1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/errno.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/export.h> 30 #include <linux/radix-tree.h> 31 #include <linux/percpu.h> 32 #include <linux/slab.h> 33 #include <linux/kmemleak.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline struct radix_tree_node *entry_to_node(void *ptr) 73 { 74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); 75 } 76 77 static inline void *node_to_entry(void *ptr) 78 { 79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 80 } 81 82 #define RADIX_TREE_RETRY node_to_entry(NULL) 83 84 #ifdef CONFIG_RADIX_TREE_MULTIORDER 85 /* Sibling slots point directly to another slot in the same node */ 86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 87 { 88 void **ptr = node; 89 return (parent->slots <= ptr) && 90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 91 } 92 #else 93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 94 { 95 return false; 96 } 97 #endif 98 99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 100 void **slot) 101 { 102 return slot - parent->slots; 103 } 104 105 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 106 struct radix_tree_node **nodep, unsigned long index) 107 { 108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 109 void **entry = rcu_dereference_raw(parent->slots[offset]); 110 111 #ifdef CONFIG_RADIX_TREE_MULTIORDER 112 if (radix_tree_is_internal_node(entry)) { 113 if (is_sibling_entry(parent, entry)) { 114 void **sibentry = (void **) entry_to_node(entry); 115 offset = get_slot_offset(parent, sibentry); 116 entry = rcu_dereference_raw(*sibentry); 117 } 118 } 119 #endif 120 121 *nodep = (void *)entry; 122 return offset; 123 } 124 125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 126 { 127 return root->gfp_mask & __GFP_BITS_MASK; 128 } 129 130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 131 int offset) 132 { 133 __set_bit(offset, node->tags[tag]); 134 } 135 136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 137 int offset) 138 { 139 __clear_bit(offset, node->tags[tag]); 140 } 141 142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 143 int offset) 144 { 145 return test_bit(offset, node->tags[tag]); 146 } 147 148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 149 { 150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 154 { 155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 156 } 157 158 static inline void root_tag_clear_all(struct radix_tree_root *root) 159 { 160 root->gfp_mask &= __GFP_BITS_MASK; 161 } 162 163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 164 { 165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 166 } 167 168 static inline unsigned root_tags_get(struct radix_tree_root *root) 169 { 170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 171 } 172 173 /* 174 * Returns 1 if any slot in the node has this tag set. 175 * Otherwise returns 0. 176 */ 177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 178 { 179 unsigned idx; 180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 181 if (node->tags[tag][idx]) 182 return 1; 183 } 184 return 0; 185 } 186 187 /** 188 * radix_tree_find_next_bit - find the next set bit in a memory region 189 * 190 * @addr: The address to base the search on 191 * @size: The bitmap size in bits 192 * @offset: The bitnumber to start searching at 193 * 194 * Unrollable variant of find_next_bit() for constant size arrays. 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 196 * Returns next bit offset, or size if nothing found. 197 */ 198 static __always_inline unsigned long 199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, 200 unsigned long offset) 201 { 202 const unsigned long *addr = node->tags[tag]; 203 204 if (offset < RADIX_TREE_MAP_SIZE) { 205 unsigned long tmp; 206 207 addr += offset / BITS_PER_LONG; 208 tmp = *addr >> (offset % BITS_PER_LONG); 209 if (tmp) 210 return __ffs(tmp) + offset; 211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 212 while (offset < RADIX_TREE_MAP_SIZE) { 213 tmp = *++addr; 214 if (tmp) 215 return __ffs(tmp) + offset; 216 offset += BITS_PER_LONG; 217 } 218 } 219 return RADIX_TREE_MAP_SIZE; 220 } 221 222 static unsigned int iter_offset(const struct radix_tree_iter *iter) 223 { 224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK; 225 } 226 227 /* 228 * The maximum index which can be stored in a radix tree 229 */ 230 static inline unsigned long shift_maxindex(unsigned int shift) 231 { 232 return (RADIX_TREE_MAP_SIZE << shift) - 1; 233 } 234 235 static inline unsigned long node_maxindex(struct radix_tree_node *node) 236 { 237 return shift_maxindex(node->shift); 238 } 239 240 #ifndef __KERNEL__ 241 static void dump_node(struct radix_tree_node *node, unsigned long index) 242 { 243 unsigned long i; 244 245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n", 246 node, node->offset, index, index | node_maxindex(node), 247 node->parent, 248 node->tags[0][0], node->tags[1][0], node->tags[2][0], 249 node->shift, node->count, node->exceptional); 250 251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 252 unsigned long first = index | (i << node->shift); 253 unsigned long last = first | ((1UL << node->shift) - 1); 254 void *entry = node->slots[i]; 255 if (!entry) 256 continue; 257 if (entry == RADIX_TREE_RETRY) { 258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n", 259 i, first, last, node); 260 } else if (!radix_tree_is_internal_node(entry)) { 261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n", 262 entry, i, first, last, node); 263 } else if (is_sibling_entry(node, entry)) { 264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n", 265 entry, i, first, last, node, 266 *(void **)entry_to_node(entry)); 267 } else { 268 dump_node(entry_to_node(entry), first); 269 } 270 } 271 } 272 273 /* For debug */ 274 static void radix_tree_dump(struct radix_tree_root *root) 275 { 276 pr_debug("radix root: %p rnode %p tags %x\n", 277 root, root->rnode, 278 root->gfp_mask >> __GFP_BITS_SHIFT); 279 if (!radix_tree_is_internal_node(root->rnode)) 280 return; 281 dump_node(entry_to_node(root->rnode), 0); 282 } 283 #endif 284 285 /* 286 * This assumes that the caller has performed appropriate preallocation, and 287 * that the caller has pinned this thread of control to the current CPU. 288 */ 289 static struct radix_tree_node * 290 radix_tree_node_alloc(struct radix_tree_root *root, 291 struct radix_tree_node *parent, 292 unsigned int shift, unsigned int offset, 293 unsigned int count, unsigned int exceptional) 294 { 295 struct radix_tree_node *ret = NULL; 296 gfp_t gfp_mask = root_gfp_mask(root); 297 298 /* 299 * Preload code isn't irq safe and it doesn't make sense to use 300 * preloading during an interrupt anyway as all the allocations have 301 * to be atomic. So just do normal allocation when in interrupt. 302 */ 303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 304 struct radix_tree_preload *rtp; 305 306 /* 307 * Even if the caller has preloaded, try to allocate from the 308 * cache first for the new node to get accounted to the memory 309 * cgroup. 