = node;
108 	return (parent->slots <= ptr) &&
109 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110 }
111 #else
112 static inline
113 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
114 {
115 	return false;
116 }
117 #endif
118 
119 static inline unsigned long
120 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
121 {
122 	return slot - parent->slots;
123 }
124 
125 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
126 			struct radix_tree_node **nodep, unsigned long index)
127 {
128 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
129 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
130 
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 	if (radix_tree_is_internal_node(entry)) {
133 		if (is_sibling_entry(parent, entry)) {
134 			void __rcu **sibentry;
135 			sibentry = (void __rcu **) entry_to_node(entry);
136 			offset = get_slot_offset(parent, sibentry);
137 			entry = rcu_dereference_raw(*sibentry);
138 		}
139 	}
140 #endif
141 
142 	*nodep = (void *)entry;
143 	return offset;
144 }
145 
146 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
147 {
148 	return root->gfp_mask & __GFP_BITS_MASK;
149 }
150 
151 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
152 		int offset)
153 {
154 	__set_bit(offset, node->tags[tag]);
155 }
156 
157 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
158 		int offset)
159 {
160 	__clear_bit(offset, node->tags[tag]);
161 }
162 
163 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
164 		int offset)
165 {
166 	return test_bit(offset, node->tags[tag]);
167 }
168 
169 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
170 {
171 	root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
172 }
173 
174 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
175 {
176 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
177 }
178 
179 static inline void root_tag_clear_all(struct radix_tree_root *root)
180 {
181 	root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
182 }
183 
184 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
185 {
186 	return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
187 }
188 
189 static inline unsigned root_tags_get(const struct radix_tree_root *root)
190 {
191 	return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
192 }
193 
194 static inline bool is_idr(const struct radix_tree_root *root)
195 {
196 	return !!(root->gfp_mask & ROOT_IS_IDR);
197 }
198 
199 /*
200  * Returns 1 if any slot in the node has this tag set.
201  * Otherwise returns 0.
202  */
203 static inline int any_tag_set(const struct radix_tree_node *node,
204 							unsigned int tag)
205 {
206 	unsigned idx;
207 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
208 		if (node->tags[tag][idx])
209 			return 1;
210 	}
211 	return 0;
212 }
213 
214 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
215 {
216 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
217 }
218 
219 /**
220  * radix_tree_find_next_bit - find the next set bit in a memory region
221  *
222  * @addr: The address to base the search on
223  * @size: The bitmap size in bits
224  * @offset: The bitnumber to start searching at
225  *
226  * Unrollable variant of find_next_bit() for constant size arrays.
227  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228  * Returns next bit offset, or size if nothing found.
229  */
230 static __always_inline unsigned long
231 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
232 			 unsigned long offset)
233 {
234 	const unsigned long *addr = node->tags[tag];
235 
236 	if (offset < RADIX_TREE_MAP_SIZE) {
237 		unsigned long tmp;
238 
239 		addr += offset / BITS_PER_LONG;
240 		tmp = *addr >> (offset % BITS_PER_LONG);
241 		if (tmp)
242 			return __ffs(tmp) + offset;
243 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
244 		while (offset < RADIX_TREE_MAP_SIZE) {
245 			tmp = *++addr;
246 			if (tmp)
247 				return __ffs(tmp) + offset;
248 			offset += BITS_PER_LONG;
249 		}
250 	}
251 	return RADIX_TREE_MAP_SIZE;
252 }
253 
254 static unsigned int iter_offset(const struct radix_tree_iter *iter)
255 {
256 	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
257 }
258 
259 /*
260  * The maximum index which can be stored in a radix tree
261  */
262 static inline unsigned long shift_maxindex(unsigned int shift)
263 {
264 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
265 }
266 
267 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
268 {
269 	return shift_maxindex(node->shift);
270 }
271 
272 static unsigned long next_index(unsigned long index,
273 				const struct radix_tree_node *node,
274 				unsigned long offset)
275 {
276 	return (index & ~node_maxindex(node)) + (offset << node->shift);
277 }
278 
279 #ifndef __KERNEL__
280 static void dump_node(struct radix_tree_node *node, unsigned long index)
281 {
282 	unsigned long i;
283 
284 	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 		node, node->offset, index, index | node_maxindex(node),
286 		node->parent,
287 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
288 		node->shift, node->count, node->exceptional);
289 
290 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
291 		unsigned long first = index | (i << node->shift);
292 		unsigned long last = first | ((1UL << node->shift) - 1);
293 		void *entry = node->slots[i];
294 		if (!entry)
295 			continue;
296 		if (entry == RADIX_TREE_RETRY) {
297 			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 					i, first, last, node);
299 		} else if (!radix_tree_is_internal_node(entry)) {
300 			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 					entry, i, first, last, node);
302 		} else if (is_sibling_entry(node, entry)) {
303 			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 					entry, i, first, last, node,
305 					*(void **)entry_to_node(entry));
306 		} else {
307 			dump_node(entry_to_node(entry), first);
308 		}
309 	}
310 }
311 
312 /* For debug */
313 static void radix_tree_dump(struct radix_tree_root *root)
314 {
315 	pr_debug("radix root: %p rnode %p tags %x\n",
316 			root, root->rnode,
317 			root->gfp_mask >> ROOT_TAG_SHIFT);
318 	if (!radix_tree_is_internal_node(root->rnode))
319 		return;
320 	dump_node(entry_to_node(root->rnode), 0);
321 }
322 
323 static void dump_ida_node(void *entry, unsigned long index)
324 {
325 	unsigned long i;
326 
327 	if (!entry)
328 		return;
329 
330 	if (radix_tree_is_internal_node(entry)) {
331 		struct radix_tree_node *node = entry_to_node(entry);
332 
333 		pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 			node, node->offset, index * IDA_BITMAP_BITS,
335 			((index | node_maxindex(node)) + 1) *
336 				IDA_BITMAP_BITS - 1,
337 			node->parent, node->tags[0][0], node->shift,
338 			node->count);
339 		for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
340 			dump_ida_node(node->slots[i],
341 					index | (i << node->shift));
342 	} else if (radix_tree_exceptional_entry(entry)) {
343 		pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 				entry, (int)(index & RADIX_TREE_MAP_MASK),
345 				index * IDA_BITMAP_BITS,
346 				index * IDA_BITMAP_BITS + BITS_PER_LONG -
347 					RADIX_TREE_EXCEPTIONAL_SHIFT,
348 				(unsigned long)entry >>
349 					RADIX_TREE_EXCEPTIONAL_SHIFT);
350 	} else {
351 		struct ida_bitmap *bitmap = entry;
352 
353 		pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
354 				(int)(index & RADIX_TREE_MAP_MASK),
355 				index * IDA_BITMAP_BITS,
356 				(index + 1) * IDA_BITMAP_BITS - 1);
357 		for (i = 0; i < IDA_BITMAP_LONGS; i++)
358 			pr_cont(" %lx", bitmap->bitmap[i]);
359 		pr_cont("\n");
360 	}
361 }
362 
363 static void ida_dump(struct ida *ida)
364 {
365 	struct radix_tree_root *root = &ida->ida_rt;
366 	pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
367 				root->gfp_mask >> ROOT_TAG_SHIFT);
368 	dump_ida_node(root->rnode, 0);
369 }
370 #endif
371 
372 /*
373  * This assumes that the caller has performed appropriate preallocation, and
374  * that the caller has pinned this thread of control to the current CPU.
375  */
376 static struct radix_tree_node *
377 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
378 			struct radix_tree_root *root,
379 			unsigned int shift, unsigned int offset,
380 			unsigned int count, unsigned int exceptional)
381 {
382 	struct radix_tree_node *ret = NULL;
383 
384 	/*
385 	 * Preload code isn't irq safe and it doesn't make sense to use
386 	 * preloading during an interrupt anyway as all the allocations have
387 	 * to be atomic. So just do normal allocation when in interrupt.
388 	 */
389 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
390 		struct radix_tree_preload *rtp;
391 
392 		/*
393 		 * Even if the caller has preloaded, try to allocate from the
394 		 * cache first for the new node to get accounted to the memory
395 		 * cgroup.
396 		 */
397 		ret = kmem_cache_alloc(radix_tree_node_cachep,
398 				       gfp_mask | __GFP_NOWARN);
399 		if (ret)
400 			goto out;
401 
402 		/*
403 		 * Provided the caller has preloaded here, we will always
404 		 * succeed in getting a node here (and never reach
405 		 * kmem_cache_alloc)
406 		 */
407 		rtp = this_cpu_ptr(&radix_tree_preloads);
408 		if (rtp->nr) {
409 			ret = rtp->nodes;
410 			rtp->nodes = ret->parent;
411 			rtp->nr--;
412 		}
413 		/*
414 		 * Update the allocation stack trace as this is more useful
415 		 * for debugging.
