xref: /linux/lib/radix-tree.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2, or (at
11  * your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt_mask.h>		/* in_interrupt() */
37 
38 
39 /*
40  * The height_to_maxindex array needs to be one deeper than the maximum
41  * path as height 0 holds only 1 entry.
42  */
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44 
45 /*
46  * Radix tree node cache.
47  */
48 static struct kmem_cache *radix_tree_node_cachep;
49 
50 /*
51  * The radix tree is variable-height, so an insert operation not only has
52  * to build the branch to its corresponding item, it also has to build the
53  * branch to existing items if the size has to be increased (by
54  * radix_tree_extend).
55  *
56  * The worst case is a zero height tree with just a single item at index 0,
57  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59  * Hence:
60  */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62 
63 /*
64  * Per-cpu pool of preloaded nodes
65  */
66 struct radix_tree_preload {
67 	int nr;
68 	struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline void *ptr_to_indirect(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
75 }
76 
77 static inline void *indirect_to_ptr(void *ptr)
78 {
79 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
80 }
81 
82 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
83 {
84 	return root->gfp_mask & __GFP_BITS_MASK;
85 }
86 
87 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
88 		int offset)
89 {
90 	__set_bit(offset, node->tags[tag]);
91 }
92 
93 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
94 		int offset)
95 {
96 	__clear_bit(offset, node->tags[tag]);
97 }
98 
99 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
100 		int offset)
101 {
102 	return test_bit(offset, node->tags[tag]);
103 }
104 
105 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
106 {
107 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
108 }
109 
110 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
111 {
112 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
113 }
114 
115 static inline void root_tag_clear_all(struct radix_tree_root *root)
116 {
117 	root->gfp_mask &= __GFP_BITS_MASK;
118 }
119 
120 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
121 {
122 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
123 }
124 
125 /*
126  * Returns 1 if any slot in the node has this tag set.
127  * Otherwise returns 0.
128  */
129 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
130 {
131 	int idx;
132 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
133 		if (node->tags[tag][idx])
134 			return 1;
135 	}
136 	return 0;
137 }
138 
139 /**
140  * radix_tree_find_next_bit - find the next set bit in a memory region
141  *
142  * @addr: The address to base the search on
143  * @size: The bitmap size in bits
144  * @offset: The bitnumber to start searching at
145  *
146  * Unrollable variant of find_next_bit() for constant size arrays.
147  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
148  * Returns next bit offset, or size if nothing found.
149  */
150 static __always_inline unsigned long
151 radix_tree_find_next_bit(const unsigned long *addr,
152 			 unsigned long size, unsigned long offset)
153 {
154 	if (!__builtin_constant_p(size))
155 		return find_next_bit(addr, size, offset);
156 
157 	if (offset < size) {
158 		unsigned long tmp;
159 
160 		addr += offset / BITS_PER_LONG;
161 		tmp = *addr >> (offset % BITS_PER_LONG);
162 		if (tmp)
163 			return __ffs(tmp) + offset;
164 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
165 		while (offset < size) {
166 			tmp = *++addr;
167 			if (tmp)
168 				return __ffs(tmp) + offset;
169 			offset += BITS_PER_LONG;
170 		}
171 	}
172 	return size;
173 }
174 
175 /*
176  * This assumes that the caller has performed appropriate preallocation, and
177  * that the caller has pinned this thread of control to the current CPU.
178  */
179 static struct radix_tree_node *
180 radix_tree_node_alloc(struct radix_tree_root *root)
181 {
182 	struct radix_tree_node *ret = NULL;
183 	gfp_t gfp_mask = root_gfp_mask(root);
184 
185 	/*
186 	 * Preload code isn't irq safe and it doesn't make sence to use
187 	 * preloading in the interrupt anyway as all the allocations have to
188 	 * be atomic. So just do normal allocation when in interrupt.
189 	 */
190 	if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
191 		struct radix_tree_preload *rtp;
192 
193 		/*
194 		 * Provided the caller has preloaded here, we will always
195 		 * succeed in getting a node here (and never reach
196 		 * kmem_cache_alloc)
197 		 */
198 		rtp = this_cpu_ptr(&radix_tree_preloads);
199 		if (rtp->nr) {
200 			ret = rtp->nodes[rtp->nr - 1];
201 			rtp->nodes[rtp->nr - 1] = NULL;
202 			rtp->nr--;
203 		}
204 		/*
205 		 * Update the allocation stack trace as this is more useful
206 		 * for debugging.
207 		 */
208 		kmemleak_update_trace(ret);
209 	}
210 	if (ret == NULL)
211 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
212 
213 	BUG_ON(radix_tree_is_indirect_ptr(ret));
214 	return ret;
215 }
216 
217 static void radix_tree_node_rcu_free(struct rcu_head *head)
218 {
219 	struct radix_tree_node *node =
220 			container_of(head, struct radix_tree_node, rcu_head);
221 	int i;
222 
223 	/*
224 	 * must only free zeroed nodes into the slab. radix_tree_shrink
225 	 * can leave us with a non-NULL entry in the first slot, so clear
226 	 * that here to make sure.
227 	 */
228 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
229 		tag_clear(node, i, 0);
230 
231 	node->slots[0] = NULL;
232 	node->count = 0;
233 
234 	kmem_cache_free(radix_tree_node_cachep, node);
235 }
236 
237 static inline void
238 radix_tree_node_free(struct radix_tree_node *node)
239 {
240 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
241 }
242 
243 /*
244  * Load up this CPU's radix_tree_node buffer with sufficient objects to
245  * ensure that the addition of a single element in the tree cannot fail.  On
246  * success, return zero, with preemption disabled.  On error, return -ENOMEM
247  * with preemption not disabled.