310 */ 311 ret = kmem_cache_alloc(radix_tree_node_cachep, 312 gfp_mask | __GFP_NOWARN); 313 if (ret) 314 goto out; 315 316 /* 317 * Provided the caller has preloaded here, we will always 318 * succeed in getting a node here (and never reach 319 * kmem_cache_alloc) 320 */ 321 rtp = this_cpu_ptr(&radix_tree_preloads); 322 if (rtp->nr) { 323 ret = rtp->nodes; 324 rtp->nodes = ret->private_data; 325 ret->private_data = NULL; 326 rtp->nr--; 327 } 328 /* 329 * Update the allocation stack trace as this is more useful 330 * for debugging. 331 */ 332 kmemleak_update_trace(ret); 333 goto out; 334 } 335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 336 out: 337 BUG_ON(radix_tree_is_internal_node(ret)); 338 if (ret) { 339 ret->parent = parent; 340 ret->shift = shift; 341 ret->offset = offset; 342 ret->count = count; 343 ret->exceptional = exceptional; 344 } 345 return ret; 346 } 347 348 static void radix_tree_node_rcu_free(struct rcu_head *head) 349 { 350 struct radix_tree_node *node = 351 container_of(head, struct radix_tree_node, rcu_head); 352 353 /* 354 * Must only free zeroed nodes into the slab. We can be left with 355 * non-NULL entries by radix_tree_free_nodes, so clear the entries 356 * and tags here. 357 */ 358 memset(node->slots, 0, sizeof(node->slots)); 359 memset(node->tags, 0, sizeof(node->tags)); 360 INIT_LIST_HEAD(&node->private_list); 361 362 kmem_cache_free(radix_tree_node_cachep, node); 363 } 364 365 static inline void 366 radix_tree_node_free(struct radix_tree_node *node) 367 { 368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 369 } 370 371 /* 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to 373 * ensure that the addition of a single element in the tree cannot fail. On 374 * success, return zero, with preemption disabled. On error, return -ENOMEM 375 * with preemption not disabled. 376 * 377 * To make use of this facility, the radix tree must be initialised without 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 379 */ 380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) 381 { 382 struct radix_tree_preload *rtp; 383 struct radix_tree_node *node; 384 int ret = -ENOMEM; 385 386 /* 387 * Nodes preloaded by one cgroup can be be used by another cgroup, so 388 * they should never be accounted to any particular memory cgroup. 389 */ 390 gfp_mask &= ~__GFP_ACCOUNT; 391 392 preempt_disable(); 393 rtp = this_cpu_ptr(&radix_tree_preloads); 394 while (rtp->nr < nr) { 395 preempt_enable(); 396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 397 if (node == NULL) 398 goto out; 399 preempt_disable(); 400 rtp = this_cpu_ptr(&radix_tree_preloads); 401 if (rtp->nr < nr) { 402 node->private_data = rtp->nodes; 403 rtp->nodes = node; 404 rtp->nr++; 405 } else { 406 kmem_cache_free(radix_tree_node_cachep, node); 407 } 408 } 409 ret = 0; 410 out: 411 return ret; 412 } 413 414 /* 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to 416 * ensure that the addition of a single element in the tree cannot fail. On 417 * success, return zero, with preemption disabled. On error, return -ENOMEM 418 * with preemption not disabled. 419 * 420 * To make use of this facility, the radix tree must be initialised without 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 422 */ 423 int radix_tree_preload(gfp_t gfp_mask) 424 { 425 /* Warn on non-sensical use... */ 426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 428 } 429 EXPORT_SYMBOL(radix_tree_preload); 430 431 /* 432 * The same as above function, except we don't guarantee preloading happens. 433 * We do it, if we decide it helps. On success, return zero with preemption 434 * disabled. On error, return -ENOMEM with preemption not disabled. 435 */ 436 int radix_tree_maybe_preload(gfp_t gfp_mask) 437 { 438 if (gfpflags_allow_blocking(gfp_mask)) 439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 440 /* Preloading doesn't help anything with this gfp mask, skip it */ 441 preempt_disable(); 442 return 0; 443 } 444 EXPORT_SYMBOL(radix_tree_maybe_preload); 445 446 #ifdef CONFIG_RADIX_TREE_MULTIORDER 447 /* 448 * Preload with enough objects to ensure that we can split a single entry 449 * of order @old_order into many entries of size @new_order 450 */ 451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order, 452 gfp_t gfp_mask) 453 { 454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT); 455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) - 456 (new_order / RADIX_TREE_MAP_SHIFT); 457 unsigned nr = 0; 458 459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 460 BUG_ON(new_order >= old_order); 461 462 while (layers--) 463 nr = nr * RADIX_TREE_MAP_SIZE + 1; 464 return __radix_tree_preload(gfp_mask, top * nr); 465 } 466 #endif 467 468 /* 469 * The same as function above, but preload number of nodes required to insert 470 * (1 << order) continuous naturally-aligned elements. 471 */ 472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 473 { 474 unsigned long nr_subtrees; 475 int nr_nodes, subtree_height; 476 477 /* Preloading doesn't help anything with this gfp mask, skip it */ 478 if (!gfpflags_allow_blocking(gfp_mask)) { 479 preempt_disable(); 480 return 0; 481 } 482 483 /* 484 * Calculate number and height of fully populated subtrees it takes to 485 * store (1 << order) elements. 486 */ 487 nr_subtrees = 1 << order; 488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 489 subtree_height++) 490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 491 492 /* 493 * The worst case is zero height tree with a single item at index 0 and 494 * then inserting items starting at ULONG_MAX - (1 << order). 495 * 496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 497 * 0-index item. 498 */ 499 nr_nodes = RADIX_TREE_MAX_PATH; 500 501 /* Plus branch to fully populated subtrees. */ 502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 503 504 /* Root node is shared. */ 505 nr_nodes--; 506 507 /* Plus nodes required to build subtrees. */ 508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 509 510 return __radix_tree_preload(gfp_mask, nr_nodes); 511 } 512 513 static unsigned radix_tree_load_root(struct radix_tree_root *root, 514 struct radix_tree_node **nodep, unsigned long *maxindex) 515 { 516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 517 518 *nodep = node; 519 520 if (likely(radix_tree_is_internal_node(node))) { 521 node = entry_to_node(node); 522 *maxindex = node_maxindex(node); 523 return node->shift + RADIX_TREE_MAP_SHIFT; 524 } 525 526 *maxindex = 0; 527 return 0; 528 } 529 530 /* 531 * Extend a radix tree so it can store key @index. 