xref: /linux/lib/radix-tree.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
34 
35 
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
40 #endif
41 
42 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
44 
45 #define RADIX_TREE_TAG_LONGS	\
46 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
47 
48 struct radix_tree_node {
49 	unsigned int	height;		/* Height from the bottom */
50 	unsigned int	count;
51 	struct rcu_head	rcu_head;
52 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
53 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
54 };
55 
56 struct radix_tree_path {
57 	struct radix_tree_node *node;
58 	int offset;
59 };
60 
61 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 					  RADIX_TREE_MAP_SHIFT))
64 
65 /*
66  * The height_to_maxindex array needs to be one deeper than the maximum
67  * path as height 0 holds only 1 entry.
68  */
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
70 
71 /*
72  * Radix tree node cache.
73  */
74 static struct kmem_cache *radix_tree_node_cachep;
75 
76 /*
77  * Per-cpu pool of preloaded nodes
78  */
79 struct radix_tree_preload {
80 	int nr;
81 	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
82 };
83 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
84 
85 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
86 {
87 	return root->gfp_mask & __GFP_BITS_MASK;
88 }
89 
90 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
91 		int offset)
92 {
93 	__set_bit(offset, node->tags[tag]);
94 }
95 
96 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
97 		int offset)
98 {
99 	__clear_bit(offset, node->tags[tag]);
100 }
101 
102 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
103 		int offset)
104 {
105 	return test_bit(offset, node->tags[tag]);
106 }
107 
108 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
109 {
110 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
111 }
112 
113 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
114 {
115 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
116 }
117 
118 static inline void root_tag_clear_all(struct radix_tree_root *root)
119 {
120 	root->gfp_mask &= __GFP_BITS_MASK;
121 }
122 
123 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
124 {
125 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
126 }
127 
128 /*
129  * Returns 1 if any slot in the node has this tag set.
130  * Otherwise returns 0.
131  */
132 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
133 {
134 	int idx;
135 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
136 		if (node->tags[tag][idx])
137 			return 1;
138 	}
139 	return 0;
140 }
141 /*
142  * This assumes that the caller has performed appropriate preallocation, and
143  * that the caller has pinned this thread of control to the current CPU.
144  */
145 static struct radix_tree_node *
146 radix_tree_node_alloc(struct radix_tree_root *root)
147 {
148 	struct radix_tree_node *ret = NULL;
149 	gfp_t gfp_mask = root_gfp_mask(root);
150 
151 	if (!(gfp_mask & __GFP_WAIT)) {
152 		struct radix_tree_preload *rtp;
153 
154 		/*
155 		 * Provided the caller has preloaded here, we will always
156 		 * succeed in getting a node here (and never reach
157 		 * kmem_cache_alloc)
158 		 */
159 		rtp = &__get_cpu_var(radix_tree_preloads);
160 		if (rtp->nr) {
161 			ret = rtp->nodes[rtp->nr - 1];
162 			rtp->nodes[rtp->nr - 1] = NULL;
163 			rtp->nr--;
164 		}
165 	}
166 	if (ret == NULL)
167 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
168 
169 	BUG_ON(radix_tree_is_indirect_ptr(ret));
170 	return ret;
171 }
172 
173 static void radix_tree_node_rcu_free(struct rcu_head *head)
174 {
175 	struct radix_tree_node *node =
176 			container_of(head, struct radix_tree_node, rcu_head);
177 	int i;
178 
179 	/*
180 	 * must only free zeroed nodes into the slab. radix_tree_shrink
181 	 * can leave us with a non-NULL entry in the first slot, so clear
182 	 * that here to make sure.
183 	 */
184 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
185 		tag_clear(node, i, 0);
186 
187 	node->slots[0] = NULL;
188 	node->count = 0;
189 
190 	kmem_cache_free(radix_tree_node_cachep, node);
191 }
192 
193 static inline void
194 radix_tree_node_free(struct radix_tree_node *node)
195 {
196 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
197 }
198 
199 /*
200  * Load up this CPU's radix_tree_node buffer with sufficient objects to
201  * ensure that the addition of a single element in the tree cannot fail.  On
202  * success, return zero, with preemption disabled.  On error, return -ENOMEM
203  * with preemption not disabled.
204  *
205  * To make use of this facility, the radix tree must be initialised without
206  * __GFP_WAIT being passed to INIT_RADIX_TREE().
207  */
208 int radix_tree_preload(gfp_t gfp_mask)
209 {
210 	struct radix_tree_preload *rtp;
211 	struct radix_tree_node *node;
212 	int ret = -ENOMEM;
213 
214 	preempt_disable();
215 	rtp = &__get_cpu_var(radix_tree_preloads);
216 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
217 		preempt_enable();
218 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
219 		if (node == NULL)
220 			goto out;
221 		preempt_disable();
222 		rtp = &__get_cpu_var(radix_tree_preloads);
223 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
224 			rtp->nodes[rtp->nr++] = node;
225 		else
226 			kmem_cache_free(radix_tree_node_cachep, node);
227 	}
228 	ret = 0;
229 out:
230 	return ret;
231 }
232 EXPORT_SYMBOL(radix_tree_preload);
233 
234 /*
235  *	Return the maximum key which can be store into a
236  *	radix tree with height HEIGHT.
