xref: /linux/lib/radix-tree.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /*
42  * Radix tree node cache.
43  */
44 static struct kmem_cache *radix_tree_node_cachep;
45 
46 /*
47  * The radix tree is variable-height, so an insert operation not only has
48  * to build the branch to its corresponding item, it also has to build the
49  * branch to existing items if the size has to be increased (by
50  * radix_tree_extend).
51  *
52  * The worst case is a zero height tree with just a single item at index 0,
53  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
54  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
55  * Hence:
56  */
57 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
58 
59 /*
60  * Per-cpu pool of preloaded nodes
61  */
62 struct radix_tree_preload {
63 	unsigned nr;
64 	/* nodes->private_data points to next preallocated node */
65 	struct radix_tree_node *nodes;
66 };
67 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
68 
69 static inline void *node_to_entry(void *ptr)
70 {
71 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
72 }
73 
74 #define RADIX_TREE_RETRY	node_to_entry(NULL)
75 
76 #ifdef CONFIG_RADIX_TREE_MULTIORDER
77 /* Sibling slots point directly to another slot in the same node */
78 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
79 {
80 	void **ptr = node;
81 	return (parent->slots <= ptr) &&
82 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
83 }
84 #else
85 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86 {
87 	return false;
88 }
89 #endif
90 
91 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
92 						 void **slot)
93 {
94 	return slot - parent->slots;
95 }
96 
97 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
98 			struct radix_tree_node **nodep, unsigned long index)
99 {
100 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
101 	void **entry = rcu_dereference_raw(parent->slots[offset]);
102 
103 #ifdef CONFIG_RADIX_TREE_MULTIORDER
104 	if (radix_tree_is_internal_node(entry)) {
105 		unsigned long siboff = get_slot_offset(parent, entry);
106 		if (siboff < RADIX_TREE_MAP_SIZE) {
107 			offset = siboff;
108 			entry = rcu_dereference_raw(parent->slots[offset]);
109 		}
110 	}
111 #endif
112 
113 	*nodep = (void *)entry;
114 	return offset;
115 }
116 
117 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
118 {
119 	return root->gfp_mask & __GFP_BITS_MASK;
120 }
121 
122 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
123 		int offset)
124 {
125 	__set_bit(offset, node->tags[tag]);
126 }
127 
128 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
129 		int offset)
130 {
131 	__clear_bit(offset, node->tags[tag]);
132 }
133 
134 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
135 		int offset)
136 {
137 	return test_bit(offset, node->tags[tag]);
138 }
139 
140 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
141 {
142 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
143 }
144 
145 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
146 {
147 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
148 }
149 
150 static inline void root_tag_clear_all(struct radix_tree_root *root)
151 {
152 	root->gfp_mask &= __GFP_BITS_MASK;
153 }
154 
155 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
156 {
157 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
158 }
159 
160 static inline unsigned root_tags_get(struct radix_tree_root *root)
161 {
162 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
163 }
164 
165 /*
166  * Returns 1 if any slot in the node has this tag set.
167  * Otherwise returns 0.
168  */
169 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
170 {
171 	unsigned idx;
172 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
173 		if (node->tags[tag][idx])
174 			return 1;
175 	}
176 	return 0;
177 }
178 
179 /**
180  * radix_tree_find_next_bit - find the next set bit in a memory region
181  *
182  * @addr: The address to base the search on
183  * @size: The bitmap size in bits
184  * @offset: The bitnumber to start searching at
185  *
186  * Unrollable variant of find_next_bit() for constant size arrays.
187  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
188  * Returns next bit offset, or size if nothing found.
