1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2, or (at 11 * your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/errno.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/radix-tree.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/cpu.h> 32 #include <linux/string.h> 33 #include <linux/bitops.h> 34 #include <linux/rcupdate.h> 35 36 37 #ifdef __KERNEL__ 38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 39 #else 40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */ 41 #endif 42 43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 45 46 #define RADIX_TREE_TAG_LONGS \ 47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 48 49 struct radix_tree_node { 50 unsigned int height; /* Height from the bottom */ 51 unsigned int count; 52 union { 53 struct radix_tree_node *parent; /* Used when ascending tree */ 54 struct rcu_head rcu_head; /* Used when freeing node */ 55 }; 56 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 57 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 58 }; 59 60 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 62 RADIX_TREE_MAP_SHIFT)) 63 64 /* 65 * The height_to_maxindex array needs to be one deeper than the maximum 66 * path as height 0 holds only 1 entry. 67 */ 68 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly; 69 70 /* 71 * Radix tree node cache. 72 */ 73 static struct kmem_cache *radix_tree_node_cachep; 74 75 /* 76 * The radix tree is variable-height, so an insert operation not only has 77 * to build the branch to its corresponding item, it also has to build the 78 * branch to existing items if the size has to be increased (by 79 * radix_tree_extend). 80 * 81 * The worst case is a zero height tree with just a single item at index 0, 82 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 83 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 84 * Hence: 85 */ 86 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 87 88 /* 89 * Per-cpu pool of preloaded nodes 90 */ 91 struct radix_tree_preload { 92 int nr; 93 struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE]; 94 }; 95 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 96 97 static inline void *ptr_to_indirect(void *ptr) 98 { 99 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR); 100 } 101 102 static inline void *indirect_to_ptr(void *ptr) 103 { 104 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR); 105 } 106 107 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 108 { 109 return root->gfp_mask & __GFP_BITS_MASK; 110 } 111 112 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 113 int offset) 114 { 115 __set_bit(offset, node->tags[tag]); 116 } 117 118 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 119 int offset) 120 { 121 __clear_bit(offset, node->tags[tag]); 122 } 123 124 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 125 int offset) 126 { 127 return test_bit(offset, node->tags[tag]); 128 } 129 130 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 131 { 132 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 133 } 134 135 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag) 136 { 137 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 138 } 139 140 static inline void root_tag_clear_all(struct radix_tree_root *root) 141 { 142 root->gfp_mask &= __GFP_BITS_MASK; 143 } 144 145 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 146 { 147 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 148 } 149 150 /* 151 * Returns 1 if any slot in the node has this tag set. 152 * Otherwise returns 0. 153 */ 154 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 155 { 156 int idx; 157 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 158 if (node->tags[tag][idx]) 159 return 1; 160 } 161 return 0; 162 } 163 164 /** 165 * radix_tree_find_next_bit - find the next set bit in a memory region 166 * 167 * @addr: The address to base the search on 168 * @size: The bitmap size in bits 169 * @offset: The bitnumber to start searching at 170 * 171 * Unrollable variant of find_next_bit() for constant size arrays. 172 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 173 * Returns next bit offset, or size if nothing found. 174 */ 175 static __always_inline unsigned long 176 radix_tree_find_next_bit(const unsigned long *addr, 177 unsigned long size, unsigned long offset) 178 { 179 if (!__builtin_constant_p(size)) 180 return find_next_bit(addr, size, offset); 181 182 if (offset < size) { 183 unsigned long tmp; 184 185 addr += offset / BITS_PER_LONG; 186 tmp = *addr >> (offset % BITS_PER_LONG); 187 if (tmp) 188 return __ffs(tmp) + offset; 189 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 190 while (offset < size) { 191 tmp = *++addr; 192 if (tmp) 193 return __ffs(tmp) + offset; 194 offset += BITS_PER_LONG; 195 } 196 } 197 return size; 198 } 199 200 /* 201 * This assumes that the caller has performed appropriate preallocation, and 202 * that the caller has pinned this thread of control to the current CPU. 203 */ 204 static struct radix_tree_node * 205 radix_tree_node_alloc(struct radix_tree_root *root) 206 { 207 struct radix_tree_node *ret = NULL; 208 gfp_t gfp_mask = root_gfp_mask(root); 209 210 if (!