xref: /linux/lib/radix-tree.c (revision c68a2aab3300df4106f368568bd7361d6f465993)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	unsigned nr;
67 	/* nodes->private_data points to next preallocated node */
68 	struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline struct radix_tree_node *entry_to_node(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75 }
76 
77 static inline void *node_to_entry(void *ptr)
78 {
79 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
80 }
81 
82 #define RADIX_TREE_RETRY	node_to_entry(NULL)
83 
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline
87 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
88 {
89 	void **ptr = node;
90 	return (parent->slots <= ptr) &&
91 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
92 }
93 #else
94 static inline
95 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
96 {
97 	return false;
98 }
99 #endif
100 
101 static inline
102 unsigned long get_slot_offset(const struct radix_tree_node *parent, void **slot)
103 {
104 	return slot - parent->slots;
105 }
106 
107 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
108 			struct radix_tree_node **nodep, unsigned long index)
109 {
110 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
111 	void **entry = rcu_dereference_raw(parent->slots[offset]);
112 
113 #ifdef CONFIG_RADIX_TREE_MULTIORDER
114 	if (radix_tree_is_internal_node(entry)) {
115 		if (is_sibling_entry(parent, entry)) {
116 			void **sibentry = (void **) entry_to_node(entry);
117 			offset = get_slot_offset(parent, sibentry);
118 			entry = rcu_dereference_raw(*sibentry);
119 		}
120 	}
121 #endif
122 
123 	*nodep = (void *)entry;
124 	return offset;
125 }
126 
127 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
128 {
129 	return root->gfp_mask & __GFP_BITS_MASK;
130 }
131 
132 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
133 		int offset)
134 {
135 	__set_bit(offset, node->tags[tag]);
136 }
137 
138 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
139 		int offset)
140 {
141 	__clear_bit(offset, node->tags[tag]);
142 }
143 
144 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
145 		int offset)
146 {
147 	return test_bit(offset, node->tags[tag]);
148 }
149 
150 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
151 {
152 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
153 }
154 
155 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
156 {
157 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
158 }
159 
160 static inline void root_tag_clear_all(struct radix_tree_root *root)
161 {
162 	root->gfp_mask &= __GFP_BITS_MASK;
163 }
164 
165 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
166 {
167 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
168 }
169 
170 static inline unsigned root_tags_get(const struct radix_tree_root *root)
171 {
172 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
173 }
174 
175 /*
176  * Returns 1 if any slot in the node has this tag set.
177  * Otherwise returns 0.
178  */
179 static inline int any_tag_set(const struct radix_tree_node *node,
180 							unsigned int tag)
181 {
182 	unsigned idx;
183 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
184 		if (node->tags[tag][idx])
185 			return 1;
186 	}
187 	return 0;
188 }
189 
190 /**
191  * radix_tree_find_next_bit - find the next set bit in a memory region
192  *
193  * @addr: The address to base the search on
194  * @size: The bitmap size in bits
195  * @offset: The bitnumber to start searching at
196  *
197  * Unrollable variant of find_next_bit() for constant size arrays.
198  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
199  * Returns next bit offset, or size if nothing found.
200  */
201 static __always_inline unsigned long
202 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
203 			 unsigned long offset)
204 {
205 	const unsigned long *addr = node->tags[tag];
206 
207 	if (offset < RADIX_TREE_MAP_SIZE) {
208 		unsigned long tmp;
209 
210 		addr += offset / BITS_PER_LONG;
211 		tmp = *addr >> (offset % BITS_PER_LONG);
212 		if (tmp)
213 			return __ffs(tmp) + offset;
214 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
215 		while (offset < RADIX_TREE_MAP_SIZE) {
216 			tmp = *++addr;
217 			if (tmp)
218 				return __ffs(tmp) + offset;
219 			offset += BITS_PER_LONG;
220 		}
221 	}
222 	return RADIX_TREE_MAP_SIZE;
223 }
224 
225 static unsigned int iter_offset(const struct radix_tree_iter *iter)
226 {
227 	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
228 }
229 
230 /*
231  * The maximum index which can be stored in a radix tree
232  */
233 static inline unsigned long shift_maxindex(unsigned int shift)
234 {
235 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
236 }
237 
238 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
239 {
240 	return shift_maxindex(node->shift);
241 }
242 
243 #ifndef __KERNEL__
244 static void dump_node(struct radix_tree_node *node, unsigned long index)
245 {
246 	unsigned long i;
247 
248 	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
249 		node, node->offset, index, index | node_maxindex(node),
250 		node->parent,
251 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
252 		node->shift, node->count, node->exceptional);
253 
254 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
255 		unsigned long first = index | (i << node->shift);
256 		unsigned long last = first | ((1UL << node->shift) - 1);
257 		void *entry = node->slots[i];
258 		if (!entry)
259 			continue;
260 		if (entry == RADIX_TREE_RETRY) {
261 			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
262 					i, first, last, node);
263 		} else if (!radix_tree_is_internal_node(entry)) {
264 			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
265 					entry, i, first, last, node);
266 		} else if (is_sibling_entry(node, entry)) {
267 			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
268 					entry, i, first, last, node,
269 					*(void **)entry_to_node(entry));
270 		} else {
271 			dump_node(entry_to_node(entry), first);
272 		}
273 	}
274 }
275 
276 /* For debug */
277 static void radix_tree_dump(struct radix_tree_root *root)
278 {
279 	pr_debug("radix root: %p rnode %p tags %x\n",
280 			root, root->rnode,
281 			root->gfp_mask >> __GFP_BITS_SHIFT);
282 	if (!radix_tree_is_internal_node(root->rnode))
283 		return;
284 	dump_node(entry_to_node(root->rnode), 0);
285 }
286 #endif
287 
288 /*
289  * This assumes that the caller has performed appropriate preallocation, and
290  * that the caller has pinned this thread of control to the current CPU.
291  */
292 static struct radix_tree_node *
293 radix_tree_node_alloc(struct radix_tree_root *root,
294 			struct radix_tree_node *parent,
295 			unsigned int shift, unsigned int offset,
296 			unsigned int count, unsigned int exceptional)
297 {
298 	struct radix_tree_node *ret = NULL;
299 	gfp_t gfp_mask = root_gfp_mask(root);
300 
301 	/*
302 	 * Preload code isn't irq safe and it doesn't make sense to use
303 	 * preloading during an interrupt anyway as all the allocations have
304 	 * to be atomic. So just do normal allocation when in interrupt.
305 	 */
306 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
307 		struct radix_tree_preload *rtp;
308 
309 		/*
310 		 * Even if the caller has preloaded, try to allocate from the
311 		 * cache first for the new node to get accounted to the memory
312 		 * cgroup.
313 		 */
314 		ret = kmem_cache_alloc(radix_tree_node_cachep,
315 				       gfp_mask | __GFP_NOWARN);
316 		if (ret)
317 			goto out;
318 
319 		/*
320 		 * Provided the caller has preloaded here, we will always
321 		 * succeed in getting a node here (and never reach
322 		 * kmem_cache_alloc)
323 		 */
324 		rtp = this_cpu_ptr(&radix_tree_preloads);
325 		if (rtp->nr) {
326 			ret = rtp->nodes;
327 			rtp->nodes = ret->private_data;
328 			ret->private_data = NULL;
329 			rtp->nr--;
330 		}
331 		/*
332 		 * Update the allocation stack trace as this is more useful
333 		 * for debugging.