189  */
190 static __always_inline unsigned long
191 radix_tree_find_next_bit(const unsigned long *addr,
192 			 unsigned long size, unsigned long offset)
193 {
194 	if (!__builtin_constant_p(size))
195 		return find_next_bit(addr, size, offset);
196 
197 	if (offset < size) {
198 		unsigned long tmp;
199 
200 		addr += offset / BITS_PER_LONG;
201 		tmp = *addr >> (offset % BITS_PER_LONG);
202 		if (tmp)
203 			return __ffs(tmp) + offset;
204 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
205 		while (offset < size) {
206 			tmp = *++addr;
207 			if (tmp)
208 				return __ffs(tmp) + offset;
209 			offset += BITS_PER_LONG;
210 		}
211 	}
212 	return size;
213 }
214 
215 #ifndef __KERNEL__
216 static void dump_node(struct radix_tree_node *node, unsigned long index)
217 {
218 	unsigned long i;
219 
220 	pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
221 		node, node->offset,
222 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
223 		node->shift, node->count, node->parent);
224 
225 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
226 		unsigned long first = index | (i << node->shift);
227 		unsigned long last = first | ((1UL << node->shift) - 1);
228 		void *entry = node->slots[i];
229 		if (!entry)
230 			continue;
231 		if (is_sibling_entry(node, entry)) {
232 			pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
233 					entry, i,
234 					*(void **)entry_to_node(entry),
235 					first, last);
236 		} else if (!radix_tree_is_internal_node(entry)) {
237 			pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
238 					entry, i, first, last);
239 		} else {
240 			dump_node(entry_to_node(entry), first);
241 		}
242 	}
243 }
244 
245 /* For debug */
246 static void radix_tree_dump(struct radix_tree_root *root)
247 {
248 	pr_debug("radix root: %p rnode %p tags %x\n",
249 			root, root->rnode,
250 			root->gfp_mask >> __GFP_BITS_SHIFT);
251 	if (!radix_tree_is_internal_node(root->rnode))
252 		return;
253 	dump_node(entry_to_node(root->rnode), 0);
254 }
255 #endif
256 
257 /*
258  * This assumes that the caller has performed appropriate preallocation, and
259  * that the caller has pinned this thread of control to the current CPU.
260  */
261 static struct radix_tree_node *
262 radix_tree_node_alloc(struct radix_tree_root *root)
263 {
264 	struct radix_tree_node *ret = NULL;
265 	gfp_t gfp_mask = root_gfp_mask(root);
266 
267 	/*
268 	 * Preload code isn't irq safe and it doesn't make sense to use
269 	 * preloading during an interrupt anyway as all the allocations have
270 	 * to be atomic. So just do normal allocation when in interrupt.
271 	 */
272 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
273 		struct radix_tree_preload *rtp;
274 
275 		/*
276 		 * Even if the caller has preloaded, try to allocate from the
277 		 * cache first for the new node to get accounted.
278 		 */
279 		ret = kmem_cache_alloc(radix_tree_node_cachep,
280 				       gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
281 		if (ret)
282 			goto out;
283 
284 		/*
285 		 * Provided the caller has preloaded here, we will always
286 		 * succeed in getting a node here (and never reach
287 		 * kmem_cache_alloc)
288 		 */
289 		rtp = this_cpu_ptr(&radix_tree_preloads);
290 		if (rtp->nr) {
291 			ret = rtp->nodes;
292 			rtp->nodes = ret->private_data;
293 			ret->private_data = NULL;
294 			rtp->nr--;
295 		}
296 		/*
297 		 * Update the allocation stack trace as this is more useful
298 		 * for debugging.
299 		 */
300 		kmemleak_update_trace(ret);
301 		goto out;
302 	}
303 	ret = kmem_cache_alloc(radix_tree_node_cachep,
304 			       gfp_mask | __GFP_ACCOUNT);
305 out:
306 	BUG_ON(radix_tree_is_internal_node(ret));
307 	return ret;
308 }
309 
310 static void radix_tree_node_rcu_free(struct rcu_head *head)
311 {
312 	struct radix_tree_node *node =
313 			container_of(head, struct radix_tree_node, rcu_head);
314 	int i;
315 
316 	/*
317 	 * must only free zeroed nodes into the slab. radix_tree_shrink
318 	 * can leave us with a non-NULL entry in the first slot, so clear
319 	 * that here to make sure.
320 	 */
321 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
322 		tag_clear(node, i, 0);
323 
324 	node->slots[0] = NULL;
325 	node->count = 0;
326 
327 	kmem_cache_free(radix_tree_node_cachep, node);
328 }
329 
330 static inline void
331 radix_tree_node_free(struct radix_tree_node *node)
332 {
333 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
334 }
335 
336 /*
337  * Load up this CPU's radix_tree_node buffer with sufficient objects to
338  * ensure that the addition of a single element in the tree cannot fail.  On
339  * success, return zero, with preemption disabled.  On error, return -ENOMEM
340  * with preemption not disabled.