(gfp_mask & __GFP_WAIT)) { 211 struct radix_tree_preload *rtp; 212 213 /* 214 * Provided the caller has preloaded here, we will always 215 * succeed in getting a node here (and never reach 216 * kmem_cache_alloc) 217 */ 218 rtp = &__get_cpu_var(radix_tree_preloads); 219 if (rtp->nr) { 220 ret = rtp->nodes[rtp->nr - 1]; 221 rtp->nodes[rtp->nr - 1] = NULL; 222 rtp->nr--; 223 } 224 } 225 if (ret == NULL) 226 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 227 228 BUG_ON(radix_tree_is_indirect_ptr(ret)); 229 return ret; 230 } 231 232 static void radix_tree_node_rcu_free(struct rcu_head *head) 233 { 234 struct radix_tree_node *node = 235 container_of(head, struct radix_tree_node, rcu_head); 236 int i; 237 238 /* 239 * must only free zeroed nodes into the slab. radix_tree_shrink 240 * can leave us with a non-NULL entry in the first slot, so clear 241 * that here to make sure. 242 */ 243 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 244 tag_clear(node, i, 0); 245 246 node->slots[0] = NULL; 247 node->count = 0; 248 249 kmem_cache_free(radix_tree_node_cachep, node); 250 } 251 252 static inline void 253 radix_tree_node_free(struct radix_tree_node *node) 254 { 255 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 256 } 257 258 /* 259 * Load up this CPU's radix_tree_node buffer with sufficient objects to 260 * ensure that the addition of a single element in the tree cannot fail. On 261 * success, return zero, with preemption disabled. On error, return -ENOMEM 262 * with preemption not disabled. 263 * 264 * To make use of this facility, the radix tree must be initialised without 265 * __GFP_WAIT being passed to INIT_RADIX_TREE(). 266 */ 267 int radix_tree_preload(gfp_t gfp_mask) 268 { 269 struct radix_tree_preload *rtp; 270 struct radix_tree_node *node; 271 int ret = -ENOMEM; 272 273 preempt_disable(); 274 rtp = &__get_cpu_var(radix_tree_preloads); 275 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) { 276 preempt_enable(); 277 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 278 if (node == NULL) 279 goto out; 280 preempt_disable(); 281 rtp = &__get_cpu_var(radix_tree_preloads); 282 if (rtp->nr < ARRAY_SIZE(rtp->nodes)) 283 rtp->nodes[rtp->nr++] = node; 284 else 285 kmem_cache_free(radix_tree_node_cachep, node); 286 } 287 ret = 0; 288 out: 289 return ret; 290 } 291 EXPORT_SYMBOL(radix_tree_preload); 292 293 /* 294 * Return the maximum key which can be store into a 295 * radix tree with height HEIGHT. 296 */ 297 static inline unsigned long radix_tree_maxindex(unsigned int height) 298 { 299 return height_to_maxindex[height]; 300 } 301 302 /* 303 * Extend a radix tree so it can store key @index. 304 */ 305 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index) 306 { 307 struct radix_tree_node *node; 308 struct radix_tree_node *slot; 309 unsigned int height; 310 int tag; 311 312 /* Figure out what the height should be. */ 313 height = root->height + 1; 314 while (index > radix_tree_maxindex(height)) 315 height++; 316 317 if (root->rnode == NULL) { 318 root->height = height; 319 goto out; 320 } 321 322 do { 323 unsigned int newheight; 324 if (!(node = radix_tree_node_alloc(root))) 325 return -ENOMEM; 326 327 /* Propagate the aggregated tag info into the new root */ 328 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 329 if (root_tag_get(root, tag)) 330 tag_set(node, tag, 0); 331 } 332 333 /* Increase the height. */ 334 newheight = root->height+1; 335 node->height = newheight; 336 node->count = 1; 337 node->parent = NULL; 338 slot = root->rnode; 339 if (newheight > 1) { 340 slot = indirect_to_ptr(slot); 341 slot->parent = node; 342 } 343 node->slots[0] = slot; 344 node = ptr_to_indirect(node); 345 rcu_assign_pointer(root->rnode, node); 346 root->height = newheight; 347 } while (height > root->height); 348 out: 349 return 0; 350 } 351 352 /** 353 * radix_tree_insert - insert into a radix tree 354 * @root: radix tree root 355 * @index: index key 356 * @item: item to insert 357 * 358 * Insert an item into the radix tree at position @index. 359 */ 360 int radix_tree_insert(struct radix_tree_root *root, 361 unsigned long index, void *item) 362 { 363 struct radix_tree_node *node = NULL, *slot; 364 unsigned int height, shift; 365 int offset; 366 int error; 367 368 BUG_ON(radix_tree_is_indirect_ptr(item)); 369 370 /* Make sure the tree is high enough. */ 371 if (index > radix_tree_maxindex(root->height)) { 372 error = radix_tree_extend(root, index); 373 if (error) 374 return error; 375 } 376 377 slot = indirect_to_ptr(root->rnode); 378 379 height = root->height; 380 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 381 382 offset = 0; /* uninitialised var warning */ 383 while (height > 0) { 384 if (slot == NULL) { 385 /* Have to add a child node. */ 386 if (!