334 		 */
335 		kmemleak_update_trace(ret);
336 		goto out;
337 	}
338 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
339 out:
340 	BUG_ON(radix_tree_is_internal_node(ret));
341 	if (ret) {
342 		ret->parent = parent;
343 		ret->shift = shift;
344 		ret->offset = offset;
345 		ret->count = count;
346 		ret->exceptional = exceptional;
347 	}
348 	return ret;
349 }
350 
351 static void radix_tree_node_rcu_free(struct rcu_head *head)
352 {
353 	struct radix_tree_node *node =
354 			container_of(head, struct radix_tree_node, rcu_head);
355 
356 	/*
357 	 * Must only free zeroed nodes into the slab.  We can be left with
358 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
359 	 * and tags here.
360 	 */
361 	memset(node->slots, 0, sizeof(node->slots));
362 	memset(node->tags, 0, sizeof(node->tags));
363 	INIT_LIST_HEAD(&node->private_list);
364 
365 	kmem_cache_free(radix_tree_node_cachep, node);
366 }
367 
368 static inline void
369 radix_tree_node_free(struct radix_tree_node *node)
370 {
371 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
372 }
373 
374 /*
375  * Load up this CPU's radix_tree_node buffer with sufficient objects to
376  * ensure that the addition of a single element in the tree cannot fail.  On
377  * success, return zero, with preemption disabled.  On error, return -ENOMEM
378  * with preemption not disabled.
379  *
380  * To make use of this facility, the radix tree must be initialised without
381  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
382  */
383 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
384 {
385 	struct radix_tree_preload *rtp;
386 	struct radix_tree_node *node;
387 	int ret = -ENOMEM;
388 
389 	/*
390 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
391 	 * they should never be accounted to any particular memory cgroup.
392 	 */
393 	gfp_mask &= ~__GFP_ACCOUNT;
394 
395 	preempt_disable();
396 	rtp = this_cpu_ptr(&radix_tree_preloads);
397 	while (rtp->nr < nr) {
398 		preempt_enable();
399 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
400 		if (node == NULL)
401 			goto out;
402 		preempt_disable();
403 		rtp = this_cpu_ptr(&radix_tree_preloads);
404 		if (rtp->nr < nr) {
405 			node->private_data = rtp->nodes;
406 			rtp->nodes = node;
407 			rtp->nr++;
408 		} else {
409 			kmem_cache_free(radix_tree_node_cachep, node);
410 		}
411 	}
412 	ret = 0;
413 out:
414 	return ret;
415 }
416 
417 /*
418  * Load up this CPU's radix_tree_node buffer with sufficient objects to
419  * ensure that the addition of a single element in the tree cannot fail.  On
420  * success, return zero, with preemption disabled.  On error, return -ENOMEM
421  * with preemption not disabled.
422  *
423  * To make use of this facility, the radix tree must be initialised without
424  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
425  */
426 int radix_tree_preload(gfp_t gfp_mask)
427 {
428 	/* Warn on non-sensical use... */
429 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
430 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
431 }
432 EXPORT_SYMBOL(radix_tree_preload);
433 
434 /*
435  * The same as above function, except we don't guarantee preloading happens.
436  * We do it, if we decide it helps. On success, return zero with preemption
437  * disabled. On error, return -ENOMEM with preemption not disabled.
438  */
439 int radix_tree_maybe_preload(gfp_t gfp_mask)
440 {
441 	if (gfpflags_allow_blocking(gfp_mask))
442 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
443 	/* Preloading doesn't help anything with this gfp mask, skip it */
444 	preempt_disable();
445 	return 0;
446 }
447 EXPORT_SYMBOL(radix_tree_maybe_preload);
448 
449 #ifdef CONFIG_RADIX_TREE_MULTIORDER
450 /*
451  * Preload with enough objects to ensure that we can split a single entry
452  * of order @old_order into many entries of size @new_order
453  */
454 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
455 							gfp_t gfp_mask)
456 {
457 	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
458 	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
459 				(new_order / RADIX_TREE_MAP_SHIFT);
460 	unsigned nr = 0;
461 
462 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
463 	BUG_ON(new_order >= old_order);
464 
465 	while (layers--)
466 		nr = nr * RADIX_TREE_MAP_SIZE + 1;
467 	return __radix_tree_preload(gfp_mask, top * nr);
468 }
469 #endif
470 
471 /*
472  * The same as function above, but preload number of nodes required to insert
473  * (1 << order) continuous naturally-aligned elements.
474  */
475 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
476 {
477 	unsigned long nr_subtrees;
478 	int nr_nodes, subtree_height;
479 
480 	/* Preloading doesn't help anything with this gfp mask, skip it */
481 	if (!gfpflags_allow_blocking(gfp_mask)) {
482 		preempt_disable();
483 		return 0;
484 	}
485 
486 	/*
487 	 * Calculate number and height of fully populated subtrees it takes to
488 	 * store (1 << order) elements.
489 	 */
490 	nr_subtrees = 1 << order;
491 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
492 			subtree_height++)
493 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
494 
495 	/*
496 	 * The worst case is zero height tree with a single item at index 0 and
497 	 * then inserting items starting at ULONG_MAX - (1 << order).
498 	 *
499 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
500 	 * 0-index item.
501 	 */
502 	nr_nodes = RADIX_TREE_MAX_PATH;
503 
504 	/* Plus branch to fully populated subtrees. */
505 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
506 
507 	/* Root node is shared. */
508 	nr_nodes--;
509 
510 	/* Plus nodes required to build subtrees. */
511 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
512 
513 	return __radix_tree_preload(gfp_mask, nr_nodes);
514 }
515 
516 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
517 		struct radix_tree_node **nodep, unsigned long *maxindex)
518 {
519 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
520 
521 	*nodep = node;
522 
523 	if (likely(radix_tree_is_internal_node(node))) {
524 		node = entry_to_node(node);
525 		*maxindex = node_maxindex(node);
526 		return node->shift + RADIX_TREE_MAP_SHIFT;
527 	}
528 
529 	*maxindex = 0;
530 	return 0;
531 }
532 
533 /*
534  *	Extend a radix tree so it can store key @index.
535  */
536 static int radix_tree_extend(struct radix_tree_root *root,
537 				unsigned long index, unsigned int shift)
538 {
539 	struct radix_tree_node *slot;
540 	unsigned int maxshift;
541 	int tag;
542 
543 	/* Figure out what the shift should be.  */
544 	maxshift = shift;
545 	while (index > shift_maxindex(maxshift))
546 		maxshift += RADIX_TREE_MAP_SHIFT;
547 
548 	slot = root->rnode;
549 	if (!slot)
550 		goto out;
551 
552 	do {
553 		struct radix_tree_node *node = radix_tree_node_alloc(root,
554 							NULL, shift, 0, 1, 0);
555 		if (!node)
556 			return -ENOMEM;
557 
558 		/* Propagate the aggregated tag info into the new root */
559 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
560 			if (root_tag_get(root, tag))
561 				tag_set(node, tag, 0);
562 		}
563 
564 		BUG_ON(shift > BITS_PER_LONG);
565 		if (radix_tree_is_internal_node(slot)) {
566 			entry_to_node(slot)->parent = node;
567 		} else if (radix_tree_exceptional_entry(slot)) {
568 			/* Moving an exceptional root->rnode to a node */
569 			node->exceptional = 1;
570 		}
571 		node->slots[0] = slot;
572 		slot = node_to_entry(node);
573 		rcu_assign_pointer(root->rnode, slot);
574 		shift += RADIX_TREE_MAP_SHIFT;
575 	} while (shift <= maxshift);
576 out:
577 	return maxshift + RADIX_TREE_MAP_SHIFT;
578 }
579 
580 /**
581  *	radix_tree_shrink    -    shrink radix tree to minimum height
582  *	@root		radix tree root
583  */
584 static inline void radix_tree_shrink(struct radix_tree_root *root,
585 				     radix_tree_update_node_t update_node,
586 				     void *private)
587 {
588 	for (;;) {
589 		struct radix_tree_node *node = root->rnode;
590 		struct radix_tree_node *child;
591 
592 		if (!radix_tree_is_internal_node(node))
593 			break;
594 		node = entry_to_node(node);
595 
596 		/*
597 		 * The candidate node has more than one child, or its child
598 		 * is not at the leftmost slot, or the child is a multiorder
599 		 * entry, we cannot shrink.