341  *
342  * To make use of this facility, the radix tree must be initialised without
343  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
344  */
345 static int __radix_tree_preload(gfp_t gfp_mask)
346 {
347 	struct radix_tree_preload *rtp;
348 	struct radix_tree_node *node;
349 	int ret = -ENOMEM;
350 
351 	preempt_disable();
352 	rtp = this_cpu_ptr(&radix_tree_preloads);
353 	while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
354 		preempt_enable();
355 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
356 		if (node == NULL)
357 			goto out;
358 		preempt_disable();
359 		rtp = this_cpu_ptr(&radix_tree_preloads);
360 		if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
361 			node->private_data = rtp->nodes;
362 			rtp->nodes = node;
363 			rtp->nr++;
364 		} else {
365 			kmem_cache_free(radix_tree_node_cachep, node);
366 		}
367 	}
368 	ret = 0;
369 out:
370 	return ret;
371 }
372 
373 /*
374  * Load up this CPU's radix_tree_node buffer with sufficient objects to
375  * ensure that the addition of a single element in the tree cannot fail.  On
376  * success, return zero, with preemption disabled.  On error, return -ENOMEM
377  * with preemption not disabled.
378  *
379  * To make use of this facility, the radix tree must be initialised without
380  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
381  */
382 int radix_tree_preload(gfp_t gfp_mask)
383 {
384 	/* Warn on non-sensical use... */
385 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
386 	return __radix_tree_preload(gfp_mask);
387 }
388 EXPORT_SYMBOL(radix_tree_preload);
389 
390 /*
391  * The same as above function, except we don't guarantee preloading happens.
392  * We do it, if we decide it helps. On success, return zero with preemption
393  * disabled. On error, return -ENOMEM with preemption not disabled.
394  */
395 int radix_tree_maybe_preload(gfp_t gfp_mask)
396 {
397 	if (gfpflags_allow_blocking(gfp_mask))
398 		return __radix_tree_preload(gfp_mask);
399 	/* Preloading doesn't help anything with this gfp mask, skip it */
400 	preempt_disable();
401 	return 0;
402 }
403 EXPORT_SYMBOL(radix_tree_maybe_preload);
404 
405 /*
406  * The maximum index which can be stored in a radix tree
407  */
408 static inline unsigned long shift_maxindex(unsigned int shift)
409 {
410 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
411 }
412 
413 static inline unsigned long node_maxindex(struct radix_tree_node *node)
414 {
415 	return shift_maxindex(node->shift);
416 }
417 
418 static unsigned radix_tree_load_root(struct radix_tree_root *root,
419 		struct radix_tree_node **nodep, unsigned long *maxindex)
420 {
421 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
422 
423 	*nodep = node;
424 
425 	if (likely(radix_tree_is_internal_node(node))) {
426 		node = entry_to_node(node);
427 		*maxindex = node_maxindex(node);
428 		return node->shift + RADIX_TREE_MAP_SHIFT;
429 	}
430 
431 	*maxindex = 0;
432 	return 0;
433 }
434 
435 /*
436  *	Extend a radix tree so it can store key @index.
437  */
438 static int radix_tree_extend(struct radix_tree_root *root,
439 				unsigned long index, unsigned int shift)
440 {
441 	struct radix_tree_node *slot;
442 	unsigned int maxshift;
443 	int tag;
444 
445 	/* Figure out what the shift should be.  */
446 	maxshift = shift;
447 	while (index > shift_maxindex(maxshift))
448 		maxshift += RADIX_TREE_MAP_SHIFT;
449 
450 	slot = root->rnode;
451 	if (!slot)
452 		goto out;
453 
454 	do {
455 		struct radix_tree_node *node = radix_tree_node_alloc(root);
456 
457 		if (!node)
458 			return -ENOMEM;
459 
460 		/* Propagate the aggregated tag info into the new root */
461 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
462 			if (root_tag_get(root, tag))
463 				tag_set(node, tag, 0);
464 		}
465 
466 		BUG_ON(shift > BITS_PER_LONG);
467 		node->shift = shift;
468 		node->offset = 0;
469 		node->count = 1;
470 		node->parent = NULL;
471 		if (radix_tree_is_internal_node(slot))
472 			entry_to_node(slot)->parent = node;
473 		node->slots[0] = slot;
474 		slot = node_to_entry(node);
475 		rcu_assign_pointer(root->rnode, slot);
476 		shift += RADIX_TREE_MAP_SHIFT;
477 	} while (shift <= maxshift);
478 out:
479 	return maxshift + RADIX_TREE_MAP_SHIFT;
480 }
481 
482 /**
483  *	__radix_tree_create	-	create a slot in a radix tree
484  *	@root:		radix tree root
485  *	@index:		index key
486  *	@order:		index occupies 2^order aligned slots
487  *	@nodep:		returns node
488  *	@slotp:		returns slot
489  *
490  *	Create, if necessary, and return the node and slot for an item
491  *	at position @index in the radix tree @root.