237  */
238 static inline unsigned long radix_tree_maxindex(unsigned int height)
239 {
240 	return height_to_maxindex[height];
241 }
242 
243 /*
244  *	Extend a radix tree so it can store key @index.
245  */
246 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
247 {
248 	struct radix_tree_node *node;
249 	unsigned int height;
250 	int tag;
251 
252 	/* Figure out what the height should be.  */
253 	height = root->height + 1;
254 	while (index > radix_tree_maxindex(height))
255 		height++;
256 
257 	if (root->rnode == NULL) {
258 		root->height = height;
259 		goto out;
260 	}
261 
262 	do {
263 		unsigned int newheight;
264 		if (!(node = radix_tree_node_alloc(root)))
265 			return -ENOMEM;
266 
267 		/* Increase the height.  */
268 		node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
269 
270 		/* Propagate the aggregated tag info into the new root */
271 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
272 			if (root_tag_get(root, tag))
273 				tag_set(node, tag, 0);
274 		}
275 
276 		newheight = root->height+1;
277 		node->height = newheight;
278 		node->count = 1;
279 		node = radix_tree_ptr_to_indirect(node);
280 		rcu_assign_pointer(root->rnode, node);
281 		root->height = newheight;
282 	} while (height > root->height);
283 out:
284 	return 0;
285 }
286 
287 /**
288  *	radix_tree_insert    -    insert into a radix tree
289  *	@root:		radix tree root
290  *	@index:		index key
291  *	@item:		item to insert
292  *
293  *	Insert an item into the radix tree at position @index.
294  */
295 int radix_tree_insert(struct radix_tree_root *root,
296 			unsigned long index, void *item)
297 {
298 	struct radix_tree_node *node = NULL, *slot;
299 	unsigned int height, shift;
300 	int offset;
301 	int error;
302 
303 	BUG_ON(radix_tree_is_indirect_ptr(item));
304 
305 	/* Make sure the tree is high enough.  */
306 	if (index > radix_tree_maxindex(root->height)) {
307 		error = radix_tree_extend(root, index);
308 		if (error)
309 			return error;
310 	}
311 
312 	slot = radix_tree_indirect_to_ptr(root->rnode);
313 
314 	height = root->height;
315 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
316 
317 	offset = 0;			/* uninitialised var warning */
318 	while (height > 0) {
319 		if (slot == NULL) {
320 			/* Have to add a child node.  */
321 			if (!(slot = radix_tree_node_alloc(root)))
322 				return -ENOMEM;
323 			slot->height = height;
324 			if (node) {
325 				rcu_assign_pointer(node->slots[offset], slot);
326 				node->count++;
327 			} else
328 				rcu_assign_pointer(root->rnode,
329 					radix_tree_ptr_to_indirect(slot));
330 		}
331 
332 		/* Go a level down */
333 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
334 		node = slot;
335 		slot = node->slots[offset];
336 		shift -= RADIX_TREE_MAP_SHIFT;
337 		height--;
338 	}
339 
340 	if (slot != NULL)
341 		return -EEXIST;
342 
343 	if (node) {
344 		node->count++;
345 		rcu_assign_pointer(node->slots[offset], item);
346 		BUG_ON(tag_get(node, 0, offset));
347 		BUG_ON(tag_get(node, 1, offset));
348 	} else {
349 		rcu_assign_pointer(root->rnode, item);
350 		BUG_ON(root_tag_get(root, 0));
351 		BUG_ON(root_tag_get(root, 1));
352 	}
353 
354 	return 0;
355 }
356 EXPORT_SYMBOL(radix_tree_insert);
357 
358 /*
359  * is_slot == 1 : search for the slot.
360  * is_slot == 0 : search for the node.
361  */
362 static void *radix_tree_lookup_element(struct radix_tree_root *root,
363 				unsigned long index, int is_slot)
364 {
365 	unsigned int height, shift;
366 	struct radix_tree_node *node, **slot;
367 
368 	node = rcu_dereference_raw(root->rnode);
369 	if (node == NULL)
370 		return NULL;
371 
372 	if (!radix_tree_is_indirect_ptr(node)) {
373 		if (index > 0)
374 			return NULL;
375 		return is_slot ? (void *)&root->rnode : node;
376 	}
377 	node = radix_tree_indirect_to_ptr(node);
378 
379 	height = node->height;
380 	if (index > radix_tree_maxindex(height))
381 		return NULL;
382 
383 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
384 
385 	do {
386 		slot = (struct radix_tree_node **)
387 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
388 		node = rcu_dereference_raw(*slot);
389 		if (node == NULL)
390 			return NULL;
391 
392 		shift -= RADIX_TREE_MAP_SHIFT;
393 		height--;
394 	} while (height > 0);
395 
396 	return is_slot ? (void *)slot:node;
397 }
398 
399 /**
400  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
401  *	@root:		radix tree root
402  *	@index:		index key
403  *
404  *	Returns:  the slot corresponding to the position @index in the
405  *	radix tree @root. This is useful for update-if-exists operations.