600 		 */
601 		if (node->count != 1)
602 			break;
603 		child = node->slots[0];
604 		if (!child)
605 			break;
606 		if (!radix_tree_is_internal_node(child) && node->shift)
607 			break;
608 
609 		if (radix_tree_is_internal_node(child))
610 			entry_to_node(child)->parent = NULL;
611 
612 		/*
613 		 * We don't need rcu_assign_pointer(), since we are simply
614 		 * moving the node from one part of the tree to another: if it
615 		 * was safe to dereference the old pointer to it
616 		 * (node->slots[0]), it will be safe to dereference the new
617 		 * one (root->rnode) as far as dependent read barriers go.
618 		 */
619 		root->rnode = child;
620 
621 		/*
622 		 * We have a dilemma here. The node's slot[0] must not be
623 		 * NULLed in case there are concurrent lookups expecting to
624 		 * find the item. However if this was a bottom-level node,
625 		 * then it may be subject to the slot pointer being visible
626 		 * to callers dereferencing it. If item corresponding to
627 		 * slot[0] is subsequently deleted, these callers would expect
628 		 * their slot to become empty sooner or later.
629 		 *
630 		 * For example, lockless pagecache will look up a slot, deref
631 		 * the page pointer, and if the page has 0 refcount it means it
632 		 * was concurrently deleted from pagecache so try the deref
633 		 * again. Fortunately there is already a requirement for logic
634 		 * to retry the entire slot lookup -- the indirect pointer
635 		 * problem (replacing direct root node with an indirect pointer
636 		 * also results in a stale slot). So tag the slot as indirect
637 		 * to force callers to retry.
638 		 */
639 		node->count = 0;
640 		if (!radix_tree_is_internal_node(child)) {
641 			node->slots[0] = RADIX_TREE_RETRY;
642 			if (update_node)
643 				update_node(node, private);
644 		}
645 
646 		WARN_ON_ONCE(!list_empty(&node->private_list));
647 		radix_tree_node_free(node);
648 	}
649 }
650 
651 static void delete_node(struct radix_tree_root *root,
652 			struct radix_tree_node *node,
653 			radix_tree_update_node_t update_node, void *private)
654 {
655 	do {
656 		struct radix_tree_node *parent;
657 
658 		if (node->count) {
659 			if (node == entry_to_node(root->rnode))
660 				radix_tree_shrink(root, update_node, private);
661 			return;
662 		}
663 
664 		parent = node->parent;
665 		if (parent) {
666 			parent->slots[node->offset] = NULL;
667 			parent->count--;
668 		} else {
669 			root_tag_clear_all(root);
670 			root->rnode = NULL;
671 		}
672 
673 		WARN_ON_ONCE(!list_empty(&node->private_list));
674 		radix_tree_node_free(node);
675 
676 		node = parent;
677 	} while (node);
678 }
679 
680 /**
681  *	__radix_tree_create	-	create a slot in a radix tree
682  *	@root:		radix tree root
683  *	@index:		index key
684  *	@order:		index occupies 2^order aligned slots
685  *	@nodep:		returns node
686  *	@slotp:		returns slot
687  *
688  *	Create, if necessary, and return the node and slot for an item
689  *	at position @index in the radix tree @root.
690  *
691  *	Until there is more than one item in the tree, no nodes are
692  *	allocated and @root->rnode is used as a direct slot instead of
693  *	pointing to a node, in which case *@nodep will be NULL.
694  *
695  *	Returns -ENOMEM, or 0 for success.
696  */
697 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
698 			unsigned order, struct radix_tree_node **nodep,
699 			void ***slotp)
700 {
701 	struct radix_tree_node *node = NULL, *child;
702 	void **slot = (void **)&root->rnode;
703 	unsigned long maxindex;
704 	unsigned int shift, offset = 0;
705 	unsigned long max = index | ((1UL << order) - 1);
706 
707 	shift = radix_tree_load_root(root, &child, &maxindex);
708 
709 	/* Make sure the tree is high enough.  */
710 	if (order > 0 && max == ((1UL << order) - 1))
711 		max++;
712 	if (max > maxindex) {
713 		int error = radix_tree_extend(root, max, shift);
714 		if (error < 0)
715 			return error;
716 		shift = error;
717 		child = root->rnode;
718 	}
719 
720 	while (shift > order) {
721 		shift -= RADIX_TREE_MAP_SHIFT;
722 		if (child == NULL) {
723 			/* Have to add a child node.  */
724 			child = radix_tree_node_alloc(root, node, shift,
725 							offset, 0, 0);
726 			if (!child)
727 				return -ENOMEM;
728 			rcu_assign_pointer(*slot, node_to_entry(child));
729 			if (node)
730 				node->count++;
731 		} else if (!radix_tree_is_internal_node(child))
732 			break;
733 
734 		/* Go a level down */
735 		node = entry_to_node(child);
736 		offset = radix_tree_descend(node, &child, index);
737 		slot = &node->slots[offset];
738 	}
739 
740 	if (nodep)
741 		*nodep = node;
742 	if (slotp)
743 		*slotp = slot;
744 	return 0;
745 }
746 
747 #ifdef CONFIG_RADIX_TREE_MULTIORDER
748 /*
749  * Free any nodes below this node.  The tree is presumed to not need
750  * shrinking, and any user data in the tree is presumed to not need a
751  * destructor called on it.  If we need to add a destructor, we can
752  * add that functionality later.  Note that we may not clear tags or
753  * slots from the tree as an RCU walker may still have a pointer into
754  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
755  * but we'll still have to clear those in rcu_free.
