xref: /linux/lib/radix-tree.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	unsigned nr;
67 	/* nodes->private_data points to next preallocated node */
68 	struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline void *node_to_entry(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76 
77 #define RADIX_TREE_RETRY	node_to_entry(NULL)
78 
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 	void **ptr = node;
84 	return (parent->slots <= ptr) &&
85 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 	return false;
91 }
92 #endif
93 
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 						 void **slot)
96 {
97 	return slot - parent->slots;
98 }
99 
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 			struct radix_tree_node **nodep, unsigned long index)
102 {
103 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 	void **entry = rcu_dereference_raw(parent->slots[offset]);
105 
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 	if (radix_tree_is_internal_node(entry)) {
108 		if (is_sibling_entry(parent, entry)) {
109 			void **sibentry = (void **) entry_to_node(entry);
110 			offset = get_slot_offset(parent, sibentry);
111 			entry = rcu_dereference_raw(*sibentry);
112 		}
113 	}
114 #endif
115 
116 	*nodep = (void *)entry;
117 	return offset;
118 }
119 
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 	return root->gfp_mask & __GFP_BITS_MASK;
123 }
124 
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 		int offset)
127 {
128 	__set_bit(offset, node->tags[tag]);
129 }
130 
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 		int offset)
133 {
134 	__clear_bit(offset, node->tags[tag]);
135 }
136 
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 		int offset)
139 {
140 	return test_bit(offset, node->tags[tag]);
141 }
142 
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147 
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152 
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 	root->gfp_mask &= __GFP_BITS_MASK;
156 }
157 
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162 
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167 
168 /*
169  * Returns 1 if any slot in the node has this tag set.
170  * Otherwise returns 0.
171  */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 	unsigned idx;
175 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 		if (node->tags[tag][idx])
177 			return 1;
178 	}
179 	return 0;
180 }
181 
182 /**
183  * radix_tree_find_next_bit - find the next set bit in a memory region
184  *
185  * @addr: The address to base the search on
186  * @size: The bitmap size in bits
187  * @offset: The bitnumber to start searching at
188  *
189  * Unrollable variant of find_next_bit() for constant size arrays.
190  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191  * Returns next bit offset, or size if nothing found.
192  */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 			 unsigned long size, unsigned long offset)
196 {
197 	if (!__builtin_constant_p(size))
198 		return find_next_bit(addr, size, offset);
199 
200 	if (offset < size) {
201 		unsigned long tmp;
202 
203 		addr += offset / BITS_PER_LONG;
204 		tmp = *addr >> (offset % BITS_PER_LONG);
205 		if (tmp)
206 			return __ffs(tmp) + offset;
207 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 		while (offset < size) {
209 			tmp = *++addr;
210 			if (tmp)
211 				return __ffs(tmp) + offset;
212 			offset += BITS_PER_LONG;
213 		}
214 	}
215 	return size;
216 }
217 
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 	unsigned long i;
222 
223 	pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
224 		node, node->offset,
225 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 		node->shift, node->count, node->exceptional, node->parent);
227 
228 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 		unsigned long first = index | (i << node->shift);
230 		unsigned long last = first | ((1UL << node->shift) - 1);
231 		void *entry = node->slots[i];
232 		if (!entry)
233 			continue;
234 		if (is_sibling_entry(node, entry)) {
235 			pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 					entry, i,
237 					*(void **)entry_to_node(entry),
238 					first, last);
239 		} else if (!radix_tree_is_internal_node(entry)) {
240 			pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 					entry, i, first, last);
242 		} else {
243 			dump_node(entry_to_node(entry), first);
244 		}
245 	}
246 }
247 
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 	pr_debug("radix root: %p rnode %p tags %x\n",
252 			root, root->rnode,
253 			root->gfp_mask >> __GFP_BITS_SHIFT);
254 	if (!radix_tree_is_internal_node(root->rnode))
255 		return;
256 	dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259 
260 /*
261  * This assumes that the caller has performed appropriate preallocation, and
262  * that the caller has pinned this thread of control to the current CPU.
263  */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 	struct radix_tree_node *ret = NULL;
268 	gfp_t gfp_mask = root_gfp_mask(root);
269 
270 	/*
271 	 * Preload code isn't irq safe and it doesn't make sense to use
272 	 * preloading during an interrupt anyway as all the allocations have
273 	 * to be atomic. So just do normal allocation when in interrupt.
274 	 */
275 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 		struct radix_tree_preload *rtp;
277 
278 		/*
279 		 * Even if the caller has preloaded, try to allocate from the
280 		 * cache first for the new node to get accounted to the memory
281 		 * cgroup.
282 		 */
283 		ret = kmem_cache_alloc(radix_tree_node_cachep,
284 				       gfp_mask | __GFP_NOWARN);
285 		if (ret)
286 			goto out;
287 
288 		/*
289 		 * Provided the caller has preloaded here, we will always
290 		 * succeed in getting a node here (and never reach
291 		 * kmem_cache_alloc)
292 		 */
293 		rtp = this_cpu_ptr(&radix_tree_preloads);
294 		if (rtp->nr) {
295 			ret = rtp->nodes;
296 			rtp->nodes = ret->private_data;
297 			ret->private_data = NULL;
298 			rtp->nr--;
299 		}
300 		/*
301 		 * Update the allocation stack trace as this is more useful
302 		 * for debugging.
303 		 */
304 		kmemleak_update_trace(ret);
305 		goto out;
306 	}
307 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
308 out:
309 	BUG_ON(radix_tree_is_internal_node(ret));
310 	return ret;
311 }
312 
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 	struct radix_tree_node *node =
316 			container_of(head, struct radix_tree_node, rcu_head);
317 	int i;
318 
319 	/*
320 	 * must only free zeroed nodes into the slab. radix_tree_shrink
321 	 * can leave us with a non-NULL entry in the first slot, so clear
322 	 * that here to make sure.
323 	 */
324 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 		tag_clear(node, i, 0);
326 
327 	node->slots[0] = NULL;
328 
329 	kmem_cache_free(radix_tree_node_cachep, node);
330 }
331 
332 static inline void
333 radix_tree_node_free(struct radix_tree_node *node)
334 {
335 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
336 }
337 
338 /*
339  * Load up this CPU's radix_tree_node buffer with sufficient objects to
340  * ensure that the addition of a single element in the tree cannot fail.  On
341  * success, return zero, with preemption disabled.  On error, return -ENOMEM
342  * with preemption not disabled.