416 		 */
417 		kmemleak_update_trace(ret);
418 		goto out;
419 	}
420 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
421 out:
422 	BUG_ON(radix_tree_is_internal_node(ret));
423 	if (ret) {
424 		ret->shift = shift;
425 		ret->offset = offset;
426 		ret->count = count;
427 		ret->exceptional = exceptional;
428 		ret->parent = parent;
429 		ret->root = root;
430 	}
431 	return ret;
432 }
433 
434 static void radix_tree_node_rcu_free(struct rcu_head *head)
435 {
436 	struct radix_tree_node *node =
437 			container_of(head, struct radix_tree_node, rcu_head);
438 
439 	/*
440 	 * Must only free zeroed nodes into the slab.  We can be left with
441 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
442 	 * and tags here.
443 	 */
444 	memset(node->slots, 0, sizeof(node->slots));
445 	memset(node->tags, 0, sizeof(node->tags));
446 	INIT_LIST_HEAD(&node->private_list);
447 
448 	kmem_cache_free(radix_tree_node_cachep, node);
449 }
450 
451 static inline void
452 radix_tree_node_free(struct radix_tree_node *node)
453 {
454 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
455 }
456 
457 /*
458  * Load up this CPU's radix_tree_node buffer with sufficient objects to
459  * ensure that the addition of a single element in the tree cannot fail.  On
460  * success, return zero, with preemption disabled.  On error, return -ENOMEM
461  * with preemption not disabled.
462  *
463  * To make use of this facility, the radix tree must be initialised without
464  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
465  */
466 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
467 {
468 	struct radix_tree_preload *rtp;
469 	struct radix_tree_node *node;
470 	int ret = -ENOMEM;
471 
472 	/*
473 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 	 * they should never be accounted to any particular memory cgroup.
475 	 */
476 	gfp_mask &= ~__GFP_ACCOUNT;
477 
478 	preempt_disable();
479 	rtp = this_cpu_ptr(&radix_tree_preloads);
480 	while (rtp->nr < nr) {
481 		preempt_enable();
482 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
483 		if (node == NULL)
484 			goto out;
485 		preempt_disable();
486 		rtp = this_cpu_ptr(&radix_tree_preloads);
487 		if (rtp->nr < nr) {
488 			node->parent = rtp->nodes;
489 			rtp->nodes = node;
490 			rtp->nr++;
491 		} else {
492 			kmem_cache_free(radix_tree_node_cachep, node);
493 		}
494 	}
495 	ret = 0;
496 out:
497 	return ret;
498 }
499 
500 /*
501  * Load up this CPU's radix_tree_node buffer with sufficient objects to
502  * ensure that the addition of a single element in the tree cannot fail.  On
503  * success, return zero, with preemption disabled.  On error, return -ENOMEM
504  * with preemption not disabled.
505  *
506  * To make use of this facility, the radix tree must be initialised without
507  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
508  */
509 int radix_tree_preload(gfp_t gfp_mask)
510 {
511 	/* Warn on non-sensical use... */
512 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
513 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
514 }
515 EXPORT_SYMBOL(radix_tree_preload);
516 
517 /*
518  * The same as above function, except we don't guarantee preloading happens.
519  * We do it, if we decide it helps. On success, return zero with preemption
520  * disabled. On error, return -ENOMEM with preemption not disabled.
521  */
522 int radix_tree_maybe_preload(gfp_t gfp_mask)
523 {
524 	if (gfpflags_allow_blocking(gfp_mask))
525 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
526 	/* Preloading doesn't help anything with this gfp mask, skip it */
527 	preempt_disable();
528 	return 0;
529 }
530 EXPORT_SYMBOL(radix_tree_maybe_preload);
531 
532 #ifdef CONFIG_RADIX_TREE_MULTIORDER
533 /*
534  * Preload with enough objects to ensure that we can split a single entry
535  * of order @old_order into many entries of size @new_order
536  */
537 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
538 							gfp_t gfp_mask)
539 {
540 	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
541 	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
542 				(new_order / RADIX_TREE_MAP_SHIFT);
543 	unsigned nr = 0;
544 
545 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
546 	BUG_ON(new_order >= old_order);
547 
548 	while (layers--)
549 		nr = nr * RADIX_TREE_MAP_SIZE + 1;
550 	return __radix_tree_preload(gfp_mask, top * nr);
551 }
552 #endif
553 
554 /*
555  * The same as function above, but preload number of nodes required to insert
556  * (1 << order) continuous naturally-aligned elements.
557  */
558 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
559 {
560 	unsigned long nr_subtrees;
561 	int nr_nodes, subtree_height;
562 
563 	/* Preloading doesn't help anything with this gfp mask, skip it */
564 	if (!gfpflags_allow_blocking(gfp_mask)) {
565 		preempt_disable();
566 		return 0;
567 	}
568 
569 	/*
570 	 * Calculate number and height of fully populated subtrees it takes to
571 	 * store (1 << order) elements.
572 	 */
573 	nr_subtrees = 1 << order;
574 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
575 			subtree_height++)
576 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
577 
578 	/*
579 	 * The worst case is zero height tree with a single item at index 0 and
580 	 * then inserting items starting at ULONG_MAX - (1 << order).
581 	 *
582 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
583 	 * 0-index item.
584 	 */
585 	nr_nodes = RADIX_TREE_MAX_PATH;
586 
587 	/* Plus branch to fully populated subtrees. */
588 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
589 
590 	/* Root node is shared. */
591 	nr_nodes--;
592 
593 	/* Plus nodes required to build subtrees. */
594 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
595 
596 	return __radix_tree_preload(gfp_mask, nr_nodes);
597 }
598 
599 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
600 		struct radix_tree_node **nodep, unsigned long *maxindex)
601 {
602 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
603 
604 	*nodep = node;
605 
606 	if (likely(radix_tree_is_internal_node(node))) {
607 		node = entry_to_node(node);
608 		*maxindex = node_maxindex(node);
609 		return node->shift + RADIX_TREE_MAP_SHIFT;
610 	}
611 
612 	*maxindex = 0;
613 	return 0;
614 }
615 
616 /*
617  *	Extend a radix tree so it can store key @index.
618  */
619 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
620 				unsigned long index, unsigned int shift)
621 {
622 	void *entry;
623 	unsigned int maxshift;
624 	int tag;
625 
626 	/* Figure out what the shift should be.  */
627 	maxshift = shift;
628 	while (index > shift_maxindex(maxshift))
629 		maxshift += RADIX_TREE_MAP_SHIFT;
630 
631 	entry = rcu_dereference_raw(root->rnode);
632 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
633 		goto out;
634 
635 	do {
636 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
637 							root, shift, 0, 1, 0);
638 		if (!node)
639 			return -ENOMEM;
640 
641 		if (is_idr(root)) {
642 			all_tag_set(node, IDR_FREE);
643 			if (!root_tag_get(root, IDR_FREE)) {
644 				tag_clear(node, IDR_FREE, 0);
645 				root_tag_set(root, IDR_FREE);
646 			}
647 		} else {
648 			/* Propagate the aggregated tag info to the new child */
649 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
650 				if (root_tag_get(root, tag))
651 					tag_set(node, tag, 0);
652 			}
653 		}
654 
655 		BUG_ON(shift > BITS_PER_LONG);
656 		if (radix_tree_is_internal_node(entry)) {
657 			entry_to_node(entry)->parent = node;
658 		} else if (radix_tree_exceptional_entry(entry)) {
659 			/* Moving an exceptional root->rnode to a node */
660 			node->exceptional = 1;
661 		}
662 		/*
663 		 * entry was already in the radix tree, so we do not need
664 		 * rcu_assign_pointer here
665 		 */
666 		node->slots[0] = (void __rcu *)entry;
667 		entry = node_to_entry(node);
668 		rcu_assign_pointer(root->rnode, entry);
669 		shift += RADIX_TREE_MAP_SHIFT;
670 	} while (shift <= maxshift);
671 out:
672 	return maxshift + RADIX_TREE_MAP_SHIFT;
673 }
674 
675 /**
676  *	radix_tree_shrink    -    shrink radix tree to minimum height
677  *	@root		radix tree root
678  */
679 static inline bool radix_tree_shrink(struct radix_tree_root *root,
680 				     radix_tree_update_node_t update_node)
681 {
682 	bool shrunk = false;
683 
684 	for (;;) {
685 		struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
686 		struct radix_tree_node *child;
687 
688 		if (!radix_tree_is_internal_node(node))
689 			break;
690 		node = entry_to_node(node);
691 
692 		/*
693 		 * The candidate node has more than one child, or its child
694 		 * is not at the leftmost slot, or the child is a multiorder
695 		 * entry, we cannot shrink.