532 */ 533 static int radix_tree_extend(struct radix_tree_root *root, 534 unsigned long index, unsigned int shift) 535 { 536 struct radix_tree_node *slot; 537 unsigned int maxshift; 538 int tag; 539 540 /* Figure out what the shift should be. */ 541 maxshift = shift; 542 while (index > shift_maxindex(maxshift)) 543 maxshift += RADIX_TREE_MAP_SHIFT; 544 545 slot = root->rnode; 546 if (!slot) 547 goto out; 548 549 do { 550 struct radix_tree_node *node = radix_tree_node_alloc(root, 551 NULL, shift, 0, 1, 0); 552 if (!node) 553 return -ENOMEM; 554 555 /* Propagate the aggregated tag info into the new root */ 556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 557 if (root_tag_get(root, tag)) 558 tag_set(node, tag, 0); 559 } 560 561 BUG_ON(shift > BITS_PER_LONG); 562 if (radix_tree_is_internal_node(slot)) { 563 entry_to_node(slot)->parent = node; 564 } else if (radix_tree_exceptional_entry(slot)) { 565 /* Moving an exceptional root->rnode to a node */ 566 node->exceptional = 1; 567 } 568 node->slots[0] = slot; 569 slot = node_to_entry(node); 570 rcu_assign_pointer(root->rnode, slot); 571 shift += RADIX_TREE_MAP_SHIFT; 572 } while (shift <= maxshift); 573 out: 574 return maxshift + RADIX_TREE_MAP_SHIFT; 575 } 576 577 /** 578 * radix_tree_shrink - shrink radix tree to minimum height 579 * @root radix tree root 580 */ 581 static inline void radix_tree_shrink(struct radix_tree_root *root, 582 radix_tree_update_node_t update_node, 583 void *private) 584 { 585 for (;;) { 586 struct radix_tree_node *node = root->rnode; 587 struct radix_tree_node *child; 588 589 if (!radix_tree_is_internal_node(node)) 590 break; 591 node = entry_to_node(node); 592 593 /* 594 * The candidate node has more than one child, or its child 595 * is not at the leftmost slot, or the child is a multiorder 596 * entry, we cannot shrink. 597 */ 598 if (node->count != 1) 599 break; 600 child = node->slots[0]; 601 if (!child) 602 break; 603 if (!radix_tree_is_internal_node(child) && node->shift) 604 break; 605 606 if (radix_tree_is_internal_node(child)) 607 entry_to_node(child)->parent = NULL; 608 609 /* 610 * We don't need rcu_assign_pointer(), since we are simply 611 * moving the node from one part of the tree to another: if it 612 * was safe to dereference the old pointer to it 613 * (node->slots[0]), it will be safe to dereference the new 614 * one (root->rnode) as far as dependent read barriers go. 615 */ 616 root->rnode = child; 617 618 /* 619 * We have a dilemma here. The node's slot[0] must not be 620 * NULLed in case there are concurrent lookups expecting to 621 * find the item. However if this was a bottom-level node, 622 * then it may be subject to the slot pointer being visible 623 * to callers dereferencing it. If item corresponding to 624 * slot[0] is subsequently deleted, these callers would expect 625 * their slot to become empty sooner or later. 626 * 627 * For example, lockless pagecache will look up a slot, deref 628 * the page pointer, and if the page has 0 refcount it means it 629 * was concurrently deleted from pagecache so try the deref 630 * again. Fortunately there is already a requirement for logic 631 * to retry the entire slot lookup -- the indirect pointer 632 * problem (replacing direct root node with an indirect pointer 633 * also results in a stale slot). So tag the slot as indirect 634 * to force callers to retry. 635 */ 636 node->count = 0; 637 if (!radix_tree_is_internal_node(child)) { 638 node->slots[0] = RADIX_TREE_RETRY; 639 if (update_node) 640 update_node(node, private); 641 } 642 643 WARN_ON_ONCE(!list_empty(&node->private_list)); 644 radix_tree_node_free(node); 645 } 646 } 647 648 static void delete_node(struct radix_tree_root *root, 649 struct radix_tree_node *node, 650 radix_tree_update_node_t update_node, void *private) 651 { 652 do { 653 struct radix_tree_node *parent; 654 655 if (node->count) { 656 if (node == entry_to_node(root->rnode)) 657 radix_tree_shrink(root, update_node, private); 658 return; 659 } 660 661 parent = node->parent; 662 if (parent) { 663 parent->slots[node->offset] = NULL; 664 parent->count--; 665 } else { 666 root_tag_clear_all(root); 667 root->rnode = NULL; 668 } 669 670 WARN_ON_ONCE(!list_empty(&node->private_list)); 671 radix_tree_node_free(node); 672 673 node = parent; 674 } while (node); 675 } 676 677 /** 678 * __radix_tree_create - create a slot in a radix tree 679 * @root: radix tree root 680 * @index: index key 681 * @order: index occupies 2^order aligned slots 682 * @nodep: returns node 683 * @slotp: returns slot 684 * 685 * Create, if necessary, and return the node and slot for an item 686 * at position @index in the radix tree @root. 687 * 688 * Until there is more than one item in the tree, no nodes are 689 * allocated and @root->rnode is used as a direct slot instead of 690 * pointing to a node, in which case *@nodep will be NULL. 691 * 692 * Returns -ENOMEM, or 0 for success. 693 */ 694 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 695 unsigned order, struct radix_tree_node **nodep, 696 void ***slotp) 697 { 698 struct radix_tree_node *node = NULL, *child; 699 void **slot = (void **)&root->rnode; 700 unsigned long maxindex; 701 unsigned int shift, offset = 0; 702 unsigned long max = index | ((1UL << order) - 1); 703 704 shift = radix_tree_load_root(root, &child, &maxindex); 705 706 /* Make sure the tree is high enough. */ 707 if (order > 0 && max == ((1UL << order) - 1)) 708 max++; 709 if (max > maxindex) { 710 int error = radix_tree_extend(root, max, shift); 711 if (error < 0) 712 return error; 713 shift = error; 714 child = root->rnode; 715 } 716 717 while (shift > order) { 718 shift -= RADIX_TREE_MAP_SHIFT; 719 if (child == NULL) { 720 /* Have to add a child node. */ 721 child = radix_tree_node_alloc(root, node, shift, 722 offset, 0, 0); 723 if (!child) 724 return -ENOMEM; 725 rcu_assign_pointer(*slot, node_to_entry(child)); 726 if (node) 727 node->count++; 728 } else if (!radix_tree_is_internal_node(child)) 729 break; 730 731 /* Go a level down */ 732 node = entry_to_node(child); 733 offset = radix_tree_descend(node, &child, index); 734 slot = &node->slots[offset]; 735 } 736 737 if (nodep) 738 *nodep = node; 739 if (slotp) 740 *slotp = slot; 741 return 0; 742 } 743 744 #ifdef CONFIG_RADIX_TREE_MULTIORDER 745 /* 746 * Free any nodes below this node. The tree is presumed to not need 747 * shrinking, and any user data in the tree is presumed to not need a 748 * destructor called on it. If we need to add a destructor, we can 749 * add that functionality later. Note that we may not clear tags or 750 * slots from the tree as an RCU walker may still have a pointer into 751 * this subtree. We could replace the entries with RADIX_TREE_RETRY, 752 * but we'll still have to clear those in rcu_free. 753 */ 754 static void radix_tree_free_nodes(struct radix_tree_node *node) 755 { 756 unsigned offset = 0; 757 struct radix_tree_node *child = entry_to_node(node); 758 759 for (;;) { 760 void *entry = child->slots[offset]; 761 if (radix_tree_is_internal_node(entry) && 762 !is_sibling_entry(child, entry)) { 763 child = entry_to_node(entry); 764 offset = 0; 765 continue; 766 } 767 offset++; 768 while (offset == RADIX_TREE_MAP_SIZE) { 769 struct radix_tree_node *old = child; 770 offset = child->offset + 1; 771 child = child->parent; 772 WARN_ON_ONCE(!list_empty(&old->private_list)); 773 radix_tree_node_free(old); 774 if (old == entry_to_node(node)) 775 return; 776 } 777 } 778 } 779 780 static inline int insert_entries(struct radix_tree_node *node, void **slot, 781 void *item, unsigned order, bool replace) 782 { 783 struct