343  *
344  * To make use of this facility, the radix tree must be initialised without
345  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
346  */
347 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
348 {
349 	struct radix_tree_preload *rtp;
350 	struct radix_tree_node *node;
351 	int ret = -ENOMEM;
352 
353 	/*
354 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
355 	 * they should never be accounted to any particular memory cgroup.
356 	 */
357 	gfp_mask &= ~__GFP_ACCOUNT;
358 
359 	preempt_disable();
360 	rtp = this_cpu_ptr(&radix_tree_preloads);
361 	while (rtp->nr < nr) {
362 		preempt_enable();
363 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
364 		if (node == NULL)
365 			goto out;
366 		preempt_disable();
367 		rtp = this_cpu_ptr(&radix_tree_preloads);
368 		if (rtp->nr < nr) {
369 			node->private_data = rtp->nodes;
370 			rtp->nodes = node;
371 			rtp->nr++;
372 		} else {
373 			kmem_cache_free(radix_tree_node_cachep, node);
374 		}
375 	}
376 	ret = 0;
377 out:
378 	return ret;
379 }
380 
381 /*
382  * Load up this CPU's radix_tree_node buffer with sufficient objects to
383  * ensure that the addition of a single element in the tree cannot fail.  On
384  * success, return zero, with preemption disabled.  On error, return -ENOMEM
385  * with preemption not disabled.
386  *
387  * To make use of this facility, the radix tree must be initialised without
388  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
389  */
390 int radix_tree_preload(gfp_t gfp_mask)
391 {
392 	/* Warn on non-sensical use... */
393 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
394 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
395 }
396 EXPORT_SYMBOL(radix_tree_preload);
397 
398 /*
399  * The same as above function, except we don't guarantee preloading happens.
400  * We do it, if we decide it helps. On success, return zero with preemption
401  * disabled. On error, return -ENOMEM with preemption not disabled.
402  */
403 int radix_tree_maybe_preload(gfp_t gfp_mask)
404 {
405 	if (gfpflags_allow_blocking(gfp_mask))
406 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
407 	/* Preloading doesn't help anything with this gfp mask, skip it */
408 	preempt_disable();
409 	return 0;
410 }
411 EXPORT_SYMBOL(radix_tree_maybe_preload);
412 
413 /*
414  * The same as function above, but preload number of nodes required to insert
415  * (1 << order) continuous naturally-aligned elements.
416  */
417 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
418 {
419 	unsigned long nr_subtrees;
420 	int nr_nodes, subtree_height;
421 
422 	/* Preloading doesn't help anything with this gfp mask, skip it */
423 	if (!gfpflags_allow_blocking(gfp_mask)) {
424 		preempt_disable();
425 		return 0;
426 	}
427 
428 	/*
429 	 * Calculate number and height of fully populated subtrees it takes to
430 	 * store (1 << order) elements.
431 	 */
432 	nr_subtrees = 1 << order;
433 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
434 			subtree_height++)
435 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
436 
437 	/*
438 	 * The worst case is zero height tree with a single item at index 0 and
439 	 * then inserting items starting at ULONG_MAX - (1 << order).
440 	 *
441 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
442 	 * 0-index item.
443 	 */
444 	nr_nodes = RADIX_TREE_MAX_PATH;
445 
446 	/* Plus branch to fully populated subtrees. */
447 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
448 
449 	/* Root node is shared. */
450 	nr_nodes--;
451 
452 	/* Plus nodes required to build subtrees. */
453 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
454 
455 	return __radix_tree_preload(gfp_mask, nr_nodes);
456 }
457 
458 /*
459  * The maximum index which can be stored in a radix tree
460  */
461 static inline unsigned long shift_maxindex(unsigned int shift)
462 {
463 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
464 }
465 
466 static inline unsigned long node_maxindex(struct radix_tree_node *node)
467 {
468 	return shift_maxindex(node->shift);
469 }
470 
471 static unsigned radix_tree_load_root(struct radix_tree_root *root,
472 		struct radix_tree_node **nodep, unsigned long *maxindex)
473 {
474 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
475 
476 	*nodep = node;
477 
478 	if (likely(radix_tree_is_internal_node(node))) {
479 		node = entry_to_node(node);
480 		*maxindex = node_maxindex(node);
481 		return node->shift + RADIX_TREE_MAP_SHIFT;
482 	}
483 
484 	*maxindex = 0;
485 	return 0;
486 }
487 
488 /*
489  *	Extend a radix tree so it can store key @index.
490  */
491 static int radix_tree_extend(struct radix_tree_root *root,
492 				unsigned long index, unsigned int shift)
493 {
494 	struct radix_tree_node *slot;
495 	unsigned int maxshift;
496 	int tag;
497 
498 	/* Figure out what the shift should be.  */
499 	maxshift = shift;
500 	while (index > shift_maxindex(maxshift))
501 		maxshift += RADIX_TREE_MAP_SHIFT;
502 
503 	slot = root->rnode;
504 	if (!slot)
505 		goto out;
506 
507 	do {
508 		struct radix_tree_node *node = radix_tree_node_alloc(root);
509 
510 		if (!node)
511 			return -ENOMEM;
512 
513 		/* Propagate the aggregated tag info into the new root */
514 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
515 			if (root_tag_get(root, tag))
516 				tag_set(node, tag, 0);
517 		}
518 
519 		BUG_ON(shift > BITS_PER_LONG);
520 		node->shift = shift;
521 		node->offset = 0;
522 		node->count = 1;
523 		node->parent = NULL;
524 		if (radix_tree_is_internal_node(slot)) {
525 			entry_to_node(slot)->parent = node;
526 		} else {
527 			/* Moving an exceptional root->rnode to a node */
528 			if (radix_tree_exceptional_entry(slot))
529 				node->exceptional = 1;
530 		}
531 		node->slots[0] = slot;
532 		slot = node_to_entry(node);
533 		rcu_assign_pointer(root->rnode, slot);
534 		shift += RADIX_TREE_MAP_SHIFT;
535 	} while (shift <= maxshift);
536 out:
537 	return maxshift + RADIX_TREE_MAP_SHIFT;
538 }
539 
540 /**
541  *	radix_tree_shrink    -    shrink radix tree to minimum height
542  *	@root		radix tree root
543  */
544 static inline void radix_tree_shrink(struct radix_tree_root *root,
545 				     radix_tree_update_node_t update_node,
546 				     void *private)
547 {
548 	for (;;) {
549 		struct radix_tree_node *node = root->rnode;
550 		struct radix_tree_node *child;
551 
552 		if (!radix_tree_is_internal_node(node))
553 			break;
554 		node = entry_to_node(node);
555 
556 		/*
557 		 * The candidate node has more than one child, or its child
558 		 * is not at the leftmost slot, or the child is a multiorder
559 		 * entry, we cannot shrink.