406  *
407  *	This function can be called under rcu_read_lock iff the slot is not
408  *	modified by radix_tree_replace_slot, otherwise it must be called
409  *	exclusive from other writers. Any dereference of the slot must be done
410  *	using radix_tree_deref_slot.
411  */
412 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
413 {
414 	return (void **)radix_tree_lookup_element(root, index, 1);
415 }
416 EXPORT_SYMBOL(radix_tree_lookup_slot);
417 
418 /**
419  *	radix_tree_lookup    -    perform lookup operation on a radix tree
420  *	@root:		radix tree root
421  *	@index:		index key
422  *
423  *	Lookup the item at the position @index in the radix tree @root.
424  *
425  *	This function can be called under rcu_read_lock, however the caller
426  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
427  *	them safely). No RCU barriers are required to access or modify the
428  *	returned item, however.
429  */
430 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
431 {
432 	return radix_tree_lookup_element(root, index, 0);
433 }
434 EXPORT_SYMBOL(radix_tree_lookup);
435 
436 /**
437  *	radix_tree_tag_set - set a tag on a radix tree node
438  *	@root:		radix tree root
439  *	@index:		index key
440  *	@tag: 		tag index
441  *
442  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
443  *	corresponding to @index in the radix tree.  From
444  *	the root all the way down to the leaf node.
445  *
446  *	Returns the address of the tagged item.   Setting a tag on a not-present
447  *	item is a bug.
448  */
449 void *radix_tree_tag_set(struct radix_tree_root *root,
450 			unsigned long index, unsigned int tag)
451 {
452 	unsigned int height, shift;
453 	struct radix_tree_node *slot;
454 
455 	height = root->height;
456 	BUG_ON(index > radix_tree_maxindex(height));
457 
458 	slot = radix_tree_indirect_to_ptr(root->rnode);
459 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
460 
461 	while (height > 0) {
462 		int offset;
463 
464 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
465 		if (!tag_get(slot, tag, offset))
466 			tag_set(slot, tag, offset);
467 		slot = slot->slots[offset];
468 		BUG_ON(slot == NULL);
469 		shift -= RADIX_TREE_MAP_SHIFT;
470 		height--;
471 	}
472 
473 	/* set the root's tag bit */
474 	if (slot && !root_tag_get(root, tag))
475 		root_tag_set(root, tag);
476 
477 	return slot;
478 }
479 EXPORT_SYMBOL(radix_tree_tag_set);
480 
481 /**
482  *	radix_tree_tag_clear - clear a tag on a radix tree node
483  *	@root:		radix tree root
484  *	@index:		index key
485  *	@tag: 		tag index
486  *
487  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
488  *	corresponding to @index in the radix tree.  If
489  *	this causes the leaf node to have no tags set then clear the tag in the
490  *	next-to-leaf node, etc.
491  *
492  *	Returns the address of the tagged item on success, else NULL.  ie:
493  *	has the same return value and semantics as radix_tree_lookup().
494  */
495 void *radix_tree_tag_clear(struct radix_tree_root *root,
496 			unsigned long index, unsigned int tag)
497 {
498 	/*
499 	 * The radix tree path needs to be one longer than the maximum path
500 	 * since the "list" is null terminated.
501 	 */
502 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
503 	struct radix_tree_node *slot = NULL;
504 	unsigned int height, shift;
505 
506 	height = root->height;
507 	if (index > radix_tree_maxindex(height))
508 		goto out;
509 
510 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
511 	pathp->node = NULL;
512 	slot = radix_tree_indirect_to_ptr(root->rnode);
513 
514 	while (height > 0) {
515 		int offset;
516 
517 		if (slot == NULL)
518 			goto out;
519 
520 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
521 		pathp[1].offset = offset;
522 		pathp[1].node = slot;
523 		slot = slot->slots[offset];
524 		pathp++;
525 		shift -= RADIX_TREE_MAP_SHIFT;
526 		height--;
527 	}
528 
529 	if (slot == NULL)
530 		goto out;
531 
532 	while (pathp->node) {
533 		if (!tag_get(pathp->node, tag, pathp->offset))
534 			goto out;
535 		tag_clear(pathp->node, tag, pathp->offset);
536 		if (any_tag_set(pathp->node, tag))
537 			goto out;
538 		pathp--;
539 	}
540 
541 	/* clear the root's tag bit */
542 	if (root_tag_get(root, tag))
543 		root_tag_clear(root, tag);
544 
545 out:
546 	return slot;
547 }
548 EXPORT_SYMBOL(radix_tree_tag_clear);
549 
550 /**
551  * radix_tree_tag_get - get a tag on a radix tree node
552  * @root:		radix tree root
553  * @index:		index key
554  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
555  *
556  * Return values:
557  *
558  *  0: tag not present or not set
559  *  1: tag set
560  *
561  * Note that the return value of this function may not be relied on, even if
562  * the RCU lock is held, unless tag modification and node deletion are excluded
563  * from concurrency.