248  *
249  * To make use of this facility, the radix tree must be initialised without
250  * __GFP_WAIT being passed to INIT_RADIX_TREE().
251  */
252 static int __radix_tree_preload(gfp_t gfp_mask)
253 {
254 	struct radix_tree_preload *rtp;
255 	struct radix_tree_node *node;
256 	int ret = -ENOMEM;
257 
258 	preempt_disable();
259 	rtp = this_cpu_ptr(&radix_tree_preloads);
260 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
261 		preempt_enable();
262 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
263 		if (node == NULL)
264 			goto out;
265 		preempt_disable();
266 		rtp = this_cpu_ptr(&radix_tree_preloads);
267 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
268 			rtp->nodes[rtp->nr++] = node;
269 		else
270 			kmem_cache_free(radix_tree_node_cachep, node);
271 	}
272 	ret = 0;
273 out:
274 	return ret;
275 }
276 
277 /*
278  * Load up this CPU's radix_tree_node buffer with sufficient objects to
279  * ensure that the addition of a single element in the tree cannot fail.  On
280  * success, return zero, with preemption disabled.  On error, return -ENOMEM
281  * with preemption not disabled.
282  *
283  * To make use of this facility, the radix tree must be initialised without
284  * __GFP_WAIT being passed to INIT_RADIX_TREE().
285  */
286 int radix_tree_preload(gfp_t gfp_mask)
287 {
288 	/* Warn on non-sensical use... */
289 	WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
290 	return __radix_tree_preload(gfp_mask);
291 }
292 EXPORT_SYMBOL(radix_tree_preload);
293 
294 /*
295  * The same as above function, except we don't guarantee preloading happens.
296  * We do it, if we decide it helps. On success, return zero with preemption
297  * disabled. On error, return -ENOMEM with preemption not disabled.
298  */
299 int radix_tree_maybe_preload(gfp_t gfp_mask)
300 {
301 	if (gfp_mask & __GFP_WAIT)
302 		return __radix_tree_preload(gfp_mask);
303 	/* Preloading doesn't help anything with this gfp mask, skip it */
304 	preempt_disable();
305 	return 0;
306 }
307 EXPORT_SYMBOL(radix_tree_maybe_preload);
308 
309 /*
310  *	Return the maximum key which can be store into a
311  *	radix tree with height HEIGHT.
312  */
313 static inline unsigned long radix_tree_maxindex(unsigned int height)
314 {
315 	return height_to_maxindex[height];
316 }
317 
318 /*
319  *	Extend a radix tree so it can store key @index.
320  */
321 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
322 {
323 	struct radix_tree_node *node;
324 	struct radix_tree_node *slot;
325 	unsigned int height;
326 	int tag;
327 
328 	/* Figure out what the height should be.  */
329 	height = root->height + 1;
330 	while (index > radix_tree_maxindex(height))
331 		height++;
332 
333 	if (root->rnode == NULL) {
334 		root->height = height;
335 		goto out;
336 	}
337 
338 	do {
339 		unsigned int newheight;
340 		if (!(node = radix_tree_node_alloc(root)))
341 			return -ENOMEM;
342 
343 		/* Propagate the aggregated tag info into the new root */
344 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
345 			if (root_tag_get(root, tag))
346 				tag_set(node, tag, 0);
347 		}
348 
349 		/* Increase the height.  */
350 		newheight = root->height+1;
351 		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
352 		node->path = newheight;
353 		node->count = 1;
354 		node->parent = NULL;
355 		slot = root->rnode;
356 		if (newheight > 1) {
357 			slot = indirect_to_ptr(slot);
358 			slot->parent = node;
359 		}
360 		node->slots[0] = slot;
361 		node = ptr_to_indirect(node);
362 		rcu_assign_pointer(root->rnode, node);
363 		root->height = newheight;
364 	} while (height > root->height);
365 out:
366 	return 0;
367 }
368 
369 /**
370  *	__radix_tree_create	-	create a slot in a radix tree
371  *	@root:		radix tree root
372  *	@index:		index key
373  *	@nodep:		returns node
374  *	@slotp:		returns slot
375  *
376  *	Create, if necessary, and return the node and slot for an item
377  *	at position @index in the radix tree @root.
378  *
379  *	Until there is more than one item in the tree, no nodes are
380  *	allocated and @root->rnode is used as a direct slot instead of
381  *	pointing to a node, in which case *@nodep will be NULL.
382  *
383  *	Returns -ENOMEM, or 0 for success.
384  */
385 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
386 			struct radix_tree_node **nodep, void ***slotp)
387 {
388 	struct radix_tree_node *node = NULL, *slot;
389 	unsigned int height, shift, offset;
390 	int error;
391 
392 	/* Make sure the tree is high enough.  */
393 	if (index > radix_tree_maxindex(root->height)) {
394 		error = radix_tree_extend(root, index);
395 		if (error)
396 			return error;
397 	}
398 
399 	slot = indirect_to_ptr(root->rnode);
400 
401 	height = root->height;
402 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
403 
404 	offset = 0;			/* uninitialised var warning */
405 	while (height > 0) {
406 		if (slot == NULL) {
407 			/* Have to add a child node.  */
408 			if (!(slot = radix_tree_node_alloc(root)))
409 				return -ENOMEM;
410 			slot->path = height;
411 			slot->parent = node;
412 			if (node) {
413 				rcu_assign_pointer(node->slots[offset], slot);
414 				node->count++;
415 				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
416 			} else
417 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
418 		}
419 
420 		/* Go a level down */
421 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
422 		node = slot;
423 		slot = node->slots[offset];
424 		shift -= RADIX_TREE_MAP_SHIFT;
425 		height--;
426 	}
427 
428 	if (nodep)
429 		*nodep = node;
430 	if (slotp)
431 		*slotp = node ? node->slots + offset : (void **)&root->rnode;
432 	return 0;
433 }
434 
435 /**
436  *	radix_tree_insert    -    insert into a radix tree
437  *	@root:		radix tree root
438  *	@index:		index key
439  *	@item:		item to insert
440  *
441  *	Insert an item into the radix tree at position @index.