756  */
757 static void radix_tree_free_nodes(struct radix_tree_node *node)
758 {
759 	unsigned offset = 0;
760 	struct radix_tree_node *child = entry_to_node(node);
761 
762 	for (;;) {
763 		void *entry = child->slots[offset];
764 		if (radix_tree_is_internal_node(entry) &&
765 					!is_sibling_entry(child, entry)) {
766 			child = entry_to_node(entry);
767 			offset = 0;
768 			continue;
769 		}
770 		offset++;
771 		while (offset == RADIX_TREE_MAP_SIZE) {
772 			struct radix_tree_node *old = child;
773 			offset = child->offset + 1;
774 			child = child->parent;
775 			WARN_ON_ONCE(!list_empty(&old->private_list));
776 			radix_tree_node_free(old);
777 			if (old == entry_to_node(node))
778 				return;
779 		}
780 	}
781 }
782 
783 static inline int insert_entries(struct radix_tree_node *node, void **slot,
784 				void *item, unsigned order, bool replace)
785 {
786 	struct radix_tree_node *child;
787 	unsigned i, n, tag, offset, tags = 0;
788 
789 	if (node) {
790 		if (order > node->shift)
791 			n = 1 << (order - node->shift);
792 		else
793 			n = 1;
794 		offset = get_slot_offset(node, slot);
795 	} else {
796 		n = 1;
797 		offset = 0;
798 	}
799 
800 	if (n > 1) {
801 		offset = offset & ~(n - 1);
802 		slot = &node->slots[offset];
803 	}
804 	child = node_to_entry(slot);
805 
806 	for (i = 0; i < n; i++) {
807 		if (slot[i]) {
808 			if (replace) {
809 				node->count--;
810 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
811 					if (tag_get(node, tag, offset + i))
812 						tags |= 1 << tag;
813 			} else
814 				return -EEXIST;
815 		}
816 	}
817 
818 	for (i = 0; i < n; i++) {
819 		struct radix_tree_node *old = slot[i];
820 		if (i) {
821 			rcu_assign_pointer(slot[i], child);
822 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
823 				if (tags & (1 << tag))
824 					tag_clear(node, tag, offset + i);
825 		} else {
826 			rcu_assign_pointer(slot[i], item);
827 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
828 				if (tags & (1 << tag))
829 					tag_set(node, tag, offset);
830 		}
831 		if (radix_tree_is_internal_node(old) &&
832 					!is_sibling_entry(node, old) &&
833 					(old != RADIX_TREE_RETRY))
834 			radix_tree_free_nodes(old);
835 		if (radix_tree_exceptional_entry(old))
836 			node->exceptional--;
837 	}
838 	if (node) {
839 		node->count += n;
840 		if (radix_tree_exceptional_entry(item))
841 			node->exceptional += n;
842 	}
843 	return n;
844 }
845 #else
846 static inline int insert_entries(struct radix_tree_node *node, void **slot,
847 				void *item, unsigned order, bool replace)
848 {
849 	if (*slot)
850 		return -EEXIST;
851 	rcu_assign_pointer(*slot, item);
852 	if (node) {
853 		node->count++;
854 		if (radix_tree_exceptional_entry(item))
855 			node->exceptional++;
856 	}
857 	return 1;
858 }
859 #endif
860 
861 /**
862  *	__radix_tree_insert    -    insert into a radix tree
863  *	@root:		radix tree root
864  *	@index:		index key
865  *	@order:		key covers the 2^order indices around index
866  *	@item:		item to insert
867  *
868  *	Insert an item into the radix tree at position @index.
869  */
870 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
871 			unsigned order, void *item)
872 {
873 	struct radix_tree_node *node;
874 	void **slot;
875 	int error;
876 
877 	BUG_ON(radix_tree_is_internal_node(item));
878 
879 	error = __radix_tree_create(root, index, order, &node, &slot);
880 	if (error)
881 		return error;
882 
883 	error = insert_entries(node, slot, item, order, false);
884 	if (error < 0)
885 		return error;
886 
887 	if (node) {
888 		unsigned offset = get_slot_offset(node, slot);
889 		BUG_ON(tag_get(node, 0, offset));
890 		BUG_ON(tag_get(node, 1, offset));
891 		BUG_ON(tag_get(node, 2, offset));
892 	} else {
893 		BUG_ON(root_tags_get(root));
894 	}
895 
896 	return 0;
897 }
898 EXPORT_SYMBOL(__radix_tree_insert);
899 
900 /**
901  *	__radix_tree_lookup	-	lookup an item in a radix tree
902  *	@root:		radix tree root
903  *	@index:		index key
904  *	@nodep:		returns node
905  *	@slotp:		returns slot
906  *
907  *	Lookup and return the item at position @index in the radix
908  *	tree @root.
909  *
910  *	Until there is more than one item in the tree, no nodes are
911  *	allocated and @root->rnode is used as a direct slot instead of
912  *	pointing to a node, in which case *@nodep will be NULL.
913  */
914 void *__radix_tree_lookup(const struct radix_tree_root *root,
915 			  unsigned long index, struct radix_tree_node **nodep,
916 			  void ***slotp)
917 {
918 	struct radix_tree_node *node, *parent;
919 	unsigned long maxindex;
920 	void **slot;
921 
922  restart:
923 	parent = NULL;
924 	slot = (void **)&root->rnode;
925 	radix_tree_load_root(root, &node, &maxindex);
926 	if (index > maxindex)
927 		return NULL;
928 
929 	while (radix_tree_is_internal_node(node)) {
930 		unsigned offset;
931 
932 		if (node == RADIX_TREE_RETRY)
933 			goto restart;
934 		parent = entry_to_node(node);
935 		offset = radix_tree_descend(parent, &node, index);
936 		slot = parent->slots + offset;
937 	}
938 
939 	if (nodep)
940 		*nodep = parent;
941 	if (slotp)
942 		*slotp = slot;
943 	return node;
944 }
945 
946 /**
947  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
948  *	@root:		radix tree root
949  *	@index:		index key
950  *
951  *	Returns:  the slot corresponding to the position @index in the
952  *	radix tree @root. This is useful for update-if-exists operations.
953  *
954  *	This function can be called under rcu_read_lock iff the slot is not
955  *	modified by radix_tree_replace_slot, otherwise it must be called
956  *	exclusive from other writers. Any dereference of the slot must be done
957  *	using radix_tree_deref_slot.
958  */
959 void **radix_tree_lookup_slot(const struct radix_tree_root *root,
960 				unsigned long index)
961 {
962 	void **slot;
963 
964 	if (!__radix_tree_lookup(root, index, NULL, &slot))
965 		return NULL;
966 	return slot;
967 }
968 EXPORT_SYMBOL(radix_tree_lookup_slot);
969 
970 /**
971  *	radix_tree_lookup    -    perform lookup operation on a radix tree
972  *	@root:		radix tree root
973  *	@index:		index key
974  *
975  *	Lookup the item at the position @index in the radix tree @root.
976  *
977  *	This function can be called under rcu_read_lock, however the caller
978  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
979  *	them safely). No RCU barriers are required to access or modify the
980  *	returned item, however.
981  */
982 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
983 {
984 	return __radix_tree_lookup(root, index, NULL, NULL);
985 }
986 EXPORT_SYMBOL(radix_tree_lookup);
987 
988 static inline int slot_count(struct radix_tree_node *node,
989 						void **slot)
990 {
991 	int n = 1;
992 #ifdef CONFIG_RADIX_TREE_MULTIORDER
993 	void *ptr = node_to_entry(slot);
994 	unsigned offset = get_slot_offset(node, slot);
995 	int i;
996 
997 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
998 		if (node->slots[offset + i] != ptr)
999 			break;
1000 		n++;
1001 	}
1002 #endif
1003 	return n;
1004 }
1005 
1006 static void replace_slot(struct radix_tree_root *root,
1007 			 struct radix_tree_node *node,
1008 			 void **slot, void *item,
1009 			 bool warn_typeswitch)
1010 {
1011 	void *old = rcu_dereference_raw(*slot);
1012 	int count, exceptional;
1013 
1014 	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1015 
1016 	count = !!item - !!old;
1017 	exceptional = !!radix_tree_exceptional_entry(item) -
1018 		      !!radix_tree_exceptional_entry(old);
1019 
1020 	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1021 
1022 	if (node) {
1023 		node->count += count;
1024 		if (exceptional) {
1025 			exceptional *= slot_count(node, slot);
1026 			node->exceptional += exceptional;
1027 		}
1028 	}
1029 
1030 	rcu_assign_pointer(*slot, item);
1031 }
1032 
1033 static inline void delete_sibling_entries(struct radix_tree_node *node,
1034 						void **slot)
1035 {
1036 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1037 	bool exceptional = radix_tree_exceptional_entry(*slot);
1038 	void *ptr = node_to_entry(slot);
1039 	unsigned offset = get_slot_offset(node, slot);
1040 	int i;
1041 
1042 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1043 		if (node->slots[offset + i] != ptr)
1044 			break;
1045 		node->slots[offset + i] = NULL;
1046 		node->count--;
1047 		if (exceptional)
1048 			node->exceptional--;
1049 	}
1050 #endif
1051 }
1052 
1053 /**
1054  * __radix_tree_replace		- replace item in a slot
1055  * @root:		radix tree root
1056  * @node:		pointer to tree node
1057  * @slot:		pointer to slot in @node
1058  * @item:		new item to store in the slot.