564  */
565 int radix_tree_tag_get(struct radix_tree_root *root,
566 			unsigned long index, unsigned int tag)
567 {
568 	unsigned int height, shift;
569 	struct radix_tree_node *node;
570 	int saw_unset_tag = 0;
571 
572 	/* check the root's tag bit */
573 	if (!root_tag_get(root, tag))
574 		return 0;
575 
576 	node = rcu_dereference_raw(root->rnode);
577 	if (node == NULL)
578 		return 0;
579 
580 	if (!radix_tree_is_indirect_ptr(node))
581 		return (index == 0);
582 	node = radix_tree_indirect_to_ptr(node);
583 
584 	height = node->height;
585 	if (index > radix_tree_maxindex(height))
586 		return 0;
587 
588 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
589 
590 	for ( ; ; ) {
591 		int offset;
592 
593 		if (node == NULL)
594 			return 0;
595 
596 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
597 
598 		/*
599 		 * This is just a debug check.  Later, we can bale as soon as
600 		 * we see an unset tag.
601 		 */
602 		if (!tag_get(node, tag, offset))
603 			saw_unset_tag = 1;
604 		if (height == 1)
605 			return !!tag_get(node, tag, offset);
606 		node = rcu_dereference_raw(node->slots[offset]);
607 		shift -= RADIX_TREE_MAP_SHIFT;
608 		height--;
609 	}
610 }
611 EXPORT_SYMBOL(radix_tree_tag_get);
612 
613 /**
614  * radix_tree_range_tag_if_tagged - for each item in given range set given
615  *				   tag if item has another tag set
616  * @root:		radix tree root
617  * @first_indexp:	pointer to a starting index of a range to scan
618  * @last_index:		last index of a range to scan
619  * @nr_to_tag:		maximum number items to tag
620  * @iftag:		tag index to test
621  * @settag:		tag index to set if tested tag is set
622  *
623  * This function scans range of radix tree from first_index to last_index
624  * (inclusive).  For each item in the range if iftag is set, the function sets
625  * also settag. The function stops either after tagging nr_to_tag items or
626  * after reaching last_index.
627  *
628  * The tags must be set from the leaf level only and propagated back up the
629  * path to the root. We must do this so that we resolve the full path before
630  * setting any tags on intermediate nodes. If we set tags as we descend, then
631  * we can get to the leaf node and find that the index that has the iftag
632  * set is outside the range we are scanning. This reults in dangling tags and
633  * can lead to problems with later tag operations (e.g. livelocks on lookups).
634  *
635  * The function returns number of leaves where the tag was set and sets
636  * *first_indexp to the first unscanned index.
637  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
638  * be prepared to handle that.
639  */
640 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
641 		unsigned long *first_indexp, unsigned long last_index,
642 		unsigned long nr_to_tag,
643 		unsigned int iftag, unsigned int settag)
644 {
645 	unsigned int height = root->height;
646 	struct radix_tree_path path[height];
647 	struct radix_tree_path *pathp = path;
648 	struct radix_tree_node *slot;
649 	unsigned int shift;
650 	unsigned long tagged = 0;
651 	unsigned long index = *first_indexp;
652 
653 	last_index = min(last_index, radix_tree_maxindex(height));
654 	if (index > last_index)
655 		return 0;
656 	if (!nr_to_tag)
657 		return 0;
658 	if (!root_tag_get(root, iftag)) {
659 		*first_indexp = last_index + 1;
660 		return 0;
661 	}
662 	if (height == 0) {
663 		*first_indexp = last_index + 1;
664 		root_tag_set(root, settag);
665 		return 1;
666 	}
667 
668 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
669 	slot = radix_tree_indirect_to_ptr(root->rnode);
670 
671 	/*
672 	 * we fill the path from (root->height - 2) to 0, leaving the index at
673 	 * (root->height - 1) as a terminator. Zero the node in the terminator
674 	 * so that we can use this to end walk loops back up the path.
675 	 */
676 	path[height - 1].node = NULL;
677 
678 	for (;;) {
679 		int offset;
680 
681 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
682 		if (!slot->slots[offset])
683 			goto next;
684 		if (!tag_get(slot, iftag, offset))
685 			goto next;
686 		if (height > 1) {
687 			/* Go down one level */
688 			height--;
689 			shift -= RADIX_TREE_MAP_SHIFT;
690 			path[height - 1].node = slot;
691 			path[height - 1].offset = offset;
692 			slot = slot->slots[offset];
693 			continue;
694 		}
695 
696 		/* tag the leaf */
697 		tagged++;
698 		tag_set(slot, settag, offset);
699 
700 		/* walk back up the path tagging interior nodes */
701 		pathp = &path[0];
702 		while (pathp->node) {
703 			/* stop if we find a node with the tag already set */
704 			if (tag_get(pathp->node, settag, pathp->offset))
705 				break;
706 			tag_set(pathp->node, settag, pathp->offset);
707 			pathp++;
708 		}
709 
710 next:
711 		/* Go to next item at level determined by 'shift' */
712 		index = ((index >> shift) + 1) << shift;
713 		/* Overflow can happen when last_index is ~0UL... */
714 		if (index > last_index || !index)
715 			break;
716 		if (tagged >= nr_to_tag)
717 			break;
718 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
719 			/*
720 			 * We've fully scanned this node. Go up. Because
721 			 * last_index is guaranteed to be in the tree, what
722 			 * we do below cannot wander astray.