560 		 */
561 		if (node->count != 1)
562 			break;
563 		child = node->slots[0];
564 		if (!child)
565 			break;
566 		if (!radix_tree_is_internal_node(child) && node->shift)
567 			break;
568 
569 		if (radix_tree_is_internal_node(child))
570 			entry_to_node(child)->parent = NULL;
571 
572 		/*
573 		 * We don't need rcu_assign_pointer(), since we are simply
574 		 * moving the node from one part of the tree to another: if it
575 		 * was safe to dereference the old pointer to it
576 		 * (node->slots[0]), it will be safe to dereference the new
577 		 * one (root->rnode) as far as dependent read barriers go.
578 		 */
579 		root->rnode = child;
580 
581 		/*
582 		 * We have a dilemma here. The node's slot[0] must not be
583 		 * NULLed in case there are concurrent lookups expecting to
584 		 * find the item. However if this was a bottom-level node,
585 		 * then it may be subject to the slot pointer being visible
586 		 * to callers dereferencing it. If item corresponding to
587 		 * slot[0] is subsequently deleted, these callers would expect
588 		 * their slot to become empty sooner or later.
589 		 *
590 		 * For example, lockless pagecache will look up a slot, deref
591 		 * the page pointer, and if the page has 0 refcount it means it
592 		 * was concurrently deleted from pagecache so try the deref
593 		 * again. Fortunately there is already a requirement for logic
594 		 * to retry the entire slot lookup -- the indirect pointer
595 		 * problem (replacing direct root node with an indirect pointer
596 		 * also results in a stale slot). So tag the slot as indirect
597 		 * to force callers to retry.
598 		 */
599 		node->count = 0;
600 		if (!radix_tree_is_internal_node(child)) {
601 			node->slots[0] = RADIX_TREE_RETRY;
602 			if (update_node)
603 				update_node(node, private);
604 		}
605 
606 		radix_tree_node_free(node);
607 	}
608 }
609 
610 static void delete_node(struct radix_tree_root *root,
611 			struct radix_tree_node *node,
612 			radix_tree_update_node_t update_node, void *private)
613 {
614 	do {
615 		struct radix_tree_node *parent;
616 
617 		if (node->count) {
618 			if (node == entry_to_node(root->rnode))
619 				radix_tree_shrink(root, update_node, private);
620 			return;
621 		}
622 
623 		parent = node->parent;
624 		if (parent) {
625 			parent->slots[node->offset] = NULL;
626 			parent->count--;
627 		} else {
628 			root_tag_clear_all(root);
629 			root->rnode = NULL;
630 		}
631 
632 		radix_tree_node_free(node);
633 
634 		node = parent;
635 	} while (node);
636 }
637 
638 /**
639  *	__radix_tree_create	-	create a slot in a radix tree
640  *	@root:		radix tree root
641  *	@index:		index key
642  *	@order:		index occupies 2^order aligned slots
643  *	@nodep:		returns node
644  *	@slotp:		returns slot
645  *
646  *	Create, if necessary, and return the node and slot for an item
647  *	at position @index in the radix tree @root.
648  *
649  *	Until there is more than one item in the tree, no nodes are
650  *	allocated and @root->rnode is used as a direct slot instead of
651  *	pointing to a node, in which case *@nodep will be NULL.
652  *
653  *	Returns -ENOMEM, or 0 for success.
654  */
655 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
656 			unsigned order, struct radix_tree_node **nodep,
657 			void ***slotp)
658 {
659 	struct radix_tree_node *node = NULL, *child;
660 	void **slot = (void **)&root->rnode;
661 	unsigned long maxindex;
662 	unsigned int shift, offset = 0;
663 	unsigned long max = index | ((1UL << order) - 1);
664 
665 	shift = radix_tree_load_root(root, &child, &maxindex);
666 
667 	/* Make sure the tree is high enough.  */
668 	if (max > maxindex) {
669 		int error = radix_tree_extend(root, max, shift);
670 		if (error < 0)
671 			return error;
672 		shift = error;
673 		child = root->rnode;
674 		if (order == shift)
675 			shift += RADIX_TREE_MAP_SHIFT;
676 	}
677 
678 	while (shift > order) {
679 		shift -= RADIX_TREE_MAP_SHIFT;
680 		if (child == NULL) {
681 			/* Have to add a child node.  */
682 			child = radix_tree_node_alloc(root);
683 			if (!child)
684 				return -ENOMEM;
685 			child->shift = shift;
686 			child->offset = offset;
687 			child->parent = node;
688 			rcu_assign_pointer(*slot, node_to_entry(child));
689 			if (node)
690 				node->count++;
691 		} else if (!radix_tree_is_internal_node(child))
692 			break;
693 
694 		/* Go a level down */
695 		node = entry_to_node(child);
696 		offset = radix_tree_descend(node, &child, index);
697 		slot = &node->slots[offset];
698 	}
699 
700 #ifdef CONFIG_RADIX_TREE_MULTIORDER
701 	/* Insert pointers to the canonical entry */
702 	if (order > shift) {
703 		unsigned i, n = 1 << (order - shift);
704 		offset = offset & ~(n - 1);
705 		slot = &node->slots[offset];
706 		child = node_to_entry(slot);
707 		for (i = 0; i < n; i++) {
708 			if (slot[i])
709 				return -EEXIST;
710 		}
711 
712 		for (i = 1; i < n; i++) {
713 			rcu_assign_pointer(slot[i], child);
714 			node->count++;
715 		}
716 	}
717 #endif
718 
719 	if (nodep)
720 		*nodep = node;
721 	if (slotp)
722 		*slotp = slot;
723 	return 0;
724 }
725 
726 /**
727  *	__radix_tree_insert    -    insert into a radix tree
728  *	@root:		radix tree root
729  *	@index:		index key
730  *	@order:		key covers the 2^order indices around index
731  *	@item:		item to insert
732  *
733  *	Insert an item into the radix tree at position @index.