1059  * @update_node:	callback for changing leaf nodes
1060  * @private:		private data to pass to @update_node
1061  *
1062  * For use with __radix_tree_lookup().  Caller must hold tree write locked
1063  * across slot lookup and replacement.
1064  */
1065 void __radix_tree_replace(struct radix_tree_root *root,
1066 			  struct radix_tree_node *node,
1067 			  void **slot, void *item,
1068 			  radix_tree_update_node_t update_node, void *private)
1069 {
1070 	if (!item)
1071 		delete_sibling_entries(node, slot);
1072 	/*
1073 	 * This function supports replacing exceptional entries and
1074 	 * deleting entries, but that needs accounting against the
1075 	 * node unless the slot is root->rnode.
1076 	 */
1077 	replace_slot(root, node, slot, item,
1078 		     !node && slot != (void **)&root->rnode);
1079 
1080 	if (!node)
1081 		return;
1082 
1083 	if (update_node)
1084 		update_node(node, private);
1085 
1086 	delete_node(root, node, update_node, private);
1087 }
1088 
1089 /**
1090  * radix_tree_replace_slot	- replace item in a slot
1091  * @root:	radix tree root
1092  * @slot:	pointer to slot
1093  * @item:	new item to store in the slot.
1094  *
1095  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1096  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1097  * across slot lookup and replacement.
1098  *
1099  * NOTE: This cannot be used to switch between non-entries (empty slots),
1100  * regular entries, and exceptional entries, as that requires accounting
1101  * inside the radix tree node. When switching from one type of entry or
1102  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1103  * radix_tree_iter_replace().
1104  */
1105 void radix_tree_replace_slot(struct radix_tree_root *root,
1106 			     void **slot, void *item)
1107 {
1108 	replace_slot(root, NULL, slot, item, true);
1109 }
1110 
1111 /**
1112  * radix_tree_iter_replace - replace item in a slot
1113  * @root:	radix tree root
1114  * @slot:	pointer to slot
1115  * @item:	new item to store in the slot.
1116  *
1117  * For use with radix_tree_split() and radix_tree_for_each_slot().
1118  * Caller must hold tree write locked across split and replacement.
1119  */
1120 void radix_tree_iter_replace(struct radix_tree_root *root,
1121 		const struct radix_tree_iter *iter, void **slot, void *item)
1122 {
1123 	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1124 }
1125 
1126 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1127 /**
1128  * radix_tree_join - replace multiple entries with one multiorder entry
1129  * @root: radix tree root
1130  * @index: an index inside the new entry
1131  * @order: order of the new entry
1132  * @item: new entry
1133  *
1134  * Call this function to replace several entries with one larger entry.
1135  * The existing entries are presumed to not need freeing as a result of
1136  * this call.
1137  *
1138  * The replacement entry will have all the tags set on it that were set
1139  * on any of the entries it is replacing.
1140  */
1141 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1142 			unsigned order, void *item)
1143 {
1144 	struct radix_tree_node *node;
1145 	void **slot;
1146 	int error;
1147 
1148 	BUG_ON(radix_tree_is_internal_node(item));
1149 
1150 	error = __radix_tree_create(root, index, order, &node, &slot);
1151 	if (!error)
1152 		error = insert_entries(node, slot, item, order, true);
1153 	if (error > 0)
1154 		error = 0;
1155 
1156 	return error;
1157 }
1158 
1159 /**
1160  * radix_tree_split - Split an entry into smaller entries
1161  * @root: radix tree root
1162  * @index: An index within the large entry
1163  * @order: Order of new entries
1164  *
1165  * Call this function as the first step in replacing a multiorder entry
1166  * with several entries of lower order.  After this function returns,
1167  * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1168  * and call radix_tree_iter_replace() to set up each new entry.
1169  *
1170  * The tags from this entry are replicated to all the new entries.
1171  *
1172  * The radix tree should be locked against modification during the entire
1173  * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1174  * should prompt RCU walkers to restart the lookup from the root.
1175  */
1176 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1177 				unsigned order)
1178 {
1179 	struct radix_tree_node *parent, *node, *child;
1180 	void **slot;
1181 	unsigned int offset, end;
1182 	unsigned n, tag, tags = 0;
1183 
1184 	if (!__radix_tree_lookup(root, index, &parent, &slot))
1185 		return -ENOENT;
1186 	if (!parent)
1187 		return -ENOENT;
1188 
1189 	offset = get_slot_offset(parent, slot);
1190 
1191 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1192 		if (tag_get(parent, tag, offset))
1193 			tags |= 1 << tag;
1194 
1195 	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1196 		if (!is_sibling_entry(parent, parent->slots[end]))
1197 			break;
1198 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1199 			if (tags & (1 << tag))
1200 				tag_set(parent, tag, end);
1201 		/* rcu_assign_pointer ensures tags are set before RETRY */
1202 		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1203 	}
1204 	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1205 	parent->exceptional -= (end - offset);
1206 
1207 	if (order == parent->shift)
1208 		return 0;
1209 	if (order > parent->shift) {
1210 		while (offset < end)
1211 			offset += insert_entries(parent, &parent->slots[offset],
1212 					RADIX_TREE_RETRY, order, true);
1213 		return 0;
1214 	}
1215 
1216 	node = parent;
1217 
1218 	for (;;) {
1219 		if (node->shift > order) {
1220 			child = radix_tree_node_alloc(root, node,
1221 					node->shift - RADIX_TREE_MAP_SHIFT,
1222 					offset, 0, 0);
1223 			if (!child)
1224 				goto nomem;
1225 			if (node != parent) {
1226 				node->count++;
1227 				node->slots[offset] = node_to_entry(child);
1228 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1229 					if (tags & (1 << tag))
1230 						tag_set(node, tag, offset);
1231 			}
1232 
1233 			node = child;
1234 			offset = 0;
1235 			continue;
1236 		}
1237 
1238 		n = insert_entries(node, &node->slots[offset],
1239 					RADIX_TREE_RETRY, order, false);
1240 		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1241 
1242 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1243 			if (tags & (1 << tag))
1244 				tag_set(node, tag, offset);
1245 		offset += n;
1246 
1247 		while (offset == RADIX_TREE_MAP_SIZE) {
1248 			if (node == parent)
1249 				break;
1250 			offset = node->offset;
1251 			child = node;
1252 			node = node->parent;
1253 			rcu_assign_pointer(node->slots[offset],
1254 						node_to_entry(child));
1255 			offset++;
1256 		}
1257 		if ((node == parent) && (offset == end))
1258 			return 0;
1259 	}
1260 
1261  nomem:
1262 	/* Shouldn't happen; did user forget to preload? */
1263 	/* TODO: free all the allocated nodes */
1264 	WARN_ON(1);
1265 	return -ENOMEM;
1266 }
1267 #endif
1268 
1269 /**
1270  *	radix_tree_tag_set - set a tag on a radix tree node
1271  *	@root:		radix tree root
1272  *	@index:		index key
1273  *	@tag:		tag index
1274  *
1275  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1276  *	corresponding to @index in the radix tree.  From
1277  *	the root all the way down to the leaf node.
1278  *
1279  *	Returns the address of the tagged item.  Setting a tag on a not-present
1280  *	item is a bug.