696 		 */
697 		if (node->count != 1)
698 			break;
699 		child = rcu_dereference_raw(node->slots[0]);
700 		if (!child)
701 			break;
702 		if (!radix_tree_is_internal_node(child) && node->shift)
703 			break;
704 
705 		if (radix_tree_is_internal_node(child))
706 			entry_to_node(child)->parent = NULL;
707 
708 		/*
709 		 * We don't need rcu_assign_pointer(), since we are simply
710 		 * moving the node from one part of the tree to another: if it
711 		 * was safe to dereference the old pointer to it
712 		 * (node->slots[0]), it will be safe to dereference the new
713 		 * one (root->rnode) as far as dependent read barriers go.
714 		 */
715 		root->rnode = (void __rcu *)child;
716 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
717 			root_tag_clear(root, IDR_FREE);
718 
719 		/*
720 		 * We have a dilemma here. The node's slot[0] must not be
721 		 * NULLed in case there are concurrent lookups expecting to
722 		 * find the item. However if this was a bottom-level node,
723 		 * then it may be subject to the slot pointer being visible
724 		 * to callers dereferencing it. If item corresponding to
725 		 * slot[0] is subsequently deleted, these callers would expect
726 		 * their slot to become empty sooner or later.
727 		 *
728 		 * For example, lockless pagecache will look up a slot, deref
729 		 * the page pointer, and if the page has 0 refcount it means it
730 		 * was concurrently deleted from pagecache so try the deref
731 		 * again. Fortunately there is already a requirement for logic
732 		 * to retry the entire slot lookup -- the indirect pointer
733 		 * problem (replacing direct root node with an indirect pointer
734 		 * also results in a stale slot). So tag the slot as indirect
735 		 * to force callers to retry.
736 		 */
737 		node->count = 0;
738 		if (!radix_tree_is_internal_node(child)) {
739 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
740 			if (update_node)
741 				update_node(node);
742 		}
743 
744 		WARN_ON_ONCE(!list_empty(&node->private_list));
745 		radix_tree_node_free(node);
746 		shrunk = true;
747 	}
748 
749 	return shrunk;
750 }
751 
752 static bool delete_node(struct radix_tree_root *root,
753 			struct radix_tree_node *node,
754 			radix_tree_update_node_t update_node)
755 {
756 	bool deleted = false;
757 
758 	do {
759 		struct radix_tree_node *parent;
760 
761 		if (node->count) {
762 			if (node_to_entry(node) ==
763 					rcu_dereference_raw(root->rnode))
764 				deleted |= radix_tree_shrink(root,
765 								update_node);
766 			return deleted;
767 		}
768 
769 		parent = node->parent;
770 		if (parent) {
771 			parent->slots[node->offset] = NULL;
772 			parent->count--;
773 		} else {
774 			/*
775 			 * Shouldn't the tags already have all been cleared
776 			 * by the caller?
777 			 */
778 			if (!is_idr(root))
779 				root_tag_clear_all(root);
780 			root->rnode = NULL;
781 		}
782 
783 		WARN_ON_ONCE(!list_empty(&node->private_list));
784 		radix_tree_node_free(node);
785 		deleted = true;
786 
787 		node = parent;
788 	} while (node);
789 
790 	return deleted;
791 }
792 
793 /**
794  *	__radix_tree_create	-	create a slot in a radix tree
795  *	@root:		radix tree root
796  *	@index:		index key
797  *	@order:		index occupies 2^order aligned slots
798  *	@nodep:		returns node
799  *	@slotp:		returns slot
800  *
801  *	Create, if necessary, and return the node and slot for an item
802  *	at position @index in the radix tree @root.
803  *
804  *	Until there is more than one item in the tree, no nodes are
805  *	allocated and @root->rnode is used as a direct slot instead of
806  *	pointing to a node, in which case *@nodep will be NULL.
807  *
808  *	Returns -ENOMEM, or 0 for success.
809  */
810 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
811 			unsigned order, struct radix_tree_node **nodep,
812 			void __rcu ***slotp)
813 {
814 	struct radix_tree_node *node = NULL, *child;
815 	void __rcu **slot = (void __rcu **)&root->rnode;
816 	unsigned long maxindex;
817 	unsigned int shift, offset = 0;
818 	unsigned long max = index | ((1UL << order) - 1);
819 	gfp_t gfp = root_gfp_mask(root);
820 
821 	shift = radix_tree_load_root(root, &child, &maxindex);
822 
823 	/* Make sure the tree is high enough.  */
824 	if (order > 0 && max == ((1UL << order) - 1))
825 		max++;
826 	if (max > maxindex) {
827 		int error = radix_tree_extend(root, gfp, max, shift);
828 		if (error < 0)
829 			return error;
830 		shift = error;
831 		child = rcu_dereference_raw(root->rnode);
832 	}
833 
834 	while (shift > order) {
835 		shift -= RADIX_TREE_MAP_SHIFT;
836 		if (child == NULL) {
837 			/* Have to add a child node.  */
838 			child = radix_tree_node_alloc(gfp, node, root, shift,
839 							offset, 0, 0);
840 			if (!child)
841 				return -ENOMEM;
842 			rcu_assign_pointer(*slot, node_to_entry(child));
843 			if (node)
844 				node->count++;
845 		} else if (!radix_tree_is_internal_node(child))
846 			break;
847 
848 		/* Go a level down */
849 		node = entry_to_node(child);
850 		offset = radix_tree_descend(node, &child, index);
851 		slot = &node->slots[offset];
852 	}
853 
854 	if (nodep)
855 		*nodep = node;
856 	if (slotp)
857 		*slotp = slot;
858 	return 0;
859 }
860 
861 /*
862  * Free any nodes below this node.  The tree is presumed to not need
863  * shrinking, and any user data in the tree is presumed to not need a
864  * destructor called on it.  If we need to add a destructor, we can
865  * add that functionality later.  Note that we may not clear tags or
866  * slots from the tree as an RCU walker may still have a pointer into
867  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
868  * but we'll still have to clear those in rcu_free.
869  */
870 static void radix_tree_free_nodes(struct radix_tree_node *node)
871 {
872 	unsigned offset = 0;
873 	struct radix_tree_node *child = entry_to_node(node);
874 
875 	for (;;) {
876 		void *entry = rcu_dereference_raw(child->slots[offset]);
877 		if (radix_tree_is_internal_node(entry) &&
878 					!is_sibling_entry(child, entry)) {
879 			child = entry_to_node(entry);
880 			offset = 0;
881 			continue;
882 		}
883 		offset++;
884 		while (offset == RADIX_TREE_MAP_SIZE) {
885 			struct radix_tree_node *old = child;
886 			offset = child->offset + 1;
887 			child = child->parent;
888 			WARN_ON_ONCE(!list_empty(&old->private_list));
889 			radix_tree_node_free(old);
890 			if (old == entry_to_node(node))
891 				return;
892 		}
893 	}
894 }
895 
896 #ifdef CONFIG_RADIX_TREE_MULTIORDER
897 static inline int insert_entries(struct radix_tree_node *node,
898 		void __rcu **slot, void *item, unsigned order, bool replace)
899 {
900 	struct radix_tree_node *child;
901 	unsigned i, n, tag, offset, tags = 0;
902 
903 	if (node) {
904 		if (order > node->shift)
905 			n = 1 << (order - node->shift);
906 		else
907 			n = 1;
908 		offset = get_slot_offset(node, slot);
909 	} else {
910 		n = 1;
911 		offset = 0;
912 	}
913 
914 	if (n > 1) {
915 		offset = offset & ~(n - 1);
916 		slot = &node->slots[offset];
917 	}
918 	child = node_to_entry(slot);
919 
920 	for (i = 0; i < n; i++) {
921 		if (slot[i]) {
922 			if (replace) {
923 				node->count--;
924 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
925 					if (tag_get(node, tag, offset + i))
926 						tags |= 1 << tag;
927 			} else
928 				return -EEXIST;
929 		}
930 	}
931 
932 	for (i = 0; i < n; i++) {
933 		struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
934 		if (i) {
935 			rcu_assign_pointer(slot[i], child);
936 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
937 				if (tags & (1 << tag))
938 					tag_clear(node, tag, offset + i);
939 		} else {
940 			rcu_assign_pointer(slot[i], item);
941 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
942 				if (tags & (1 << tag))
943 					tag_set(node, tag, offset);
944 		}
945 		if (radix_tree_is_internal_node(old) &&
946 					!is_sibling_entry(node, old) &&
947 					(old != RADIX_TREE_RETRY))
948 			radix_tree_free_nodes(old);
949 		if (radix_tree_exceptional_entry(old))
950 			node->exceptional--;
951 	}
952 	if (node) {
953 		node->count += n;
954 		if (radix_tree_exceptional_entry(item))
955 			node->exceptional += n;
956 	}
957 	return n;
958 }
959 #else
960 static inline int insert_entries(struct radix_tree_node *node,
961 		void __rcu **slot, void *item, unsigned order, bool replace)
962 {
963 	if (*slot)
964 		return -EEXIST;
965 	rcu_assign_pointer(*slot, item);
966 	if (node) {
967 		node->count++;
968 		if (radix_tree_exceptional_entry(item))
969 			node->exceptional++;
970 	}
971 	return 1;
972 }
973 #endif
974 
975 /**
976  *	__radix_tree_insert    -    insert into a radix tree
977  *	@root:		radix tree root
978  *	@index:		index key
979  *	@order:		key covers the 2^order indices around index
980  *	@item:		item to insert
981  *
982  *	Insert an item into the radix tree at position @index.