492  *
493  *	Until there is more than one item in the tree, no nodes are
494  *	allocated and @root->rnode is used as a direct slot instead of
495  *	pointing to a node, in which case *@nodep will be NULL.
496  *
497  *	Returns -ENOMEM, or 0 for success.
498  */
499 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
500 			unsigned order, struct radix_tree_node **nodep,
501 			void ***slotp)
502 {
503 	struct radix_tree_node *node = NULL, *child;
504 	void **slot = (void **)&root->rnode;
505 	unsigned long maxindex;
506 	unsigned int shift, offset = 0;
507 	unsigned long max = index | ((1UL << order) - 1);
508 
509 	shift = radix_tree_load_root(root, &child, &maxindex);
510 
511 	/* Make sure the tree is high enough.  */
512 	if (max > maxindex) {
513 		int error = radix_tree_extend(root, max, shift);
514 		if (error < 0)
515 			return error;
516 		shift = error;
517 		child = root->rnode;
518 		if (order == shift)
519 			shift += RADIX_TREE_MAP_SHIFT;
520 	}
521 
522 	while (shift > order) {
523 		shift -= RADIX_TREE_MAP_SHIFT;
524 		if (child == NULL) {
525 			/* Have to add a child node.  */
526 			child = radix_tree_node_alloc(root);
527 			if (!child)
528 				return -ENOMEM;
529 			child->shift = shift;
530 			child->offset = offset;
531 			child->parent = node;
532 			rcu_assign_pointer(*slot, node_to_entry(child));
533 			if (node)
534 				node->count++;
535 		} else if (!radix_tree_is_internal_node(child))
536 			break;
537 
538 		/* Go a level down */
539 		node = entry_to_node(child);
540 		offset = radix_tree_descend(node, &child, index);
541 		slot = &node->slots[offset];
542 	}
543 
544 #ifdef CONFIG_RADIX_TREE_MULTIORDER
545 	/* Insert pointers to the canonical entry */
546 	if (order > shift) {
547 		unsigned i, n = 1 << (order - shift);
548 		offset = offset & ~(n - 1);
549 		slot = &node->slots[offset];
550 		child = node_to_entry(slot);
551 		for (i = 0; i < n; i++) {
552 			if (slot[i])
553 				return -EEXIST;
554 		}
555 
556 		for (i = 1; i < n; i++) {
557 			rcu_assign_pointer(slot[i], child);
558 			node->count++;
559 		}
560 	}
561 #endif
562 
563 	if (nodep)
564 		*nodep = node;
565 	if (slotp)
566 		*slotp = slot;
567 	return 0;
568 }
569 
570 /**
571  *	__radix_tree_insert    -    insert into a radix tree
572  *	@root:		radix tree root
573  *	@index:		index key
574  *	@order:		key covers the 2^order indices around index
575  *	@item:		item to insert
576  *
577  *	Insert an item into the radix tree at position @index.