1281  */
1282 void *radix_tree_tag_set(struct radix_tree_root *root,
1283 			unsigned long index, unsigned int tag)
1284 {
1285 	struct radix_tree_node *node, *parent;
1286 	unsigned long maxindex;
1287 
1288 	radix_tree_load_root(root, &node, &maxindex);
1289 	BUG_ON(index > maxindex);
1290 
1291 	while (radix_tree_is_internal_node(node)) {
1292 		unsigned offset;
1293 
1294 		parent = entry_to_node(node);
1295 		offset = radix_tree_descend(parent, &node, index);
1296 		BUG_ON(!node);
1297 
1298 		if (!tag_get(parent, tag, offset))
1299 			tag_set(parent, tag, offset);
1300 	}
1301 
1302 	/* set the root's tag bit */
1303 	if (!root_tag_get(root, tag))
1304 		root_tag_set(root, tag);
1305 
1306 	return node;
1307 }
1308 EXPORT_SYMBOL(radix_tree_tag_set);
1309 
1310 static void node_tag_clear(struct radix_tree_root *root,
1311 				struct radix_tree_node *node,
1312 				unsigned int tag, unsigned int offset)
1313 {
1314 	while (node) {
1315 		if (!tag_get(node, tag, offset))
1316 			return;
1317 		tag_clear(node, tag, offset);
1318 		if (any_tag_set(node, tag))
1319 			return;
1320 
1321 		offset = node->offset;
1322 		node = node->parent;
1323 	}
1324 
1325 	/* clear the root's tag bit */
1326 	if (root_tag_get(root, tag))
1327 		root_tag_clear(root, tag);
1328 }
1329 
1330 static void node_tag_set(struct radix_tree_root *root,
1331 				struct radix_tree_node *node,
1332 				unsigned int tag, unsigned int offset)
1333 {
1334 	while (node) {
1335 		if (tag_get(node, tag, offset))
1336 			return;
1337 		tag_set(node, tag, offset);
1338 		offset = node->offset;
1339 		node = node->parent;
1340 	}
1341 
1342 	if (!root_tag_get(root, tag))
1343 		root_tag_set(root, tag);
1344 }
1345 
1346 /**
1347  * radix_tree_iter_tag_set - set a tag on the current iterator entry
1348  * @root:	radix tree root
1349  * @iter:	iterator state
1350  * @tag:	tag to set
1351  */
1352 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1353 			const struct radix_tree_iter *iter, unsigned int tag)
1354 {
1355 	node_tag_set(root, iter->node, tag, iter_offset(iter));
1356 }
1357 
1358 /**
1359  *	radix_tree_tag_clear - clear a tag on a radix tree node
1360  *	@root:		radix tree root
1361  *	@index:		index key
1362  *	@tag:		tag index
1363  *
1364  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1365  *	corresponding to @index in the radix tree.  If this causes
1366  *	the leaf node to have no tags set then clear the tag in the
1367  *	next-to-leaf node, etc.
1368  *
1369  *	Returns the address of the tagged item on success, else NULL.  ie:
1370  *	has the same return value and semantics as radix_tree_lookup().
1371  */
1372 void *radix_tree_tag_clear(struct radix_tree_root *root,
1373 			unsigned long index, unsigned int tag)
1374 {
1375 	struct radix_tree_node *node, *parent;
1376 	unsigned long maxindex;
1377 	int uninitialized_var(offset);
1378 
1379 	radix_tree_load_root(root, &node, &maxindex);
1380 	if (index > maxindex)
1381 		return NULL;
1382 
1383 	parent = NULL;
1384 
1385 	while (radix_tree_is_internal_node(node)) {
1386 		parent = entry_to_node(node);
1387 		offset = radix_tree_descend(parent, &node, index);
1388 	}
1389 
1390 	if (node)
1391 		node_tag_clear(root, parent, tag, offset);
1392 
1393 	return node;
1394 }
1395 EXPORT_SYMBOL(radix_tree_tag_clear);
1396 
1397 /**
1398  * radix_tree_tag_get - get a tag on a radix tree node
1399  * @root:		radix tree root
1400  * @index:		index key
1401  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1402  *
1403  * Return values:
1404  *
1405  *  0: tag not present or not set
1406  *  1: tag set
1407  *
1408  * Note that the return value of this function may not be relied on, even if
1409  * the RCU lock is held, unless tag modification and node deletion are excluded
1410  * from concurrency.
1411  */
1412 int radix_tree_tag_get(const struct radix_tree_root *root,
1413 			unsigned long index, unsigned int tag)
1414 {
1415 	struct radix_tree_node *node, *parent;
1416 	unsigned long maxindex;
1417 
1418 	if (!root_tag_get(root, tag))
1419 		return 0;
1420 
1421 	radix_tree_load_root(root, &node, &maxindex);
1422 	if (index > maxindex)
1423 		return 0;
1424 	if (node == NULL)
1425 		return 0;
1426 
1427 	while (radix_tree_is_internal_node(node)) {
1428 		unsigned offset;
1429 
1430 		parent = entry_to_node(node);
1431 		offset = radix_tree_descend(parent, &node, index);
1432 
1433 		if (!node)
1434 			return 0;
1435 		if (!tag_get(parent, tag, offset))
1436 			return 0;
1437 		if (node == RADIX_TREE_RETRY)
1438 			break;
1439 	}
1440 
1441 	return 1;
1442 }
1443 EXPORT_SYMBOL(radix_tree_tag_get);
1444 
1445 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1446 					unsigned int shift)
1447 {
1448 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1449 	iter->shift = shift;
1450 #endif
1451 }
1452 
1453 /* Construct iter->tags bit-mask from node->tags[tag] array */
1454 static void set_iter_tags(struct radix_tree_iter *iter,
1455 				struct radix_tree_node *node, unsigned offset,
1456 				unsigned tag)
1457 {
1458 	unsigned tag_long = offset / BITS_PER_LONG;
1459 	unsigned tag_bit  = offset % BITS_PER_LONG;
1460 
1461 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1462 
1463 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1464 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1465 		/* Pick tags from next element */
1466 		if (tag_bit)
1467 			iter->tags |= node->tags[tag][tag_long + 1] <<
1468 						(BITS_PER_LONG - tag_bit);
1469 		/* Clip chunk size, here only BITS_PER_LONG tags */
1470 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1471 	}
1472 }
1473 
1474 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1475 static void **skip_siblings(struct radix_tree_node **nodep,
1476 			void **slot, struct radix_tree_iter *iter)
1477 {
1478 	void *sib = node_to_entry(slot - 1);
1479 
1480 	while (iter->index < iter->next_index) {
1481 		*nodep = rcu_dereference_raw(*slot);
1482 		if (*nodep && *nodep != sib)
1483 			return slot;
1484 		slot++;
1485 		iter->index = __radix_tree_iter_add(iter, 1);
1486 		iter->tags >>= 1;
1487 	}
1488 
1489 	*nodep = NULL;
1490 	return NULL;
1491 }
1492 
1493 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1494 					unsigned flags)
1495 {
1496 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1497 	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1498 
1499 	slot = skip_siblings(&node, slot, iter);
1500 
1501 	while (radix_tree_is_internal_node(node)) {
1502 		unsigned offset;
1503 		unsigned long next_index;
1504 
1505 		if (node == RADIX_TREE_RETRY)
1506 			return slot;
1507 		node = entry_to_node(node);
1508 		iter->node = node;
1509 		iter->shift = node->shift;
1510 
1511 		if (flags & RADIX_TREE_ITER_TAGGED) {
1512 			offset = radix_tree_find_next_bit(node, tag, 0);
1513 			if (offset == RADIX_TREE_MAP_SIZE)
1514 				return NULL;
1515 			slot = &node->slots[offset];