983  */
984 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
985 			unsigned order, void *item)
986 {
987 	struct radix_tree_node *node;
988 	void __rcu **slot;
989 	int error;
990 
991 	BUG_ON(radix_tree_is_internal_node(item));
992 
993 	error = __radix_tree_create(root, index, order, &node, &slot);
994 	if (error)
995 		return error;
996 
997 	error = insert_entries(node, slot, item, order, false);
998 	if (error < 0)
999 		return error;
1000 
1001 	if (node) {
1002 		unsigned offset = get_slot_offset(node, slot);
1003 		BUG_ON(tag_get(node, 0, offset));
1004 		BUG_ON(tag_get(node, 1, offset));
1005 		BUG_ON(tag_get(node, 2, offset));
1006 	} else {
1007 		BUG_ON(root_tags_get(root));
1008 	}
1009 
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL(__radix_tree_insert);
1013 
1014 /**
1015  *	__radix_tree_lookup	-	lookup an item in a radix tree
1016  *	@root:		radix tree root
1017  *	@index:		index key
1018  *	@nodep:		returns node
1019  *	@slotp:		returns slot
1020  *
1021  *	Lookup and return the item at position @index in the radix
1022  *	tree @root.
1023  *
1024  *	Until there is more than one item in the tree, no nodes are
1025  *	allocated and @root->rnode is used as a direct slot instead of
1026  *	pointing to a node, in which case *@nodep will be NULL.
1027  */
1028 void *__radix_tree_lookup(const struct radix_tree_root *root,
1029 			  unsigned long index, struct radix_tree_node **nodep,
1030 			  void __rcu ***slotp)
1031 {
1032 	struct radix_tree_node *node, *parent;
1033 	unsigned long maxindex;
1034 	void __rcu **slot;
1035 
1036  restart:
1037 	parent = NULL;
1038 	slot = (void __rcu **)&root->rnode;
1039 	radix_tree_load_root(root, &node, &maxindex);
1040 	if (index > maxindex)
1041 		return NULL;
1042 
1043 	while (radix_tree_is_internal_node(node)) {
1044 		unsigned offset;
1045 
1046 		if (node == RADIX_TREE_RETRY)
1047 			goto restart;
1048 		parent = entry_to_node(node);
1049 		offset = radix_tree_descend(parent, &node, index);
1050 		slot = parent->slots + offset;
1051 	}
1052 
1053 	if (nodep)
1054 		*nodep = parent;
1055 	if (slotp)
1056 		*slotp = slot;
1057 	return node;
1058 }
1059 
1060 /**
1061  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
1062  *	@root:		radix tree root
1063  *	@index:		index key
1064  *
1065  *	Returns:  the slot corresponding to the position @index in the
1066  *	radix tree @root. This is useful for update-if-exists operations.
1067  *
1068  *	This function can be called under rcu_read_lock iff the slot is not
1069  *	modified by radix_tree_replace_slot, otherwise it must be called
1070  *	exclusive from other writers. Any dereference of the slot must be done
1071  *	using radix_tree_deref_slot.
1072  */
1073 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1074 				unsigned long index)
1075 {
1076 	void __rcu **slot;
1077 
1078 	if (!__radix_tree_lookup(root, index, NULL, &slot))
1079 		return NULL;
1080 	return slot;
1081 }
1082 EXPORT_SYMBOL(radix_tree_lookup_slot);
1083 
1084 /**
1085  *	radix_tree_lookup    -    perform lookup operation on a radix tree
1086  *	@root:		radix tree root
1087  *	@index:		index key
1088  *
1089  *	Lookup the item at the position @index in the radix tree @root.
1090  *
1091  *	This function can be called under rcu_read_lock, however the caller
1092  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1093  *	them safely). No RCU barriers are required to access or modify the
1094  *	returned item, however.
1095  */
1096 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1097 {
1098 	return __radix_tree_lookup(root, index, NULL, NULL);
1099 }
1100 EXPORT_SYMBOL(radix_tree_lookup);
1101 
1102 static inline void replace_sibling_entries(struct radix_tree_node *node,
1103 				void __rcu **slot, int count, int exceptional)
1104 {
1105 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1106 	void *ptr = node_to_entry(slot);
1107 	unsigned offset = get_slot_offset(node, slot) + 1;
1108 
1109 	while (offset < RADIX_TREE_MAP_SIZE) {
1110 		if (rcu_dereference_raw(node->slots[offset]) != ptr)
1111 			break;
1112 		if (count < 0) {
1113 			node->slots[offset] = NULL;
1114 			node->count--;
1115 		}
1116 		node->exceptional += exceptional;
1117 		offset++;
1118 	}
1119 #endif
1120 }
1121 
1122 static void replace_slot(void __rcu **slot, void *item,
1123 		struct radix_tree_node *node, int count, int exceptional)
1124 {
1125 	if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1126 		return;
1127 
1128 	if (node && (count || exceptional)) {
1129 		node->count += count;
1130 		node->exceptional += exceptional;
1131 		replace_sibling_entries(node, slot, count, exceptional);
1132 	}
1133 
1134 	rcu_assign_pointer(*slot, item);
1135 }
1136 
1137 static bool node_tag_get(const struct radix_tree_root *root,
1138 				const struct radix_tree_node *node,
1139 				unsigned int tag, unsigned int offset)
1140 {
1141 	if (node)
1142 		return tag_get(node, tag, offset);
1143 	return root_tag_get(root, tag);
1144 }
1145 
1146 /*
1147  * IDR users want to be able to store NULL in the tree, so if the slot isn't
1148  * free, don't adjust the count, even if it's transitioning between NULL and
1149  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1150  * have empty bits, but it only stores NULL in slots when they're being
1151  * deleted.
1152  */
1153 static int calculate_count(struct radix_tree_root *root,
1154 				struct radix_tree_node *node, void __rcu **slot,
1155 				void *item, void *old)
1156 {
1157 	if (is_idr(root)) {
1158 		unsigned offset = get_slot_offset(node, slot);
1159 		bool free = node_tag_get(root, node, IDR_FREE, offset);
1160 		if (!free)
1161 			return 0;
1162 		if (!old)
1163 			return 1;
1164 	}
1165 	return !!item - !!old;
1166 }
1167 
1168 /**
1169  * __radix_tree_replace		- replace item in a slot
1170  * @root:		radix tree root
1171  * @node:		pointer to tree node
1172  * @slot:		pointer to slot in @node
1173  * @item:		new item to store in the slot.
1174  * @update_node:	callback for changing leaf nodes
1175  *
1176  * For use with __radix_tree_lookup().  Caller must hold tree write locked
1177  * across slot lookup and replacement.
1178  */
1179 void __radix_tree_replace(struct radix_tree_root *root,
1180 			  struct radix_tree_node *node,
1181 			  void __rcu **slot, void *item,
1182 			  radix_tree_update_node_t update_node)
1183 {
1184 	void *old = rcu_dereference_raw(*slot);
1185 	int exceptional = !!radix_tree_exceptional_entry(item) -
1186 				!!radix_tree_exceptional_entry(old);
1187 	int count = calculate_count(root, node, slot, item, old);
1188 
1189 	/*
1190 	 * This function supports replacing exceptional entries and
1191 	 * deleting entries, but that needs accounting against the
1192 	 * node unless the slot is root->rnode.
1193 	 */
1194 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1195 			(count || exceptional));
1196 	replace_slot(slot, item, node, count, exceptional);
1197 
1198 	if (!node)
1199 		return;
1200 
1201 	if (update_node)
1202 		update_node(node);
1203 
1204 	delete_node(root, node, update_node);
1205 }
1206 
1207 /**
1208  * radix_tree_replace_slot	- replace item in a slot
1209  * @root:	radix tree root
1210  * @slot:	pointer to slot
1211  * @item:	new item to store in the slot.
1212  *
1213  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1214  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1215  * across slot lookup and replacement.
1216  *
1217  * NOTE: This cannot be used to switch between non-entries (empty slots),
1218  * regular entries, and exceptional entries, as that requires accounting
1219  * inside the radix tree node. When switching from one type of entry or
1220  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1221  * radix_tree_iter_replace().