723 			 */
724 			slot = path[height - 1].node;
725 			height++;
726 			shift += RADIX_TREE_MAP_SHIFT;
727 		}
728 	}
729 	/*
730 	 * The iftag must have been set somewhere because otherwise
731 	 * we would return immediated at the beginning of the function
732 	 */
733 	root_tag_set(root, settag);
734 	*first_indexp = index;
735 
736 	return tagged;
737 }
738 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
739 
740 
741 /**
742  *	radix_tree_next_hole    -    find the next hole (not-present entry)
743  *	@root:		tree root
744  *	@index:		index key
745  *	@max_scan:	maximum range to search
746  *
747  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
748  *	indexed hole.
749  *
750  *	Returns: the index of the hole if found, otherwise returns an index
751  *	outside of the set specified (in which case 'return - index >= max_scan'
752  *	will be true). In rare cases of index wrap-around, 0 will be returned.
753  *
754  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
755  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
756  *	the tree at a single point in time. For example, if a hole is created
757  *	at index 5, then subsequently a hole is created at index 10,
758  *	radix_tree_next_hole covering both indexes may return 10 if called
759  *	under rcu_read_lock.
760  */
761 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
762 				unsigned long index, unsigned long max_scan)
763 {
764 	unsigned long i;
765 
766 	for (i = 0; i < max_scan; i++) {
767 		if (!radix_tree_lookup(root, index))
768 			break;
769 		index++;
770 		if (index == 0)
771 			break;
772 	}
773 
774 	return index;
775 }
776 EXPORT_SYMBOL(radix_tree_next_hole);
777 
778 /**
779  *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
780  *	@root:		tree root
781  *	@index:		index key
782  *	@max_scan:	maximum range to search
783  *
784  *	Search backwards in the range [max(index-max_scan+1, 0), index]
785  *	for the first hole.
786  *
787  *	Returns: the index of the hole if found, otherwise returns an index
788  *	outside of the set specified (in which case 'index - return >= max_scan'
789  *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
790  *
791  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
792  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
793  *	the tree at a single point in time. For example, if a hole is created
794  *	at index 10, then subsequently a hole is created at index 5,
795  *	radix_tree_prev_hole covering both indexes may return 5 if called under
796  *	rcu_read_lock.
797  */
798 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
799 				   unsigned long index, unsigned long max_scan)
800 {
801 	unsigned long i;
802 
803 	for (i = 0; i < max_scan; i++) {
804 		if (!radix_tree_lookup(root, index))
805 			break;
806 		index--;
807 		if (index == ULONG_MAX)
808 			break;
809 	}
810 
811 	return index;
812 }
813 EXPORT_SYMBOL(radix_tree_prev_hole);
814 
815 static unsigned int
816 __lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
817 	unsigned int max_items, unsigned long *next_index)
818 {
819 	unsigned int nr_found = 0;
820 	unsigned int shift, height;
821 	unsigned long i;
822 
823 	height = slot->height;
824 	if (height == 0)
825 		goto out;
826 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
827 
828 	for ( ; height > 1; height--) {
829 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
830 		for (;;) {
831 			if (slot->slots[i] != NULL)
832 				break;
833 			index &= ~((1UL << shift) - 1);
834 			index += 1UL << shift;
835 			if (index == 0)
836 				goto out;	/* 32-bit wraparound */
837 			i++;
838 			if (i == RADIX_TREE_MAP_SIZE)
839 				goto out;
840 		}
841 
842 		shift -= RADIX_TREE_MAP_SHIFT;
843 		slot = rcu_dereference_raw(slot->slots[i]);
844 		if (slot == NULL)
845 			goto out;
846 	}
847 
848 	/* Bottom level: grab some items */
849 	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
850 		index++;
851 		if (slot->slots[i]) {
852 			results[nr_found++] = &(slot->slots[i]);
853 			if (nr_found == max_items)
854 				goto out;
855 		}
856 	}
857 out:
858 	*next_index = index;
859 	return nr_found;
860 }
861 
862 /**
863  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
864  *	@root:		radix tree root
865  *	@results:	where the results of the lookup are placed
866  *	@first_index:	start the lookup from this key
867  *	@max_items:	place up to this many items at *results
868  *
869  *	Performs an index-ascending scan of the tree for present items.  Places
870  *	them at *@results and returns the number of items which were placed at
871  *	*@results.
872  *
873  *	The implementation is naive.
874  *
875  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
876  *	rcu_read_lock. In this case, rather than the returned results being
877  *	an atomic snapshot of the tree at a single point in time, the semantics
878  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
879  *	have been issued in individual locks, and results stored in 'results'.