578  */
579 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
580 			unsigned order, void *item)
581 {
582 	struct radix_tree_node *node;
583 	void **slot;
584 	int error;
585 
586 	BUG_ON(radix_tree_is_internal_node(item));
587 
588 	error = __radix_tree_create(root, index, order, &node, &slot);
589 	if (error)
590 		return error;
591 	if (*slot != NULL)
592 		return -EEXIST;
593 	rcu_assign_pointer(*slot, item);
594 
595 	if (node) {
596 		unsigned offset = get_slot_offset(node, slot);
597 		node->count++;
598 		BUG_ON(tag_get(node, 0, offset));
599 		BUG_ON(tag_get(node, 1, offset));
600 		BUG_ON(tag_get(node, 2, offset));
601 	} else {
602 		BUG_ON(root_tags_get(root));
603 	}
604 
605 	return 0;
606 }
607 EXPORT_SYMBOL(__radix_tree_insert);
608 
609 /**
610  *	__radix_tree_lookup	-	lookup an item in a radix tree
611  *	@root:		radix tree root
612  *	@index:		index key
613  *	@nodep:		returns node
614  *	@slotp:		returns slot
615  *
616  *	Lookup and return the item at position @index in the radix
617  *	tree @root.
618  *
619  *	Until there is more than one item in the tree, no nodes are
620  *	allocated and @root->rnode is used as a direct slot instead of
621  *	pointing to a node, in which case *@nodep will be NULL.
622  */
623 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
624 			  struct radix_tree_node **nodep, void ***slotp)
625 {
626 	struct radix_tree_node *node, *parent;
627 	unsigned long maxindex;
628 	void **slot;
629 
630  restart:
631 	parent = NULL;
632 	slot = (void **)&root->rnode;
633 	radix_tree_load_root(root, &node, &maxindex);
634 	if (index > maxindex)
635 		return NULL;
636 
637 	while (radix_tree_is_internal_node(node)) {
638 		unsigned offset;
639 
640 		if (node == RADIX_TREE_RETRY)
641 			goto restart;
642 		parent = entry_to_node(node);
643 		offset = radix_tree_descend(parent, &node, index);
644 		slot = parent->slots + offset;
645 	}
646 
647 	if (nodep)
648 		*nodep = parent;
649 	if (slotp)
650 		*slotp = slot;
651 	return node;
652 }
653 
654 /**
655  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
656  *	@root:		radix tree root
657  *	@index:		index key
658  *
659  *	Returns:  the slot corresponding to the position @index in the
660  *	radix tree @root. This is useful for update-if-exists operations.
661  *
662  *	This function can be called under rcu_read_lock iff the slot is not
663  *	modified by radix_tree_replace_slot, otherwise it must be called
664  *	exclusive from other writers. Any dereference of the slot must be done
665  *	using radix_tree_deref_slot.
666  */
667 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
668 {
669 	void **slot;
670 
671 	if (!__radix_tree_lookup(root, index, NULL, &slot))
672 		return NULL;
673 	return slot;
674 }
675 EXPORT_SYMBOL(radix_tree_lookup_slot);
676 
677 /**
678  *	radix_tree_lookup    -    perform lookup operation on a radix tree
679  *	@root:		radix tree root
680  *	@index:		index key
681  *
682  *	Lookup the item at the position @index in the radix tree @root.
683  *
684  *	This function can be called under rcu_read_lock, however the caller
685  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
686  *	them safely). No RCU barriers are required to access or modify the
687  *	returned item, however.
688  */
689 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
690 {
691 	return __radix_tree_lookup(root, index, NULL, NULL);
692 }
693 EXPORT_SYMBOL(radix_tree_lookup);
694 
695 /**
696  *	radix_tree_tag_set - set a tag on a radix tree node
697  *	@root:		radix tree root
698  *	@index:		index key
699  *	@tag:		tag index
700  *
701  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
702  *	corresponding to @index in the radix tree.  From
703  *	the root all the way down to the leaf node.
704  *
705  *	Returns the address of the tagged item.  Setting a tag on a not-present
706  *	item is a bug.