1222  */
1223 void radix_tree_replace_slot(struct radix_tree_root *root,
1224 			     void __rcu **slot, void *item)
1225 {
1226 	__radix_tree_replace(root, NULL, slot, item, NULL);
1227 }
1228 EXPORT_SYMBOL(radix_tree_replace_slot);
1229 
1230 /**
1231  * radix_tree_iter_replace - replace item in a slot
1232  * @root:	radix tree root
1233  * @slot:	pointer to slot
1234  * @item:	new item to store in the slot.
1235  *
1236  * For use with radix_tree_split() and radix_tree_for_each_slot().
1237  * Caller must hold tree write locked across split and replacement.
1238  */
1239 void radix_tree_iter_replace(struct radix_tree_root *root,
1240 				const struct radix_tree_iter *iter,
1241 				void __rcu **slot, void *item)
1242 {
1243 	__radix_tree_replace(root, iter->node, slot, item, NULL);
1244 }
1245 
1246 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1247 /**
1248  * radix_tree_join - replace multiple entries with one multiorder entry
1249  * @root: radix tree root
1250  * @index: an index inside the new entry
1251  * @order: order of the new entry
1252  * @item: new entry
1253  *
1254  * Call this function to replace several entries with one larger entry.
1255  * The existing entries are presumed to not need freeing as a result of
1256  * this call.
1257  *
1258  * The replacement entry will have all the tags set on it that were set
1259  * on any of the entries it is replacing.
1260  */
1261 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1262 			unsigned order, void *item)
1263 {
1264 	struct radix_tree_node *node;
1265 	void __rcu **slot;
1266 	int error;
1267 
1268 	BUG_ON(radix_tree_is_internal_node(item));
1269 
1270 	error = __radix_tree_create(root, index, order, &node, &slot);
1271 	if (!error)
1272 		error = insert_entries(node, slot, item, order, true);
1273 	if (error > 0)
1274 		error = 0;
1275 
1276 	return error;
1277 }
1278 
1279 /**
1280  * radix_tree_split - Split an entry into smaller entries
1281  * @root: radix tree root
1282  * @index: An index within the large entry
1283  * @order: Order of new entries
1284  *
1285  * Call this function as the first step in replacing a multiorder entry
1286  * with several entries of lower order.  After this function returns,
1287  * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1288  * and call radix_tree_iter_replace() to set up each new entry.
1289  *
1290  * The tags from this entry are replicated to all the new entries.
1291  *
1292  * The radix tree should be locked against modification during the entire
1293  * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1294  * should prompt RCU walkers to restart the lookup from the root.
1295  */
1296 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1297 				unsigned order)
1298 {
1299 	struct radix_tree_node *parent, *node, *child;
1300 	void __rcu **slot;
1301 	unsigned int offset, end;
1302 	unsigned n, tag, tags = 0;
1303 	gfp_t gfp = root_gfp_mask(root);
1304 
1305 	if (!__radix_tree_lookup(root, index, &parent, &slot))
1306 		return -ENOENT;
1307 	if (!parent)
1308 		return -ENOENT;
1309 
1310 	offset = get_slot_offset(parent, slot);
1311 
1312 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1313 		if (tag_get(parent, tag, offset))
1314 			tags |= 1 << tag;
1315 
1316 	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1317 		if (!is_sibling_entry(parent,
1318 				rcu_dereference_raw(parent->slots[end])))
1319 			break;
1320 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1321 			if (tags & (1 << tag))
1322 				tag_set(parent, tag, end);
1323 		/* rcu_assign_pointer ensures tags are set before RETRY */
1324 		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1325 	}
1326 	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1327 	parent->exceptional -= (end - offset);
1328 
1329 	if (order == parent->shift)
1330 		return 0;
1331 	if (order > parent->shift) {
1332 		while (offset < end)
1333 			offset += insert_entries(parent, &parent->slots[offset],
1334 					RADIX_TREE_RETRY, order, true);
1335 		return 0;
1336 	}
1337 
1338 	node = parent;
1339 
1340 	for (;;) {
1341 		if (node->shift > order) {
1342 			child = radix_tree_node_alloc(gfp, node, root,
1343 					node->shift - RADIX_TREE_MAP_SHIFT,
1344 					offset, 0, 0);
1345 			if (!child)
1346 				goto nomem;
1347 			if (node != parent) {
1348 				node->count++;
1349 				rcu_assign_pointer(node->slots[offset],
1350 							node_to_entry(child));
1351 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1352 					if (tags & (1 << tag))
1353 						tag_set(node, tag, offset);
1354 			}
1355 
1356 			node = child;
1357 			offset = 0;
1358 			continue;
1359 		}
1360 
1361 		n = insert_entries(node, &node->slots[offset],
1362 					RADIX_TREE_RETRY, order, false);
1363 		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1364 
1365 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1366 			if (tags & (1 << tag))
1367 				tag_set(node, tag, offset);
1368 		offset += n;
1369 
1370 		while (offset == RADIX_TREE_MAP_SIZE) {
1371 			if (node == parent)
1372 				break;
1373 			offset = node->offset;
1374 			child = node;
1375 			node = node->parent;
1376 			rcu_assign_pointer(node->slots[offset],
1377 						node_to_entry(child));
1378 			offset++;
1379 		}
1380 		if ((node == parent) && (offset == end))
1381 			return 0;
1382 	}
1383 
1384  nomem:
1385 	/* Shouldn't happen; did user forget to preload? */
1386 	/* TODO: free all the allocated nodes */
1387 	WARN_ON(1);
1388 	return -ENOMEM;
1389 }
1390 #endif
1391 
1392 static void node_tag_set(struct radix_tree_root *root,
1393 				struct radix_tree_node *node,
1394 				unsigned int tag, unsigned int offset)
1395 {
1396 	while (node) {
1397 		if (tag_get(node, tag, offset))
1398 			return;
1399 		tag_set(node, tag, offset);
1400 		offset = node->offset;
1401 		node = node->parent;
1402 	}
1403 
1404 	if (!root_tag_get(root, tag))
1405 		root_tag_set(root, tag);
1406 }
1407 
1408 /**
1409  *	radix_tree_tag_set - set a tag on a radix tree node
1410  *	@root:		radix tree root
1411  *	@index:		index key
1412  *	@tag:		tag index
1413  *
1414  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1415  *	corresponding to @index in the radix tree.  From
1416  *	the root all the way down to the leaf node.
1417  *
1418  *	Returns the address of the tagged item.  Setting a tag on a not-present
1419  *	item is a bug.
1420  */
1421 void *radix_tree_tag_set(struct radix_tree_root *root,
1422 			unsigned long index, unsigned int tag)
1423 {
1424 	struct radix_tree_node *node, *parent;
1425 	unsigned long maxindex;
1426 
1427 	radix_tree_load_root(root, &node, &maxindex);
1428 	BUG_ON(index > maxindex);
1429 
1430 	while (radix_tree_is_internal_node(node)) {
1431 		unsigned offset;
1432 
1433 		parent = entry_to_node(node);
1434 		offset = radix_tree_descend(parent, &node, index);
1435 		BUG_ON(!node);
1436 
1437 		if (!tag_get(parent, tag, offset))
1438 			tag_set(parent, tag, offset);
1439 	}
1440 
1441 	/* set the root's tag bit */
1442 	if (!root_tag_get(root, tag))
1443 		root_tag_set(root, tag);
1444 
1445 	return node;
1446 }
1447 EXPORT_SYMBOL(radix_tree_tag_set);
1448 
1449 /**
1450  * radix_tree_iter_tag_set - set a tag on the current iterator entry
1451  * @root:	radix tree root
1452  * @iter:	iterator state
1453  * @tag:	tag to set
1454  */
1455 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1456 			const struct radix_tree_iter *iter, unsigned int tag)
1457 {
1458 	node_tag_set(root, iter->node, tag, iter_offset(iter));
1459 }
1460 
1461 static void node_tag_clear(struct radix_tree_root *root,
1462 				struct radix_tree_node *node,
1463 				unsigned int tag, unsigned int offset)
1464 {
1465 	while (node) {
1466 		if (!tag_get(node, tag, offset))
1467 			return;
1468 		tag_clear(node, tag, offset);
1469 		if (any_tag_set(node, tag))
1470 			return;
1471 
1472 		offset = node->offset;
1473 		node = node->parent;
1474 	}
1475 
1476 	/* clear the root's tag bit */
1477 	if (root_tag_get(root, tag))
1478 		root_tag_clear(root, tag);
1479 }
1480 
1481 /**
1482  *	radix_tree_tag_clear - clear a tag on a radix tree node
1483  *	@root:		radix tree root
1484  *	@index:		index key
1485  *	@tag:		tag index
1486  *
1487  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1488  *	corresponding to @index in the radix tree.  If this causes
1489  *	the leaf node to have no tags set then clear the tag in the
1490  *	next-to-leaf node, etc.