734  */
735 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
736 			unsigned order, void *item)
737 {
738 	struct radix_tree_node *node;
739 	void **slot;
740 	int error;
741 
742 	BUG_ON(radix_tree_is_internal_node(item));
743 
744 	error = __radix_tree_create(root, index, order, &node, &slot);
745 	if (error)
746 		return error;
747 	if (*slot != NULL)
748 		return -EEXIST;
749 	rcu_assign_pointer(*slot, item);
750 
751 	if (node) {
752 		unsigned offset = get_slot_offset(node, slot);
753 		node->count++;
754 		if (radix_tree_exceptional_entry(item))
755 			node->exceptional++;
756 		BUG_ON(tag_get(node, 0, offset));
757 		BUG_ON(tag_get(node, 1, offset));
758 		BUG_ON(tag_get(node, 2, offset));
759 	} else {
760 		BUG_ON(root_tags_get(root));
761 	}
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL(__radix_tree_insert);
766 
767 /**
768  *	__radix_tree_lookup	-	lookup an item in a radix tree
769  *	@root:		radix tree root
770  *	@index:		index key
771  *	@nodep:		returns node
772  *	@slotp:		returns slot
773  *
774  *	Lookup and return the item at position @index in the radix
775  *	tree @root.
776  *
777  *	Until there is more than one item in the tree, no nodes are
778  *	allocated and @root->rnode is used as a direct slot instead of
779  *	pointing to a node, in which case *@nodep will be NULL.
780  */
781 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
782 			  struct radix_tree_node **nodep, void ***slotp)
783 {
784 	struct radix_tree_node *node, *parent;
785 	unsigned long maxindex;
786 	void **slot;
787 
788  restart:
789 	parent = NULL;
790 	slot = (void **)&root->rnode;
791 	radix_tree_load_root(root, &node, &maxindex);
792 	if (index > maxindex)
793 		return NULL;
794 
795 	while (radix_tree_is_internal_node(node)) {
796 		unsigned offset;
797 
798 		if (node == RADIX_TREE_RETRY)
799 			goto restart;
800 		parent = entry_to_node(node);
801 		offset = radix_tree_descend(parent, &node, index);
802 		slot = parent->slots + offset;
803 	}
804 
805 	if (nodep)
806 		*nodep = parent;
807 	if (slotp)
808 		*slotp = slot;
809 	return node;
810 }
811 
812 /**
813  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
814  *	@root:		radix tree root
815  *	@index:		index key
816  *
817  *	Returns:  the slot corresponding to the position @index in the
818  *	radix tree @root. This is useful for update-if-exists operations.
819  *
820  *	This function can be called under rcu_read_lock iff the slot is not
821  *	modified by radix_tree_replace_slot, otherwise it must be called
822  *	exclusive from other writers. Any dereference of the slot must be done
823  *	using radix_tree_deref_slot.
824  */
825 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
826 {
827 	void **slot;
828 
829 	if (!__radix_tree_lookup(root, index, NULL, &slot))
830 		return NULL;
831 	return slot;
832 }
833 EXPORT_SYMBOL(radix_tree_lookup_slot);
834 
835 /**
836  *	radix_tree_lookup    -    perform lookup operation on a radix tree
837  *	@root:		radix tree root
838  *	@index:		index key
839  *
840  *	Lookup the item at the position @index in the radix tree @root.
841  *
842  *	This function can be called under rcu_read_lock, however the caller
843  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
844  *	them safely). No RCU barriers are required to access or modify the
845  *	returned item, however.
846  */
847 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
848 {
849 	return __radix_tree_lookup(root, index, NULL, NULL);
850 }
851 EXPORT_SYMBOL(radix_tree_lookup);
852 
853 static void replace_slot(struct radix_tree_root *root,
854 			 struct radix_tree_node *node,
855 			 void **slot, void *item,
856 			 bool warn_typeswitch)
857 {
858 	void *old = rcu_dereference_raw(*slot);
859 	int count, exceptional;
860 
861 	WARN_ON_ONCE(radix_tree_is_internal_node(item));
862 
863 	count = !!item - !!old;
864 	exceptional = !!radix_tree_exceptional_entry(item) -
865 		      !!radix_tree_exceptional_entry(old);
866 
867 	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
868 
869 	if (node) {
870 		node->count += count;
871 		node->exceptional += exceptional;
872 	}
873 
874 	rcu_assign_pointer(*slot, item);
875 }
876 
877 /**
878  * __radix_tree_replace		- replace item in a slot
879  * @root:		radix tree root
880  * @node:		pointer to tree node
881  * @slot:		pointer to slot in @node
882  * @item:		new item to store in the slot.
883  * @update_node:	callback for changing leaf nodes
884  * @private:		private data to pass to @update_node
885  *
886  * For use with __radix_tree_lookup().  Caller must hold tree write locked
887  * across slot lookup and replacement.
888  */
889 void __radix_tree_replace(struct radix_tree_root *root,
890 			  struct radix_tree_node *node,
891 			  void **slot, void *item,
892 			  radix_tree_update_node_t update_node, void *private)
893 {
894 	/*
895 	 * This function supports replacing exceptional entries and
896 	 * deleting entries, but that needs accounting against the
897 	 * node unless the slot is root->rnode.
898 	 */
899 	replace_slot(root, node, slot, item,
900 		     !node && slot != (void **)&root->rnode);
901 
902 	if (!node)
903 		return;
904 
905 	if (update_node)
906 		update_node(node, private);
907 
908 	delete_node(root, node, update_node, private);
909 }
910 
911 /**
912  * radix_tree_replace_slot	- replace item in a slot
913  * @root:	radix tree root
914  * @slot:	pointer to slot
915  * @item:	new item to store in the slot.
916  *
917  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
918  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
919  * across slot lookup and replacement.
920  *
921  * NOTE: This cannot be used to switch between non-entries (empty slots),
922  * regular entries, and exceptional entries, as that requires accounting
923  * inside the radix tree node. When switching from one type of entry or
924  * deleting, use __radix_tree_lookup() and __radix_tree_replace().
925  */
926 void radix_tree_replace_slot(struct radix_tree_root *root,
927 			     void **slot, void *item)
928 {
929 	replace_slot(root, NULL, slot, item, true);
930 }
931 
932 /**
933  *	radix_tree_tag_set - set a tag on a radix tree node
934  *	@root:		radix tree root
935  *	@index:		index key
936  *	@tag:		tag index
937  *
938  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
939  *	corresponding to @index in the radix tree.  From
940  *	the root all the way down to the leaf node.
941  *
942  *	Returns the address of the tagged item.  Setting a tag on a not-present
943  *	item is a bug.
