1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/export.h> 29 #include <linux/radix-tree.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/kmemleak.h> 33 #include <linux/notifier.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline void *node_to_entry(void *ptr) 73 { 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 75 } 76 77 #define RADIX_TREE_RETRY node_to_entry(NULL) 78 79 #ifdef CONFIG_RADIX_TREE_MULTIORDER 80 /* Sibling slots point directly to another slot in the same node */ 81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 82 { 83 void **ptr = node; 84 return (parent->slots <= ptr) && 85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 86 } 87 #else 88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 89 { 90 return false; 91 } 92 #endif 93 94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 95 void **slot) 96 { 97 return slot - parent->slots; 98 } 99 100 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 101 struct radix_tree_node **nodep, unsigned long index) 102 { 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 104 void **entry = rcu_dereference_raw(parent->slots[offset]); 105 106 #ifdef CONFIG_RADIX_TREE_MULTIORDER 107 if (radix_tree_is_internal_node(entry)) { 108 if (is_sibling_entry(parent, entry)) { 109 void **sibentry = (void **) entry_to_node(entry); 110 offset = get_slot_offset(parent, sibentry); 111 entry = rcu_dereference_raw(*sibentry); 112 } 113 } 114 #endif 115 116 *nodep = (void *)entry; 117 return offset; 118 } 119 120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 121 { 122 return root->gfp_mask & __GFP_BITS_MASK; 123 } 124 125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 126 int offset) 127 { 128 __set_bit(offset, node->tags[tag]); 129 } 130 131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 132 int offset) 133 { 134 __clear_bit(offset, node->tags[tag]); 135 } 136 137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 138 int offset) 139 { 140 return test_bit(offset, node->tags[tag]); 141 } 142 143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 144 { 145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 146 } 147 148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 149 { 150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear_all(struct radix_tree_root *root) 154 { 155 root->gfp_mask &= __GFP_BITS_MASK; 156 } 157 158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 159 { 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 161 } 162 163 static inline unsigned root_tags_get(struct radix_tree_root *root) 164 { 165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 166 } 167 168 /* 169 * Returns 1 if any slot in the node has this tag set. 170 * Otherwise returns 0. 171 */ 172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 173 { 174 unsigned idx; 175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 176 if (node->tags[tag][idx]) 177 return 1; 178 } 179 return 0; 180 } 181 182 /** 183 * radix_tree_find_next_bit - find the next set bit in a memory region 184 * 185 * @addr: The address to base the search on 186 * @size: The bitmap size in bits 187 * @offset: The bitnumber to start searching at 188 * 189 * Unrollable variant of find_next_bit() for constant size arrays. 190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 191 * Returns next bit offset, or size if nothing found. 192 */ 193 static __always_inline unsigned long 194 radix_tree_find_next_bit(const unsigned long *addr, 195 unsigned long size, unsigned long offset) 196 { 197 if (!__builtin_constant_p(size)) 198 return find_next_bit(addr, size, offset); 199 200 if (offset < size) { 201 unsigned long tmp; 202 203 addr += offset / BITS_PER_LONG; 204 tmp = *addr >> (offset % BITS_PER_LONG); 205 if (tmp) 206 return __ffs(tmp) + offset; 207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 208 while (offset < size) { 209 tmp = *++addr; 210 if (tmp) 211 return __ffs(tmp) + offset; 212 offset += BITS_PER_LONG; 213 } 214 } 215 return size; 216 } 217 218 #ifndef __KERNEL__ 219 static void dump_node(struct radix_tree_node *node, unsigned long index) 220 { 221 unsigned long i; 222 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n", 224 node, node->offset, 225 node->tags[0][0], node->tags[1][0], node->tags[2][0], 226 node->shift, node->count, node->exceptional, node->parent); 227 228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 229 unsigned long first = index | (i << node->shift); 230 unsigned long last = first | ((1UL << node->shift) - 1); 231 void *entry = node->slots[i]; 232 if (!entry) 233 continue; 234 if (is_sibling_entry(node, entry)) { 235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", 236 entry, i, 237 *(void **)entry_to_node(entry), 238 first, last); 239 } else if (!radix_tree_is_internal_node(entry)) { 240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n", 241 entry, i, first, last); 242 } else { 243 dump_node(entry_to_node(entry), first); 244 } 245 } 246 } 247 248 /* For debug */ 249 static void radix_tree_dump(struct radix_tree_root *root) 250 { 251 pr_debug("radix root: %p rnode %p tags %x\n", 252 root, root->rnode, 253 root->gfp_mask >> __GFP_BITS_SHIFT); 254 if (!radix_tree_is_internal_node(root->rnode)) 255 return; 256 dump_node(entry_to_node(root->rnode), 0); 257 } 258 #endif 259 260 /* 261 * This assumes that the caller has performed appropriate preallocation, and 262 * that the caller has pinned this thread of control to the current CPU. 263 */ 264 static struct radix_tree_node * 265 radix_tree_node_alloc(struct radix_tree_root *root) 266 { 267 struct radix_tree_node *ret = NULL; 268 gfp_t gfp_mask = root_gfp_mask(root); 269 270 /* 271 * Preload code isn't irq safe and it doesn't make sense to use 272 * preloading during an interrupt anyway as all the allocations have 273 * to be atomic. So just do normal allocation when in interrupt. 274 */ 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 276 struct radix_tree_preload *rtp; 277 278 /* 279 * Even if the caller has preloaded, try to allocate from the 280 * cache first for the new node to get accounted to the memory 281 * cgroup. 