880  */
881 unsigned int
882 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
883 			unsigned long first_index, unsigned int max_items)
884 {
885 	unsigned long max_index;
886 	struct radix_tree_node *node;
887 	unsigned long cur_index = first_index;
888 	unsigned int ret;
889 
890 	node = rcu_dereference_raw(root->rnode);
891 	if (!node)
892 		return 0;
893 
894 	if (!radix_tree_is_indirect_ptr(node)) {
895 		if (first_index > 0)
896 			return 0;
897 		results[0] = node;
898 		return 1;
899 	}
900 	node = radix_tree_indirect_to_ptr(node);
901 
902 	max_index = radix_tree_maxindex(node->height);
903 
904 	ret = 0;
905 	while (ret < max_items) {
906 		unsigned int nr_found, slots_found, i;
907 		unsigned long next_index;	/* Index of next search */
908 
909 		if (cur_index > max_index)
910 			break;
911 		slots_found = __lookup(node, (void ***)results + ret, cur_index,
912 					max_items - ret, &next_index);
913 		nr_found = 0;
914 		for (i = 0; i < slots_found; i++) {
915 			struct radix_tree_node *slot;
916 			slot = *(((void ***)results)[ret + i]);
917 			if (!slot)
918 				continue;
919 			results[ret + nr_found] = rcu_dereference_raw(slot);
920 			nr_found++;
921 		}
922 		ret += nr_found;
923 		if (next_index == 0)
924 			break;
925 		cur_index = next_index;
926 	}
927 
928 	return ret;
929 }
930 EXPORT_SYMBOL(radix_tree_gang_lookup);
931 
932 /**
933  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
934  *	@root:		radix tree root
935  *	@results:	where the results of the lookup are placed
936  *	@first_index:	start the lookup from this key
937  *	@max_items:	place up to this many items at *results
938  *
939  *	Performs an index-ascending scan of the tree for present items.  Places
940  *	their slots at *@results and returns the number of items which were
941  *	placed at *@results.
942  *
943  *	The implementation is naive.
944  *
945  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
946  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
947  *	protection, radix_tree_deref_slot may fail requiring a retry.
948  */
949 unsigned int
950 radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
951 			unsigned long first_index, unsigned int max_items)
952 {
953 	unsigned long max_index;
954 	struct radix_tree_node *node;
955 	unsigned long cur_index = first_index;
956 	unsigned int ret;
957 
958 	node = rcu_dereference_raw(root->rnode);
959 	if (!node)
960 		return 0;
961 
962 	if (!radix_tree_is_indirect_ptr(node)) {
963 		if (first_index > 0)
964 			return 0;
965 		results[0] = (void **)&root->rnode;
966 		return 1;
967 	}
968 	node = radix_tree_indirect_to_ptr(node);
969 
970 	max_index = radix_tree_maxindex(node->height);
971 
972 	ret = 0;
973 	while (ret < max_items) {
974 		unsigned int slots_found;
975 		unsigned long next_index;	/* Index of next search */
976 
977 		if (cur_index > max_index)
978 			break;
979 		slots_found = __lookup(node, results + ret, cur_index,
980 					max_items - ret, &next_index);
981 		ret += slots_found;
982 		if (next_index == 0)
983 			break;
984 		cur_index = next_index;
985 	}
986 
987 	return ret;
988 }
989 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
990 
991 /*
992  * FIXME: the two tag_get()s here should use find_next_bit() instead of
993  * open-coding the search.
994  */
995 static unsigned int
996 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
997 	unsigned int max_items, unsigned long *next_index, unsigned int tag)
998 {
999 	unsigned int nr_found = 0;
1000 	unsigned int shift, height;
1001 
1002 	height = slot->height;
1003 	if (height == 0)
1004 		goto out;
1005 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1006 
1007 	while (height > 0) {
1008 		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1009 
1010 		for (;;) {
1011 			if (tag_get(slot, tag, i))
1012 				break;
1013 			index &= ~((1UL << shift) - 1);
1014 			index += 1UL << shift;
1015 			if (index == 0)
1016 				goto out;	/* 32-bit wraparound */
1017 			i++;
1018 			if (i == RADIX_TREE_MAP_SIZE)
1019 				goto out;
1020 		}
1021 		height--;
1022 		if (height == 0) {	/* Bottom level: grab some items */
1023 			unsigned long j = index & RADIX_TREE_MAP_MASK;
1024 
1025 			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1026 				index++;
1027 				if (!tag_get(slot, tag, j))
1028 					continue;
1029 				/*
1030 				 * Even though the tag was found set, we need to
1031 				 * recheck that we have a non-NULL node, because
1032 				 * if this lookup is lockless, it may have been
1033 				 * subsequently deleted.
1034 				 *
1035 				 * Similar care must be taken in any place that
1036 				 * lookup ->slots[x] without a lock (ie. can't
1037 				 * rely on its value remaining the same).
1038 				 */
1039 				if (slot->slots[j]) {
1040 					results[nr_found++] = &(slot->slots[j]);
1041 					if (nr_found == max_items)
1042 						goto out;
1043 				}
1044 			}
1045 		}
1046 		shift -= RADIX_TREE_MAP_SHIFT;
1047 		slot = rcu_dereference_raw(slot->slots[i]);
1048 		if (slot == NULL)
1049 			break;
1050 	}
1051 out:
1052 	*next_index = index;
1053 	return nr_found;
1054 }
1055 
1056 /**
1057  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1058  *	                             based on a tag
1059  *	@root:		radix tree root
1060  *	@results:	where the results of the lookup are placed
1061  *	@first_index:	start the lookup from this key
1062  *	@max_items:	place up to this many items at *results
1063  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1064  *
1065  *	Performs an index-ascending scan of the tree for present items which
1066  *	have the tag indexed by @tag set.  Places the items at *@results and
1067  *	returns the number of items which were placed at *@results.