944  */
945 void *radix_tree_tag_set(struct radix_tree_root *root,
946 			unsigned long index, unsigned int tag)
947 {
948 	struct radix_tree_node *node, *parent;
949 	unsigned long maxindex;
950 
951 	radix_tree_load_root(root, &node, &maxindex);
952 	BUG_ON(index > maxindex);
953 
954 	while (radix_tree_is_internal_node(node)) {
955 		unsigned offset;
956 
957 		parent = entry_to_node(node);
958 		offset = radix_tree_descend(parent, &node, index);
959 		BUG_ON(!node);
960 
961 		if (!tag_get(parent, tag, offset))
962 			tag_set(parent, tag, offset);
963 	}
964 
965 	/* set the root's tag bit */
966 	if (!root_tag_get(root, tag))
967 		root_tag_set(root, tag);
968 
969 	return node;
970 }
971 EXPORT_SYMBOL(radix_tree_tag_set);
972 
973 static void node_tag_clear(struct radix_tree_root *root,
974 				struct radix_tree_node *node,
975 				unsigned int tag, unsigned int offset)
976 {
977 	while (node) {
978 		if (!tag_get(node, tag, offset))
979 			return;
980 		tag_clear(node, tag, offset);
981 		if (any_tag_set(node, tag))
982 			return;
983 
984 		offset = node->offset;
985 		node = node->parent;
986 	}
987 
988 	/* clear the root's tag bit */
989 	if (root_tag_get(root, tag))
990 		root_tag_clear(root, tag);
991 }
992 
993 /**
994  *	radix_tree_tag_clear - clear a tag on a radix tree node
995  *	@root:		radix tree root
996  *	@index:		index key
997  *	@tag:		tag index
998  *
999  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1000  *	corresponding to @index in the radix tree.  If this causes
1001  *	the leaf node to have no tags set then clear the tag in the
1002  *	next-to-leaf node, etc.
1003  *
1004  *	Returns the address of the tagged item on success, else NULL.  ie:
1005  *	has the same return value and semantics as radix_tree_lookup().
1006  */
1007 void *radix_tree_tag_clear(struct radix_tree_root *root,
1008 			unsigned long index, unsigned int tag)
1009 {
1010 	struct radix_tree_node *node, *parent;
1011 	unsigned long maxindex;
1012 	int uninitialized_var(offset);
1013 
1014 	radix_tree_load_root(root, &node, &maxindex);
1015 	if (index > maxindex)
1016 		return NULL;
1017 
1018 	parent = NULL;
1019 
1020 	while (radix_tree_is_internal_node(node)) {
1021 		parent = entry_to_node(node);
1022 		offset = radix_tree_descend(parent, &node, index);
1023 	}
1024 
1025 	if (node)
1026 		node_tag_clear(root, parent, tag, offset);
1027 
1028 	return node;
1029 }
1030 EXPORT_SYMBOL(radix_tree_tag_clear);
1031 
1032 /**
1033  * radix_tree_tag_get - get a tag on a radix tree node
1034  * @root:		radix tree root
1035  * @index:		index key
1036  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1037  *
1038  * Return values:
1039  *
1040  *  0: tag not present or not set
1041  *  1: tag set
1042  *
1043  * Note that the return value of this function may not be relied on, even if
1044  * the RCU lock is held, unless tag modification and node deletion are excluded
1045  * from concurrency.
1046  */
1047 int radix_tree_tag_get(struct radix_tree_root *root,
1048 			unsigned long index, unsigned int tag)
1049 {
1050 	struct radix_tree_node *node, *parent;
1051 	unsigned long maxindex;
1052 
1053 	if (!root_tag_get(root, tag))
1054 		return 0;
1055 
1056 	radix_tree_load_root(root, &node, &maxindex);
1057 	if (index > maxindex)
1058 		return 0;
1059 	if (node == NULL)
1060 		return 0;
1061 
1062 	while (radix_tree_is_internal_node(node)) {
1063 		unsigned offset;
1064 
1065 		parent = entry_to_node(node);
1066 		offset = radix_tree_descend(parent, &node, index);
1067 
1068 		if (!node)
1069 			return 0;
1070 		if (!tag_get(parent, tag, offset))
1071 			return 0;
1072 		if (node == RADIX_TREE_RETRY)
1073 			break;
1074 	}
1075 
1076 	return 1;
1077 }
1078 EXPORT_SYMBOL(radix_tree_tag_get);
1079 
1080 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1081 					unsigned int shift)
1082 {
1083 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1084 	iter->shift = shift;
1085 #endif
1086 }
1087 
1088 /**
1089  * radix_tree_next_chunk - find next chunk of slots for iteration
1090  *
1091  * @root:	radix tree root
1092  * @iter:	iterator state
1093  * @flags:	RADIX_TREE_ITER_* flags and tag index
1094  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1095  */
1096 void **radix_tree_next_chunk(struct radix_tree_root *root,
1097 			     struct radix_tree_iter *iter, unsigned flags)
1098 {
1099 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1100 	struct radix_tree_node *node, *child;
1101 	unsigned long index, offset, maxindex;
1102 
1103 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1104 		return NULL;
1105 
1106 	/*
1107 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1108 	 * during iterating; it can be zero only at the beginning.
1109 	 * And we cannot overflow iter->next_index in a single step,
1110 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1111 	 *
1112 	 * This condition also used by radix_tree_next_slot() to stop
1113 	 * contiguous iterating, and forbid swithing to the next chunk.