282 */ 283 ret = kmem_cache_alloc(radix_tree_node_cachep, 284 gfp_mask | __GFP_NOWARN); 285 if (ret) 286 goto out; 287 288 /* 289 * Provided the caller has preloaded here, we will always 290 * succeed in getting a node here (and never reach 291 * kmem_cache_alloc) 292 */ 293 rtp = this_cpu_ptr(&radix_tree_preloads); 294 if (rtp->nr) { 295 ret = rtp->nodes; 296 rtp->nodes = ret->private_data; 297 ret->private_data = NULL; 298 rtp->nr--; 299 } 300 /* 301 * Update the allocation stack trace as this is more useful 302 * for debugging. 303 */ 304 kmemleak_update_trace(ret); 305 goto out; 306 } 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 308 out: 309 BUG_ON(radix_tree_is_internal_node(ret)); 310 return ret; 311 } 312 313 static void radix_tree_node_rcu_free(struct rcu_head *head) 314 { 315 struct radix_tree_node *node = 316 container_of(head, struct radix_tree_node, rcu_head); 317 int i; 318 319 /* 320 * must only free zeroed nodes into the slab. radix_tree_shrink 321 * can leave us with a non-NULL entry in the first slot, so clear 322 * that here to make sure. 323 */ 324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 325 tag_clear(node, i, 0); 326 327 node->slots[0] = NULL; 328 329 kmem_cache_free(radix_tree_node_cachep, node); 330 } 331 332 static inline void 333 radix_tree_node_free(struct radix_tree_node *node) 334 { 335 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 336 } 337 338 /* 339 * Load up this CPU's radix_tree_node buffer with sufficient objects to 340 * ensure that the addition of a single element in the tree cannot fail. On 341 * success, return zero, with preemption disabled. On error, return -ENOMEM 342 * with preemption not disabled. 343 * 344 * To make use of this facility, the radix tree must be initialised without 345 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 346 */ 347 static int __radix_tree_preload(gfp_t gfp_mask, int nr) 348 { 349 struct radix_tree_preload *rtp; 350 struct radix_tree_node *node; 351 int ret = -ENOMEM; 352 353 /* 354 * Nodes preloaded by one cgroup can be be used by another cgroup, so 355 * they should never be accounted to any particular memory cgroup. 356 */ 357 gfp_mask &= ~__GFP_ACCOUNT; 358 359 preempt_disable(); 360 rtp = this_cpu_ptr(&radix_tree_preloads); 361 while (rtp->nr < nr) { 362 preempt_enable(); 363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 364 if (node == NULL) 365 goto out; 366 preempt_disable(); 367 rtp = this_cpu_ptr(&radix_tree_preloads); 368 if (rtp->nr < nr) { 369 node->private_data = rtp->nodes; 370 rtp->nodes = node; 371 rtp->nr++; 372 } else { 373 kmem_cache_free(radix_tree_node_cachep, node); 374 } 375 } 376 ret = 0; 377 out: 378 return ret; 379 } 380 381 /* 382 * Load up this CPU's radix_tree_node buffer with sufficient objects to 383 * ensure that the addition of a single element in the tree cannot fail. On 384 * success, return zero, with preemption disabled. On error, return -ENOMEM 385 * with preemption not disabled. 386 * 387 * To make use of this facility, the radix tree must be initialised without 388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 389 */ 390 int radix_tree_preload(gfp_t gfp_mask) 391 { 392 /* Warn on non-sensical use... */ 393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 394 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 395 } 396 EXPORT_SYMBOL(radix_tree_preload); 397 398 /* 399 * The same as above function, except we don't guarantee preloading happens. 400 * We do it, if we decide it helps. On success, return zero with preemption 401 * disabled. On error, return -ENOMEM with preemption not disabled. 402 */ 403 int radix_tree_maybe_preload(gfp_t gfp_mask) 404 { 405 if (gfpflags_allow_blocking(gfp_mask)) 406 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 407 /* Preloading doesn't help anything with this gfp mask, skip it */ 408 preempt_disable(); 409 return 0; 410 } 411 EXPORT_SYMBOL(radix_tree_maybe_preload); 412 413 /* 414 * The same as function above, but preload number of nodes required to insert 415 * (1 << order) continuous naturally-aligned elements. 416 */ 417 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 418 { 419 unsigned long nr_subtrees; 420 int nr_nodes, subtree_height; 421 422 /* Preloading doesn't help anything with this gfp mask, skip it */ 423 if (!gfpflags_allow_blocking(gfp_mask)) { 424 preempt_disable(); 425 return 0; 426 } 427 428 /* 429 * Calculate number and height of fully populated subtrees it takes to 430 * store (1 << order) elements. 431 */ 432 nr_subtrees = 1 << order; 433 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 434 subtree_height++) 435 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 436 437 /* 438 * The worst case is zero height tree with a single item at index 0 and 439 * then inserting items starting at ULONG_MAX - (1 << order). 440 * 441 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 442 * 0-index item. 443 */ 444 nr_nodes = RADIX_TREE_MAX_PATH; 445 446 /* Plus branch to fully populated subtrees. */ 447 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 448 449 /* Root node is shared. */ 450 nr_nodes--; 451 452 /* Plus nodes required to build subtrees. */ 453 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 454 455 return __radix_tree_preload(gfp_mask, nr_nodes); 456 } 457 458 /* 459 * The maximum index which can be stored in a radix tree 460 */ 461 static inline unsigned long shift_maxindex(unsigned int shift) 462 { 463 return (RADIX_TREE_MAP_SIZE << shift) - 1; 464 } 465 466 static inline unsigned long node_maxindex(struct radix_tree_node *node) 467 { 468 return shift_maxindex(node->shift); 469 } 470 471 static unsigned radix_tree_load_root(struct radix_tree_root *root, 472 struct radix_tree_node **nodep, unsigned long *maxindex) 473 { 474 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 475 476 *nodep = node; 477 478 if (likely(radix_tree_is_internal_node(node))) { 479 node = entry_to_node(node); 480 *maxindex = node_maxindex(node); 481 return node->shift + RADIX_TREE_MAP_SHIFT; 482 } 483 484 *maxindex = 0; 485 return 0; 486 } 487 488 /* 489 * Extend a radix tree so it can store key @index. 