1516 			iter->index = __radix_tree_iter_add(iter, offset);
1517 			set_iter_tags(iter, node, offset, tag);
1518 			node = rcu_dereference_raw(*slot);
1519 		} else {
1520 			offset = 0;
1521 			slot = &node->slots[0];
1522 			for (;;) {
1523 				node = rcu_dereference_raw(*slot);
1524 				if (node)
1525 					break;
1526 				slot++;
1527 				offset++;
1528 				if (offset == RADIX_TREE_MAP_SIZE)
1529 					return NULL;
1530 			}
1531 			iter->index = __radix_tree_iter_add(iter, offset);
1532 		}
1533 		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1534 			goto none;
1535 		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1536 		if (next_index < iter->next_index)
1537 			iter->next_index = next_index;
1538 	}
1539 
1540 	return slot;
1541  none:
1542 	iter->next_index = 0;
1543 	return NULL;
1544 }
1545 EXPORT_SYMBOL(__radix_tree_next_slot);
1546 #else
1547 static void **skip_siblings(struct radix_tree_node **nodep,
1548 			void **slot, struct radix_tree_iter *iter)
1549 {
1550 	return slot;
1551 }
1552 #endif
1553 
1554 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1555 {
1556 	struct radix_tree_node *node;
1557 
1558 	slot++;
1559 	iter->index = __radix_tree_iter_add(iter, 1);
1560 	node = rcu_dereference_raw(*slot);
1561 	skip_siblings(&node, slot, iter);
1562 	iter->next_index = iter->index;
1563 	iter->tags = 0;
1564 	return NULL;
1565 }
1566 EXPORT_SYMBOL(radix_tree_iter_resume);
1567 
1568 /**
1569  * radix_tree_next_chunk - find next chunk of slots for iteration
1570  *
1571  * @root:	radix tree root
1572  * @iter:	iterator state
1573  * @flags:	RADIX_TREE_ITER_* flags and tag index
1574  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1575  */
1576 void **radix_tree_next_chunk(const struct radix_tree_root *root,
1577 			     struct radix_tree_iter *iter, unsigned flags)
1578 {
1579 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1580 	struct radix_tree_node *node, *child;
1581 	unsigned long index, offset, maxindex;
1582 
1583 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1584 		return NULL;
1585 
1586 	/*
1587 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1588 	 * during iterating; it can be zero only at the beginning.
1589 	 * And we cannot overflow iter->next_index in a single step,
1590 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1591 	 *
1592 	 * This condition also used by radix_tree_next_slot() to stop
1593 	 * contiguous iterating, and forbid switching to the next chunk.
1594 	 */
1595 	index = iter->next_index;
1596 	if (!index && iter->index)
1597 		return NULL;
1598 
1599  restart:
1600 	radix_tree_load_root(root, &child, &maxindex);
1601 	if (index > maxindex)
1602 		return NULL;
1603 	if (!child)
1604 		return NULL;
1605 
1606 	if (!radix_tree_is_internal_node(child)) {
1607 		/* Single-slot tree */
1608 		iter->index = index;
1609 		iter->next_index = maxindex + 1;
1610 		iter->tags = 1;
1611 		iter->node = NULL;
1612 		__set_iter_shift(iter, 0);
1613 		return (void **)&root->rnode;
1614 	}
1615 
1616 	do {
1617 		node = entry_to_node(child);
1618 		offset = radix_tree_descend(node, &child, index);
1619 
1620 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1621 				!tag_get(node, tag, offset) : !child) {
1622 			/* Hole detected */
1623 			if (flags & RADIX_TREE_ITER_CONTIG)
1624 				return NULL;
1625 
1626 			if (flags & RADIX_TREE_ITER_TAGGED)
1627 				offset = radix_tree_find_next_bit(node, tag,
1628 						offset + 1);
1629 			else
1630 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1631 					void *slot = node->slots[offset];
1632 					if (is_sibling_entry(node, slot))
1633 						continue;
1634 					if (slot)
1635 						break;
1636 				}
1637 			index &= ~node_maxindex(node);
1638 			index += offset << node->shift;
1639 			/* Overflow after ~0UL */
1640 			if (!index)
1641 				return NULL;
1642 			if (offset == RADIX_TREE_MAP_SIZE)
1643 				goto restart;
1644 			child = rcu_dereference_raw(node->slots[offset]);
1645 		}
1646 
1647 		if (!child)
1648 			goto restart;
1649 		if (child == RADIX_TREE_RETRY)
1650 			break;
1651 	} while (radix_tree_is_internal_node(child));
1652 
1653 	/* Update the iterator state */
1654 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1655 	iter->next_index = (index | node_maxindex(node)) + 1;
1656 	iter->node = node;
1657 	__set_iter_shift(iter, node->shift);
1658 
1659 	if (flags & RADIX_TREE_ITER_TAGGED)
1660 		set_iter_tags(iter, node, offset, tag);
1661 
1662 	return node->slots + offset;
1663 }
1664 EXPORT_SYMBOL(radix_tree_next_chunk);
1665 
1666 /**
1667  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1668  *	@root:		radix tree root
1669  *	@results:	where the results of the lookup are placed
1670  *	@first_index:	start the lookup from this key
1671  *	@max_items:	place up to this many items at *results
1672  *
1673  *	Performs an index-ascending scan of the tree for present items.  Places
1674  *	them at *@results and returns the number of items which were placed at
1675  *	*@results.
1676  *
1677  *	The implementation is naive.
1678  *
1679  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1680  *	rcu_read_lock. In this case, rather than the returned results being
1681  *	an atomic snapshot of the tree at a single point in time, the
1682  *	semantics of an RCU protected gang lookup are as though multiple
1683  *	radix_tree_lookups have been issued in individual locks, and results
1684  *	stored in 'results'.
1685  */
1686 unsigned int
1687 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1688 			unsigned long first_index, unsigned int max_items)
1689 {
1690 	struct radix_tree_iter iter;
1691 	void **slot;
1692 	unsigned int ret = 0;
1693 
1694 	if (unlikely(!max_items))
1695 		return 0;
1696 
1697 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1698 		results[ret] = rcu_dereference_raw(*slot);
1699 		if (!results[ret])
1700 			continue;
1701 		if (radix_tree_is_internal_node(results[ret])) {
1702 			slot = radix_tree_iter_retry(&iter);
1703 			continue;
1704 		}
1705 		if (++ret == max_items)
1706 			break;
1707 	}
1708 
1709 	return ret;
1710 }
1711 EXPORT_SYMBOL(radix_tree_gang_lookup);
1712 
1713 /**
1714  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1715  *	@root:		radix tree root
1716  *	@results:	where the results of the lookup are placed
1717  *	@indices:	where their indices should be placed (but usually NULL)
1718  *	@first_index:	start the lookup from this key
1719  *	@max_items:	place up to this many items at *results
1720  *
1721  *	Performs an index-ascending scan of the tree for present items.  Places
1722  *	their slots at *@results and returns the number of items which were
1723  *	placed at *@results.
1724  *
1725  *	The implementation is naive.
1726  *
1727  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1728  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1729  *	protection, radix_tree_deref_slot may fail requiring a retry.