1068  */
1069 unsigned int
1070 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1071 		unsigned long first_index, unsigned int max_items,
1072 		unsigned int tag)
1073 {
1074 	struct radix_tree_node *node;
1075 	unsigned long max_index;
1076 	unsigned long cur_index = first_index;
1077 	unsigned int ret;
1078 
1079 	/* check the root's tag bit */
1080 	if (!root_tag_get(root, tag))
1081 		return 0;
1082 
1083 	node = rcu_dereference_raw(root->rnode);
1084 	if (!node)
1085 		return 0;
1086 
1087 	if (!radix_tree_is_indirect_ptr(node)) {
1088 		if (first_index > 0)
1089 			return 0;
1090 		results[0] = node;
1091 		return 1;
1092 	}
1093 	node = radix_tree_indirect_to_ptr(node);
1094 
1095 	max_index = radix_tree_maxindex(node->height);
1096 
1097 	ret = 0;
1098 	while (ret < max_items) {
1099 		unsigned int nr_found, slots_found, i;
1100 		unsigned long next_index;	/* Index of next search */
1101 
1102 		if (cur_index > max_index)
1103 			break;
1104 		slots_found = __lookup_tag(node, (void ***)results + ret,
1105 				cur_index, max_items - ret, &next_index, tag);
1106 		nr_found = 0;
1107 		for (i = 0; i < slots_found; i++) {
1108 			struct radix_tree_node *slot;
1109 			slot = *(((void ***)results)[ret + i]);
1110 			if (!slot)
1111 				continue;
1112 			results[ret + nr_found] = rcu_dereference_raw(slot);
1113 			nr_found++;
1114 		}
1115 		ret += nr_found;
1116 		if (next_index == 0)
1117 			break;
1118 		cur_index = next_index;
1119 	}
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1124 
1125 /**
1126  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1127  *					  radix tree based on a tag
1128  *	@root:		radix tree root
1129  *	@results:	where the results of the lookup are placed
1130  *	@first_index:	start the lookup from this key
1131  *	@max_items:	place up to this many items at *results
1132  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1133  *
1134  *	Performs an index-ascending scan of the tree for present items which
1135  *	have the tag indexed by @tag set.  Places the slots at *@results and
1136  *	returns the number of slots which were placed at *@results.
1137  */
1138 unsigned int
1139 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1140 		unsigned long first_index, unsigned int max_items,
1141 		unsigned int tag)
1142 {
1143 	struct radix_tree_node *node;
1144 	unsigned long max_index;
1145 	unsigned long cur_index = first_index;
1146 	unsigned int ret;
1147 
1148 	/* check the root's tag bit */
1149 	if (!root_tag_get(root, tag))
1150 		return 0;
1151 
1152 	node = rcu_dereference_raw(root->rnode);
1153 	if (!node)
1154 		return 0;
1155 
1156 	if (!radix_tree_is_indirect_ptr(node)) {
1157 		if (first_index > 0)
1158 			return 0;
1159 		results[0] = (void **)&root->rnode;
1160 		return 1;
1161 	}
1162 	node = radix_tree_indirect_to_ptr(node);
1163 
1164 	max_index = radix_tree_maxindex(node->height);
1165 
1166 	ret = 0;
1167 	while (ret < max_items) {
1168 		unsigned int slots_found;
1169 		unsigned long next_index;	/* Index of next search */
1170 
1171 		if (cur_index > max_index)
1172 			break;
1173 		slots_found = __lookup_tag(node, results + ret,
1174 				cur_index, max_items - ret, &next_index, tag);
1175 		ret += slots_found;
1176 		if (next_index == 0)
1177 			break;
1178 		cur_index = next_index;
1179 	}
1180 
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1184 
1185 
1186 /**
1187  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1188  *	@root		radix tree root
1189  */
1190 static inline void radix_tree_shrink(struct radix_tree_root *root)
1191 {
1192 	/* try to shrink tree height */
1193 	while (root->height > 0) {
1194 		struct radix_tree_node *to_free = root->rnode;
1195 		void *newptr;
1196 
1197 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1198 		to_free = radix_tree_indirect_to_ptr(to_free);
1199 
1200 		/*
1201 		 * The candidate node has more than one child, or its child
1202 		 * is not at the leftmost slot, we cannot shrink.
1203 		 */
1204 		if (to_free->count != 1)
1205 			break;
1206 		if (!to_free->slots[0])
1207 			break;
1208 
1209 		/*
1210 		 * We don't need rcu_assign_pointer(), since we are simply
1211 		 * moving the node from one part of the tree to another. If
1212 		 * it was safe to dereference the old pointer to it
1213 		 * (to_free->slots[0]), it will be safe to dereference the new
1214 		 * one (root->rnode).