radix_tree_node *child; 784 unsigned i, n, tag, offset, tags = 0; 785 786 if (node) { 787 if (order > node->shift) 788 n = 1 << (order - node->shift); 789 else 790 n = 1; 791 offset = get_slot_offset(node, slot); 792 } else { 793 n = 1; 794 offset = 0; 795 } 796 797 if (n > 1) { 798 offset = offset & ~(n - 1); 799 slot = &node->slots[offset]; 800 } 801 child = node_to_entry(slot); 802 803 for (i = 0; i < n; i++) { 804 if (slot[i]) { 805 if (replace) { 806 node->count--; 807 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 808 if (tag_get(node, tag, offset + i)) 809 tags |= 1 << tag; 810 } else 811 return -EEXIST; 812 } 813 } 814 815 for (i = 0; i < n; i++) { 816 struct radix_tree_node *old = slot[i]; 817 if (i) { 818 rcu_assign_pointer(slot[i], child); 819 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 820 if (tags & (1 << tag)) 821 tag_clear(node, tag, offset + i); 822 } else { 823 rcu_assign_pointer(slot[i], item); 824 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 825 if (tags & (1 << tag)) 826 tag_set(node, tag, offset); 827 } 828 if (radix_tree_is_internal_node(old) && 829 !is_sibling_entry(node, old) && 830 (old != RADIX_TREE_RETRY)) 831 radix_tree_free_nodes(old); 832 if (radix_tree_exceptional_entry(old)) 833 node->exceptional--; 834 } 835 if (node) { 836 node->count += n; 837 if (radix_tree_exceptional_entry(item)) 838 node->exceptional += n; 839 } 840 return n; 841 } 842 #else 843 static inline int insert_entries(struct radix_tree_node *node, void **slot, 844 void *item, unsigned order, bool replace) 845 { 846 if (*slot) 847 return -EEXIST; 848 rcu_assign_pointer(*slot, item); 849 if (node) { 850 node->count++; 851 if (radix_tree_exceptional_entry(item)) 852 node->exceptional++; 853 } 854 return 1; 855 } 856 #endif 857 858 /** 859 * __radix_tree_insert - insert into a radix tree 860 * @root: radix tree root 861 * @index: index key 862 * @order: key covers the 2^order indices around index 863 * @item: item to insert 864 * 865 * Insert an item into the radix tree at position @index. 866 */ 867 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 868 unsigned order, void *item) 869 { 870 struct radix_tree_node *node; 871 void **slot; 872 int error; 873 874 BUG_ON(radix_tree_is_internal_node(item)); 875 876 error = __radix_tree_create(root, index, order, &node, &slot); 877 if (error) 878 return error; 879 880 error = insert_entries(node, slot, item, order, false); 881 if (error < 0) 882 return error; 883 884 if (node) { 885 unsigned offset = get_slot_offset(node, slot); 886 BUG_ON(tag_get(node, 0, offset)); 887 BUG_ON(tag_get(node, 1, offset)); 888 BUG_ON(tag_get(node, 2, offset)); 889 } else { 890 BUG_ON(root_tags_get(root)); 891 } 892 893 return 0; 894 } 895 EXPORT_SYMBOL(__radix_tree_insert); 896 897 /** 898 * __radix_tree_lookup - lookup an item in a radix tree 899 * @root: radix tree root 900 * @index: index key 901 * @nodep: returns node 902 * @slotp: returns slot 903 * 904 * Lookup and return the item at position @index in the radix 905 * tree @root. 906 * 907 * Until there is more than one item in the tree, no nodes are 908 * allocated and @root->rnode is used as a direct slot instead of 909 * pointing to a node, in which case *@nodep will be NULL. 910 */ 911 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 912 struct radix_tree_node **nodep, void ***slotp) 913 { 914 struct radix_tree_node *node, *parent; 915 unsigned long maxindex; 916 void **slot; 917 918 restart: 919 parent = NULL; 920 slot = (void **)&root->rnode; 921 radix_tree_load_root(root, &node, &maxindex); 922 if (index > maxindex) 923 return NULL; 924 925 while (radix_tree_is_internal_node(node)) { 926 unsigned offset; 927 928 if (node == RADIX_TREE_RETRY) 929 goto restart; 930 parent = entry_to_node(node); 931 offset = radix_tree_descend(parent, &node, index); 932 slot = parent->slots + offset; 933 } 934 935 if (nodep) 936 *nodep = parent; 937 if (slotp) 938 *slotp = slot; 939 return node; 940 } 941 942 /** 943 * radix_tree_lookup_slot - lookup a slot in a radix tree 944 * @root: radix tree root 945 * @index: index key 946 * 947 * Returns: the slot corresponding to the position @index in the 948 * radix tree @root. This is useful for update-if-exists operations. 949 * 950 * This function can be called under rcu_read_lock iff the slot is not 951 * modified by radix_tree_replace_slot, otherwise it must be called 952 * exclusive from other writers. Any dereference of the slot must be done 953 * using radix_tree_deref_slot. 954 */ 955 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 956 { 957 void **slot; 958 959 if (!__radix_tree_lookup(root, index, NULL, &slot)) 960 return NULL; 961 return slot; 962 } 963 EXPORT_SYMBOL(radix_tree_lookup_slot); 964 965 /** 966 * radix_tree_lookup - perform lookup operation on a radix tree 967 * @root: radix tree root 968 * @index: index key 969 * 970 * Lookup the item at the position @index in the radix tree @root. 971 * 972 * This function can be called under rcu_read_lock, however the caller 973 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 974 * them safely). No RCU barriers are required to access or modify the 975 * returned item, however. 976 */ 977 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 978 { 979 return __radix_tree_lookup(root, index, NULL, NULL); 980 } 981 EXPORT_SYMBOL(radix_tree_lookup); 982 983 static inline int slot_count(struct radix_tree_node *node, 984 void **slot) 985 { 986 int n = 1; 987 #ifdef CONFIG_RADIX_TREE_MULTIORDER 988 void *ptr = node_to_entry(slot); 989 unsigned offset = get_slot_offset(node, slot); 990 int i; 991 992 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 993 if (node->slots[offset + i] != ptr) 994 break; 995 n++; 996 } 997 #endif 998 return n; 999 } 1000 1001 static void replace_slot(struct radix_tree_root *root, 1002 struct radix_tree_node *node, 1003 void **slot, void *item, 1004 bool warn_typeswitch) 1005 { 1006 void *old = rcu_dereference_raw(*slot); 1007 int count, exceptional; 1008 1009 WARN_ON_ONCE(radix_tree_is_internal_node(item)); 1010 1011 count = !!item - !!old; 1012 exceptional = !!radix_tree_exceptional_entry(item) - 1013 !!radix_tree_exceptional_entry(old); 1014 1015 WARN_ON_ONCE(warn_typeswitch && (count || exceptional)); 1016 1017 if (node) { 1018 node->count += count; 1019 if (exceptional) { 1020 exceptional *= slot_count(node, slot); 1021 node->exceptional += exceptional; 1022 } 1023 } 1024 1025 rcu_assign_pointer(*slot, item); 1026 } 1027 1028 static inline void delete_sibling_entries(struct radix_tree_node *node, 1029 void **slot) 1030 { 1031 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1032 bool exceptional = radix_tree_exceptional_entry(*slot); 1033 void *ptr = node_to_entry(slot); 1034 unsigned offset = get_slot_offset(node, slot); 1035 int i; 1036 1037 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1038 if (node->slots[offset + i] != ptr) 1039 break; 1040 node->slots[offset + i] = NULL; 1041 node->count--; 1042 if (exceptional) 1043 node->exceptional--; 1044 } 1045 #endif 1046 } 1047 1048 /** 1049 * __radix_tree_replace - replace item in a slot 1050 * @root: radix tree root 1051 * @node: pointer to tree node 1052 * @slot: pointer to slot in @node 1053 * @item: new item to store in the slot. 1054 * @update_node: callback for changing leaf nodes 1055 * @private: private data to pass to @update_node 1056 * 1057 * For use with __radix_tree_lookup(). Caller must hold tree write locked 1058 * across slot lookup and replacement. 