1114 	 */
1115 	index = iter->next_index;
1116 	if (!index && iter->index)
1117 		return NULL;
1118 
1119  restart:
1120 	radix_tree_load_root(root, &child, &maxindex);
1121 	if (index > maxindex)
1122 		return NULL;
1123 	if (!child)
1124 		return NULL;
1125 
1126 	if (!radix_tree_is_internal_node(child)) {
1127 		/* Single-slot tree */
1128 		iter->index = index;
1129 		iter->next_index = maxindex + 1;
1130 		iter->tags = 1;
1131 		__set_iter_shift(iter, 0);
1132 		return (void **)&root->rnode;
1133 	}
1134 
1135 	do {
1136 		node = entry_to_node(child);
1137 		offset = radix_tree_descend(node, &child, index);
1138 
1139 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1140 				!tag_get(node, tag, offset) : !child) {
1141 			/* Hole detected */
1142 			if (flags & RADIX_TREE_ITER_CONTIG)
1143 				return NULL;
1144 
1145 			if (flags & RADIX_TREE_ITER_TAGGED)
1146 				offset = radix_tree_find_next_bit(
1147 						node->tags[tag],
1148 						RADIX_TREE_MAP_SIZE,
1149 						offset + 1);
1150 			else
1151 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1152 					void *slot = node->slots[offset];
1153 					if (is_sibling_entry(node, slot))
1154 						continue;
1155 					if (slot)
1156 						break;
1157 				}
1158 			index &= ~node_maxindex(node);
1159 			index += offset << node->shift;
1160 			/* Overflow after ~0UL */
1161 			if (!index)
1162 				return NULL;
1163 			if (offset == RADIX_TREE_MAP_SIZE)
1164 				goto restart;
1165 			child = rcu_dereference_raw(node->slots[offset]);
1166 		}
1167 
1168 		if ((child == NULL) || (child == RADIX_TREE_RETRY))
1169 			goto restart;
1170 	} while (radix_tree_is_internal_node(child));
1171 
1172 	/* Update the iterator state */
1173 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1174 	iter->next_index = (index | node_maxindex(node)) + 1;
1175 	__set_iter_shift(iter, node->shift);
1176 
1177 	/* Construct iter->tags bit-mask from node->tags[tag] array */
1178 	if (flags & RADIX_TREE_ITER_TAGGED) {
1179 		unsigned tag_long, tag_bit;
1180 
1181 		tag_long = offset / BITS_PER_LONG;
1182 		tag_bit  = offset % BITS_PER_LONG;
1183 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
1184 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1185 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1186 			/* Pick tags from next element */
1187 			if (tag_bit)
1188 				iter->tags |= node->tags[tag][tag_long + 1] <<
1189 						(BITS_PER_LONG - tag_bit);
1190 			/* Clip chunk size, here only BITS_PER_LONG tags */
1191 			iter->next_index = index + BITS_PER_LONG;
1192 		}
1193 	}
1194 
1195 	return node->slots + offset;
1196 }
1197 EXPORT_SYMBOL(radix_tree_next_chunk);
1198 
1199 /**
1200  * radix_tree_range_tag_if_tagged - for each item in given range set given
1201  *				   tag if item has another tag set
1202  * @root:		radix tree root
1203  * @first_indexp:	pointer to a starting index of a range to scan
1204  * @last_index:		last index of a range to scan
1205  * @nr_to_tag:		maximum number items to tag
1206  * @iftag:		tag index to test
1207  * @settag:		tag index to set if tested tag is set
1208  *
1209  * This function scans range of radix tree from first_index to last_index
1210  * (inclusive).  For each item in the range if iftag is set, the function sets
1211  * also settag. The function stops either after tagging nr_to_tag items or
1212  * after reaching last_index.
1213  *
1214  * The tags must be set from the leaf level only and propagated back up the
1215  * path to the root. We must do this so that we resolve the full path before
1216  * setting any tags on intermediate nodes. If we set tags as we descend, then
1217  * we can get to the leaf node and find that the index that has the iftag
1218  * set is outside the range we are scanning. This reults in dangling tags and
1219  * can lead to problems with later tag operations (e.g. livelocks on lookups).
1220  *
1221  * The function returns the number of leaves where the tag was set and sets
1222  * *first_indexp to the first unscanned index.
1223  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1224  * be prepared to handle that.
1225  */
1226 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1227 		unsigned long *first_indexp, unsigned long last_index,
1228 		unsigned long nr_to_tag,
1229 		unsigned int iftag, unsigned int settag)
1230 {
1231 	struct radix_tree_node *parent, *node, *child;
1232 	unsigned long maxindex;
1233 	unsigned long tagged = 0;
1234 	unsigned long index = *first_indexp;
1235 
1236 	radix_tree_load_root(root, &child, &maxindex);
1237 	last_index = min(last_index, maxindex);
1238 	if (index > last_index)
1239 		return 0;
1240 	if (!nr_to_tag)
1241 		return 0;
1242 	if (!root_tag_get(root, iftag)) {
1243 		*first_indexp = last_index + 1;
1244 		return 0;
1245 	}
1246 	if (!radix_tree_is_internal_node(child)) {
1247 		*first_indexp = last_index + 1;
1248 		root_tag_set(root, settag);
1249 		return 1;
1250 	}
1251 
1252 	node = entry_to_node(child);
1253 
1254 	for (;;) {
1255 		unsigned offset = radix_tree_descend(node, &child, index);
1256 		if (!child)
1257 			goto next;
1258 		if (!tag_get(node, iftag, offset))
1259 			goto next;
1260 		/* Sibling slots never have tags set on them */
1261 		if (radix_tree_is_internal_node(child)) {
1262 			node = entry_to_node(child);
1263 			continue;
1264 		}
1265 
1266 		/* tag the leaf */
1267 		tagged++;
1268 		tag_set(node, settag, offset);
1269 
1270 		/* walk back up the path tagging interior nodes */
1271 		parent = node;
1272 		for (;;) {
1273 			offset = parent->offset;
1274 			parent = parent->parent;
1275 			if (!parent)
1276 				break;
1277 			/* stop if we find a node with the tag already set */
1278 			if (tag_get(parent, settag, offset))
1279 				break;
1280 			tag_set(parent, settag, offset);
1281 		}
1282  next:
1283 		/* Go to next entry in node */
1284 		index = ((index >> node->shift) + 1) << node->shift;
1285 		/* Overflow can happen when last_index is ~0UL... */
1286 		if (index > last_index || !index)
1287 			break;
1288 		offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1289 		while (offset == 0) {
1290 			/*
1291 			 * We've fully scanned this node. Go up. Because
1292 			 * last_index is guaranteed to be in the tree, what
1293 			 * we do below cannot wander astray.
1294 			 */
1295 			node = node->parent;
1296 			offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1297 		}
1298 		if (is_sibling_entry(node, node->slots[offset]))
1299 			goto next;
1300 		if (tagged >= nr_to_tag)
1301 			break;
1302 	}
1303 	/*
1304 	 * We need not to tag the root tag if there is no tag which is set with
1305 	 * settag within the range from *first_indexp to last_index.
1306 	 */
1307 	if (tagged > 0)
1308 		root_tag_set(root, settag);
1309 	*first_indexp = index;
1310 
1311 	return tagged;
1312 }
1313 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1314 
1315 /**
1316  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1317  *	@root:		radix tree root
1318  *	@results:	where the results of the lookup are placed
1319  *	@first_index:	start the lookup from this key
1320  *	@max_items:	place up to this many items at *results
1321  *
1322  *	Performs an index-ascending scan of the tree for present items.  Places
1323  *	them at *@results and returns the number of items which were placed at
1324  *	*@results.