1491  *
1492  *	Returns the address of the tagged item on success, else NULL.  ie:
1493  *	has the same return value and semantics as radix_tree_lookup().
1494  */
1495 void *radix_tree_tag_clear(struct radix_tree_root *root,
1496 			unsigned long index, unsigned int tag)
1497 {
1498 	struct radix_tree_node *node, *parent;
1499 	unsigned long maxindex;
1500 	int uninitialized_var(offset);
1501 
1502 	radix_tree_load_root(root, &node, &maxindex);
1503 	if (index > maxindex)
1504 		return NULL;
1505 
1506 	parent = NULL;
1507 
1508 	while (radix_tree_is_internal_node(node)) {
1509 		parent = entry_to_node(node);
1510 		offset = radix_tree_descend(parent, &node, index);
1511 	}
1512 
1513 	if (node)
1514 		node_tag_clear(root, parent, tag, offset);
1515 
1516 	return node;
1517 }
1518 EXPORT_SYMBOL(radix_tree_tag_clear);
1519 
1520 /**
1521   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1522   * @root: radix tree root
1523   * @iter: iterator state
1524   * @tag: tag to clear
1525   */
1526 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1527 			const struct radix_tree_iter *iter, unsigned int tag)
1528 {
1529 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1530 }
1531 
1532 /**
1533  * radix_tree_tag_get - get a tag on a radix tree node
1534  * @root:		radix tree root
1535  * @index:		index key
1536  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1537  *
1538  * Return values:
1539  *
1540  *  0: tag not present or not set
1541  *  1: tag set
1542  *
1543  * Note that the return value of this function may not be relied on, even if
1544  * the RCU lock is held, unless tag modification and node deletion are excluded
1545  * from concurrency.
1546  */
1547 int radix_tree_tag_get(const struct radix_tree_root *root,
1548 			unsigned long index, unsigned int tag)
1549 {
1550 	struct radix_tree_node *node, *parent;
1551 	unsigned long maxindex;
1552 
1553 	if (!root_tag_get(root, tag))
1554 		return 0;
1555 
1556 	radix_tree_load_root(root, &node, &maxindex);
1557 	if (index > maxindex)
1558 		return 0;
1559 
1560 	while (radix_tree_is_internal_node(node)) {
1561 		unsigned offset;
1562 
1563 		parent = entry_to_node(node);
1564 		offset = radix_tree_descend(parent, &node, index);
1565 
1566 		if (!tag_get(parent, tag, offset))
1567 			return 0;
1568 		if (node == RADIX_TREE_RETRY)
1569 			break;
1570 	}
1571 
1572 	return 1;
1573 }
1574 EXPORT_SYMBOL(radix_tree_tag_get);
1575 
1576 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1577 					unsigned int shift)
1578 {
1579 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1580 	iter->shift = shift;
1581 #endif
1582 }
1583 
1584 /* Construct iter->tags bit-mask from node->tags[tag] array */
1585 static void set_iter_tags(struct radix_tree_iter *iter,
1586 				struct radix_tree_node *node, unsigned offset,
1587 				unsigned tag)
1588 {
1589 	unsigned tag_long = offset / BITS_PER_LONG;
1590 	unsigned tag_bit  = offset % BITS_PER_LONG;
1591 
1592 	if (!node) {
1593 		iter->tags = 1;
1594 		return;
1595 	}
1596 
1597 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1598 
1599 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1600 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1601 		/* Pick tags from next element */
1602 		if (tag_bit)
1603 			iter->tags |= node->tags[tag][tag_long + 1] <<
1604 						(BITS_PER_LONG - tag_bit);
1605 		/* Clip chunk size, here only BITS_PER_LONG tags */
1606 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1607 	}
1608 }
1609 
1610 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1611 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1612 			void __rcu **slot, struct radix_tree_iter *iter)
1613 {
1614 	void *sib = node_to_entry(slot - 1);
1615 
1616 	while (iter->index < iter->next_index) {
1617 		*nodep = rcu_dereference_raw(*slot);
1618 		if (*nodep && *nodep != sib)
1619 			return slot;
1620 		slot++;
1621 		iter->index = __radix_tree_iter_add(iter, 1);
1622 		iter->tags >>= 1;
1623 	}
1624 
1625 	*nodep = NULL;
1626 	return NULL;
1627 }
1628 
1629 void __rcu **__radix_tree_next_slot(void __rcu **slot,
1630 				struct radix_tree_iter *iter, unsigned flags)
1631 {
1632 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1633 	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1634 
1635 	slot = skip_siblings(&node, slot, iter);
1636 
1637 	while (radix_tree_is_internal_node(node)) {
1638 		unsigned offset;
1639 		unsigned long next_index;
1640 
1641 		if (node == RADIX_TREE_RETRY)
1642 			return slot;
1643 		node = entry_to_node(node);
1644 		iter->node = node;
1645 		iter->shift = node->shift;
1646 
1647 		if (flags & RADIX_TREE_ITER_TAGGED) {
1648 			offset = radix_tree_find_next_bit(node, tag, 0);
1649 			if (offset == RADIX_TREE_MAP_SIZE)
1650 				return NULL;
1651 			slot = &node->slots[offset];
1652 			iter->index = __radix_tree_iter_add(iter, offset);
1653 			set_iter_tags(iter, node, offset, tag);
1654 			node = rcu_dereference_raw(*slot);
1655 		} else {
1656 			offset = 0;
1657 			slot = &node->slots[0];
1658 			for (;;) {
1659 				node = rcu_dereference_raw(*slot);
1660 				if (node)
1661 					break;
1662 				slot++;
1663 				offset++;
1664 				if (offset == RADIX_TREE_MAP_SIZE)
1665 					return NULL;
1666 			}
1667 			iter->index = __radix_tree_iter_add(iter, offset);
1668 		}
1669 		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1670 			goto none;
1671 		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1672 		if (next_index < iter->next_index)
1673 			iter->next_index = next_index;
1674 	}
1675 
1676 	return slot;
1677  none:
1678 	iter->next_index = 0;
1679 	return NULL;
1680 }
1681 EXPORT_SYMBOL(__radix_tree_next_slot);
1682 #else
1683 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1684 			void __rcu **slot, struct radix_tree_iter *iter)
1685 {
1686 	return slot;
1687 }
1688 #endif
1689 
1690 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1691 					struct radix_tree_iter *iter)
1692 {
1693 	struct radix_tree_node *node;
1694 
1695 	slot++;
1696 	iter->index = __radix_tree_iter_add(iter, 1);
1697 	skip_siblings(&node, slot, iter);
1698 	iter->next_index = iter->index;
1699 	iter->tags = 0;
1700 	return NULL;
1701 }
1702 EXPORT_SYMBOL(radix_tree_iter_resume);
1703 
1704 /**
1705  * radix_tree_next_chunk - find next chunk of slots for iteration
1706  *
1707  * @root:	radix tree root
1708  * @iter:	iterator state
1709  * @flags:	RADIX_TREE_ITER_* flags and tag index
1710  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1711  */
1712 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1713 			     struct radix_tree_iter *iter, unsigned flags)
1714 {
1715 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1716 	struct radix_tree_node *node, *child;
1717 	unsigned long index, offset, maxindex;
1718 
1719 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1720 		return NULL;
1721 
1722 	/*
1723 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1724 	 * during iterating; it can be zero only at the beginning.
1725 	 * And we cannot overflow iter->next_index in a single step,
1726 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1727 	 *
1728 	 * This condition also used by radix_tree_next_slot() to stop
1729 	 * contiguous iterating, and forbid switching to the next chunk.