442  */
443 int radix_tree_insert(struct radix_tree_root *root,
444 			unsigned long index, void *item)
445 {
446 	struct radix_tree_node *node;
447 	void **slot;
448 	int error;
449 
450 	BUG_ON(radix_tree_is_indirect_ptr(item));
451 
452 	error = __radix_tree_create(root, index, &node, &slot);
453 	if (error)
454 		return error;
455 	if (*slot != NULL)
456 		return -EEXIST;
457 	rcu_assign_pointer(*slot, item);
458 
459 	if (node) {
460 		node->count++;
461 		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
462 		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
463 	} else {
464 		BUG_ON(root_tag_get(root, 0));
465 		BUG_ON(root_tag_get(root, 1));
466 	}
467 
468 	return 0;
469 }
470 EXPORT_SYMBOL(radix_tree_insert);
471 
472 /**
473  *	__radix_tree_lookup	-	lookup an item in a radix tree
474  *	@root:		radix tree root
475  *	@index:		index key
476  *	@nodep:		returns node
477  *	@slotp:		returns slot
478  *
479  *	Lookup and return the item at position @index in the radix
480  *	tree @root.
481  *
482  *	Until there is more than one item in the tree, no nodes are
483  *	allocated and @root->rnode is used as a direct slot instead of
484  *	pointing to a node, in which case *@nodep will be NULL.
485  */
486 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
487 			  struct radix_tree_node **nodep, void ***slotp)
488 {
489 	struct radix_tree_node *node, *parent;
490 	unsigned int height, shift;
491 	void **slot;
492 
493 	node = rcu_dereference_raw(root->rnode);
494 	if (node == NULL)
495 		return NULL;
496 
497 	if (!radix_tree_is_indirect_ptr(node)) {
498 		if (index > 0)
499 			return NULL;
500 
501 		if (nodep)
502 			*nodep = NULL;
503 		if (slotp)
504 			*slotp = (void **)&root->rnode;
505 		return node;
506 	}
507 	node = indirect_to_ptr(node);
508 
509 	height = node->path & RADIX_TREE_HEIGHT_MASK;
510 	if (index > radix_tree_maxindex(height))
511 		return NULL;
512 
513 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
514 
515 	do {
516 		parent = node;
517 		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
518 		node = rcu_dereference_raw(*slot);
519 		if (node == NULL)
520 			return NULL;
521 
522 		shift -= RADIX_TREE_MAP_SHIFT;
523 		height--;
524 	} while (height > 0);
525 
526 	if (nodep)
527 		*nodep = parent;
528 	if (slotp)
529 		*slotp = slot;
530 	return node;
531 }
532 
533 /**
534  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
535  *	@root:		radix tree root
536  *	@index:		index key
537  *
538  *	Returns:  the slot corresponding to the position @index in the
539  *	radix tree @root. This is useful for update-if-exists operations.
540  *
541  *	This function can be called under rcu_read_lock iff the slot is not
542  *	modified by radix_tree_replace_slot, otherwise it must be called
543  *	exclusive from other writers. Any dereference of the slot must be done
544  *	using radix_tree_deref_slot.
545  */
546 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
547 {
548 	void **slot;
549 
550 	if (!__radix_tree_lookup(root, index, NULL, &slot))
551 		return NULL;
552 	return slot;
553 }
554 EXPORT_SYMBOL(radix_tree_lookup_slot);
555 
556 /**
557  *	radix_tree_lookup    -    perform lookup operation on a radix tree
558  *	@root:		radix tree root
559  *	@index:		index key
560  *
561  *	Lookup the item at the position @index in the radix tree @root.
562  *
563  *	This function can be called under rcu_read_lock, however the caller
564  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
565  *	them safely). No RCU barriers are required to access or modify the
566  *	returned item, however.
567  */
568 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
569 {
570 	return __radix_tree_lookup(root, index, NULL, NULL);
571 }
572 EXPORT_SYMBOL(radix_tree_lookup);
573 
574 /**
575  *	radix_tree_tag_set - set a tag on a radix tree node
576  *	@root:		radix tree root
577  *	@index:		index key
578  *	@tag: 		tag index
579  *
580  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
581  *	corresponding to @index in the radix tree.  From
582  *	the root all the way down to the leaf node.
583  *
584  *	Returns the address of the tagged item.   Setting a tag on a not-present
585  *	item is a bug.