490 */ 491 static int radix_tree_extend(struct radix_tree_root *root, 492 unsigned long index, unsigned int shift) 493 { 494 struct radix_tree_node *slot; 495 unsigned int maxshift; 496 int tag; 497 498 /* Figure out what the shift should be. */ 499 maxshift = shift; 500 while (index > shift_maxindex(maxshift)) 501 maxshift += RADIX_TREE_MAP_SHIFT; 502 503 slot = root->rnode; 504 if (!slot) 505 goto out; 506 507 do { 508 struct radix_tree_node *node = radix_tree_node_alloc(root); 509 510 if (!node) 511 return -ENOMEM; 512 513 /* Propagate the aggregated tag info into the new root */ 514 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 515 if (root_tag_get(root, tag)) 516 tag_set(node, tag, 0); 517 } 518 519 BUG_ON(shift > BITS_PER_LONG); 520 node->shift = shift; 521 node->offset = 0; 522 node->count = 1; 523 node->parent = NULL; 524 if (radix_tree_is_internal_node(slot)) { 525 entry_to_node(slot)->parent = node; 526 } else { 527 /* Moving an exceptional root->rnode to a node */ 528 if (radix_tree_exceptional_entry(slot)) 529 node->exceptional = 1; 530 } 531 node->slots[0] = slot; 532 slot = node_to_entry(node); 533 rcu_assign_pointer(root->rnode, slot); 534 shift += RADIX_TREE_MAP_SHIFT; 535 } while (shift <= maxshift); 536 out: 537 return maxshift + RADIX_TREE_MAP_SHIFT; 538 } 539 540 /** 541 * radix_tree_shrink - shrink radix tree to minimum height 542 * @root radix tree root 543 */ 544 static inline void radix_tree_shrink(struct radix_tree_root *root, 545 radix_tree_update_node_t update_node, 546 void *private) 547 { 548 for (;;) { 549 struct radix_tree_node *node = root->rnode; 550 struct radix_tree_node *child; 551 552 if (!radix_tree_is_internal_node(node)) 553 break; 554 node = entry_to_node(node); 555 556 /* 557 * The candidate node has more than one child, or its child 558 * is not at the leftmost slot, or the child is a multiorder 559 * entry, we cannot shrink. 560 */ 561 if (node->count != 1) 562 break; 563 child = node->slots[0]; 564 if (!child) 565 break; 566 if (!radix_tree_is_internal_node(child) && node->shift) 567 break; 568 569 if (radix_tree_is_internal_node(child)) 570 entry_to_node(child)->parent = NULL; 571 572 /* 573 * We don't need rcu_assign_pointer(), since we are simply 574 * moving the node from one part of the tree to another: if it 575 * was safe to dereference the old pointer to it 576 * (node->slots[0]), it will be safe to dereference the new 577 * one (root->rnode) as far as dependent read barriers go. 578 */ 579 root->rnode = child; 580 581 /* 582 * We have a dilemma here. The node's slot[0] must not be 583 * NULLed in case there are concurrent lookups expecting to 584 * find the item. However if this was a bottom-level node, 585 * then it may be subject to the slot pointer being visible 586 * to callers dereferencing it. If item corresponding to 587 * slot[0] is subsequently deleted, these callers would expect 588 * their slot to become empty sooner or later. 589 * 590 * For example, lockless pagecache will look up a slot, deref 591 * the page pointer, and if the page has 0 refcount it means it 592 * was concurrently deleted from pagecache so try the deref 593 * again. Fortunately there is already a requirement for logic 594 * to retry the entire slot lookup -- the indirect pointer 595 * problem (replacing direct root node with an indirect pointer 596 * also results in a stale slot). So tag the slot as indirect 597 * to force callers to retry. 598 */ 599 node->count = 0; 600 if (!radix_tree_is_internal_node(child)) { 601 node->slots[0] = RADIX_TREE_RETRY; 602 if (update_node) 603 update_node(node, private); 604 } 605 606 radix_tree_node_free(node); 607 } 608 } 609 610 static void delete_node(struct radix_tree_root *root, 611 struct radix_tree_node *node, 612 radix_tree_update_node_t update_node, void *private) 613 { 614 do { 615 struct radix_tree_node *parent; 616 617 if (node->count) { 618 if (node == entry_to_node(root->rnode)) 619 radix_tree_shrink(root, update_node, private); 620 return; 621 } 622 623 parent = node->parent; 624 if (parent) { 625 parent->slots[node->offset] = NULL; 626 parent->count--; 627 } else { 628 root_tag_clear_all(root); 629 root->rnode = NULL; 630 } 631 632 radix_tree_node_free(node); 633 634 node = parent; 635 } while (node); 636 } 637 638 /** 639 * __radix_tree_create - create a slot in a radix tree 640 * @root: radix tree root 641 * @index: index key 642 * @order: index occupies 2^order aligned slots 643 * @nodep: returns node 644 * @slotp: returns slot 645 * 646 * Create, if necessary, and return the node and slot for an item 647 * at position @index in the radix tree @root. 648 * 649 * Until there is more than one item in the tree, no nodes are 650 * allocated and @root->rnode is used as a direct slot instead of 651 * pointing to a node, in which case *@nodep will be NULL. 652 * 653 * Returns -ENOMEM, or 0 for success. 654 */ 655 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 656 unsigned order, struct radix_tree_node **nodep, 657 void ***slotp) 658 { 659 struct radix_tree_node *node = NULL, *child; 660 void **slot = (void **)&root->rnode; 661 unsigned long maxindex; 662 unsigned int shift, offset = 0; 663 unsigned long max = index | ((1UL << order) - 1); 664 665 shift = radix_tree_load_root(root, &child, &maxindex); 666 667 /* Make sure the tree is high enough. */ 668 if (max > maxindex) { 669 int error = radix_tree_extend(root, max, shift); 670 if (error < 0) 671 return error; 672 shift = error; 673 child = root->rnode; 674 if (order == shift) 675 shift += RADIX_TREE_MAP_SHIFT; 676 } 677 678 while (shift > order) { 679 shift -= RADIX_TREE_MAP_SHIFT; 680 if (child == NULL) { 681 /* Have to add a child node. */ 682 child = radix_tree_node_alloc(root); 683 if (!child) 684 return -ENOMEM; 685 child->shift = shift; 686 child->offset = offset; 687 child->parent = node; 688 rcu_assign_pointer(*slot, node_to_entry(child)); 689 if (node) 690 node->count++; 691 } else if (!radix_tree_is_internal_node(child)) 692 break; 693 694 /* Go a level down */ 695 node = entry_to_node(child); 696 offset = radix_tree_descend(node, &child, index); 697 slot = &node->slots[offset]; 698 } 699 700 #ifdef CONFIG_RADIX_TREE_MULTIORDER 701 /* Insert pointers to the canonical entry */ 702 if (order > shift) { 703 unsigned i, n = 1 << (order - shift); 704 offset = offset & ~(n - 1); 705 slot = &node->slots[offset]; 706 child = node_to_entry(slot); 707 for (i = 0; i < n; i++) { 708 if (slot[i]) 709 return -EEXIST; 710 } 711 712 for (i = 1; i < n; i++) { 713 rcu_assign_pointer(slot[i], child); 714 node->count++; 715 } 716 } 717 #endif 718 719 if (nodep) 720 *nodep = node; 721 if (slotp) 722 *slotp = slot; 723 return 0; 724 } 725 726 /** 727 * __radix_tree_insert - insert into a radix tree 728 * @root: radix tree root 729 * @index: index key 730 * @order: key covers the 2^order indices around index 731 * @item: item to insert 732 * 733 * Insert an item into the radix tree at position @index. 