1730  */
1731 unsigned int
1732 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1733 			void ***results, unsigned long *indices,
1734 			unsigned long first_index, unsigned int max_items)
1735 {
1736 	struct radix_tree_iter iter;
1737 	void **slot;
1738 	unsigned int ret = 0;
1739 
1740 	if (unlikely(!max_items))
1741 		return 0;
1742 
1743 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1744 		results[ret] = slot;
1745 		if (indices)
1746 			indices[ret] = iter.index;
1747 		if (++ret == max_items)
1748 			break;
1749 	}
1750 
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1754 
1755 /**
1756  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1757  *	                             based on a tag
1758  *	@root:		radix tree root
1759  *	@results:	where the results of the lookup are placed
1760  *	@first_index:	start the lookup from this key
1761  *	@max_items:	place up to this many items at *results
1762  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1763  *
1764  *	Performs an index-ascending scan of the tree for present items which
1765  *	have the tag indexed by @tag set.  Places the items at *@results and
1766  *	returns the number of items which were placed at *@results.
1767  */
1768 unsigned int
1769 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1770 		unsigned long first_index, unsigned int max_items,
1771 		unsigned int tag)
1772 {
1773 	struct radix_tree_iter iter;
1774 	void **slot;
1775 	unsigned int ret = 0;
1776 
1777 	if (unlikely(!max_items))
1778 		return 0;
1779 
1780 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1781 		results[ret] = rcu_dereference_raw(*slot);
1782 		if (!results[ret])
1783 			continue;
1784 		if (radix_tree_is_internal_node(results[ret])) {
1785 			slot = radix_tree_iter_retry(&iter);
1786 			continue;
1787 		}
1788 		if (++ret == max_items)
1789 			break;
1790 	}
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1795 
1796 /**
1797  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1798  *					  radix tree based on a tag
1799  *	@root:		radix tree root
1800  *	@results:	where the results of the lookup are placed
1801  *	@first_index:	start the lookup from this key
1802  *	@max_items:	place up to this many items at *results
1803  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1804  *
1805  *	Performs an index-ascending scan of the tree for present items which
1806  *	have the tag indexed by @tag set.  Places the slots at *@results and
1807  *	returns the number of slots which were placed at *@results.
1808  */
1809 unsigned int
1810 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1811 		void ***results, unsigned long first_index,
1812 		unsigned int max_items, unsigned int tag)
1813 {
1814 	struct radix_tree_iter iter;
1815 	void **slot;
1816 	unsigned int ret = 0;
1817 
1818 	if (unlikely(!max_items))
1819 		return 0;
1820 
1821 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1822 		results[ret] = slot;
1823 		if (++ret == max_items)
1824 			break;
1825 	}
1826 
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1830 
1831 /**
1832  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1833  *	@root:		radix tree root
1834  *	@node:		node containing @index
1835  *	@update_node:	callback for changing leaf nodes
1836  *	@private:	private data to pass to @update_node
1837  *
1838  *	After clearing the slot at @index in @node from radix tree
1839  *	rooted at @root, call this function to attempt freeing the
1840  *	node and shrinking the tree.
1841  */
1842 void __radix_tree_delete_node(struct radix_tree_root *root,
1843 			      struct radix_tree_node *node,
1844 			      radix_tree_update_node_t update_node,
1845 			      void *private)
1846 {
1847 	delete_node(root, node, update_node, private);
1848 }
1849 
1850 /**
1851  *	radix_tree_delete_item    -    delete an item from a radix tree
1852  *	@root:		radix tree root
1853  *	@index:		index key
1854  *	@item:		expected item
1855  *
1856  *	Remove @item at @index from the radix tree rooted at @root.
1857  *
1858  *	Returns the address of the deleted item, or NULL if it was not present
1859  *	or the entry at the given @index was not @item.
1860  */
1861 void *radix_tree_delete_item(struct radix_tree_root *root,
1862 			     unsigned long index, void *item)
1863 {
1864 	struct radix_tree_node *node;
1865 	unsigned int offset;
1866 	void **slot;
1867 	void *entry;
1868 	int tag;
1869 
1870 	entry = __radix_tree_lookup(root, index, &node, &slot);
1871 	if (!entry)
1872 		return NULL;
1873 
1874 	if (item && entry != item)
1875 		return NULL;
1876 
1877 	if (!node) {
1878 		root_tag_clear_all(root);
1879 		root->rnode = NULL;
1880 		return entry;
1881 	}
1882 
1883 	offset = get_slot_offset(node, slot);
1884 
1885 	/* Clear all tags associated with the item to be deleted.  */
1886 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1887 		node_tag_clear(root, node, tag, offset);
1888 
1889 	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1890 
1891 	return entry;
1892 }
1893 EXPORT_SYMBOL(radix_tree_delete_item);
1894 
1895 /**
1896  *	radix_tree_delete    -    delete an item from a radix tree
1897  *	@root:		radix tree root
1898  *	@index:		index key
1899  *
1900  *	Remove the item at @index from the radix tree rooted at @root.
1901  *
1902  *	Returns the address of the deleted item, or NULL if it was not present.
1903  */
1904 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1905 {
1906 	return radix_tree_delete_item(root, index, NULL);
1907 }
1908 EXPORT_SYMBOL(radix_tree_delete);
1909 
1910 void radix_tree_clear_tags(struct radix_tree_root *root,
1911 			   struct radix_tree_node *node,
1912 			   void **slot)
1913 {
1914 	if (node) {
1915 		unsigned int tag, offset = get_slot_offset(node, slot);
1916 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1917 			node_tag_clear(root, node, tag, offset);
1918 	} else {
1919 		/* Clear root node tags */
1920 		root->gfp_mask &= __GFP_BITS_MASK;
1921 	}
1922 }
1923 
1924 /**
1925  *	radix_tree_tagged - test whether any items in the tree are tagged
1926  *	@root:		radix tree root
1927  *	@tag:		tag to test
1928  */
1929 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1930 {
1931 	return root_tag_get(root, tag);
1932 }
1933 EXPORT_SYMBOL(radix_tree_tagged);
1934 
1935 static void
1936 radix_tree_node_ctor(void *arg)
1937 {
1938 	struct radix_tree_node *node = arg;
1939 
1940 	memset(node, 0, sizeof(*node));
1941 	INIT_LIST_HEAD(&node->private_list);
1942 }
1943 
1944 static __init unsigned long __maxindex(unsigned int height)
1945 {
1946 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1947 	int shift = RADIX_TREE_INDEX_BITS - width;
1948 
1949 	if (shift < 0)
1950 		return ~0UL;
1951 	if (shift >= BITS_PER_LONG)
1952 		return 0UL;
1953 	return ~0UL >> shift;
1954 }
1955 
1956 static __init void radix_tree_init_maxnodes(void)
1957 {
1958 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1959 	unsigned int i, j;
1960 
1961 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1962 		height_to_maxindex[i] = __maxindex(i);
1963 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1964 		for (j = i; j > 0; j--)
1965 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1966 	}
1967 }
1968 
1969 static int radix_tree_cpu_dead(unsigned int cpu)
1970 {
1971 	struct radix_tree_preload *rtp;
1972 	struct radix_tree_node *node;
1973 
1974 	/* Free per-cpu pool of preloaded nodes */
1975 	rtp = &per_cpu(radix_tree_preloads, cpu);
1976 	while (rtp->nr) {
1977 		node = rtp->nodes;
1978 		rtp->nodes = node->private_data;
1979 		kmem_cache_free(radix_tree_node_cachep, node);
1980 		rtp->nr--;
1981 	}
1982 	return 0;
1983 }
1984 
1985 void __init radix_tree_init(void)
1986 {
1987 	int ret;
1988 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1989 			sizeof(struct radix_tree_node), 0,
1990 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1991 			radix_tree_node_ctor);
1992 	radix_tree_init_maxnodes();
1993 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1994 					NULL, radix_tree_cpu_dead);
1995 	WARN_ON(ret < 0);
1996 }
1997