586  */
587 void *radix_tree_tag_set(struct radix_tree_root *root,
588 			unsigned long index, unsigned int tag)
589 {
590 	unsigned int height, shift;
591 	struct radix_tree_node *slot;
592 
593 	height = root->height;
594 	BUG_ON(index > radix_tree_maxindex(height));
595 
596 	slot = indirect_to_ptr(root->rnode);
597 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
598 
599 	while (height > 0) {
600 		int offset;
601 
602 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
603 		if (!tag_get(slot, tag, offset))
604 			tag_set(slot, tag, offset);
605 		slot = slot->slots[offset];
606 		BUG_ON(slot == NULL);
607 		shift -= RADIX_TREE_MAP_SHIFT;
608 		height--;
609 	}
610 
611 	/* set the root's tag bit */
612 	if (slot && !root_tag_get(root, tag))
613 		root_tag_set(root, tag);
614 
615 	return slot;
616 }
617 EXPORT_SYMBOL(radix_tree_tag_set);
618 
619 /**
620  *	radix_tree_tag_clear - clear a tag on a radix tree node
621  *	@root:		radix tree root
622  *	@index:		index key
623  *	@tag: 		tag index
624  *
625  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
626  *	corresponding to @index in the radix tree.  If
627  *	this causes the leaf node to have no tags set then clear the tag in the
628  *	next-to-leaf node, etc.
629  *
630  *	Returns the address of the tagged item on success, else NULL.  ie:
631  *	has the same return value and semantics as radix_tree_lookup().
632  */
633 void *radix_tree_tag_clear(struct radix_tree_root *root,
634 			unsigned long index, unsigned int tag)
635 {
636 	struct radix_tree_node *node = NULL;
637 	struct radix_tree_node *slot = NULL;
638 	unsigned int height, shift;
639 	int uninitialized_var(offset);
640 
641 	height = root->height;
642 	if (index > radix_tree_maxindex(height))
643 		goto out;
644 
645 	shift = height * RADIX_TREE_MAP_SHIFT;
646 	slot = indirect_to_ptr(root->rnode);
647 
648 	while (shift) {
649 		if (slot == NULL)
650 			goto out;
651 
652 		shift -= RADIX_TREE_MAP_SHIFT;
653 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
654 		node = slot;
655 		slot = slot->slots[offset];
656 	}
657 
658 	if (slot == NULL)
659 		goto out;
660 
661 	while (node) {
662 		if (!tag_get(node, tag, offset))
663 			goto out;
664 		tag_clear(node, tag, offset);
665 		if (any_tag_set(node, tag))
666 			goto out;
667 
668 		index >>= RADIX_TREE_MAP_SHIFT;
669 		offset = index & RADIX_TREE_MAP_MASK;
670 		node = node->parent;
671 	}
672 
673 	/* clear the root's tag bit */
674 	if (root_tag_get(root, tag))
675 		root_tag_clear(root, tag);
676 
677 out:
678 	return slot;
679 }
680 EXPORT_SYMBOL(radix_tree_tag_clear);
681 
682 /**
683  * radix_tree_tag_get - get a tag on a radix tree node
684  * @root:		radix tree root
685  * @index:		index key
686  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
687  *
688  * Return values:
689  *
690  *  0: tag not present or not set
691  *  1: tag set
692  *
693  * Note that the return value of this function may not be relied on, even if
694  * the RCU lock is held, unless tag modification and node deletion are excluded
695  * from concurrency.
696  */
697 int radix_tree_tag_get(struct radix_tree_root *root,
698 			unsigned long index, unsigned int tag)
699 {
700 	unsigned int height, shift;
701 	struct radix_tree_node *node;
702 
703 	/* check the root's tag bit */
704 	if (!root_tag_get(root, tag))
705 		return 0;
706 
707 	node = rcu_dereference_raw(root->rnode);
708 	if (node == NULL)
709 		return 0;
710 
711 	if (!radix_tree_is_indirect_ptr(node))
712 		return (index == 0);
713 	node = indirect_to_ptr(node);
714 
715 	height = node->path & RADIX_TREE_HEIGHT_MASK;
716 	if (index > radix_tree_maxindex(height))
717 		return 0;
718 
719 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
720 
721 	for ( ; ; ) {
722 		int offset;
723 
724 		if (node == NULL)
725 			return 0;
726 
727 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
728 		if (!tag_get(node, tag, offset))
729 			return 0;
730 		if (height == 1)
731 			return 1;
732 		node = rcu_dereference_raw(node->slots[offset]);
733 		shift -= RADIX_TREE_MAP_SHIFT;
734 		height--;
735 	}
736 }
737 EXPORT_SYMBOL(radix_tree_tag_get);
738 
739 /**
740  * radix_tree_next_chunk - find next chunk of slots for iteration
741  *
742  * @root:	radix tree root
743  * @iter:	iterator state
744  * @flags:	RADIX_TREE_ITER_* flags and tag index
745  * Returns:	pointer to chunk first slot, or NULL if iteration is over
746  */
747 void **radix_tree_next_chunk(struct radix_tree_root *root,
748 			     struct radix_tree_iter *iter, unsigned flags)
749 {
750 	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
751 	struct radix_tree_node *rnode, *node;
752 	unsigned long index, offset, height;
753 
754 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
755 		return NULL;
756 
757 	/*
758 	 * Catch next_index overflow after ~0UL. iter->index never overflows
759 	 * during iterating; it can be zero only at the beginning.
760 	 * And we cannot overflow iter->next_index in a single step,
761 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
762 	 *
763 	 * This condition also used by radix_tree_next_slot() to stop
764 	 * contiguous iterating, and forbid swithing to the next chunk.