734 */ 735 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 736 unsigned order, void *item) 737 { 738 struct radix_tree_node *node; 739 void **slot; 740 int error; 741 742 BUG_ON(radix_tree_is_internal_node(item)); 743 744 error = __radix_tree_create(root, index, order, &node, &slot); 745 if (error) 746 return error; 747 if (*slot != NULL) 748 return -EEXIST; 749 rcu_assign_pointer(*slot, item); 750 751 if (node) { 752 unsigned offset = get_slot_offset(node, slot); 753 node->count++; 754 if (radix_tree_exceptional_entry(item)) 755 node->exceptional++; 756 BUG_ON(tag_get(node, 0, offset)); 757 BUG_ON(tag_get(node, 1, offset)); 758 BUG_ON(tag_get(node, 2, offset)); 759 } else { 760 BUG_ON(root_tags_get(root)); 761 } 762 763 return 0; 764 } 765 EXPORT_SYMBOL(__radix_tree_insert); 766 767 /** 768 * __radix_tree_lookup - lookup an item in a radix tree 769 * @root: radix tree root 770 * @index: index key 771 * @nodep: returns node 772 * @slotp: returns slot 773 * 774 * Lookup and return the item at position @index in the radix 775 * tree @root. 776 * 777 * Until there is more than one item in the tree, no nodes are 778 * allocated and @root->rnode is used as a direct slot instead of 779 * pointing to a node, in which case *@nodep will be NULL. 780 */ 781 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 782 struct radix_tree_node **nodep, void ***slotp) 783 { 784 struct radix_tree_node *node, *parent; 785 unsigned long maxindex; 786 void **slot; 787 788 restart: 789 parent = NULL; 790 slot = (void **)&root->rnode; 791 radix_tree_load_root(root, &node, &maxindex); 792 if (index > maxindex) 793 return NULL; 794 795 while (radix_tree_is_internal_node(node)) { 796 unsigned offset; 797 798 if (node == RADIX_TREE_RETRY) 799 goto restart; 800 parent = entry_to_node(node); 801 offset = radix_tree_descend(parent, &node, index); 802 slot = parent->slots + offset; 803 } 804 805 if (nodep) 806 *nodep = parent; 807 if (slotp) 808 *slotp = slot; 809 return node; 810 } 811 812 /** 813 * radix_tree_lookup_slot - lookup a slot in a radix tree 814 * @root: radix tree root 815 * @index: index key 816 * 817 * Returns: the slot corresponding to the position @index in the 818 * radix tree @root. This is useful for update-if-exists operations. 819 * 820 * This function can be called under rcu_read_lock iff the slot is not 821 * modified by radix_tree_replace_slot, otherwise it must be called 822 * exclusive from other writers. Any dereference of the slot must be done 823 * using radix_tree_deref_slot. 824 */ 825 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 826 { 827 void **slot; 828 829 if (!__radix_tree_lookup(root, index, NULL, &slot)) 830 return NULL; 831 return slot; 832 } 833 EXPORT_SYMBOL(radix_tree_lookup_slot); 834 835 /** 836 * radix_tree_lookup - perform lookup operation on a radix tree 837 * @root: radix tree root 838 * @index: index key 839 * 840 * Lookup the item at the position @index in the radix tree @root. 841 * 842 * This function can be called under rcu_read_lock, however the caller 843 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 844 * them safely). No RCU barriers are required to access or modify the 845 * returned item, however. 846 */ 847 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 848 { 849 return __radix_tree_lookup(root, index, NULL, NULL); 850 } 851 EXPORT_SYMBOL(radix_tree_lookup); 852 853 static void replace_slot(struct radix_tree_root *root, 854 struct radix_tree_node *node, 855 void **slot, void *item, 856 bool warn_typeswitch) 857 { 858 void *old = rcu_dereference_raw(*slot); 859 int count, exceptional; 860 861 WARN_ON_ONCE(radix_tree_is_internal_node(item)); 862 863 count = !!item - !!old; 864 exceptional = !!radix_tree_exceptional_entry(item) - 865 !!radix_tree_exceptional_entry(old); 866 867 WARN_ON_ONCE(warn_typeswitch && (count || exceptional)); 868 869 if (node) { 870 node->count += count; 871 node->exceptional += exceptional; 872 } 873 874 rcu_assign_pointer(*slot, item); 875 } 876 877 /** 878 * __radix_tree_replace - replace item in a slot 879 * @root: radix tree root 880 * @node: pointer to tree node 881 * @slot: pointer to slot in @node 882 * @item: new item to store in the slot. 883 * @update_node: callback for changing leaf nodes 884 * @private: private data to pass to @update_node 885 * 886 * For use with __radix_tree_lookup(). Caller must hold tree write locked 887 * across slot lookup and replacement. 888 */ 889 void __radix_tree_replace(struct radix_tree_root *root, 890 struct radix_tree_node *node, 891 void **slot, void *item, 892 radix_tree_update_node_t update_node, void *private) 893 { 894 /* 895 * This function supports replacing exceptional entries and 896 * deleting entries, but that needs accounting against the 897 * node unless the slot is root->rnode. 898 */ 899 replace_slot(root, node, slot, item, 900 !node && slot != (void **)&root->rnode); 901 902 if (!node) 903 return; 904 905 if (update_node) 906 update_node(node, private); 907 908 delete_node(root, node, update_node, private); 909 } 910 911 /** 912 * radix_tree_replace_slot - replace item in a slot 913 * @root: radix tree root 914 * @slot: pointer to slot 915 * @item: new item to store in the slot. 916 * 917 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), 918 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked 919 * across slot lookup and replacement. 920 * 921 * NOTE: This cannot be used to switch between non-entries (empty slots), 922 * regular entries, and exceptional entries, as that requires accounting 923 * inside the radix tree node. When switching from one type of entry or 924 * deleting, use __radix_tree_lookup() and __radix_tree_replace(). 