1325  *
1326  *	The implementation is naive.
1327  *
1328  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1329  *	rcu_read_lock. In this case, rather than the returned results being
1330  *	an atomic snapshot of the tree at a single point in time, the
1331  *	semantics of an RCU protected gang lookup are as though multiple
1332  *	radix_tree_lookups have been issued in individual locks, and results
1333  *	stored in 'results'.
1334  */
1335 unsigned int
1336 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1337 			unsigned long first_index, unsigned int max_items)
1338 {
1339 	struct radix_tree_iter iter;
1340 	void **slot;
1341 	unsigned int ret = 0;
1342 
1343 	if (unlikely(!max_items))
1344 		return 0;
1345 
1346 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1347 		results[ret] = rcu_dereference_raw(*slot);
1348 		if (!results[ret])
1349 			continue;
1350 		if (radix_tree_is_internal_node(results[ret])) {
1351 			slot = radix_tree_iter_retry(&iter);
1352 			continue;
1353 		}
1354 		if (++ret == max_items)
1355 			break;
1356 	}
1357 
1358 	return ret;
1359 }
1360 EXPORT_SYMBOL(radix_tree_gang_lookup);
1361 
1362 /**
1363  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1364  *	@root:		radix tree root
1365  *	@results:	where the results of the lookup are placed
1366  *	@indices:	where their indices should be placed (but usually NULL)
1367  *	@first_index:	start the lookup from this key
1368  *	@max_items:	place up to this many items at *results
1369  *
1370  *	Performs an index-ascending scan of the tree for present items.  Places
1371  *	their slots at *@results and returns the number of items which were
1372  *	placed at *@results.
1373  *
1374  *	The implementation is naive.
1375  *
1376  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1377  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1378  *	protection, radix_tree_deref_slot may fail requiring a retry.
1379  */
1380 unsigned int
1381 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1382 			void ***results, unsigned long *indices,
1383 			unsigned long first_index, unsigned int max_items)
1384 {
1385 	struct radix_tree_iter iter;
1386 	void **slot;
1387 	unsigned int ret = 0;
1388 
1389 	if (unlikely(!max_items))
1390 		return 0;
1391 
1392 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1393 		results[ret] = slot;
1394 		if (indices)
1395 			indices[ret] = iter.index;
1396 		if (++ret == max_items)
1397 			break;
1398 	}
1399 
1400 	return ret;
1401 }
1402 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1403 
1404 /**
1405  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1406  *	                             based on a tag
1407  *	@root:		radix tree root
1408  *	@results:	where the results of the lookup are placed
1409  *	@first_index:	start the lookup from this key
1410  *	@max_items:	place up to this many items at *results
1411  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1412  *
1413  *	Performs an index-ascending scan of the tree for present items which
1414  *	have the tag indexed by @tag set.  Places the items at *@results and
1415  *	returns the number of items which were placed at *@results.
1416  */
1417 unsigned int
1418 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1419 		unsigned long first_index, unsigned int max_items,
1420 		unsigned int tag)
1421 {
1422 	struct radix_tree_iter iter;
1423 	void **slot;
1424 	unsigned int ret = 0;
1425 
1426 	if (unlikely(!max_items))
1427 		return 0;
1428 
1429 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1430 		results[ret] = rcu_dereference_raw(*slot);
1431 		if (!results[ret])
1432 			continue;
1433 		if (radix_tree_is_internal_node(results[ret])) {
1434 			slot = radix_tree_iter_retry(&iter);
1435 			continue;
1436 		}
1437 		if (++ret == max_items)
1438 			break;
1439 	}
1440 
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1444 
1445 /**
1446  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1447  *					  radix tree based on a tag
1448  *	@root:		radix tree root
1449  *	@results:	where the results of the lookup are placed
1450  *	@first_index:	start the lookup from this key
1451  *	@max_items:	place up to this many items at *results
1452  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1453  *
1454  *	Performs an index-ascending scan of the tree for present items which
1455  *	have the tag indexed by @tag set.  Places the slots at *@results and
1456  *	returns the number of slots which were placed at *@results.
1457  */
1458 unsigned int
1459 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1460 		unsigned long first_index, unsigned int max_items,
1461 		unsigned int tag)
1462 {
1463 	struct radix_tree_iter iter;
1464 	void **slot;
1465 	unsigned int ret = 0;
1466 
1467 	if (unlikely(!max_items))
1468 		return 0;
1469 
1470 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1471 		results[ret] = slot;
1472 		if (++ret == max_items)
1473 			break;
1474 	}
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1479 
1480 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1481 #include <linux/sched.h> /* for cond_resched() */
1482 
1483 struct locate_info {
1484 	unsigned long found_index;
1485 	bool stop;
1486 };
1487 
1488 /*
1489  * This linear search is at present only useful to shmem_unuse_inode().
1490  */
1491 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1492 			      unsigned long index, struct locate_info *info)
1493 {
1494 	unsigned long i;
1495 
1496 	do {
1497 		unsigned int shift = slot->shift;
1498 
1499 		for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1500 		     i < RADIX_TREE_MAP_SIZE;
1501 		     i++, index += (1UL << shift)) {
1502 			struct radix_tree_node *node =
1503 					rcu_dereference_raw(slot->slots[i]);
1504 			if (node == RADIX_TREE_RETRY)
1505 				goto out;
1506 			if (!radix_tree_is_internal_node(node)) {
1507 				if (node == item) {
1508 					info->found_index = index;
1509 					info->stop = true;
1510 					goto out;
1511 				}
1512 				continue;
1513 			}
1514 			node = entry_to_node(node);
1515 			if (is_sibling_entry(slot, node))
1516 				continue;
1517 			slot = node;
1518 			break;
1519 		}
1520 	} while (i < RADIX_TREE_MAP_SIZE);
1521 
1522 out:
1523 	if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1524 		info->stop = true;
1525 	return index;
1526 }
1527 
1528 /**
1529  *	radix_tree_locate_item - search through radix tree for item
1530  *	@root:		radix tree root
1531  *	@item:		item to be found
1532  *
1533  *	Returns index where item was found, or -1 if not found.
1534  *	Caller must hold no lock (since this time-consuming function needs
1535  *	to be preemptible), and must check afterwards if item is still there.