(slot = radix_tree_node_alloc(root))) 387 return -ENOMEM; 388 slot->height = height; 389 slot->parent = node; 390 if (node) { 391 rcu_assign_pointer(node->slots[offset], slot); 392 node->count++; 393 } else 394 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot)); 395 } 396 397 /* Go a level down */ 398 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 399 node = slot; 400 slot = node->slots[offset]; 401 shift -= RADIX_TREE_MAP_SHIFT; 402 height--; 403 } 404 405 if (slot != NULL) 406 return -EEXIST; 407 408 if (node) { 409 node->count++; 410 rcu_assign_pointer(node->slots[offset], item); 411 BUG_ON(tag_get(node, 0, offset)); 412 BUG_ON(tag_get(node, 1, offset)); 413 } else { 414 rcu_assign_pointer(root->rnode, item); 415 BUG_ON(root_tag_get(root, 0)); 416 BUG_ON(root_tag_get(root, 1)); 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(radix_tree_insert); 422 423 /* 424 * is_slot == 1 : search for the slot. 425 * is_slot == 0 : search for the node. 426 */ 427 static void *radix_tree_lookup_element(struct radix_tree_root *root, 428 unsigned long index, int is_slot) 429 { 430 unsigned int height, shift; 431 struct radix_tree_node *node, **slot; 432 433 node = rcu_dereference_raw(root->rnode); 434 if (node == NULL) 435 return NULL; 436 437 if (!radix_tree_is_indirect_ptr(node)) { 438 if (index > 0) 439 return NULL; 440 return is_slot ? (void *)&root->rnode : node; 441 } 442 node = indirect_to_ptr(node); 443 444 height = node->height; 445 if (index > radix_tree_maxindex(height)) 446 return NULL; 447 448 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 449 450 do { 451 slot = (struct radix_tree_node **) 452 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK)); 453 node = rcu_dereference_raw(*slot); 454 if (node == NULL) 455 return NULL; 456 457 shift -= RADIX_TREE_MAP_SHIFT; 458 height--; 459 } while (height > 0); 460 461 return is_slot ? (void *)slot : indirect_to_ptr(node); 462 } 463 464 /** 465 * radix_tree_lookup_slot - lookup a slot in a radix tree 466 * @root: radix tree root 467 * @index: index key 468 * 469 * Returns: the slot corresponding to the position @index in the 470 * radix tree @root. This is useful for update-if-exists operations. 471 * 472 * This function can be called under rcu_read_lock iff the slot is not 473 * modified by radix_tree_replace_slot, otherwise it must be called 474 * exclusive from other writers. Any dereference of the slot must be done 475 * using radix_tree_deref_slot. 476 */ 477 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 478 { 479 return (void **)radix_tree_lookup_element(root, index, 1); 480 } 481 EXPORT_SYMBOL(radix_tree_lookup_slot); 482 483 /** 484 * radix_tree_lookup - perform lookup operation on a radix tree 485 * @root: radix tree root 486 * @index: index key 487 * 488 * Lookup the item at the position @index in the radix tree @root. 489 * 490 * This function can be called under rcu_read_lock, however the caller 491 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 492 * them safely). No RCU barriers are required to access or modify the 493 * returned item, however. 494 */ 495 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 496 { 497 return radix_tree_lookup_element(root, index, 0); 498 } 499 EXPORT_SYMBOL(radix_tree_lookup); 500 501 /** 502 * radix_tree_tag_set - set a tag on a radix tree node 503 * @root: radix tree root 504 * @index: index key 505 * @tag: tag index 506 * 507 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 508 * corresponding to @index in the radix tree. From 509 * the root all the way down to the leaf node. 510 * 511 * Returns the address of the tagged item. Setting a tag on a not-present 512 * item is a bug. 513 */ 514 void *radix_tree_tag_set(struct radix_tree_root *root, 515 unsigned long index, unsigned int tag) 516 { 517 unsigned int height, shift; 518 struct radix_tree_node *slot; 519 520 height = root->height; 521 BUG_ON(index > radix_tree_maxindex(height)); 522 523 slot = indirect_to_ptr(root->rnode); 524 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 525 526 while (height > 0) { 527 int offset; 528 529 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 530 if (!tag_get(slot, tag, offset)) 531 tag_set(slot, tag, offset); 532 slot = slot->slots[offset]; 533 BUG_ON(slot == NULL); 534 shift -= RADIX_TREE_MAP_SHIFT; 535 height--; 536 } 537 538 /* set the root's tag bit */ 539 if (slot && !root_tag_get(root, tag)) 540 root_tag_set(root, tag); 541 542 return slot; 543 } 544 EXPORT_SYMBOL(radix_tree_tag_set); 545 546 /** 547 * radix_tree_tag_clear - clear a tag on a radix tree node 548 * @root: radix tree root 549 * @index: index key 550 * @tag: tag index 551 * 552 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 553 * corresponding to @index in the radix tree. If 554 * this causes the leaf node to have no tags set then clear the tag in the 555 * next-to-leaf node, etc. 556 * 557 * Returns the address of the tagged item on success, else NULL. ie: 558 * has the same return value and semantics as radix_tree_lookup(). 