925 */ 926 void radix_tree_replace_slot(struct radix_tree_root *root, 927 void **slot, void *item) 928 { 929 replace_slot(root, NULL, slot, item, true); 930 } 931 932 /** 933 * radix_tree_tag_set - set a tag on a radix tree node 934 * @root: radix tree root 935 * @index: index key 936 * @tag: tag index 937 * 938 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 939 * corresponding to @index in the radix tree. From 940 * the root all the way down to the leaf node. 941 * 942 * Returns the address of the tagged item. Setting a tag on a not-present 943 * item is a bug. 944 */ 945 void *radix_tree_tag_set(struct radix_tree_root *root, 946 unsigned long index, unsigned int tag) 947 { 948 struct radix_tree_node *node, *parent; 949 unsigned long maxindex; 950 951 radix_tree_load_root(root, &node, &maxindex); 952 BUG_ON(index > maxindex); 953 954 while (radix_tree_is_internal_node(node)) { 955 unsigned offset; 956 957 parent = entry_to_node(node); 958 offset = radix_tree_descend(parent, &node, index); 959 BUG_ON(!node); 960 961 if (!tag_get(parent, tag, offset)) 962 tag_set(parent, tag, offset); 963 } 964 965 /* set the root's tag bit */ 966 if (!root_tag_get(root, tag)) 967 root_tag_set(root, tag); 968 969 return node; 970 } 971 EXPORT_SYMBOL(radix_tree_tag_set); 972 973 static void node_tag_clear(struct radix_tree_root *root, 974 struct radix_tree_node *node, 975 unsigned int tag, unsigned int offset) 976 { 977 while (node) { 978 if (!tag_get(node, tag, offset)) 979 return; 980 tag_clear(node, tag, offset); 981 if (any_tag_set(node, tag)) 982 return; 983 984 offset = node->offset; 985 node = node->parent; 986 } 987 988 /* clear the root's tag bit */ 989 if (root_tag_get(root, tag)) 990 root_tag_clear(root, tag); 991 } 992 993 /** 994 * radix_tree_tag_clear - clear a tag on a radix tree node 995 * @root: radix tree root 996 * @index: index key 997 * @tag: tag index 998 * 999 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 1000 * corresponding to @index in the radix tree. If this causes 1001 * the leaf node to have no tags set then clear the tag in the 1002 * next-to-leaf node, etc. 1003 * 1004 * Returns the address of the tagged item on success, else NULL. ie: 1005 * has the same return value and semantics as radix_tree_lookup(). 1006 */ 1007 void *radix_tree_tag_clear(struct radix_tree_root *root, 1008 unsigned long index, unsigned int tag) 1009 { 1010 struct radix_tree_node *node, *parent; 1011 unsigned long maxindex; 1012 int uninitialized_var(offset); 1013 1014 radix_tree_load_root(root, &node, &maxindex); 1015 if (index > maxindex) 1016 return NULL; 1017 1018 parent = NULL; 1019 1020 while (radix_tree_is_internal_node(node)) { 1021 parent = entry_to_node(node); 1022 offset = radix_tree_descend(parent, &node, index); 1023 } 1024 1025 if (node) 1026 node_tag_clear(root, parent, tag, offset); 1027 1028 return node; 1029 } 1030 EXPORT_SYMBOL(radix_tree_tag_clear); 1031 1032 /** 1033 * radix_tree_tag_get - get a tag on a radix tree node 1034 * @root: radix tree root 1035 * @index: index key 1036 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 1037 * 1038 * Return values: 1039 * 1040 * 0: tag not present or not set 1041 * 1: tag set 1042 * 1043 * Note that the return value of this function may not be relied on, even if 1044 * the RCU lock is held, unless tag modification and node deletion are excluded 1045 * from concurrency. 1046 */ 1047 int radix_tree_tag_get(struct radix_tree_root *root, 1048 unsigned long index, unsigned int tag) 1049 { 1050 struct radix_tree_node *node, *parent; 1051 unsigned long maxindex; 1052 1053 if (!root_tag_get(root, tag)) 1054 return 0; 1055 1056 radix_tree_load_root(root, &node, &maxindex); 1057 if (index > maxindex) 1058 return 0; 1059 if (node == NULL) 1060 return 0; 1061 1062 while (radix_tree_is_internal_node(node)) { 1063 unsigned offset; 1064 1065 parent = entry_to_node(node); 1066 offset = radix_tree_descend(parent, &node, index); 1067 1068 if (!node) 1069 return 0; 1070 if (!tag_get(parent, tag, offset)) 1071 return 0; 1072 if (node == RADIX_TREE_RETRY) 1073 break; 1074 } 1075 1076 return 1; 1077 } 1078 EXPORT_SYMBOL(radix_tree_tag_get); 1079 1080 static inline void __set_iter_shift(struct radix_tree_iter *iter, 1081 unsigned int shift) 1082 { 1083 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1084 iter->shift = shift; 1085 #endif 1086 } 1087 1088 /** 1089 * radix_tree_next_chunk - find next chunk of slots for iteration 1090 * 1091 * @root: radix tree root 1092 * @iter: iterator state 1093 * @flags: RADIX_TREE_ITER_* flags and tag index 1094 * Returns: pointer to chunk first slot, or NULL if iteration is over 1095 */ 1096 void **radix_tree_next_chunk(struct radix_tree_root *root, 1097 struct radix_tree_iter *iter, unsigned flags) 1098 { 1099 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1100 struct radix_tree_node *node, *child; 1101 unsigned long index, offset, maxindex; 1102 1103 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 1104 return NULL; 1105 1106 /* 1107 * Catch next_index overflow after ~0UL. iter->index never overflows 1108 * during iterating; it can be zero only at the beginning. 1109 * And we cannot overflow iter->next_index in a single step, 1110 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 1111 * 1112 * This condition also used by radix_tree_next_slot() to stop 1113 * contiguous iterating, and forbid swithing to the next chunk. 1114 */ 1115 index = iter->next_index; 1116 if (!index && iter->index) 1117 return NULL; 1118 1119 restart: 1120 radix_tree_load_root(root, &child, &maxindex); 1121 if (index > maxindex) 1122 return NULL; 1123 if (!child) 1124 return NULL; 1125 1126 if (!radix_tree_is_internal_node(child)) { 1127 /* Single-slot tree */ 1128 iter->index = index; 1129 iter->next_index = maxindex + 1; 1130 iter->tags = 1; 1131 __set_iter_shift(iter, 0); 1132 return (void **)&root->rnode; 1133 } 1134 1135 do { 1136 node = entry_to_node(child); 1137 offset = radix_tree_descend(node, &child, index); 1138 1139 if ((flags & RADIX_TREE_ITER_TAGGED) ? 