765 	 */
766 	index = iter->next_index;
767 	if (!index && iter->index)
768 		return NULL;
769 
770 	rnode = rcu_dereference_raw(root->rnode);
771 	if (radix_tree_is_indirect_ptr(rnode)) {
772 		rnode = indirect_to_ptr(rnode);
773 	} else if (rnode && !index) {
774 		/* Single-slot tree */
775 		iter->index = 0;
776 		iter->next_index = 1;
777 		iter->tags = 1;
778 		return (void **)&root->rnode;
779 	} else
780 		return NULL;
781 
782 restart:
783 	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
784 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
785 	offset = index >> shift;
786 
787 	/* Index outside of the tree */
788 	if (offset >= RADIX_TREE_MAP_SIZE)
789 		return NULL;
790 
791 	node = rnode;
792 	while (1) {
793 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
794 				!test_bit(offset, node->tags[tag]) :
795 				!node->slots[offset]) {
796 			/* Hole detected */
797 			if (flags & RADIX_TREE_ITER_CONTIG)
798 				return NULL;
799 
800 			if (flags & RADIX_TREE_ITER_TAGGED)
801 				offset = radix_tree_find_next_bit(
802 						node->tags[tag],
803 						RADIX_TREE_MAP_SIZE,
804 						offset + 1);
805 			else
806 				while (++offset	< RADIX_TREE_MAP_SIZE) {
807 					if (node->slots[offset])
808 						break;
809 				}
810 			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
811 			index += offset << shift;
812 			/* Overflow after ~0UL */
813 			if (!index)
814 				return NULL;
815 			if (offset == RADIX_TREE_MAP_SIZE)
816 				goto restart;
817 		}
818 
819 		/* This is leaf-node */
820 		if (!shift)
821 			break;
822 
823 		node = rcu_dereference_raw(node->slots[offset]);
824 		if (node == NULL)
825 			goto restart;
826 		shift -= RADIX_TREE_MAP_SHIFT;
827 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
828 	}
829 
830 	/* Update the iterator state */
831 	iter->index = index;
832 	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
833 
834 	/* Construct iter->tags bit-mask from node->tags[tag] array */
835 	if (flags & RADIX_TREE_ITER_TAGGED) {
836 		unsigned tag_long, tag_bit;
837 
838 		tag_long = offset / BITS_PER_LONG;
839 		tag_bit  = offset % BITS_PER_LONG;
840 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
841 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
842 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
843 			/* Pick tags from next element */
844 			if (tag_bit)
845 				iter->tags |= node->tags[tag][tag_long + 1] <<
846 						(BITS_PER_LONG - tag_bit);
847 			/* Clip chunk size, here only BITS_PER_LONG tags */
848 			iter->next_index = index + BITS_PER_LONG;
849 		}
850 	}
851 
852 	return node->slots + offset;
853 }
854 EXPORT_SYMBOL(radix_tree_next_chunk);
855 
856 /**
857  * radix_tree_range_tag_if_tagged - for each item in given range set given
858  *				   tag if item has another tag set
859  * @root:		radix tree root
860  * @first_indexp:	pointer to a starting index of a range to scan
861  * @last_index:		last index of a range to scan
862  * @nr_to_tag:		maximum number items to tag
863  * @iftag:		tag index to test
864  * @settag:		tag index to set if tested tag is set
865  *
866  * This function scans range of radix tree from first_index to last_index
867  * (inclusive).  For each item in the range if iftag is set, the function sets
868  * also settag. The function stops either after tagging nr_to_tag items or
869  * after reaching last_index.
870  *
871  * The tags must be set from the leaf level only and propagated back up the
872  * path to the root. We must do this so that we resolve the full path before
873  * setting any tags on intermediate nodes. If we set tags as we descend, then
874  * we can get to the leaf node and find that the index that has the iftag
875  * set is outside the range we are scanning. This reults in dangling tags and
876  * can lead to problems with later tag operations (e.g. livelocks on lookups).
877  *
878  * The function returns number of leaves where the tag was set and sets
879  * *first_indexp to the first unscanned index.
880  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
881  * be prepared to handle that.
882  */
883 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
884 		unsigned long *first_indexp, unsigned long last_index,
885 		unsigned long nr_to_tag,
886 		unsigned int iftag, unsigned int settag)
887 {
888 	unsigned int height = root->height;
889 	struct radix_tree_node *node = NULL;
890 	struct radix_tree_node *slot;
891 	unsigned int shift;
892 	unsigned long tagged = 0;
893 	unsigned long index = *first_indexp;
894 
895 	last_index = min(last_index, radix_tree_maxindex(height));
896 	if (index > last_index)
897 		return 0;
898 	if (!nr_to_tag)
899 		return 0;
900 	if (!root_tag_get(root, iftag)) {
901 		*first_indexp = last_index + 1;
902 		return 0;
903 	}
904 	if (height == 0) {
905 		*first_indexp = last_index + 1;
906 		root_tag_set(root, settag);
907 		return 1;
908 	}
909 
910 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
911 	slot = indirect_to_ptr(root->rnode);
912 
913 	for (;;) {
914 		unsigned long upindex;
915 		int offset;
916 
917 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
918 		if (!slot->slots[offset])
919 			goto next;
920 		if (!tag_get(slot, iftag, offset))
921 			goto next;
922 		if (shift) {
923 			/* Go down one level */
924 			shift -= RADIX_TREE_MAP_SHIFT;
925 			node = slot;
926 			slot = slot->slots[offset];
927 			continue;
928 		}
929 
930 		/* tag the leaf */
931 		tagged++;
932 		tag_set(slot, settag, offset);
933 
934 		/* walk back up the path tagging interior nodes */
935 		upindex = index;
936 		while (node) {
937 			upindex >>= RADIX_TREE_MAP_SHIFT;
938 			offset = upindex & RADIX_TREE_MAP_MASK;
939 
940 			/* stop if we find a node with the tag already set */
941 			if (tag_get(node, settag, offset))
942 				break;
943 			tag_set(node, settag, offset);
944 			node = node->parent;
945 		}
946 
947 		/*
948 		 * Small optimization: now clear that node pointer.