1536  */
1537 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1538 {
1539 	struct radix_tree_node *node;
1540 	unsigned long max_index;
1541 	unsigned long cur_index = 0;
1542 	struct locate_info info = {
1543 		.found_index = -1,
1544 		.stop = false,
1545 	};
1546 
1547 	do {
1548 		rcu_read_lock();
1549 		node = rcu_dereference_raw(root->rnode);
1550 		if (!radix_tree_is_internal_node(node)) {
1551 			rcu_read_unlock();
1552 			if (node == item)
1553 				info.found_index = 0;
1554 			break;
1555 		}
1556 
1557 		node = entry_to_node(node);
1558 
1559 		max_index = node_maxindex(node);
1560 		if (cur_index > max_index) {
1561 			rcu_read_unlock();
1562 			break;
1563 		}
1564 
1565 		cur_index = __locate(node, item, cur_index, &info);
1566 		rcu_read_unlock();
1567 		cond_resched();
1568 	} while (!info.stop && cur_index <= max_index);
1569 
1570 	return info.found_index;
1571 }
1572 #else
1573 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1574 {
1575 	return -1;
1576 }
1577 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1578 
1579 /**
1580  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1581  *	@root:		radix tree root
1582  *	@node:		node containing @index
1583  *
1584  *	After clearing the slot at @index in @node from radix tree
1585  *	rooted at @root, call this function to attempt freeing the
1586  *	node and shrinking the tree.
1587  */
1588 void __radix_tree_delete_node(struct radix_tree_root *root,
1589 			      struct radix_tree_node *node)
1590 {
1591 	delete_node(root, node, NULL, NULL);
1592 }
1593 
1594 static inline void delete_sibling_entries(struct radix_tree_node *node,
1595 					void *ptr, unsigned offset)
1596 {
1597 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1598 	int i;
1599 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1600 		if (node->slots[offset + i] != ptr)
1601 			break;
1602 		node->slots[offset + i] = NULL;
1603 		node->count--;
1604 	}
1605 #endif
1606 }
1607 
1608 /**
1609  *	radix_tree_delete_item    -    delete an item from a radix tree
1610  *	@root:		radix tree root
1611  *	@index:		index key
1612  *	@item:		expected item
1613  *
1614  *	Remove @item at @index from the radix tree rooted at @root.
1615  *
1616  *	Returns the address of the deleted item, or NULL if it was not present
1617  *	or the entry at the given @index was not @item.
1618  */
1619 void *radix_tree_delete_item(struct radix_tree_root *root,
1620 			     unsigned long index, void *item)
1621 {
1622 	struct radix_tree_node *node;
1623 	unsigned int offset;
1624 	void **slot;
1625 	void *entry;
1626 	int tag;
1627 
1628 	entry = __radix_tree_lookup(root, index, &node, &slot);
1629 	if (!entry)
1630 		return NULL;
1631 
1632 	if (item && entry != item)
1633 		return NULL;
1634 
1635 	if (!node) {
1636 		root_tag_clear_all(root);
1637 		root->rnode = NULL;
1638 		return entry;
1639 	}
1640 
1641 	offset = get_slot_offset(node, slot);
1642 
1643 	/* Clear all tags associated with the item to be deleted.  */
1644 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1645 		node_tag_clear(root, node, tag, offset);
1646 
1647 	delete_sibling_entries(node, node_to_entry(slot), offset);
1648 	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1649 
1650 	return entry;
1651 }
1652 EXPORT_SYMBOL(radix_tree_delete_item);
1653 
1654 /**
1655  *	radix_tree_delete    -    delete an item from a radix tree
1656  *	@root:		radix tree root
1657  *	@index:		index key
1658  *
1659  *	Remove the item at @index from the radix tree rooted at @root.
1660  *
1661  *	Returns the address of the deleted item, or NULL if it was not present.
1662  */
1663 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1664 {
1665 	return radix_tree_delete_item(root, index, NULL);
1666 }
1667 EXPORT_SYMBOL(radix_tree_delete);
1668 
1669 void radix_tree_clear_tags(struct radix_tree_root *root,
1670 			   struct radix_tree_node *node,
1671 			   void **slot)
1672 {
1673 	if (node) {
1674 		unsigned int tag, offset = get_slot_offset(node, slot);
1675 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1676 			node_tag_clear(root, node, tag, offset);
1677 	} else {
1678 		/* Clear root node tags */
1679 		root->gfp_mask &= __GFP_BITS_MASK;
1680 	}
1681 }
1682 
1683 /**
1684  *	radix_tree_tagged - test whether any items in the tree are tagged
1685  *	@root:		radix tree root
1686  *	@tag:		tag to test
1687  */
1688 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1689 {
1690 	return root_tag_get(root, tag);
1691 }
1692 EXPORT_SYMBOL(radix_tree_tagged);
1693 
1694 static void
1695 radix_tree_node_ctor(void *arg)
1696 {
1697 	struct radix_tree_node *node = arg;
1698 
1699 	memset(node, 0, sizeof(*node));
1700 	INIT_LIST_HEAD(&node->private_list);
1701 }
1702 
1703 static __init unsigned long __maxindex(unsigned int height)
1704 {
1705 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1706 	int shift = RADIX_TREE_INDEX_BITS - width;
1707 
1708 	if (shift < 0)
1709 		return ~0UL;
1710 	if (shift >= BITS_PER_LONG)
1711 		return 0UL;
1712 	return ~0UL >> shift;
1713 }
1714 
1715 static __init void radix_tree_init_maxnodes(void)
1716 {
1717 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1718 	unsigned int i, j;
1719 
1720 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1721 		height_to_maxindex[i] = __maxindex(i);
1722 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1723 		for (j = i; j > 0; j--)
1724 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1725 	}
1726 }
1727 
1728 static int radix_tree_cpu_dead(unsigned int cpu)
1729 {
1730 	struct radix_tree_preload *rtp;
1731 	struct radix_tree_node *node;
1732 
1733 	/* Free per-cpu pool of preloaded nodes */
1734 	rtp = &per_cpu(radix_tree_preloads, cpu);
1735 	while (rtp->nr) {
1736 		node = rtp->nodes;
1737 		rtp->nodes = node->private_data;
1738 		kmem_cache_free(radix_tree_node_cachep, node);
1739 		rtp->nr--;
1740 	}
1741 	return 0;
1742 }
1743 
1744 void __init radix_tree_init(void)
1745 {
1746 	int ret;
1747 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1748 			sizeof(struct radix_tree_node), 0,
1749 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1750 			radix_tree_node_ctor);
1751 	radix_tree_init_maxnodes();
1752 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1753 					NULL, radix_tree_cpu_dead);
1754 	WARN_ON(ret < 0);
1755 }
1756