559 */ 560 void *radix_tree_tag_clear(struct radix_tree_root *root, 561 unsigned long index, unsigned int tag) 562 { 563 struct radix_tree_node *node = NULL; 564 struct radix_tree_node *slot = NULL; 565 unsigned int height, shift; 566 int uninitialized_var(offset); 567 568 height = root->height; 569 if (index > radix_tree_maxindex(height)) 570 goto out; 571 572 shift = height * RADIX_TREE_MAP_SHIFT; 573 slot = indirect_to_ptr(root->rnode); 574 575 while (shift) { 576 if (slot == NULL) 577 goto out; 578 579 shift -= RADIX_TREE_MAP_SHIFT; 580 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 581 node = slot; 582 slot = slot->slots[offset]; 583 } 584 585 if (slot == NULL) 586 goto out; 587 588 while (node) { 589 if (!tag_get(node, tag, offset)) 590 goto out; 591 tag_clear(node, tag, offset); 592 if (any_tag_set(node, tag)) 593 goto out; 594 595 index >>= RADIX_TREE_MAP_SHIFT; 596 offset = index & RADIX_TREE_MAP_MASK; 597 node = node->parent; 598 } 599 600 /* clear the root's tag bit */ 601 if (root_tag_get(root, tag)) 602 root_tag_clear(root, tag); 603 604 out: 605 return slot; 606 } 607 EXPORT_SYMBOL(radix_tree_tag_clear); 608 609 /** 610 * radix_tree_tag_get - get a tag on a radix tree node 611 * @root: radix tree root 612 * @index: index key 613 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 614 * 615 * Return values: 616 * 617 * 0: tag not present or not set 618 * 1: tag set 619 * 620 * Note that the return value of this function may not be relied on, even if 621 * the RCU lock is held, unless tag modification and node deletion are excluded 622 * from concurrency. 623 */ 624 int radix_tree_tag_get(struct radix_tree_root *root, 625 unsigned long index, unsigned int tag) 626 { 627 unsigned int height, shift; 628 struct radix_tree_node *node; 629 630 /* check the root's tag bit */ 631 if (!root_tag_get(root, tag)) 632 return 0; 633 634 node = rcu_dereference_raw(root->rnode); 635 if (node == NULL) 636 return 0; 637 638 if (!radix_tree_is_indirect_ptr(node)) 639 return (index == 0); 640 node = indirect_to_ptr(node); 641 642 height = node->height; 643 if (index > radix_tree_maxindex(height)) 644 return 0; 645 646 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 647 648 for ( ; ; ) { 649 int offset; 650 651 if (node == NULL) 652 return 0; 653 654 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 655 if (!tag_get(node, tag, offset)) 656 return 0; 657 if (height == 1) 658 return 1; 659 node = rcu_dereference_raw(node->slots[offset]); 660 shift -= RADIX_TREE_MAP_SHIFT; 661 height--; 662 } 663 } 664 EXPORT_SYMBOL(radix_tree_tag_get); 665 666 /** 667 * radix_tree_next_chunk - find next chunk of slots for iteration 668 * 669 * @root: radix tree root 670 * @iter: iterator state 671 * @flags: RADIX_TREE_ITER_* flags and tag index 672 * Returns: pointer to chunk first slot, or NULL if iteration is over 673 */ 674 void **radix_tree_next_chunk(struct radix_tree_root *root, 675 struct radix_tree_iter *iter, unsigned flags) 676 { 677 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK; 678 struct radix_tree_node *rnode, *node; 679 unsigned long index, offset; 680 681 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 682 return NULL; 683 684 /* 685 * Catch next_index overflow after ~0UL. iter->index never overflows 686 * during iterating; it can be zero only at the beginning. 687 * And we cannot overflow iter->next_index in a single step, 688 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 689 */ 690 index = iter->next_index; 691 if (!index && iter->index) 692 return NULL; 693 694 rnode = rcu_dereference_raw(root->rnode); 695 if (radix_tree_is_indirect_ptr(rnode)) { 696 rnode = indirect_to_ptr(rnode); 697 } else if (rnode && !index) { 698 /* Single-slot tree */ 699 iter->index = 0; 700 iter->next_index = 1; 701 iter->tags = 1; 702 return (void **)&root->rnode; 703 } else 704 return NULL; 705 706 restart: 707 shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT; 708 offset = index >> shift; 709 710 /* Index outside of the tree */ 711 if (offset >= RADIX_TREE_MAP_SIZE) 712 return NULL; 713 714 node = rnode; 715 while (1) { 716 if ((flags & RADIX_TREE_ITER_TAGGED) ? 717 !test_bit(offset, node->tags[tag]) : 718 !node->slots[offset]) { 719 /* Hole detected */ 720 if (flags & RADIX_TREE_ITER_CONTIG) 721 return NULL; 722 723 if (flags & RADIX_TREE_ITER_TAGGED) 724 offset = radix_tree_find_next_bit( 725 node->tags[tag], 726 RADIX_TREE_MAP_SIZE, 727 offset + 1); 728 else 729 while (++offset < RADIX_TREE_MAP_SIZE) { 730 if (node->slots[offset]) 731 break; 732 } 733 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1); 734 index += offset << shift; 735 /* Overflow after ~0UL */ 736 if (!index) 737 return NULL; 738 if (offset == RADIX_TREE_MAP_SIZE) 739 goto restart; 740 } 741 742 /* This is leaf-node */ 743 if (!shift) 744 break; 745 746 node = rcu_dereference_raw(node->slots[offset]); 747 if (node == NULL) 748 goto restart; 749 shift -= RADIX_TREE_MAP_SHIFT; 750 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 751 } 752 753 /* Update the iterator state */ 754 iter->index = index; 755 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1; 756 757 /* Construct iter->tags bit-mask from node->tags[tag] array */ 758 if (flags & RADIX_TREE_ITER_TAGGED) { 759 unsigned tag_long, tag_bit; 760 761 tag_long = offset / BITS_PER_LONG; 762 tag_bit = offset % BITS_PER_LONG; 763 iter->tags = node->tags[tag][tag_long] >> tag_bit; 764 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 765 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 766 /* Pick tags from next element */ 767 if (tag_bit) 768 iter->tags |= node->tags[tag][tag_long + 1] << 769 (BITS_PER_LONG - tag_bit); 770 /* Clip chunk size, here only BITS_PER_LONG tags */ 771 iter->next_index = index + BITS_PER_LONG; 772 } 773 } 774 775 return node->slots + offset; 776 } 777 EXPORT_SYMBOL(radix_tree_next_chunk); 778 779 /** 780 * radix_tree_range_tag_if_tagged - for each item in given range set given 781 * tag if item has another tag set 782 * @root: radix tree root 783 * @first_indexp: pointer to a starting index of a range to scan 784 * @last_index: last index of a range to scan 785 * @nr_to_tag: maximum number items to tag 786 * @iftag: tag index to test 787 * @settag: tag index to set if tested tag is set 788 * 789 * This function scans range of radix tree from first_index to last_index 790 * (inclusive). For each item in the range if iftag is set, the function sets 791 * also settag. The function stops either after tagging nr_to_tag items or 792 * after reaching last_index. 