1730 	 */
1731 	index = iter->next_index;
1732 	if (!index && iter->index)
1733 		return NULL;
1734 
1735  restart:
1736 	radix_tree_load_root(root, &child, &maxindex);
1737 	if (index > maxindex)
1738 		return NULL;
1739 	if (!child)
1740 		return NULL;
1741 
1742 	if (!radix_tree_is_internal_node(child)) {
1743 		/* Single-slot tree */
1744 		iter->index = index;
1745 		iter->next_index = maxindex + 1;
1746 		iter->tags = 1;
1747 		iter->node = NULL;
1748 		__set_iter_shift(iter, 0);
1749 		return (void __rcu **)&root->rnode;
1750 	}
1751 
1752 	do {
1753 		node = entry_to_node(child);
1754 		offset = radix_tree_descend(node, &child, index);
1755 
1756 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1757 				!tag_get(node, tag, offset) : !child) {
1758 			/* Hole detected */
1759 			if (flags & RADIX_TREE_ITER_CONTIG)
1760 				return NULL;
1761 
1762 			if (flags & RADIX_TREE_ITER_TAGGED)
1763 				offset = radix_tree_find_next_bit(node, tag,
1764 						offset + 1);
1765 			else
1766 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1767 					void *slot = rcu_dereference_raw(
1768 							node->slots[offset]);
1769 					if (is_sibling_entry(node, slot))
1770 						continue;
1771 					if (slot)
1772 						break;
1773 				}
1774 			index &= ~node_maxindex(node);
1775 			index += offset << node->shift;
1776 			/* Overflow after ~0UL */
1777 			if (!index)
1778 				return NULL;
1779 			if (offset == RADIX_TREE_MAP_SIZE)
1780 				goto restart;
1781 			child = rcu_dereference_raw(node->slots[offset]);
1782 		}
1783 
1784 		if (!child)
1785 			goto restart;
1786 		if (child == RADIX_TREE_RETRY)
1787 			break;
1788 	} while (radix_tree_is_internal_node(child));
1789 
1790 	/* Update the iterator state */
1791 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1792 	iter->next_index = (index | node_maxindex(node)) + 1;
1793 	iter->node = node;
1794 	__set_iter_shift(iter, node->shift);
1795 
1796 	if (flags & RADIX_TREE_ITER_TAGGED)
1797 		set_iter_tags(iter, node, offset, tag);
1798 
1799 	return node->slots + offset;
1800 }
1801 EXPORT_SYMBOL(radix_tree_next_chunk);
1802 
1803 /**
1804  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1805  *	@root:		radix tree root
1806  *	@results:	where the results of the lookup are placed
1807  *	@first_index:	start the lookup from this key
1808  *	@max_items:	place up to this many items at *results
1809  *
1810  *	Performs an index-ascending scan of the tree for present items.  Places
1811  *	them at *@results and returns the number of items which were placed at
1812  *	*@results.
1813  *
1814  *	The implementation is naive.
1815  *
1816  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1817  *	rcu_read_lock. In this case, rather than the returned results being
1818  *	an atomic snapshot of the tree at a single point in time, the
1819  *	semantics of an RCU protected gang lookup are as though multiple
1820  *	radix_tree_lookups have been issued in individual locks, and results
1821  *	stored in 'results'.
1822  */
1823 unsigned int
1824 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1825 			unsigned long first_index, unsigned int max_items)
1826 {
1827 	struct radix_tree_iter iter;
1828 	void __rcu **slot;
1829 	unsigned int ret = 0;
1830 
1831 	if (unlikely(!max_items))
1832 		return 0;
1833 
1834 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1835 		results[ret] = rcu_dereference_raw(*slot);
1836 		if (!results[ret])
1837 			continue;
1838 		if (radix_tree_is_internal_node(results[ret])) {
1839 			slot = radix_tree_iter_retry(&iter);
1840 			continue;
1841 		}
1842 		if (++ret == max_items)
1843 			break;
1844 	}
1845 
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL(radix_tree_gang_lookup);
1849 
1850 /**
1851  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1852  *	@root:		radix tree root
1853  *	@results:	where the results of the lookup are placed
1854  *	@indices:	where their indices should be placed (but usually NULL)
1855  *	@first_index:	start the lookup from this key
1856  *	@max_items:	place up to this many items at *results
1857  *
1858  *	Performs an index-ascending scan of the tree for present items.  Places
1859  *	their slots at *@results and returns the number of items which were
1860  *	placed at *@results.
1861  *
1862  *	The implementation is naive.
1863  *
1864  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1865  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1866  *	protection, radix_tree_deref_slot may fail requiring a retry.
1867  */
1868 unsigned int
1869 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1870 			void __rcu ***results, unsigned long *indices,
1871 			unsigned long first_index, unsigned int max_items)
1872 {
1873 	struct radix_tree_iter iter;
1874 	void __rcu **slot;
1875 	unsigned int ret = 0;
1876 
1877 	if (unlikely(!max_items))
1878 		return 0;
1879 
1880 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1881 		results[ret] = slot;
1882 		if (indices)
1883 			indices[ret] = iter.index;
1884 		if (++ret == max_items)
1885 			break;
1886 	}
1887 
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1891 
1892 /**
1893  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1894  *	                             based on a tag
1895  *	@root:		radix tree root
1896  *	@results:	where the results of the lookup are placed
1897  *	@first_index:	start the lookup from this key
1898  *	@max_items:	place up to this many items at *results
1899  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1900  *
1901  *	Performs an index-ascending scan of the tree for present items which
1902  *	have the tag indexed by @tag set.  Places the items at *@results and
1903  *	returns the number of items which were placed at *@results.
1904  */
1905 unsigned int
1906 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1907 		unsigned long first_index, unsigned int max_items,
1908 		unsigned int tag)
1909 {
1910 	struct radix_tree_iter iter;
1911 	void __rcu **slot;
1912 	unsigned int ret = 0;
1913 
1914 	if (unlikely(!max_items))
1915 		return 0;
1916 
1917 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1918 		results[ret] = rcu_dereference_raw(*slot);
1919 		if (!results[ret])
1920 			continue;
1921 		if (radix_tree_is_internal_node(results[ret])) {
1922 			slot = radix_tree_iter_retry(&iter);
1923 			continue;
1924 		}
1925 		if (++ret == max_items)
1926 			break;
1927 	}
1928 
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1932 
1933 /**
1934  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1935  *					  radix tree based on a tag
1936  *	@root:		radix tree root
1937  *	@results:	where the results of the lookup are placed
1938  *	@first_index:	start the lookup from this key
1939  *	@max_items:	place up to this many items at *results
1940  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1941  *
1942  *	Performs an index-ascending scan of the tree for present items which
1943  *	have the tag indexed by @tag set.  Places the slots at *@results and
1944  *	returns the number of slots which were placed at *@results.
1945  */
1946 unsigned int
1947 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1948 		void __rcu ***results, unsigned long first_index,
1949 		unsigned int max_items, unsigned int tag)
1950 {
1951 	struct radix_tree_iter iter;
1952 	void __rcu **slot;
1953 	unsigned int ret = 0;
1954 
1955 	if (unlikely(!max_items))
1956 		return 0;
1957 
1958 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1959 		results[ret] = slot;
1960 		if (++ret == max_items)
1961 			break;
1962 	}
1963 
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1967 
1968 /**
1969  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1970  *	@root:		radix tree root
1971  *	@node:		node containing @index
1972  *	@update_node:	callback for changing leaf nodes
1973  *
1974  *	After clearing the slot at @index in @node from radix tree
1975  *	rooted at @root, call this function to attempt freeing the
1976  *	node and shrinking the tree.
1977  */
1978 void __radix_tree_delete_node(struct radix_tree_root *root,
1979 			      struct radix_tree_node *node,
1980 			      radix_tree_update_node_t update_node)
1981 {
1982 	delete_node(root, node, update_node);
1983 }
1984 
1985 static bool __radix_tree_delete(struct radix_tree_root *root,
1986 				struct radix_tree_node *node, void __rcu **slot)
1987 {
1988 	void *old = rcu_dereference_raw(*slot);
1989 	int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1990 	unsigned offset = get_slot_offset(node, slot);
1991 	int tag;
1992 
1993 	if (is_idr(root))
1994 		node_tag_set(root, node, IDR_FREE, offset);
1995 	else
1996 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1997 			node_tag_clear(root, node, tag, offset);
1998 
1999 	replace_slot(slot, NULL, node, -1, exceptional);
2000 	return node && delete_node(root, node, NULL);
2001 }
2002 
2003 /**
2004  * radix_tree_iter_delete - delete the entry at this iterator position
2005  * @root: radix tree root
2006  * @iter: iterator state
2007  * @slot: pointer to slot
2008  *
2009  * Delete the entry at the position currently pointed to by the iterator.
2010  * This may result in the current node being freed; if it is, the iterator
2011  * is advanced so that it will not reference the freed memory.  This
2012  * function may be called without any locking if there are no other threads
2013  * which can access this tree.
2014  */
2015 void radix_tree_iter_delete(struct radix_tree_root *root,
2016 				struct radix_tree_iter *iter, void __rcu **slot)
2017 {
2018 	if (__radix_tree_delete(root, iter->node, slot))
2019 		iter->index = iter->next_index;
2020 }
2021 EXPORT_SYMBOL(radix_tree_iter_delete);
2022 
2023 /**
2024  * radix_tree_delete_item - delete an item from a radix tree
2025  * @root: radix tree root
2026  * @index: index key
2027  * @item: expected item
2028  *
2029  * Remove @item at @index from the radix tree rooted at @root.
2030  *
2031  * Return: the deleted entry, or %NULL if it was not present
2032  * or the entry at the given @index was not @item.