949 		 * Since all of this slot's ancestors now have the tag set
950 		 * from setting it above, we have no further need to walk
951 		 * back up the tree setting tags, until we update slot to
952 		 * point to another radix_tree_node.
953 		 */
954 		node = NULL;
955 
956 next:
957 		/* Go to next item at level determined by 'shift' */
958 		index = ((index >> shift) + 1) << shift;
959 		/* Overflow can happen when last_index is ~0UL... */
960 		if (index > last_index || !index)
961 			break;
962 		if (tagged >= nr_to_tag)
963 			break;
964 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
965 			/*
966 			 * We've fully scanned this node. Go up. Because
967 			 * last_index is guaranteed to be in the tree, what
968 			 * we do below cannot wander astray.
969 			 */
970 			slot = slot->parent;
971 			shift += RADIX_TREE_MAP_SHIFT;
972 		}
973 	}
974 	/*
975 	 * We need not to tag the root tag if there is no tag which is set with
976 	 * settag within the range from *first_indexp to last_index.
977 	 */
978 	if (tagged > 0)
979 		root_tag_set(root, settag);
980 	*first_indexp = index;
981 
982 	return tagged;
983 }
984 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
985 
986 /**
987  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
988  *	@root:		radix tree root
989  *	@results:	where the results of the lookup are placed
990  *	@first_index:	start the lookup from this key
991  *	@max_items:	place up to this many items at *results
992  *
993  *	Performs an index-ascending scan of the tree for present items.  Places
994  *	them at *@results and returns the number of items which were placed at
995  *	*@results.
996  *
997  *	The implementation is naive.
998  *
999  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1000  *	rcu_read_lock. In this case, rather than the returned results being
1001  *	an atomic snapshot of the tree at a single point in time, the semantics
1002  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
1003  *	have been issued in individual locks, and results stored in 'results'.
1004  */
1005 unsigned int
1006 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1007 			unsigned long first_index, unsigned int max_items)
1008 {
1009 	struct radix_tree_iter iter;
1010 	void **slot;
1011 	unsigned int ret = 0;
1012 
1013 	if (unlikely(!max_items))
1014 		return 0;
1015 
1016 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1017 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1018 		if (!results[ret])
1019 			continue;
1020 		if (++ret == max_items)
1021 			break;
1022 	}
1023 
1024 	return ret;
1025 }
1026 EXPORT_SYMBOL(radix_tree_gang_lookup);
1027 
1028 /**
1029  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1030  *	@root:		radix tree root
1031  *	@results:	where the results of the lookup are placed
1032  *	@indices:	where their indices should be placed (but usually NULL)
1033  *	@first_index:	start the lookup from this key
1034  *	@max_items:	place up to this many items at *results
1035  *
1036  *	Performs an index-ascending scan of the tree for present items.  Places
1037  *	their slots at *@results and returns the number of items which were
1038  *	placed at *@results.
1039  *
1040  *	The implementation is naive.
1041  *
1042  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1043  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1044  *	protection, radix_tree_deref_slot may fail requiring a retry.
1045  */
1046 unsigned int
1047 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1048 			void ***results, unsigned long *indices,
1049 			unsigned long first_index, unsigned int max_items)
1050 {
1051 	struct radix_tree_iter iter;
1052 	void **slot;
1053 	unsigned int ret = 0;
1054 
1055 	if (unlikely(!max_items))
1056 		return 0;
1057 
1058 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1059 		results[ret] = slot;
1060 		if (indices)
1061 			indices[ret] = iter.index;
1062 		if (++ret == max_items)
1063 			break;
1064 	}
1065 
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1069 
1070 /**
1071  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1072  *	                             based on a tag
1073  *	@root:		radix tree root
1074  *	@results:	where the results of the lookup are placed
1075  *	@first_index:	start the lookup from this key
1076  *	@max_items:	place up to this many items at *results
1077  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1078  *
1079  *	Performs an index-ascending scan of the tree for present items which
1080  *	have the tag indexed by @tag set.  Places the items at *@results and
1081  *	returns the number of items which were placed at *@results.
1082  */
1083 unsigned int
1084 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1085 		unsigned long first_index, unsigned int max_items,
1086 		unsigned int tag)
1087 {
1088 	struct radix_tree_iter iter;
1089 	void **slot;
1090 	unsigned int ret = 0;
1091 
1092 	if (unlikely(!max_items))
1093 		return 0;
1094 
1095 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1096 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1097 		if (!results[ret])
1098 			continue;
1099 		if (++ret == max_items)
1100 			break;
1101 	}
1102 
1103 	return ret;
1104 }
1105 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1106 
1107 /**
1108  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1109  *					  radix tree based on a tag
1110  *	@root:		radix tree root
1111  *	@results:	where the results of the lookup are placed
1112  *	@first_index:	start the lookup from this key
1113  *	@max_items:	place up to this many items at *results
1114  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1115  *
1116  *	Performs an index-ascending scan of the tree for present items which
1117  *	have the tag indexed by @tag set.  Places the slots at *@results and
1118  *	returns the number of slots which were placed at *@results.
1119  */
1120 unsigned int
1121 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1122 		unsigned long first_index, unsigned int max_items,
1123 		unsigned int tag)
1124 {
1125 	struct radix_tree_iter iter;
1126 	void **slot;
1127 	unsigned int ret = 0;
1128 
1129 	if (unlikely(!max_items))
1130 		return 0;
1131 
1132 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1133 		results[ret] = slot;
1134 		if (++ret == max_items)
1135 			break;
1136 	}
1137 
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1141 
1142 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1143 #include <linux/sched.h> /* for cond_resched() */
1144 
1145 /*
1146  * This linear search is at present only useful to shmem_unuse_inode().