793 * 794 * The tags must be set from the leaf level only and propagated back up the 795 * path to the root. We must do this so that we resolve the full path before 796 * setting any tags on intermediate nodes. If we set tags as we descend, then 797 * we can get to the leaf node and find that the index that has the iftag 798 * set is outside the range we are scanning. This reults in dangling tags and 799 * can lead to problems with later tag operations (e.g. livelocks on lookups). 800 * 801 * The function returns number of leaves where the tag was set and sets 802 * *first_indexp to the first unscanned index. 803 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 804 * be prepared to handle that. 805 */ 806 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 807 unsigned long *first_indexp, unsigned long last_index, 808 unsigned long nr_to_tag, 809 unsigned int iftag, unsigned int settag) 810 { 811 unsigned int height = root->height; 812 struct radix_tree_node *node = NULL; 813 struct radix_tree_node *slot; 814 unsigned int shift; 815 unsigned long tagged = 0; 816 unsigned long index = *first_indexp; 817 818 last_index = min(last_index, radix_tree_maxindex(height)); 819 if (index > last_index) 820 return 0; 821 if (!nr_to_tag) 822 return 0; 823 if (!root_tag_get(root, iftag)) { 824 *first_indexp = last_index + 1; 825 return 0; 826 } 827 if (height == 0) { 828 *first_indexp = last_index + 1; 829 root_tag_set(root, settag); 830 return 1; 831 } 832 833 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 834 slot = indirect_to_ptr(root->rnode); 835 836 for (;;) { 837 unsigned long upindex; 838 int offset; 839 840 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 841 if (!slot->slots[offset]) 842 goto next; 843 if (!tag_get(slot, iftag, offset)) 844 goto next; 845 if (shift) { 846 /* Go down one level */ 847 shift -= RADIX_TREE_MAP_SHIFT; 848 node = slot; 849 slot = slot->slots[offset]; 850 continue; 851 } 852 853 /* tag the leaf */ 854 tagged++; 855 tag_set(slot, settag, offset); 856 857 /* walk back up the path tagging interior nodes */ 858 upindex = index; 859 while (node) { 860 upindex >>= RADIX_TREE_MAP_SHIFT; 861 offset = upindex & RADIX_TREE_MAP_MASK; 862 863 /* stop if we find a node with the tag already set */ 864 if (tag_get(node, settag, offset)) 865 break; 866 tag_set(node, settag, offset); 867 node = node->parent; 868 } 869 870 /* 871 * Small optimization: now clear that node pointer. 872 * Since all of this slot's ancestors now have the tag set 873 * from setting it above, we have no further need to walk 874 * back up the tree setting tags, until we update slot to 875 * point to another radix_tree_node. 876 */ 877 node = NULL; 878 879 next: 880 /* Go to next item at level determined by 'shift' */ 881 index = ((index >> shift) + 1) << shift; 882 /* Overflow can happen when last_index is ~0UL... */ 883 if (index > last_index || !index) 884 break; 885 if (tagged >= nr_to_tag) 886 break; 887 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) { 888 /* 889 * We've fully scanned this node. Go up. Because 890 * last_index is guaranteed to be in the tree, what 891 * we do below cannot wander astray. 892 */ 893 slot = slot->parent; 894 shift += RADIX_TREE_MAP_SHIFT; 895 } 896 } 897 /* 898 * We need not to tag the root tag if there is no tag which is set with 899 * settag within the range from *first_indexp to last_index. 900 */ 901 if (tagged > 0) 902 root_tag_set(root, settag); 903 *first_indexp = index; 904 905 return tagged; 906 } 907 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 908 909 910 /** 911 * radix_tree_next_hole - find the next hole (not-present entry) 912 * @root: tree root 913 * @index: index key 914 * @max_scan: maximum range to search 915 * 916 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest 917 * indexed hole. 918 * 919 * Returns: the index of the hole if found, otherwise returns an index 920 * outside of the set specified (in which case 'return - index >= max_scan' 921 * will be true). In rare cases of index wrap-around, 0 will be returned. 