1140 !tag_get(node, tag, offset) : !child) { 1141 /* Hole detected */ 1142 if (flags & RADIX_TREE_ITER_CONTIG) 1143 return NULL; 1144 1145 if (flags & RADIX_TREE_ITER_TAGGED) 1146 offset = radix_tree_find_next_bit( 1147 node->tags[tag], 1148 RADIX_TREE_MAP_SIZE, 1149 offset + 1); 1150 else 1151 while (++offset < RADIX_TREE_MAP_SIZE) { 1152 void *slot = node->slots[offset]; 1153 if (is_sibling_entry(node, slot)) 1154 continue; 1155 if (slot) 1156 break; 1157 } 1158 index &= ~node_maxindex(node); 1159 index += offset << node->shift; 1160 /* Overflow after ~0UL */ 1161 if (!index) 1162 return NULL; 1163 if (offset == RADIX_TREE_MAP_SIZE) 1164 goto restart; 1165 child = rcu_dereference_raw(node->slots[offset]); 1166 } 1167 1168 if ((child == NULL) || (child == RADIX_TREE_RETRY)) 1169 goto restart; 1170 } while (radix_tree_is_internal_node(child)); 1171 1172 /* Update the iterator state */ 1173 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 1174 iter->next_index = (index | node_maxindex(node)) + 1; 1175 __set_iter_shift(iter, node->shift); 1176 1177 /* Construct iter->tags bit-mask from node->tags[tag] array */ 1178 if (flags & RADIX_TREE_ITER_TAGGED) { 1179 unsigned tag_long, tag_bit; 1180 1181 tag_long = offset / BITS_PER_LONG; 1182 tag_bit = offset % BITS_PER_LONG; 1183 iter->tags = node->tags[tag][tag_long] >> tag_bit; 1184 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 1185 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 1186 /* Pick tags from next element */ 1187 if (tag_bit) 1188 iter->tags |= node->tags[tag][tag_long + 1] << 1189 (BITS_PER_LONG - tag_bit); 1190 /* Clip chunk size, here only BITS_PER_LONG tags */ 1191 iter->next_index = index + BITS_PER_LONG; 1192 } 1193 } 1194 1195 return node->slots + offset; 1196 } 1197 EXPORT_SYMBOL(radix_tree_next_chunk); 1198 1199 /** 1200 * radix_tree_range_tag_if_tagged - for each item in given range set given 1201 * tag if item has another tag set 1202 * @root: radix tree root 1203 * @first_indexp: pointer to a starting index of a range to scan 1204 * @last_index: last index of a range to scan 1205 * @nr_to_tag: maximum number items to tag 1206 * @iftag: tag index to test 1207 * @settag: tag index to set if tested tag is set 1208 * 1209 * This function scans range of radix tree from first_index to last_index 1210 * (inclusive). For each item in the range if iftag is set, the function sets 1211 * also settag. The function stops either after tagging nr_to_tag items or 1212 * after reaching last_index. 1213 * 1214 * The tags must be set from the leaf level only and propagated back up the 1215 * path to the root. We must do this so that we resolve the full path before 1216 * setting any tags on intermediate nodes. If we set tags as we descend, then 1217 * we can get to the leaf node and find that the index that has the iftag 1218 * set is outside the range we are scanning. This reults in dangling tags and 1219 * can lead to problems with later tag operations (e.g. livelocks on lookups). 1220 * 1221 * The function returns the number of leaves where the tag was set and sets 1222 * *first_indexp to the first unscanned index. 1223 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 1224 * be prepared to handle that. 1225 */ 1226 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 1227 unsigned long *first_indexp, unsigned long last_index, 1228 unsigned long nr_to_tag, 1229 unsigned int iftag, unsigned int settag) 1230 { 1231 struct radix_tree_node *parent, *node, *child; 1232 unsigned long maxindex; 1233 unsigned long tagged = 0; 1234 unsigned long index = *first_indexp; 1235 1236 radix_tree_load_root(root, &child, &maxindex); 1237 last_index = min(last_index, maxindex); 1238 if (index > last_index) 1239 return 0; 1240 if (!nr_to_tag) 1241 return 0; 1242 if (!root_tag_get(root, iftag)) { 1243 *first_indexp = last_index + 1; 1244 return 0; 1245 } 1246 if (!radix_tree_is_internal_node(child)) { 1247 *first_indexp = last_index + 1; 1248 root_tag_set(root, settag); 1249 return 1; 1250 } 1251 1252 node = entry_to_node(child); 1253 1254 for (;;) { 1255 unsigned offset = radix_tree_descend(node, &child, index); 1256 if (!child) 1257 goto next; 1258 if (!tag_get(node, iftag, offset)) 1259 goto next; 1260 /* Sibling slots never have tags set on them */ 1261 if (radix_tree_is_internal_node(child)) { 1262 node = entry_to_node(child); 1263 continue; 1264 } 1265 1266 /* tag the leaf */ 1267 tagged++; 1268 tag_set(node, settag, offset); 1269 1270 /* walk back up the path tagging interior nodes */ 1271 parent = node; 1272 for (;;) { 1273 offset = parent->offset; 1274 parent = parent->parent; 1275 if (!parent) 1276 break; 1277 /* stop if we find a node with the tag already set */ 1278 if (tag_get(parent, settag, offset)) 1279 break; 1280 tag_set(parent, settag, offset); 1281 } 1282 next: 1283 /* Go to next entry in node */ 1284 index = ((index >> node->shift) + 1) << node->shift; 1285 /* Overflow can happen when last_index is ~0UL... */ 1286 if (index > last_index || !index) 1287 break; 1288 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1289 while (offset == 0) { 1290 /* 1291 * We've fully scanned this node. Go up. Because 1292 * last_index is guaranteed to be in the tree, what 1293 * we do below cannot wander astray. 1294 */ 1295 node = node->parent; 1296 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1297 } 1298 if (is_sibling_entry(node, node->slots[offset])) 1299 goto next; 1300 if (tagged >= nr_to_tag) 1301 break; 1302 } 1303 /* 1304 * We need not to tag the root tag if there is no tag which is set with 1305 * settag within the range from *first_indexp to last_index. 1306 */ 1307 if (tagged > 0) 1308 root_tag_set(root, settag); 1309 *first_indexp = index; 1310 1311 return tagged; 1312 } 1313 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 1314 1315 /** 1316 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1317 * @root: radix tree root 1318 * @results: where the results of the lookup are placed 1319 * @first_index: start the lookup from this key 1320 * @max_items: place up to this many items at *results 1321 * 1322 * Performs an index-ascending scan of the tree for present items. Places 1323 * them at *@results and returns the number of items which were placed at 1324 * *@results. 1325 * 1326 * The implementation is naive. 