1147  */
1148 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1149 			      unsigned long index, unsigned long *found_index)
1150 {
1151 	unsigned int shift, height;
1152 	unsigned long i;
1153 
1154 	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1155 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1156 
1157 	for ( ; height > 1; height--) {
1158 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1159 		for (;;) {
1160 			if (slot->slots[i] != NULL)
1161 				break;
1162 			index &= ~((1UL << shift) - 1);
1163 			index += 1UL << shift;
1164 			if (index == 0)
1165 				goto out;	/* 32-bit wraparound */
1166 			i++;
1167 			if (i == RADIX_TREE_MAP_SIZE)
1168 				goto out;
1169 		}
1170 
1171 		shift -= RADIX_TREE_MAP_SHIFT;
1172 		slot = rcu_dereference_raw(slot->slots[i]);
1173 		if (slot == NULL)
1174 			goto out;
1175 	}
1176 
1177 	/* Bottom level: check items */
1178 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1179 		if (slot->slots[i] == item) {
1180 			*found_index = index + i;
1181 			index = 0;
1182 			goto out;
1183 		}
1184 	}
1185 	index += RADIX_TREE_MAP_SIZE;
1186 out:
1187 	return index;
1188 }
1189 
1190 /**
1191  *	radix_tree_locate_item - search through radix tree for item
1192  *	@root:		radix tree root
1193  *	@item:		item to be found
1194  *
1195  *	Returns index where item was found, or -1 if not found.
1196  *	Caller must hold no lock (since this time-consuming function needs
1197  *	to be preemptible), and must check afterwards if item is still there.
1198  */
1199 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1200 {
1201 	struct radix_tree_node *node;
1202 	unsigned long max_index;
1203 	unsigned long cur_index = 0;
1204 	unsigned long found_index = -1;
1205 
1206 	do {
1207 		rcu_read_lock();
1208 		node = rcu_dereference_raw(root->rnode);
1209 		if (!radix_tree_is_indirect_ptr(node)) {
1210 			rcu_read_unlock();
1211 			if (node == item)
1212 				found_index = 0;
1213 			break;
1214 		}
1215 
1216 		node = indirect_to_ptr(node);
1217 		max_index = radix_tree_maxindex(node->path &
1218 						RADIX_TREE_HEIGHT_MASK);
1219 		if (cur_index > max_index) {
1220 			rcu_read_unlock();
1221 			break;
1222 		}
1223 
1224 		cur_index = __locate(node, item, cur_index, &found_index);
1225 		rcu_read_unlock();
1226 		cond_resched();
1227 	} while (cur_index != 0 && cur_index <= max_index);
1228 
1229 	return found_index;
1230 }
1231 #else
1232 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1233 {
1234 	return -1;
1235 }
1236 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1237 
1238 /**
1239  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1240  *	@root		radix tree root
1241  */
1242 static inline void radix_tree_shrink(struct radix_tree_root *root)
1243 {
1244 	/* try to shrink tree height */
1245 	while (root->height > 0) {
1246 		struct radix_tree_node *to_free = root->rnode;
1247 		struct radix_tree_node *slot;
1248 
1249 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1250 		to_free = indirect_to_ptr(to_free);
1251 
1252 		/*
1253 		 * The candidate node has more than one child, or its child
1254 		 * is not at the leftmost slot, we cannot shrink.
1255 		 */
1256 		if (to_free->count != 1)
1257 			break;
1258 		if (!to_free->slots[0])
1259 			break;
1260 
1261 		/*
1262 		 * We don't need rcu_assign_pointer(), since we are simply
1263 		 * moving the node from one part of the tree to another: if it
1264 		 * was safe to dereference the old pointer to it
1265 		 * (to_free->slots[0]), it will be safe to dereference the new
1266 		 * one (root->rnode) as far as dependent read barriers go.
1267 		 */
1268 		slot = to_free->slots[0];
1269 		if (root->height > 1) {
1270 			slot->parent = NULL;
1271 			slot = ptr_to_indirect(slot);
1272 		}
1273 		root->rnode = slot;
1274 		root->height--;
1275 
1276 		/*
1277 		 * We have a dilemma here. The node's slot[0] must not be
1278 		 * NULLed in case there are concurrent lookups expecting to
1279 		 * find the item. However if this was a bottom-level node,
1280 		 * then it may be subject to the slot pointer being visible
1281 		 * to callers dereferencing it. If item corresponding to
1282 		 * slot[0] is subsequently deleted, these callers would expect
1283 		 * their slot to become empty sooner or later.
1284 		 *
1285 		 * For example, lockless pagecache will look up a slot, deref
1286 		 * the page pointer, and if the page is 0 refcount it means it
1287 		 * was concurrently deleted from pagecache so try the deref
1288 		 * again. Fortunately there is already a requirement for logic
1289 		 * to retry the entire slot lookup -- the indirect pointer
1290 		 * problem (replacing direct root node with an indirect pointer
1291 		 * also results in a stale slot). So tag the slot as indirect
1292 		 * to force callers to retry.
1293 		 */
1294 		if (root->height == 0)
1295 			*((unsigned long *)&to_free->slots[0]) |=
1296 						RADIX_TREE_INDIRECT_PTR;
1297 
1298 		radix_tree_node_free(to_free);
1299 	}
1300 }
1301 
1302 /**
1303  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1304  *	@root:		radix tree root
1305  *	@node:		node containing @index
1306  *
1307  *	After clearing the slot at @index in @node from radix tree
1308  *	rooted at @root, call this function to attempt freeing the
1309  *	node and shrinking the tree.