922 * 923 * radix_tree_next_hole may be called under rcu_read_lock. However, like 924 * radix_tree_gang_lookup, this will not atomically search a snapshot of 925 * the tree at a single point in time. For example, if a hole is created 926 * at index 5, then subsequently a hole is created at index 10, 927 * radix_tree_next_hole covering both indexes may return 10 if called 928 * under rcu_read_lock. 929 */ 930 unsigned long radix_tree_next_hole(struct radix_tree_root *root, 931 unsigned long index, unsigned long max_scan) 932 { 933 unsigned long i; 934 935 for (i = 0; i < max_scan; i++) { 936 if (!radix_tree_lookup(root, index)) 937 break; 938 index++; 939 if (index == 0) 940 break; 941 } 942 943 return index; 944 } 945 EXPORT_SYMBOL(radix_tree_next_hole); 946 947 /** 948 * radix_tree_prev_hole - find the prev hole (not-present entry) 949 * @root: tree root 950 * @index: index key 951 * @max_scan: maximum range to search 952 * 953 * Search backwards in the range [max(index-max_scan+1, 0), index] 954 * for the first hole. 955 * 956 * Returns: the index of the hole if found, otherwise returns an index 957 * outside of the set specified (in which case 'index - return >= max_scan' 958 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned. 959 * 960 * radix_tree_next_hole may be called under rcu_read_lock. However, like 961 * radix_tree_gang_lookup, this will not atomically search a snapshot of 962 * the tree at a single point in time. For example, if a hole is created 963 * at index 10, then subsequently a hole is created at index 5, 964 * radix_tree_prev_hole covering both indexes may return 5 if called under 965 * rcu_read_lock. 966 */ 967 unsigned long radix_tree_prev_hole(struct radix_tree_root *root, 968 unsigned long index, unsigned long max_scan) 969 { 970 unsigned long i; 971 972 for (i = 0; i < max_scan; i++) { 973 if (!radix_tree_lookup(root, index)) 974 break; 975 index--; 976 if (index == ULONG_MAX) 977 break; 978 } 979 980 return index; 981 } 982 EXPORT_SYMBOL(radix_tree_prev_hole); 983 984 /** 985 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 986 * @root: radix tree root 987 * @results: where the results of the lookup are placed 988 * @first_index: start the lookup from this key 989 * @max_items: place up to this many items at *results 990 * 991 * Performs an index-ascending scan of the tree for present items. Places 992 * them at *@results and returns the number of items which were placed at 993 * *@results. 994 * 995 * The implementation is naive. 996 * 997 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 998 * rcu_read_lock. In this case, rather than the returned results being 999 * an atomic snapshot of the tree at a single point in time, the semantics 1000 * of an RCU protected gang lookup are as though multiple radix_tree_lookups 1001 * have been issued in individual locks, and results stored in 'results'. 1002 */ 1003 unsigned int 1004 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1005 unsigned long first_index, unsigned int max_items) 1006 { 1007 struct radix_tree_iter iter; 1008 void **slot; 1009 unsigned int ret = 0; 1010 1011 if (unlikely(!max_items)) 1012 return 0; 1013 1014 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1015 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1016 if (!results[ret]) 1017 continue; 1018 if (++ret == max_items) 1019 break; 1020 } 1021 1022 return ret; 1023 } 1024 EXPORT_SYMBOL(radix_tree_gang_lookup); 1025 1026 /** 1027 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1028 * @root: radix tree root 1029 * @results: where the results of the lookup are placed 1030 * @indices: where their indices should be placed (but usually NULL) 1031 * @first_index: start the lookup from this key 1032 * @max_items: place up to this many items at *results 1033 * 1034 * Performs an index-ascending scan of the tree for present items. Places 1035 * their slots at *@results and returns the number of items which were 1036 * placed at *@results. 1037 * 1038 * The implementation is naive. 1039 * 1040 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1041 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1042 * protection, radix_tree_deref_slot may fail requiring a retry. 1043 */ 1044 unsigned int 1045 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1046 void ***results, unsigned long *indices, 1047 unsigned long first_index, unsigned int max_items) 1048 { 1049 struct radix_tree_iter iter; 1050 void **slot; 1051 unsigned int ret = 0; 1052 1053 if (unlikely(!max_items)) 1054 return 0; 1055 1056 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1057 results[ret] = slot; 1058 if (indices) 1059 indices[ret] = iter.index; 1060 if (++ret == max_items) 1061 break; 1062 } 1063 1064 return ret; 1065 } 1066 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1067 1068 /** 1069 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1070 * based on a tag 1071 * @root: radix tree root 1072 * @results: where the results of the lookup are placed 1073 * @first_index: start the lookup from this key 1074 * @max_items: place up to this many items at *results 1075 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1076 * 1077 * Performs an index-ascending scan of the tree for present items which 1078 * have the tag indexed by @tag set. Places the items at *@results and 1079 * returns the number of items which were placed at *@results. 