1327 * 1328 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1329 * rcu_read_lock. In this case, rather than the returned results being 1330 * an atomic snapshot of the tree at a single point in time, the 1331 * semantics of an RCU protected gang lookup are as though multiple 1332 * radix_tree_lookups have been issued in individual locks, and results 1333 * stored in 'results'. 1334 */ 1335 unsigned int 1336 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1337 unsigned long first_index, unsigned int max_items) 1338 { 1339 struct radix_tree_iter iter; 1340 void **slot; 1341 unsigned int ret = 0; 1342 1343 if (unlikely(!max_items)) 1344 return 0; 1345 1346 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1347 results[ret] = rcu_dereference_raw(*slot); 1348 if (!results[ret]) 1349 continue; 1350 if (radix_tree_is_internal_node(results[ret])) { 1351 slot = radix_tree_iter_retry(&iter); 1352 continue; 1353 } 1354 if (++ret == max_items) 1355 break; 1356 } 1357 1358 return ret; 1359 } 1360 EXPORT_SYMBOL(radix_tree_gang_lookup); 1361 1362 /** 1363 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1364 * @root: radix tree root 1365 * @results: where the results of the lookup are placed 1366 * @indices: where their indices should be placed (but usually NULL) 1367 * @first_index: start the lookup from this key 1368 * @max_items: place up to this many items at *results 1369 * 1370 * Performs an index-ascending scan of the tree for present items. Places 1371 * their slots at *@results and returns the number of items which were 1372 * placed at *@results. 1373 * 1374 * The implementation is naive. 1375 * 1376 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1377 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1378 * protection, radix_tree_deref_slot may fail requiring a retry. 1379 */ 1380 unsigned int 1381 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1382 void ***results, unsigned long *indices, 1383 unsigned long first_index, unsigned int max_items) 1384 { 1385 struct radix_tree_iter iter; 1386 void **slot; 1387 unsigned int ret = 0; 1388 1389 if (unlikely(!max_items)) 1390 return 0; 1391 1392 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1393 results[ret] = slot; 1394 if (indices) 1395 indices[ret] = iter.index; 1396 if (++ret == max_items) 1397 break; 1398 } 1399 1400 return ret; 1401 } 1402 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1403 1404 /** 1405 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1406 * based on a tag 1407 * @root: radix tree root 1408 * @results: where the results of the lookup are placed 1409 * @first_index: start the lookup from this key 1410 * @max_items: place up to this many items at *results 1411 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1412 * 1413 * Performs an index-ascending scan of the tree for present items which 1414 * have the tag indexed by @tag set. Places the items at *@results and 1415 * returns the number of items which were placed at *@results. 1416 */ 1417 unsigned int 1418 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1419 unsigned long first_index, unsigned int max_items, 1420 unsigned int tag) 1421 { 1422 struct radix_tree_iter iter; 1423 void **slot; 1424 unsigned int ret = 0; 1425 1426 if (unlikely(!max_items)) 1427 return 0; 1428 1429 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1430 results[ret] = rcu_dereference_raw(*slot); 1431 if (!results[ret]) 1432 continue; 1433 if (radix_tree_is_internal_node(results[ret])) { 1434 slot = radix_tree_iter_retry(&iter); 1435 continue; 1436 } 1437 if (++ret == max_items) 1438 break; 1439 } 1440 1441 return ret; 1442 } 1443 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1444 1445 /** 1446 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1447 * radix tree based on a tag 1448 * @root: radix tree root 1449 * @results: where the results of the lookup are placed 1450 * @first_index: start the lookup from this key 1451 * @max_items: place up to this many items at *results 1452 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1453 * 1454 * Performs an index-ascending scan of the tree for present items which 1455 * have the tag indexed by @tag set. Places the slots at *@results and 1456 * returns the number of slots which were placed at *@results. 1457 */ 1458 unsigned int 1459 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1460 unsigned long first_index, unsigned int max_items, 1461 unsigned int tag) 1462 { 1463 struct radix_tree_iter iter; 1464 void **slot; 1465 unsigned int ret = 0; 1466 1467 if (unlikely(!max_items)) 1468 return 0; 1469 1470 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1471 results[ret] = slot; 1472 if (++ret == max_items) 1473 break; 1474 } 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1479 1480 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1481 #include <linux/sched.h> /* for cond_resched() */ 1482 1483 struct locate_info { 1484 unsigned long found_index; 1485 bool stop; 1486 }; 1487 1488 /* 1489 * This linear search is at present only useful to shmem_unuse_inode(). 1490 */ 1491 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1492 unsigned long index, struct locate_info *info) 1493 { 1494 unsigned long i; 1495 1496 do { 1497 unsigned int shift = slot->shift; 1498 1499 for (i = (index >> shift) & RADIX_TREE_MAP_MASK; 1500 i < RADIX_TREE_MAP_SIZE; 1501 i++, index += (1UL << shift)) { 1502 struct radix_tree_node *node = 1503 rcu_dereference_raw(slot->slots[i]); 1504 if (node == RADIX_TREE_RETRY) 1505 goto out; 1506 if (!radix_tree_is_internal_node(node)) { 1507 if (node == item) { 1508 info->found_index = index; 1509 info->stop = true; 1510 goto out; 1511 } 1512 continue; 1513 } 1514 node = entry_to_node(node); 1515 if (is_sibling_entry(slot, node)) 1516 continue; 1517 slot = node; 1518 break; 1519 } 1520 } while (i < RADIX_TREE_MAP_SIZE); 1521 1522 out: 1523 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) 1524 info->stop = true; 1525 return index; 1526 } 1527 1528 /** 1529 * radix_tree_locate_item - search through radix tree for item 1530 * @root: radix tree root 1531 * @item: item to be found 1532 * 1533 * Returns index where item was found, or -1 if not found. 