1215 		 */
1216 		newptr = to_free->slots[0];
1217 		if (root->height > 1)
1218 			newptr = radix_tree_ptr_to_indirect(newptr);
1219 		root->rnode = newptr;
1220 		root->height--;
1221 		radix_tree_node_free(to_free);
1222 	}
1223 }
1224 
1225 /**
1226  *	radix_tree_delete    -    delete an item from a radix tree
1227  *	@root:		radix tree root
1228  *	@index:		index key
1229  *
1230  *	Remove the item at @index from the radix tree rooted at @root.
1231  *
1232  *	Returns the address of the deleted item, or NULL if it was not present.
1233  */
1234 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1235 {
1236 	/*
1237 	 * The radix tree path needs to be one longer than the maximum path
1238 	 * since the "list" is null terminated.
1239 	 */
1240 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1241 	struct radix_tree_node *slot = NULL;
1242 	struct radix_tree_node *to_free;
1243 	unsigned int height, shift;
1244 	int tag;
1245 	int offset;
1246 
1247 	height = root->height;
1248 	if (index > radix_tree_maxindex(height))
1249 		goto out;
1250 
1251 	slot = root->rnode;
1252 	if (height == 0) {
1253 		root_tag_clear_all(root);
1254 		root->rnode = NULL;
1255 		goto out;
1256 	}
1257 	slot = radix_tree_indirect_to_ptr(slot);
1258 
1259 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1260 	pathp->node = NULL;
1261 
1262 	do {
1263 		if (slot == NULL)
1264 			goto out;
1265 
1266 		pathp++;
1267 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1268 		pathp->offset = offset;
1269 		pathp->node = slot;
1270 		slot = slot->slots[offset];
1271 		shift -= RADIX_TREE_MAP_SHIFT;
1272 		height--;
1273 	} while (height > 0);
1274 
1275 	if (slot == NULL)
1276 		goto out;
1277 
1278 	/*
1279 	 * Clear all tags associated with the just-deleted item
1280 	 */
1281 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1282 		if (tag_get(pathp->node, tag, pathp->offset))
1283 			radix_tree_tag_clear(root, index, tag);
1284 	}
1285 
1286 	to_free = NULL;
1287 	/* Now free the nodes we do not need anymore */
1288 	while (pathp->node) {
1289 		pathp->node->slots[pathp->offset] = NULL;
1290 		pathp->node->count--;
1291 		/*
1292 		 * Queue the node for deferred freeing after the
1293 		 * last reference to it disappears (set NULL, above).
1294 		 */
1295 		if (to_free)
1296 			radix_tree_node_free(to_free);
1297 
1298 		if (pathp->node->count) {
1299 			if (pathp->node ==
1300 					radix_tree_indirect_to_ptr(root->rnode))
1301 				radix_tree_shrink(root);
1302 			goto out;
1303 		}
1304 
1305 		/* Node with zero slots in use so free it */
1306 		to_free = pathp->node;
1307 		pathp--;
1308 
1309 	}
1310 	root_tag_clear_all(root);
1311 	root->height = 0;
1312 	root->rnode = NULL;
1313 	if (to_free)
1314 		radix_tree_node_free(to_free);
1315 
1316 out:
1317 	return slot;
1318 }
1319 EXPORT_SYMBOL(radix_tree_delete);
1320 
1321 /**
1322  *	radix_tree_tagged - test whether any items in the tree are tagged
1323  *	@root:		radix tree root
1324  *	@tag:		tag to test
1325  */
1326 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1327 {
1328 	return root_tag_get(root, tag);
1329 }
1330 EXPORT_SYMBOL(radix_tree_tagged);
1331 
1332 static void
1333 radix_tree_node_ctor(void *node)
1334 {
1335 	memset(node, 0, sizeof(struct radix_tree_node));
1336 }
1337 
1338 static __init unsigned long __maxindex(unsigned int height)
1339 {
1340 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1341 	int shift = RADIX_TREE_INDEX_BITS - width;
1342 
1343 	if (shift < 0)
1344 		return ~0UL;
1345 	if (shift >= BITS_PER_LONG)
1346 		return 0UL;
1347 	return ~0UL >> shift;
1348 }
1349 
1350 static __init void radix_tree_init_maxindex(void)
1351 {
1352 	unsigned int i;
1353 
1354 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1355 		height_to_maxindex[i] = __maxindex(i);
1356 }
1357 
1358 static int radix_tree_callback(struct notifier_block *nfb,
1359                             unsigned long action,
1360                             void *hcpu)
1361 {
1362        int cpu = (long)hcpu;
1363        struct radix_tree_preload *rtp;
1364 
1365        /* Free per-cpu pool of perloaded nodes */
1366        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1367                rtp = &per_cpu(radix_tree_preloads, cpu);
1368                while (rtp->nr) {
1369                        kmem_cache_free(radix_tree_node_cachep,
1370                                        rtp->nodes[rtp->nr-1]);
1371                        rtp->nodes[rtp->nr-1] = NULL;
1372                        rtp->nr--;
1373                }
1374        }
1375        return NOTIFY_OK;
1376 }
1377 
1378 void __init radix_tree_init(void)
1379 {
1380 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1381 			sizeof(struct radix_tree_node), 0,
1382 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1383 			radix_tree_node_ctor);
1384 	radix_tree_init_maxindex();
1385 	hotcpu_notifier(radix_tree_callback, 0);
1386 }
1387