2033  */
2034 void *radix_tree_delete_item(struct radix_tree_root *root,
2035 			     unsigned long index, void *item)
2036 {
2037 	struct radix_tree_node *node = NULL;
2038 	void __rcu **slot;
2039 	void *entry;
2040 
2041 	entry = __radix_tree_lookup(root, index, &node, &slot);
2042 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2043 						get_slot_offset(node, slot))))
2044 		return NULL;
2045 
2046 	if (item && entry != item)
2047 		return NULL;
2048 
2049 	__radix_tree_delete(root, node, slot);
2050 
2051 	return entry;
2052 }
2053 EXPORT_SYMBOL(radix_tree_delete_item);
2054 
2055 /**
2056  * radix_tree_delete - delete an entry from a radix tree
2057  * @root: radix tree root
2058  * @index: index key
2059  *
2060  * Remove the entry at @index from the radix tree rooted at @root.
2061  *
2062  * Return: The deleted entry, or %NULL if it was not present.
2063  */
2064 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2065 {
2066 	return radix_tree_delete_item(root, index, NULL);
2067 }
2068 EXPORT_SYMBOL(radix_tree_delete);
2069 
2070 void radix_tree_clear_tags(struct radix_tree_root *root,
2071 			   struct radix_tree_node *node,
2072 			   void __rcu **slot)
2073 {
2074 	if (node) {
2075 		unsigned int tag, offset = get_slot_offset(node, slot);
2076 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2077 			node_tag_clear(root, node, tag, offset);
2078 	} else {
2079 		root_tag_clear_all(root);
2080 	}
2081 }
2082 
2083 /**
2084  *	radix_tree_tagged - test whether any items in the tree are tagged
2085  *	@root:		radix tree root
2086  *	@tag:		tag to test
2087  */
2088 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2089 {
2090 	return root_tag_get(root, tag);
2091 }
2092 EXPORT_SYMBOL(radix_tree_tagged);
2093 
2094 /**
2095  * idr_preload - preload for idr_alloc()
2096  * @gfp_mask: allocation mask to use for preloading
2097  *
2098  * Preallocate memory to use for the next call to idr_alloc().  This function
2099  * returns with preemption disabled.  It will be enabled by idr_preload_end().
2100  */
2101 void idr_preload(gfp_t gfp_mask)
2102 {
2103 	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2104 		preempt_disable();
2105 }
2106 EXPORT_SYMBOL(idr_preload);
2107 
2108 /**
2109  * ida_pre_get - reserve resources for ida allocation
2110  * @ida: ida handle
2111  * @gfp: memory allocation flags
2112  *
2113  * This function should be called before calling ida_get_new_above().  If it
2114  * is unable to allocate memory, it will return %0.  On success, it returns %1.
2115  */
2116 int ida_pre_get(struct ida *ida, gfp_t gfp)
2117 {
2118 	/*
2119 	 * The IDA API has no preload_end() equivalent.  Instead,
2120 	 * ida_get_new() can return -EAGAIN, prompting the caller
2121 	 * to return to the ida_pre_get() step.
2122 	 */
2123 	if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2124 		preempt_enable();
2125 
2126 	if (!this_cpu_read(ida_bitmap)) {
2127 		struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2128 		if (!bitmap)
2129 			return 0;
2130 		if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2131 			kfree(bitmap);
2132 	}
2133 
2134 	return 1;
2135 }
2136 EXPORT_SYMBOL(ida_pre_get);
2137 
2138 void __rcu **idr_get_free_cmn(struct radix_tree_root *root,
2139 			      struct radix_tree_iter *iter, gfp_t gfp,
2140 			      unsigned long max)
2141 {
2142 	struct radix_tree_node *node = NULL, *child;
2143 	void __rcu **slot = (void __rcu **)&root->rnode;
2144 	unsigned long maxindex, start = iter->next_index;
2145 	unsigned int shift, offset = 0;
2146 
2147  grow:
2148 	shift = radix_tree_load_root(root, &child, &maxindex);
2149 	if (!radix_tree_tagged(root, IDR_FREE))
2150 		start = max(start, maxindex + 1);
2151 	if (start > max)
2152 		return ERR_PTR(-ENOSPC);
2153 
2154 	if (start > maxindex) {
2155 		int error = radix_tree_extend(root, gfp, start, shift);
2156 		if (error < 0)
2157 			return ERR_PTR(error);
2158 		shift = error;
2159 		child = rcu_dereference_raw(root->rnode);
2160 	}
2161 
2162 	while (shift) {
2163 		shift -= RADIX_TREE_MAP_SHIFT;
2164 		if (child == NULL) {
2165 			/* Have to add a child node.  */
2166 			child = radix_tree_node_alloc(gfp, node, root, shift,
2167 							offset, 0, 0);
2168 			if (!child)
2169 				return ERR_PTR(-ENOMEM);
2170 			all_tag_set(child, IDR_FREE);
2171 			rcu_assign_pointer(*slot, node_to_entry(child));
2172 			if (node)
2173 				node->count++;
2174 		} else if (!radix_tree_is_internal_node(child))
2175 			break;
2176 
2177 		node = entry_to_node(child);
2178 		offset = radix_tree_descend(node, &child, start);
2179 		if (!tag_get(node, IDR_FREE, offset)) {
2180 			offset = radix_tree_find_next_bit(node, IDR_FREE,
2181 							offset + 1);
2182 			start = next_index(start, node, offset);
2183 			if (start > max)
2184 				return ERR_PTR(-ENOSPC);
2185 			while (offset == RADIX_TREE_MAP_SIZE) {
2186 				offset = node->offset + 1;
2187 				node = node->parent;
2188 				if (!node)
2189 					goto grow;
2190 				shift = node->shift;
2191 			}
2192 			child = rcu_dereference_raw(node->slots[offset]);
2193 		}
2194 		slot = &node->slots[offset];
2195 	}
2196 
2197 	iter->index = start;
2198 	if (node)
2199 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2200 	else
2201 		iter->next_index = 1;
2202 	iter->node = node;
2203 	__set_iter_shift(iter, shift);
2204 	set_iter_tags(iter, node, offset, IDR_FREE);
2205 
2206 	return slot;
2207 }
2208 
2209 /**
2210  * idr_destroy - release all internal memory from an IDR
2211  * @idr: idr handle
2212  *
2213  * After this function is called, the IDR is empty, and may be reused or
2214  * the data structure containing it may be freed.
2215  *
2216  * A typical clean-up sequence for objects stored in an idr tree will use
2217  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2218  * free the memory used to keep track of those objects.
2219  */
2220 void idr_destroy(struct idr *idr)
2221 {
2222 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2223 	if (radix_tree_is_internal_node(node))
2224 		radix_tree_free_nodes(node);
2225 	idr->idr_rt.rnode = NULL;
2226 	root_tag_set(&idr->idr_rt, IDR_FREE);
2227 }
2228 EXPORT_SYMBOL(idr_destroy);
2229 
2230 static void
2231 radix_tree_node_ctor(void *arg)
2232 {
2233 	struct radix_tree_node *node = arg;
2234 
2235 	memset(node, 0, sizeof(*node));
2236 	INIT_LIST_HEAD(&node->private_list);
2237 }
2238 
2239 static __init unsigned long __maxindex(unsigned int height)
2240 {
2241 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2242 	int shift = RADIX_TREE_INDEX_BITS - width;
2243 
2244 	if (shift < 0)
2245 		return ~0UL;
2246 	if (shift >= BITS_PER_LONG)
2247 		return 0UL;
2248 	return ~0UL >> shift;
2249 }
2250 
2251 static __init void radix_tree_init_maxnodes(void)
2252 {
2253 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2254 	unsigned int i, j;
2255 
2256 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2257 		height_to_maxindex[i] = __maxindex(i);
2258 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2259 		for (j = i; j > 0; j--)
2260 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2261 	}
2262 }
2263 
2264 static int radix_tree_cpu_dead(unsigned int cpu)
2265 {
2266 	struct radix_tree_preload *rtp;
2267 	struct radix_tree_node *node;
2268 
2269 	/* Free per-cpu pool of preloaded nodes */
2270 	rtp = &per_cpu(radix_tree_preloads, cpu);
2271 	while (rtp->nr) {
2272 		node = rtp->nodes;
2273 		rtp->nodes = node->parent;
2274 		kmem_cache_free(radix_tree_node_cachep, node);
2275 		rtp->nr--;
2276 	}
2277 	kfree(per_cpu(ida_bitmap, cpu));
2278 	per_cpu(ida_bitmap, cpu) = NULL;
2279 	return 0;
2280 }
2281 
2282 void __init radix_tree_init(void)
2283 {
2284 	int ret;
2285 
2286 	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2287 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2288 			sizeof(struct radix_tree_node), 0,
2289 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2290 			radix_tree_node_ctor);
2291 	radix_tree_init_maxnodes();
2292 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2293 					NULL, radix_tree_cpu_dead);
2294 	WARN_ON(ret < 0);
2295 }
2296