1080 */ 1081 unsigned int 1082 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1083 unsigned long first_index, unsigned int max_items, 1084 unsigned int tag) 1085 { 1086 struct radix_tree_iter iter; 1087 void **slot; 1088 unsigned int ret = 0; 1089 1090 if (unlikely(!max_items)) 1091 return 0; 1092 1093 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1094 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1095 if (!results[ret]) 1096 continue; 1097 if (++ret == max_items) 1098 break; 1099 } 1100 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1104 1105 /** 1106 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1107 * radix tree based on a tag 1108 * @root: radix tree root 1109 * @results: where the results of the lookup are placed 1110 * @first_index: start the lookup from this key 1111 * @max_items: place up to this many items at *results 1112 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1113 * 1114 * Performs an index-ascending scan of the tree for present items which 1115 * have the tag indexed by @tag set. Places the slots at *@results and 1116 * returns the number of slots which were placed at *@results. 1117 */ 1118 unsigned int 1119 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1120 unsigned long first_index, unsigned int max_items, 1121 unsigned int tag) 1122 { 1123 struct radix_tree_iter iter; 1124 void **slot; 1125 unsigned int ret = 0; 1126 1127 if (unlikely(!max_items)) 1128 return 0; 1129 1130 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1131 results[ret] = slot; 1132 if (++ret == max_items) 1133 break; 1134 } 1135 1136 return ret; 1137 } 1138 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1139 1140 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1141 #include <linux/sched.h> /* for cond_resched() */ 1142 1143 /* 1144 * This linear search is at present only useful to shmem_unuse_inode(). 1145 */ 1146 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1147 unsigned long index, unsigned long *found_index) 1148 { 1149 unsigned int shift, height; 1150 unsigned long i; 1151 1152 height = slot->height; 1153 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 1154 1155 for ( ; height > 1; height--) { 1156 i = (index >> shift) & RADIX_TREE_MAP_MASK; 1157 for (;;) { 1158 if (slot->slots[i] != NULL) 1159 break; 1160 index &= ~((1UL << shift) - 1); 1161 index += 1UL << shift; 1162 if (index == 0) 1163 goto out; /* 32-bit wraparound */ 1164 i++; 1165 if (i == RADIX_TREE_MAP_SIZE) 1166 goto out; 1167 } 1168 1169 shift -= RADIX_TREE_MAP_SHIFT; 1170 slot = rcu_dereference_raw(slot->slots[i]); 1171 if (slot == NULL) 1172 goto out; 1173 } 1174 1175 /* Bottom level: check items */ 1176 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 1177 if (slot->slots[i] == item) { 1178 *found_index = index + i; 1179 index = 0; 1180 goto out; 1181 } 1182 } 1183 index += RADIX_TREE_MAP_SIZE; 1184 out: 1185 return index; 1186 } 1187 1188 /** 1189 * radix_tree_locate_item - search through radix tree for item 1190 * @root: radix tree root 1191 * @item: item to be found 1192 * 1193 * Returns index where item was found, or -1 if not found. 1194 * Caller must hold no lock (since this time-consuming function needs 1195 * to be preemptible), and must check afterwards if item is still there. 1196 */ 1197 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1198 { 1199 struct radix_tree_node *node; 1200 unsigned long max_index; 1201 unsigned long cur_index = 0; 1202 unsigned long found_index = -1; 1203 1204 do { 1205 rcu_read_lock(); 1206 node = rcu_dereference_raw(root->rnode); 1207 if (!radix_tree_is_indirect_ptr(node)) { 1208 rcu_read_unlock(); 1209 if (node == item) 1210 found_index = 0; 1211 break; 1212 } 1213 1214 node = indirect_to_ptr(node); 1215 max_index = radix_tree_maxindex(node->height); 1216 if (cur_index > max_index) 1217 break; 1218 1219 cur_index = __locate(node, item, cur_index, &found_index); 1220 rcu_read_unlock(); 1221 cond_resched(); 1222 } while (cur_index != 0 && cur_index <= max_index); 1223 1224 return found_index; 1225 } 1226 #else 1227 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1228 { 1229 return -1; 1230 } 1231 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1232 1233 /** 1234 * radix_tree_shrink - shrink height of a radix tree to minimal 1235 * @root radix tree root 1236 */ 1237 static inline void radix_tree_shrink(struct radix_tree_root *root) 1238 { 1239 /* try to shrink tree height */ 1240 while (root->height > 0) { 1241 struct radix_tree_node *to_free = root->rnode; 1242 struct radix_tree_node *slot; 1243 1244 BUG_ON(!radix_tree_is_indirect_ptr(to_free)); 1245 to_free = indirect_to_ptr(to_free); 1246 1247 /* 1248 * The candidate node has more than one child, or its child 1249 * is not at the leftmost slot, we cannot shrink. 1250 */ 1251 if (to_free->count != 1) 1252 break; 1253 if (!to_free->slots[0]) 1254 break; 1255 1256 /* 1257 * We don't need rcu_assign_pointer(), since we are simply 1258 * moving the node from one part of the tree to another: if it 1259 * was safe to dereference the old pointer to it 1260 * (to_free->slots[0]), it will be safe to dereference the new 1261 * one (root->rnode) as far as dependent read barriers go. 1262 */ 1263 slot = to_free->slots[0]; 1264 if (root->height > 1) { 1265 slot->parent = NULL; 1266 slot = ptr_to_indirect(slot); 1267 } 1268 root->rnode = slot; 1269 root->height--; 1270 1271 /* 1272 * We have a dilemma here. The node's slot[0] must not be 1273 * NULLed in case there are concurrent lookups expecting to 1274 * find the item. However if this was a bottom-level node, 1275 * then it may be subject to the slot pointer being visible 1276 * to callers dereferencing it. If item corresponding to 1277 * slot[0] is subsequently deleted, these callers would expect 1278 * their slot to become empty sooner or later. 