1059 */ 1060 void __radix_tree_replace(struct radix_tree_root *root, 1061 struct radix_tree_node *node, 1062 void **slot, void *item, 1063 radix_tree_update_node_t update_node, void *private) 1064 { 1065 if (!item) 1066 delete_sibling_entries(node, slot); 1067 /* 1068 * This function supports replacing exceptional entries and 1069 * deleting entries, but that needs accounting against the 1070 * node unless the slot is root->rnode. 1071 */ 1072 replace_slot(root, node, slot, item, 1073 !node && slot != (void **)&root->rnode); 1074 1075 if (!node) 1076 return; 1077 1078 if (update_node) 1079 update_node(node, private); 1080 1081 delete_node(root, node, update_node, private); 1082 } 1083 1084 /** 1085 * radix_tree_replace_slot - replace item in a slot 1086 * @root: radix tree root 1087 * @slot: pointer to slot 1088 * @item: new item to store in the slot. 1089 * 1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), 1091 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked 1092 * across slot lookup and replacement. 1093 * 1094 * NOTE: This cannot be used to switch between non-entries (empty slots), 1095 * regular entries, and exceptional entries, as that requires accounting 1096 * inside the radix tree node. When switching from one type of entry or 1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or 1098 * radix_tree_iter_replace(). 1099 */ 1100 void radix_tree_replace_slot(struct radix_tree_root *root, 1101 void **slot, void *item) 1102 { 1103 replace_slot(root, NULL, slot, item, true); 1104 } 1105 1106 /** 1107 * radix_tree_iter_replace - replace item in a slot 1108 * @root: radix tree root 1109 * @slot: pointer to slot 1110 * @item: new item to store in the slot. 1111 * 1112 * For use with radix_tree_split() and radix_tree_for_each_slot(). 1113 * Caller must hold tree write locked across split and replacement. 1114 */ 1115 void radix_tree_iter_replace(struct radix_tree_root *root, 1116 const struct radix_tree_iter *iter, void **slot, void *item) 1117 { 1118 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL); 1119 } 1120 1121 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1122 /** 1123 * radix_tree_join - replace multiple entries with one multiorder entry 1124 * @root: radix tree root 1125 * @index: an index inside the new entry 1126 * @order: order of the new entry 1127 * @item: new entry 1128 * 1129 * Call this function to replace several entries with one larger entry. 1130 * The existing entries are presumed to not need freeing as a result of 1131 * this call. 1132 * 1133 * The replacement entry will have all the tags set on it that were set 1134 * on any of the entries it is replacing. 1135 */ 1136 int radix_tree_join(struct radix_tree_root *root, unsigned long index, 1137 unsigned order, void *item) 1138 { 1139 struct radix_tree_node *node; 1140 void **slot; 1141 int error; 1142 1143 BUG_ON(radix_tree_is_internal_node(item)); 1144 1145 error = __radix_tree_create(root, index, order, &node, &slot); 1146 if (!error) 1147 error = insert_entries(node, slot, item, order, true); 1148 if (error > 0) 1149 error = 0; 1150 1151 return error; 1152 } 1153 1154 /** 1155 * radix_tree_split - Split an entry into smaller entries 1156 * @root: radix tree root 1157 * @index: An index within the large entry 1158 * @order: Order of new entries 1159 * 1160 * Call this function as the first step in replacing a multiorder entry 1161 * with several entries of lower order. After this function returns, 1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot() 1163 * and call radix_tree_iter_replace() to set up each new entry. 1164 * 1165 * The tags from this entry are replicated to all the new entries. 1166 * 1167 * The radix tree should be locked against modification during the entire 1168 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which 1169 * should prompt RCU walkers to restart the lookup from the root. 1170 */ 1171 int radix_tree_split(struct radix_tree_root *root, unsigned long index, 1172 unsigned order) 1173 { 1174 struct radix_tree_node *parent, *node, *child; 1175 void **slot; 1176 unsigned int offset, end; 1177 unsigned n, tag, tags = 0; 1178 1179 if (!__radix_tree_lookup(root, index, &parent, &slot)) 1180 return -ENOENT; 1181 if (!parent) 1182 return -ENOENT; 1183 1184 offset = get_slot_offset(parent, slot); 1185 1186 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1187 if (tag_get(parent, tag, offset)) 1188 tags |= 1 << tag; 1189 1190 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) { 1191 if (!is_sibling_entry(parent, parent->slots[end])) 1192 break; 1193 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1194 if (tags & (1 << tag)) 1195 tag_set(parent, tag, end); 1196 /* rcu_assign_pointer ensures tags are set before RETRY */ 1197 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY); 1198 } 1199 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY); 1200 parent->exceptional -= (end - offset); 1201 1202 if (order == parent->shift) 1203 return 0; 1204 if (order > parent->shift) { 1205 while (offset < end) 1206 offset += insert_entries(parent, &parent->slots[offset], 1207 RADIX_TREE_RETRY, order, true); 1208 return 0; 1209 } 1210 1211 node = parent; 1212 1213 for (;;) { 1214 if (node->shift > order) { 1215 child = radix_tree_node_alloc(root, node, 1216 node->shift - RADIX_TREE_MAP_SHIFT, 1217 offset, 0, 0); 1218 if (!child) 1219 goto nomem; 1220 if (node != parent) { 1221 node->count++; 1222 node->slots[offset] = node_to_entry(child); 1223 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1224 if (tags & (1 << tag)) 1225 tag_set(node, tag, offset); 1226 } 1227 1228 node = child; 1229 offset = 0; 1230 continue; 1231 } 1232 1233 n = insert_entries(node, &node->slots[offset], 1234 RADIX_TREE_RETRY, order, false); 1235 BUG_ON(n > RADIX_TREE_MAP_SIZE); 1236 1237 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1238 if (tags & (1 << tag)) 1239 tag_set(node, tag, offset); 1240 offset += n; 1241 1242 while (offset == RADIX_TREE_MAP_SIZE) { 1243 if (node == parent) 1244 break; 1245 offset = node->offset; 1246 child = node; 1247 node = node->parent; 1248 rcu_assign_pointer(node->slots[offset], 1249 node_to_entry(child)); 1250 offset++; 1251 } 1252 if ((node == parent) && (offset == end)) 1253 return 0; 1254 } 1255 1256 nomem: 1257 /* Shouldn't happen; did user forget to preload? */ 1258 /* TODO: free all the allocated nodes */ 1259 WARN_ON(1); 1260 return -ENOMEM; 1261 } 1262 #endif 1263 1264 /** 1265 * radix_tree_tag_set - set a tag on a radix tree node 1266 * @root: radix tree root 1267 * @index: index key 1268 * @tag: tag index 1269 * 1270 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 