1534 * Caller must hold no lock (since this time-consuming function needs 1535 * to be preemptible), and must check afterwards if item is still there. 1536 */ 1537 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1538 { 1539 struct radix_tree_node *node; 1540 unsigned long max_index; 1541 unsigned long cur_index = 0; 1542 struct locate_info info = { 1543 .found_index = -1, 1544 .stop = false, 1545 }; 1546 1547 do { 1548 rcu_read_lock(); 1549 node = rcu_dereference_raw(root->rnode); 1550 if (!radix_tree_is_internal_node(node)) { 1551 rcu_read_unlock(); 1552 if (node == item) 1553 info.found_index = 0; 1554 break; 1555 } 1556 1557 node = entry_to_node(node); 1558 1559 max_index = node_maxindex(node); 1560 if (cur_index > max_index) { 1561 rcu_read_unlock(); 1562 break; 1563 } 1564 1565 cur_index = __locate(node, item, cur_index, &info); 1566 rcu_read_unlock(); 1567 cond_resched(); 1568 } while (!info.stop && cur_index <= max_index); 1569 1570 return info.found_index; 1571 } 1572 #else 1573 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1574 { 1575 return -1; 1576 } 1577 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1578 1579 /** 1580 * __radix_tree_delete_node - try to free node after clearing a slot 1581 * @root: radix tree root 1582 * @node: node containing @index 1583 * 1584 * After clearing the slot at @index in @node from radix tree 1585 * rooted at @root, call this function to attempt freeing the 1586 * node and shrinking the tree. 1587 */ 1588 void __radix_tree_delete_node(struct radix_tree_root *root, 1589 struct radix_tree_node *node) 1590 { 1591 delete_node(root, node, NULL, NULL); 1592 } 1593 1594 static inline void delete_sibling_entries(struct radix_tree_node *node, 1595 void *ptr, unsigned offset) 1596 { 1597 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1598 int i; 1599 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1600 if (node->slots[offset + i] != ptr) 1601 break; 1602 node->slots[offset + i] = NULL; 1603 node->count--; 1604 } 1605 #endif 1606 } 1607 1608 /** 1609 * radix_tree_delete_item - delete an item from a radix tree 1610 * @root: radix tree root 1611 * @index: index key 1612 * @item: expected item 1613 * 1614 * Remove @item at @index from the radix tree rooted at @root. 1615 * 1616 * Returns the address of the deleted item, or NULL if it was not present 1617 * or the entry at the given @index was not @item. 1618 */ 1619 void *radix_tree_delete_item(struct radix_tree_root *root, 1620 unsigned long index, void *item) 1621 { 1622 struct radix_tree_node *node; 1623 unsigned int offset; 1624 void **slot; 1625 void *entry; 1626 int tag; 1627 1628 entry = __radix_tree_lookup(root, index, &node, &slot); 1629 if (!entry) 1630 return NULL; 1631 1632 if (item && entry != item) 1633 return NULL; 1634 1635 if (!node) { 1636 root_tag_clear_all(root); 1637 root->rnode = NULL; 1638 return entry; 1639 } 1640 1641 offset = get_slot_offset(node, slot); 1642 1643 /* Clear all tags associated with the item to be deleted. */ 1644 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1645 node_tag_clear(root, node, tag, offset); 1646 1647 delete_sibling_entries(node, node_to_entry(slot), offset); 1648 __radix_tree_replace(root, node, slot, NULL, NULL, NULL); 1649 1650 return entry; 1651 } 1652 EXPORT_SYMBOL(radix_tree_delete_item); 1653 1654 /** 1655 * radix_tree_delete - delete an item from a radix tree 1656 * @root: radix tree root 1657 * @index: index key 1658 * 1659 * Remove the item at @index from the radix tree rooted at @root. 1660 * 1661 * Returns the address of the deleted item, or NULL if it was not present. 1662 */ 1663 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1664 { 1665 return radix_tree_delete_item(root, index, NULL); 1666 } 1667 EXPORT_SYMBOL(radix_tree_delete); 1668 1669 void radix_tree_clear_tags(struct radix_tree_root *root, 1670 struct radix_tree_node *node, 1671 void **slot) 1672 { 1673 if (node) { 1674 unsigned int tag, offset = get_slot_offset(node, slot); 1675 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1676 node_tag_clear(root, node, tag, offset); 1677 } else { 1678 /* Clear root node tags */ 1679 root->gfp_mask &= __GFP_BITS_MASK; 1680 } 1681 } 1682 1683 /** 1684 * radix_tree_tagged - test whether any items in the tree are tagged 1685 * @root: radix tree root 1686 * @tag: tag to test 1687 */ 1688 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1689 { 1690 return root_tag_get(root, tag); 1691 } 1692 EXPORT_SYMBOL(radix_tree_tagged); 1693 1694 static void 1695 radix_tree_node_ctor(void *arg) 1696 { 1697 struct radix_tree_node *node = arg; 1698 1699 memset(node, 0, sizeof(*node)); 1700 INIT_LIST_HEAD(&node->private_list); 1701 } 1702 1703 static __init unsigned long __maxindex(unsigned int height) 1704 { 1705 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1706 int shift = RADIX_TREE_INDEX_BITS - width; 1707 1708 if (shift < 0) 1709 return ~0UL; 1710 if (shift >= BITS_PER_LONG) 1711 return 0UL; 1712 return ~0UL >> shift; 1713 } 1714 1715 static __init void radix_tree_init_maxnodes(void) 1716 { 1717 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1718 unsigned int i, j; 1719 1720 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1721 height_to_maxindex[i] = __maxindex(i); 1722 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1723 for (j = i; j > 0; j--) 1724 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1725 } 1726 } 1727 1728 static int radix_tree_cpu_dead(unsigned int cpu) 1729 { 1730 struct radix_tree_preload *rtp; 1731 struct radix_tree_node *node; 1732 1733 /* Free per-cpu pool of preloaded nodes */ 1734 rtp = &per_cpu(radix_tree_preloads, cpu); 1735 while (rtp->nr) { 1736 node = rtp->nodes; 1737 rtp->nodes = node->private_data; 1738 kmem_cache_free(radix_tree_node_cachep, node); 1739 rtp->nr--; 1740 } 1741 return 0; 1742 } 1743 1744 void __init radix_tree_init(void) 1745 { 1746 int ret; 1747 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1748 sizeof(struct radix_tree_node), 0, 1749 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1750 radix_tree_node_ctor); 1751 radix_tree_init_maxnodes(); 1752 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", 1753 NULL, radix_tree_cpu_dead); 1754 WARN_ON(ret < 0); 1755 } 1756