1279 * 1280 * For example, lockless pagecache will look up a slot, deref 1281 * the page pointer, and if the page is 0 refcount it means it 1282 * was concurrently deleted from pagecache so try the deref 1283 * again. Fortunately there is already a requirement for logic 1284 * to retry the entire slot lookup -- the indirect pointer 1285 * problem (replacing direct root node with an indirect pointer 1286 * also results in a stale slot). So tag the slot as indirect 1287 * to force callers to retry. 1288 */ 1289 if (root->height == 0) 1290 *((unsigned long *)&to_free->slots[0]) |= 1291 RADIX_TREE_INDIRECT_PTR; 1292 1293 radix_tree_node_free(to_free); 1294 } 1295 } 1296 1297 /** 1298 * radix_tree_delete - delete an item from a radix tree 1299 * @root: radix tree root 1300 * @index: index key 1301 * 1302 * Remove the item at @index from the radix tree rooted at @root. 1303 * 1304 * Returns the address of the deleted item, or NULL if it was not present. 1305 */ 1306 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1307 { 1308 struct radix_tree_node *node = NULL; 1309 struct radix_tree_node *slot = NULL; 1310 struct radix_tree_node *to_free; 1311 unsigned int height, shift; 1312 int tag; 1313 int uninitialized_var(offset); 1314 1315 height = root->height; 1316 if (index > radix_tree_maxindex(height)) 1317 goto out; 1318 1319 slot = root->rnode; 1320 if (height == 0) { 1321 root_tag_clear_all(root); 1322 root->rnode = NULL; 1323 goto out; 1324 } 1325 slot = indirect_to_ptr(slot); 1326 shift = height * RADIX_TREE_MAP_SHIFT; 1327 1328 do { 1329 if (slot == NULL) 1330 goto out; 1331 1332 shift -= RADIX_TREE_MAP_SHIFT; 1333 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 1334 node = slot; 1335 slot = slot->slots[offset]; 1336 } while (shift); 1337 1338 if (slot == NULL) 1339 goto out; 1340 1341 /* 1342 * Clear all tags associated with the item to be deleted. 1343 * This way of doing it would be inefficient, but seldom is any set. 1344 */ 1345 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 1346 if (tag_get(node, tag, offset)) 1347 radix_tree_tag_clear(root, index, tag); 1348 } 1349 1350 to_free = NULL; 1351 /* Now free the nodes we do not need anymore */ 1352 while (node) { 1353 node->slots[offset] = NULL; 1354 node->count--; 1355 /* 1356 * Queue the node for deferred freeing after the 1357 * last reference to it disappears (set NULL, above). 1358 */ 1359 if (to_free) 1360 radix_tree_node_free(to_free); 1361 1362 if (node->count) { 1363 if (node == indirect_to_ptr(root->rnode)) 1364 radix_tree_shrink(root); 1365 goto out; 1366 } 1367 1368 /* Node with zero slots in use so free it */ 1369 to_free = node; 1370 1371 index >>= RADIX_TREE_MAP_SHIFT; 1372 offset = index & RADIX_TREE_MAP_MASK; 1373 node = node->parent; 1374 } 1375 1376 root_tag_clear_all(root); 1377 root->height = 0; 1378 root->rnode = NULL; 1379 if (to_free) 1380 radix_tree_node_free(to_free); 1381 1382 out: 1383 return slot; 1384 } 1385 EXPORT_SYMBOL(radix_tree_delete); 1386 1387 /** 1388 * radix_tree_tagged - test whether any items in the tree are tagged 1389 * @root: radix tree root 1390 * @tag: tag to test 1391 */ 1392 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1393 { 1394 return root_tag_get(root, tag); 1395 } 1396 EXPORT_SYMBOL(radix_tree_tagged); 1397 1398 static void 1399 radix_tree_node_ctor(void *node) 1400 { 1401 memset(node, 0, sizeof(struct radix_tree_node)); 1402 } 1403 1404 static __init unsigned long __maxindex(unsigned int height) 1405 { 1406 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1407 int shift = RADIX_TREE_INDEX_BITS - width; 1408 1409 if (shift < 0) 1410 return ~0UL; 1411 if (shift >= BITS_PER_LONG) 1412 return 0UL; 1413 return ~0UL >> shift; 1414 } 1415 1416 static __init void radix_tree_init_maxindex(void) 1417 { 1418 unsigned int i; 1419 1420 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1421 height_to_maxindex[i] = __maxindex(i); 1422 } 1423 1424 static int radix_tree_callback(struct notifier_block *nfb, 1425 unsigned long action, 1426 void *hcpu) 1427 { 1428 int cpu = (long)hcpu; 1429 struct radix_tree_preload *rtp; 1430 1431 /* Free per-cpu pool of perloaded nodes */ 1432 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1433 rtp = &per_cpu(radix_tree_preloads, cpu); 1434 while (rtp->nr) { 1435 kmem_cache_free(radix_tree_node_cachep, 1436 rtp->nodes[rtp->nr-1]); 1437 rtp->nodes[rtp->nr-1] = NULL; 1438 rtp->nr--; 1439 } 1440 } 1441 return NOTIFY_OK; 1442 } 1443 1444 void __init radix_tree_init(void) 1445 { 1446 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1447 sizeof(struct radix_tree_node), 0, 1448 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1449 radix_tree_node_ctor); 1450 radix_tree_init_maxindex(); 1451 hotcpu_notifier(radix_tree_callback, 0); 1452 } 1453