1310  *
1311  *	Returns %true if @node was freed, %false otherwise.
1312  */
1313 bool __radix_tree_delete_node(struct radix_tree_root *root,
1314 			      struct radix_tree_node *node)
1315 {
1316 	bool deleted = false;
1317 
1318 	do {
1319 		struct radix_tree_node *parent;
1320 
1321 		if (node->count) {
1322 			if (node == indirect_to_ptr(root->rnode)) {
1323 				radix_tree_shrink(root);
1324 				if (root->height == 0)
1325 					deleted = true;
1326 			}
1327 			return deleted;
1328 		}
1329 
1330 		parent = node->parent;
1331 		if (parent) {
1332 			unsigned int offset;
1333 
1334 			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1335 			parent->slots[offset] = NULL;
1336 			parent->count--;
1337 		} else {
1338 			root_tag_clear_all(root);
1339 			root->height = 0;
1340 			root->rnode = NULL;
1341 		}
1342 
1343 		radix_tree_node_free(node);
1344 		deleted = true;
1345 
1346 		node = parent;
1347 	} while (node);
1348 
1349 	return deleted;
1350 }
1351 
1352 /**
1353  *	radix_tree_delete_item    -    delete an item from a radix tree
1354  *	@root:		radix tree root
1355  *	@index:		index key
1356  *	@item:		expected item
1357  *
1358  *	Remove @item at @index from the radix tree rooted at @root.
1359  *
1360  *	Returns the address of the deleted item, or NULL if it was not present
1361  *	or the entry at the given @index was not @item.
1362  */
1363 void *radix_tree_delete_item(struct radix_tree_root *root,
1364 			     unsigned long index, void *item)
1365 {
1366 	struct radix_tree_node *node;
1367 	unsigned int offset;
1368 	void **slot;
1369 	void *entry;
1370 	int tag;
1371 
1372 	entry = __radix_tree_lookup(root, index, &node, &slot);
1373 	if (!entry)
1374 		return NULL;
1375 
1376 	if (item && entry != item)
1377 		return NULL;
1378 
1379 	if (!node) {
1380 		root_tag_clear_all(root);
1381 		root->rnode = NULL;
1382 		return entry;
1383 	}
1384 
1385 	offset = index & RADIX_TREE_MAP_MASK;
1386 
1387 	/*
1388 	 * Clear all tags associated with the item to be deleted.
1389 	 * This way of doing it would be inefficient, but seldom is any set.
1390 	 */
1391 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1392 		if (tag_get(node, tag, offset))
1393 			radix_tree_tag_clear(root, index, tag);
1394 	}
1395 
1396 	node->slots[offset] = NULL;
1397 	node->count--;
1398 
1399 	__radix_tree_delete_node(root, node);
1400 
1401 	return entry;
1402 }
1403 EXPORT_SYMBOL(radix_tree_delete_item);
1404 
1405 /**
1406  *	radix_tree_delete    -    delete an item from a radix tree
1407  *	@root:		radix tree root
1408  *	@index:		index key
1409  *
1410  *	Remove the item at @index from the radix tree rooted at @root.
1411  *
1412  *	Returns the address of the deleted item, or NULL if it was not present.
1413  */
1414 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1415 {
1416 	return radix_tree_delete_item(root, index, NULL);
1417 }
1418 EXPORT_SYMBOL(radix_tree_delete);
1419 
1420 /**
1421  *	radix_tree_tagged - test whether any items in the tree are tagged
1422  *	@root:		radix tree root
1423  *	@tag:		tag to test
1424  */
1425 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1426 {
1427 	return root_tag_get(root, tag);
1428 }
1429 EXPORT_SYMBOL(radix_tree_tagged);
1430 
1431 static void
1432 radix_tree_node_ctor(void *arg)
1433 {
1434 	struct radix_tree_node *node = arg;
1435 
1436 	memset(node, 0, sizeof(*node));
1437 	INIT_LIST_HEAD(&node->private_list);
1438 }
1439 
1440 static __init unsigned long __maxindex(unsigned int height)
1441 {
1442 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1443 	int shift = RADIX_TREE_INDEX_BITS - width;
1444 
1445 	if (shift < 0)
1446 		return ~0UL;
1447 	if (shift >= BITS_PER_LONG)
1448 		return 0UL;
1449 	return ~0UL >> shift;
1450 }
1451 
1452 static __init void radix_tree_init_maxindex(void)
1453 {
1454 	unsigned int i;
1455 
1456 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1457 		height_to_maxindex[i] = __maxindex(i);
1458 }
1459 
1460 static int radix_tree_callback(struct notifier_block *nfb,
1461                             unsigned long action,
1462                             void *hcpu)
1463 {
1464        int cpu = (long)hcpu;
1465        struct radix_tree_preload *rtp;
1466 
1467        /* Free per-cpu pool of perloaded nodes */
1468        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1469                rtp = &per_cpu(radix_tree_preloads, cpu);
1470                while (rtp->nr) {
1471                        kmem_cache_free(radix_tree_node_cachep,
1472                                        rtp->nodes[rtp->nr-1]);
1473                        rtp->nodes[rtp->nr-1] = NULL;
1474                        rtp->nr--;
1475                }
1476        }
1477        return NOTIFY_OK;
1478 }
1479 
1480 void __init radix_tree_init(void)
1481 {
1482 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1483 			sizeof(struct radix_tree_node), 0,
1484 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1485 			radix_tree_node_ctor);
1486 	radix_tree_init_maxindex();
1487 	hotcpu_notifier(radix_tree_callback, 0);
1488 }
1489