1271 * corresponding to @index in the radix tree. From 1272 * the root all the way down to the leaf node. 1273 * 1274 * Returns the address of the tagged item. Setting a tag on a not-present 1275 * item is a bug. 1276 */ 1277 void *radix_tree_tag_set(struct radix_tree_root *root, 1278 unsigned long index, unsigned int tag) 1279 { 1280 struct radix_tree_node *node, *parent; 1281 unsigned long maxindex; 1282 1283 radix_tree_load_root(root, &node, &maxindex); 1284 BUG_ON(index > maxindex); 1285 1286 while (radix_tree_is_internal_node(node)) { 1287 unsigned offset; 1288 1289 parent = entry_to_node(node); 1290 offset = radix_tree_descend(parent, &node, index); 1291 BUG_ON(!node); 1292 1293 if (!tag_get(parent, tag, offset)) 1294 tag_set(parent, tag, offset); 1295 } 1296 1297 /* set the root's tag bit */ 1298 if (!root_tag_get(root, tag)) 1299 root_tag_set(root, tag); 1300 1301 return node; 1302 } 1303 EXPORT_SYMBOL(radix_tree_tag_set); 1304 1305 static void node_tag_clear(struct radix_tree_root *root, 1306 struct radix_tree_node *node, 1307 unsigned int tag, unsigned int offset) 1308 { 1309 while (node) { 1310 if (!tag_get(node, tag, offset)) 1311 return; 1312 tag_clear(node, tag, offset); 1313 if (any_tag_set(node, tag)) 1314 return; 1315 1316 offset = node->offset; 1317 node = node->parent; 1318 } 1319 1320 /* clear the root's tag bit */ 1321 if (root_tag_get(root, tag)) 1322 root_tag_clear(root, tag); 1323 } 1324 1325 static void node_tag_set(struct radix_tree_root *root, 1326 struct radix_tree_node *node, 1327 unsigned int tag, unsigned int offset) 1328 { 1329 while (node) { 1330 if (tag_get(node, tag, offset)) 1331 return; 1332 tag_set(node, tag, offset); 1333 offset = node->offset; 1334 node = node->parent; 1335 } 1336 1337 if (!root_tag_get(root, tag)) 1338 root_tag_set(root, tag); 1339 } 1340 1341 /** 1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry 1343 * @root: radix tree root 1344 * @iter: iterator state 1345 * @tag: tag to set 1346 */ 1347 void radix_tree_iter_tag_set(struct radix_tree_root *root, 1348 const struct radix_tree_iter *iter, unsigned int tag) 1349 { 1350 node_tag_set(root, iter->node, tag, iter_offset(iter)); 1351 } 1352 1353 /** 1354 * radix_tree_tag_clear - clear a tag on a radix tree node 1355 * @root: radix tree root 1356 * @index: index key 1357 * @tag: tag index 1358 * 1359 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 1360 * corresponding to @index in the radix tree. If this causes 1361 * the leaf node to have no tags set then clear the tag in the 1362 * next-to-leaf node, etc. 1363 * 1364 * Returns the address of the tagged item on success, else NULL. ie: 1365 * has the same return value and semantics as radix_tree_lookup(). 1366 */ 1367 void *radix_tree_tag_clear(struct radix_tree_root *root, 1368 unsigned long index, unsigned int tag) 1369 { 1370 struct radix_tree_node *node, *parent; 1371 unsigned long maxindex; 1372 int uninitialized_var(offset); 1373 1374 radix_tree_load_root(root, &node, &maxindex); 1375 if (index > maxindex) 1376 return NULL; 1377 1378 parent = NULL; 1379 1380 while (radix_tree_is_internal_node(node)) { 1381 parent = entry_to_node(node); 1382 offset = radix_tree_descend(parent, &node, index); 1383 } 1384 1385 if (node) 1386 node_tag_clear(root, parent, tag, offset); 1387 1388 return node; 1389 } 1390 EXPORT_SYMBOL(radix_tree_tag_clear); 1391 1392 /** 1393 * radix_tree_tag_get - get a tag on a radix tree node 1394 * @root: radix tree root 1395 * @index: index key 1396 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 1397 * 1398 * Return values: 1399 * 1400 * 0: tag not present or not set 1401 * 1: tag set 1402 * 1403 * Note that the return value of this function may not be relied on, even if 1404 * the RCU lock is held, unless tag modification and node deletion are excluded 1405 * from concurrency. 1406 */ 1407 int radix_tree_tag_get(struct radix_tree_root *root, 1408 unsigned long index, unsigned int tag) 1409 { 1410 struct radix_tree_node *node, *parent; 1411 unsigned long maxindex; 1412 1413 if (!root_tag_get(root, tag)) 1414 return 0; 1415 1416 radix_tree_load_root(root, &node, &maxindex); 1417 if (index > maxindex) 1418 return 0; 1419 if (node == NULL) 1420 return 0; 1421 1422 while (radix_tree_is_internal_node(node)) { 1423 unsigned offset; 1424 1425 parent = entry_to_node(node); 1426 offset = radix_tree_descend(parent, &node, index); 1427 1428 if (!node) 1429 return 0; 1430 if (!tag_get(parent, tag, offset)) 1431 return 0; 1432 if (node == RADIX_TREE_RETRY) 1433 break; 1434 } 1435 1436 return 1; 1437 } 1438 EXPORT_SYMBOL(radix_tree_tag_get); 1439 1440 static inline void __set_iter_shift(struct radix_tree_iter *iter, 1441 unsigned int shift) 1442 { 1443 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1444 iter->shift = shift; 1445 #endif 1446 } 1447 1448 /* Construct iter->tags bit-mask from node->tags[tag] array */ 1449 static void set_iter_tags(struct radix_tree_iter *iter, 1450 struct radix_tree_node *node, unsigned offset, 1451 unsigned tag) 1452 { 1453 unsigned tag_long = offset / BITS_PER_LONG; 1454 unsigned tag_bit = offset % BITS_PER_LONG; 1455 1456 iter->tags = node->tags[tag][tag_long] >> tag_bit; 1457 1458 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 1459 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 1460 /* Pick tags from next element */ 1461 if (tag_bit) 1462 iter->tags |= node->tags[tag][tag_long + 1] << 1463 (BITS_PER_LONG - tag_bit); 1464 /* Clip chunk size, here only BITS_PER_LONG tags */ 1465 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); 1466 } 1467 } 1468 1469 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1470 static void **skip_siblings(struct radix_tree_node **nodep, 1471 void **slot, struct radix_tree_iter *iter) 1472 { 1473 void *sib = node_to_entry(slot - 1); 1474 1475 while (iter->index < iter->next_index) { 1476 *nodep = rcu_dereference_raw(*slot); 1477 if (*nodep && *nodep != sib) 1478 return slot; 1479 slot++; 1480 iter->index = __radix_tree_iter_add(iter, 1); 1481 iter->tags >>= 1; 1482 } 1483 1484 *nodep = NULL; 1485 return NULL; 1486 } 1487 1488 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, 1489 unsigned flags) 1490 { 1491 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1492 struct radix_tree_node *node = rcu_dereference_raw(*slot); 1493 1494 slot = skip_siblings(&node, slot, iter); 1495 1496 while (radix_tree_is_internal_node(node)) { 1497 unsigned offset; 1498 unsigned long next_index; 1499 1500 if (node == RADIX_TREE_RETRY) 1501 return slot; 1502 node = entry_to_node(node); 1503 iter->node = node; 1504 iter->shift = node->shift; 1505 1506 if (flags & RADIX_TREE_ITER_TAGGED) { 1507 offset = radix_tree_find_next_bit(node, tag, 0); 1508 if (offset == RADIX_TREE_MAP_SIZE) 1509 return NULL; 1510 slot = &node->slots[offset]; 1511 iter->index = __radix_tree_iter_add(iter, offset); 1512 set_iter_tags(iter, node, offset, tag); 1513 node = rcu_dereference_raw(*slot); 1514 } else { 1515 offset = 0; 1516 slot = &node->slots[0]; 1517 for (;;) { 1518 node = rcu_dereference_raw(*slot); 1519 if (node) 1520 break; 1521 slot++; 1522 offset++; 1523 if (offset == RADIX_TREE_MAP_SIZE) 1524 return NULL; 1525 } 1526 iter->index = __radix_tree_iter_add(iter, offset); 1527 } 1528 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0)) 1529 goto none; 1530 next_index = (iter->index | shift_maxindex(iter->shift)) + 1; 1531 if (next_index < iter->next_index) 1532 iter->next_index = next_index; 1533 } 1534 1535 return slot; 1536 none: 1537 iter->next_index = 0; 1538 return NULL; 1539 } 1540 EXPORT_SYMBOL(__radix_tree_next_slot); 1541 #else 1542 static void **skip_siblings(struct radix_tree_node **nodep, 1543 void **slot, struct radix_tree_iter *iter) 1544 { 1545 return slot; 1546 } 1547 #endif 1548 1549 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter) 1550 { 1551 struct radix_tree_node *node; 1552 1553 slot++; 1554 iter->index = __radix_tree_iter_add(iter, 1); 1555 node = rcu_dereference_raw(*slot); 1556 skip_siblings(&node, slot, iter); 1557 iter->next_index = iter->index; 1558 iter->tags = 0; 1559 return NULL; 1560 } 1561 EXPORT_SYMBOL(radix_tree_iter_resume); 1562 1563 /** 1564 * radix_tree_next_chunk - find next chunk of slots for iteration 1565 * 1566 * @root: radix tree root 1567 * @iter: iterator state 1568 * @flags: RADIX_TREE_ITER_* flags and tag index 1569 * Returns: pointer to chunk first slot, or NULL if iteration is over 1570 */ 1571 void **radix_tree_next_chunk(struct radix_tree_root *root, 1572 struct radix_tree_iter *iter, unsigned flags) 1573 { 1574 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1575 struct radix_tree_node *node, *child; 1576 unsigned long index, offset, maxindex; 1577 1578 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 1579 return NULL; 1580 1581 /* 1582 * Catch next_index overflow after ~0UL. iter->index never overflows 1583 * during iterating; it can be zero only at the beginning. 1584 * And we cannot overflow iter->next_index in a single step, 1585 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 1586 * 1587 * This condition also used by radix_tree_next_slot() to stop 1588 * contiguous iterating, and forbid switching to the next chunk. 1589 */ 1590 index = iter->next_index; 1591 if (!index && iter->index) 1592 return NULL; 1593 1594 restart: 1595 radix_tree_load_root(root, &child, &maxindex); 1596 if (index > maxindex) 1597 return NULL; 1598 if (!child) 1599 return NULL; 1600 1601 if (!radix_tree_is_internal_node(child)) { 1602 /* Single-slot tree */ 1603 iter->index = index; 1604 iter->next_index = maxindex + 1; 1605 iter->tags = 1; 1606 iter->node = NULL; 1607 __set_iter_shift(iter, 0); 1608 return (void **)&root->rnode; 1609 } 1610 1611 do { 1612 node = entry_to_node(child); 1613 offset = radix_tree_descend(node, &child, index); 1614 1615 if ((flags & RADIX_TREE_ITER_TAGGED) ? 1616 !tag_get(node, tag, offset) : !child) { 1617 /* Hole detected */ 1618 if (flags & RADIX_TREE_ITER_CONTIG) 1619 return NULL; 1620 1621 if (flags & RADIX_TREE_ITER_TAGGED) 1622 offset = radix_tree_find_next_bit(node, tag, 1623 offset + 1); 1624 else 1625 while (++offset < RADIX_TREE_MAP_SIZE) { 1626 void *slot = node->slots[offset]; 1627 if (is_sibling_entry(node, slot)) 1628 continue; 1629 if (slot) 1630 break; 1631 } 1632 index &= ~node_maxindex(node); 1633 index += offset << node->shift; 1634 /* Overflow after ~0UL */ 1635 if (!index) 1636 return NULL; 1637 if (offset == RADIX_TREE_MAP_SIZE) 1638 goto restart; 1639 child = rcu_dereference_raw(node->slots[offset]); 1640 } 1641 1642 if (!child) 1643 goto restart; 1644 if (child == RADIX_TREE_RETRY) 1645 break; 1646 } while (radix_tree_is_internal_node(child)); 1647 1648 /* Update the iterator state */ 1649 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 1650 iter->next_index = (index | node_maxindex(node)) + 1; 1651 iter->node = node; 1652 __set_iter_shift(iter, node->shift); 1653 1654 if (flags & RADIX_TREE_ITER_TAGGED) 1655 set_iter_tags(iter, node, offset, tag); 1656 1657 return node->slots + offset; 1658 } 1659 EXPORT_SYMBOL(radix_tree_next_chunk); 1660 1661 /** 1662 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1663 * @root: radix tree root 1664 * @results: where the results of the lookup are placed 1665 * @first_index: start the lookup from this key 1666 * @max_items: place up to this many items at *results 1667 * 1668 * Performs an index-ascending scan of the tree for present items. Places 1669 * them at *@results and returns the number of items which were placed at 1670 * *@results. 1671 * 1672 * The implementation is naive. 1673 * 1674 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1675 * rcu_read_lock. In this case, rather than the returned results being 1676 * an atomic snapshot of the tree at a single point in time, the 1677 * semantics of an RCU protected gang lookup are as though multiple 1678 * radix_tree_lookups have been issued in individual locks, and results 1679 * stored in 'results'. 1680 */ 1681 unsigned int 1682 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1683 unsigned long first_index, unsigned int max_items) 1684 { 1685 struct radix_tree_iter iter; 1686 void **slot; 1687 unsigned int ret = 0; 1688 1689 if (unlikely(!max_items)) 1690 return 0; 1691 1692 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1693 results[ret] = rcu_dereference_raw(*slot); 1694 if (!results[ret]) 1695 continue; 1696 if (radix_tree_is_internal_node(results[ret])) { 1697 slot = radix_tree_iter_retry(&iter); 1698 continue; 1699 } 1700 if (++ret == max_items) 1701 break; 1702 } 1703 1704 return ret; 1705 } 1706 EXPORT_SYMBOL(radix_tree_gang_lookup); 1707 1708 /** 1709 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1710 * @root: radix tree root 1711 * @results: where the results of the lookup are placed 1712 * @indices: where their indices should be placed (but usually NULL) 1713 * @first_index: start the lookup from this key 1714 * @max_items: place up to this many items at *results 1715 * 1716 * Performs an index-ascending scan of the tree for present items. Places 1717 * their slots at *@results and returns the number of items which were 1718 * placed at *@results. 1719 * 1720 * The implementation is naive. 1721 * 1722 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1723 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1724 * protection, radix_tree_deref_slot may fail requiring a retry. 1725 */ 1726 unsigned int 1727 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1728 void ***results, unsigned long *indices, 1729 unsigned long first_index, unsigned int max_items) 1730 { 1731 struct radix_tree_iter iter; 1732 void **slot; 1733 unsigned int ret = 0; 1734 1735 if (unlikely(!max_items)) 1736 return 0; 1737 1738 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1739 results[ret] = slot; 1740 if (indices) 1741 indices[ret] = iter.index; 1742 if (++ret == max_items) 1743 break; 1744 } 1745 1746 return ret; 1747 } 1748 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1749 1750 /** 1751 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1752 * based on a tag 1753 * @root: radix tree root 1754 * @results: where the results of the lookup are placed 1755 * @first_index: start the lookup from this key 1756 * @max_items: place up to this many items at *results 1757 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1758 * 1759 * Performs an index-ascending scan of the tree for present items which 1760 * have the tag indexed by @tag set. Places the items at *@results and 1761 * returns the number of items which were placed at *@results. 1762 */ 1763 unsigned int 1764 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1765 unsigned long first_index, unsigned int max_items, 1766 unsigned int tag) 1767 { 1768 struct radix_tree_iter iter; 1769 void **slot; 1770 unsigned int ret = 0; 1771 1772 if (unlikely(!max_items)) 1773 return 0; 1774 1775 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1776 results[ret] = rcu_dereference_raw(*slot); 1777 if (!results[ret]) 1778 continue; 1779 if (radix_tree_is_internal_node(results[ret])) { 1780 slot = radix_tree_iter_retry(&iter); 1781 continue; 1782 } 1783 if (++ret == max_items) 1784 break; 1785 } 1786 1787 return ret; 1788 } 1789 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1790 1791 /** 1792 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1793 * radix tree based on a tag 1794 * @root: radix tree root 1795 * @results: where the results of the lookup are placed 1796 * @first_index: start the lookup from this key 1797 * @max_items: place up to this many items at *results 1798 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1799 * 1800 * Performs an index-ascending scan of the tree for present items which 1801 * have the tag indexed by @tag set. Places the slots at *@results and 1802 * returns the number of slots which were placed at *@results. 1803 */ 1804 unsigned int 1805 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1806 unsigned long first_index, unsigned int max_items, 1807 unsigned int tag) 1808 { 1809 struct radix_tree_iter iter; 1810 void **slot; 1811 unsigned int ret = 0; 1812 1813 if (unlikely(!max_items)) 1814 return 0; 1815 1816 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1817 results[ret] = slot; 1818 if (++ret == max_items) 1819 break; 1820 } 1821 1822 return ret; 1823 } 1824 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1825 1826 /** 1827 * __radix_tree_delete_node - try to free node after clearing a slot 1828 * @root: radix tree root 1829 * @node: node containing @index 1830 * @update_node: callback for changing leaf nodes 1831 * @private: private data to pass to @update_node 1832 * 1833 * After clearing the slot at @index in @node from radix tree 1834 * rooted at @root, call this function to attempt freeing the 1835 * node and shrinking the tree. 1836 */ 1837 void __radix_tree_delete_node(struct radix_tree_root *root, 1838 struct radix_tree_node *node, 1839 radix_tree_update_node_t update_node, 1840 void *private) 1841 { 1842 delete_node(root, node, update_node, private); 1843 } 1844 1845 /** 1846 * radix_tree_delete_item - delete an item from a radix tree 1847 * @root: radix tree root 1848 * @index: index key 1849 * @item: expected item 1850 * 1851 * Remove @item at @index from the radix tree rooted at @root. 1852 * 1853 * Returns the address of the deleted item, or NULL if it was not present 1854 * or the entry at the given @index was not @item. 1855 */ 1856 void *radix_tree_delete_item(struct radix_tree_root *root, 1857 unsigned long index, void *item) 1858 { 1859 struct radix_tree_node *node; 1860 unsigned int offset; 1861 void **slot; 1862 void *entry; 1863 int tag; 1864 1865 entry = __radix_tree_lookup(root, index, &node, &slot); 1866 if (!entry) 1867 return NULL; 1868 1869 if (item && entry != item) 1870 return NULL; 1871 1872 if (!node) { 1873 root_tag_clear_all(root); 1874 root->rnode = NULL; 1875 return entry; 1876 } 1877 1878 offset = get_slot_offset(node, slot); 1879 1880 /* Clear all tags associated with the item to be deleted. */ 1881 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1882 node_tag_clear(root, node, tag, offset); 1883 1884 __radix_tree_replace(root, node, slot, NULL, NULL, NULL); 1885 1886 return entry; 1887 } 1888 EXPORT_SYMBOL(radix_tree_delete_item); 1889 1890 /** 1891 * radix_tree_delete - delete an item from a radix tree 1892 * @root: radix tree root 1893 * @index: index key 1894 * 1895 * Remove the item at @index from the radix tree rooted at @root. 1896 * 1897 * Returns the address of the deleted item, or NULL if it was not present. 1898 */ 1899 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1900 { 1901 return radix_tree_delete_item(root, index, NULL); 1902 } 1903 EXPORT_SYMBOL(radix_tree_delete); 1904 1905 void radix_tree_clear_tags(struct radix_tree_root *root, 1906 struct radix_tree_node *node, 1907 void **slot) 1908 { 1909 if (node) { 1910 unsigned int tag, offset = get_slot_offset(node, slot); 1911 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1912 node_tag_clear(root, node, tag, offset); 1913 } else { 1914 /* Clear root node tags */ 1915 root->gfp_mask &= __GFP_BITS_MASK; 1916 } 1917 } 1918 1919 /** 1920 * radix_tree_tagged - test whether any items in the tree are tagged 1921 * @root: radix tree root 1922 * @tag: tag to test 1923 */ 1924 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1925 { 1926 return root_tag_get(root, tag); 1927 } 1928 EXPORT_SYMBOL(radix_tree_tagged); 1929 1930 static void 1931 radix_tree_node_ctor(void *arg) 1932 { 1933 struct radix_tree_node *node = arg; 1934 1935 memset(node, 0, sizeof(*node)); 1936 INIT_LIST_HEAD(&node->private_list); 1937 } 1938 1939 static __init unsigned long __maxindex(unsigned int height) 1940 { 1941 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1942 int shift = RADIX_TREE_INDEX_BITS - width; 1943 1944 if (shift < 0) 1945 return ~0UL; 1946 if (shift >= BITS_PER_LONG) 1947 return 0UL; 1948 return ~0UL >> shift; 1949 } 1950 1951 static __init void radix_tree_init_maxnodes(void) 1952 { 1953 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1954 unsigned int i, j; 1955 1956 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1957 height_to_maxindex[i] = __maxindex(i); 1958 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1959 for (j = i; j > 0; j--) 1960 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1961 } 1962 } 1963 1964 static int radix_tree_cpu_dead(unsigned int cpu) 1965 { 1966 struct radix_tree_preload *rtp; 1967 struct radix_tree_node *node; 1968 1969 /* Free per-cpu pool of preloaded nodes */ 1970 rtp = &per_cpu(radix_tree_preloads, cpu); 1971 while (rtp->nr) { 1972 node = rtp->nodes; 1973 rtp->nodes = node->private_data; 1974 kmem_cache_free(radix_tree_node_cachep, node); 1975 rtp->nr--; 1976 } 1977 return 0; 1978 } 1979 1980 void __init radix_tree_init(void) 1981 { 1982 int ret; 1983 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1984 sizeof(struct radix_tree_node), 0, 1985 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1986 radix_tree_node_ctor); 1987 radix_tree_init_maxnodes(); 1988 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", 1989 NULL, radix_tree_cpu_dead); 1990 WARN_ON(ret < 0); 1991 } 1992