707  */
708 void *radix_tree_tag_set(struct radix_tree_root *root,
709 			unsigned long index, unsigned int tag)
710 {
711 	struct radix_tree_node *node, *parent;
712 	unsigned long maxindex;
713 
714 	radix_tree_load_root(root, &node, &maxindex);
715 	BUG_ON(index > maxindex);
716 
717 	while (radix_tree_is_internal_node(node)) {
718 		unsigned offset;
719 
720 		parent = entry_to_node(node);
721 		offset = radix_tree_descend(parent, &node, index);
722 		BUG_ON(!node);
723 
724 		if (!tag_get(parent, tag, offset))
725 			tag_set(parent, tag, offset);
726 	}
727 
728 	/* set the root's tag bit */
729 	if (!root_tag_get(root, tag))
730 		root_tag_set(root, tag);
731 
732 	return node;
733 }
734 EXPORT_SYMBOL(radix_tree_tag_set);
735 
736 static void node_tag_clear(struct radix_tree_root *root,
737 				struct radix_tree_node *node,
738 				unsigned int tag, unsigned int offset)
739 {
740 	while (node) {
741 		if (!tag_get(node, tag, offset))
742 			return;
743 		tag_clear(node, tag, offset);
744 		if (any_tag_set(node, tag))
745 			return;
746 
747 		offset = node->offset;
748 		node = node->parent;
749 	}
750 
751 	/* clear the root's tag bit */
752 	if (root_tag_get(root, tag))
753 		root_tag_clear(root, tag);
754 }
755 
756 /**
757  *	radix_tree_tag_clear - clear a tag on a radix tree node
758  *	@root:		radix tree root
759  *	@index:		index key
760  *	@tag:		tag index
761  *
762  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
763  *	corresponding to @index in the radix tree.  If this causes
764  *	the leaf node to have no tags set then clear the tag in the
765  *	next-to-leaf node, etc.
766  *
767  *	Returns the address of the tagged item on success, else NULL.  ie:
768  *	has the same return value and semantics as radix_tree_lookup().
769  */
770 void *radix_tree_tag_clear(struct radix_tree_root *root,
771 			unsigned long index, unsigned int tag)
772 {
773 	struct radix_tree_node *node, *parent;
774 	unsigned long maxindex;
775 	int uninitialized_var(offset);
776 
777 	radix_tree_load_root(root, &node, &maxindex);
778 	if (index > maxindex)
779 		return NULL;
780 
781 	parent = NULL;
782 
783 	while (radix_tree_is_internal_node(node)) {
784 		parent = entry_to_node(node);
785 		offset = radix_tree_descend(parent, &node, index);
786 	}
787 
788 	if (node)
789 		node_tag_clear(root, parent, tag, offset);
790 
791 	return node;
792 }
793 EXPORT_SYMBOL(radix_tree_tag_clear);
794 
795 /**
796  * radix_tree_tag_get - get a tag on a radix tree node
797  * @root:		radix tree root
798  * @index:		index key
799  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
800  *
801  * Return values:
802  *
803  *  0: tag not present or not set
804  *  1: tag set
805  *
806  * Note that the return value of this function may not be relied on, even if
807  * the RCU lock is held, unless tag modification and node deletion are excluded
808  * from concurrency.
809  */
810 int radix_tree_tag_get(struct radix_tree_root *root,
811 			unsigned long index, unsigned int tag)
812 {
813 	struct radix_tree_node *node, *parent;
814 	unsigned long maxindex;
815 
816 	if (!root_tag_get(root, tag))
817 		return 0;
818 
819 	radix_tree_load_root(root, &node, &maxindex);
820 	if (index > maxindex)
821 		return 0;
822 	if (node == NULL)
823 		return 0;
824 
825 	while (radix_tree_is_internal_node(node)) {
826 		unsigned offset;
827 
828 		parent = entry_to_node(node);
829 		offset = radix_tree_descend(parent, &node, index);
830 
831 		if (!node)
832 			return 0;
833 		if (!tag_get(parent, tag, offset))
834 			return 0;
835 		if (node == RADIX_TREE_RETRY)
836 			break;
837 	}
838 
839 	return 1;
840 }
841 EXPORT_SYMBOL(radix_tree_tag_get);
842 
843 static inline void __set_iter_shift(struct radix_tree_iter *iter,
844 					unsigned int shift)
845 {
846 #ifdef CONFIG_RADIX_TREE_MULTIORDER
847 	iter->shift = shift;
848 #endif
849 }
850 
851 /**
852  * radix_tree_next_chunk - find next chunk of slots for iteration
853  *
854  * @root:	radix tree root
855  * @iter:	iterator state
856  * @flags:	RADIX_TREE_ITER_* flags and tag index
857  * Returns:	pointer to chunk first slot, or NULL if iteration is over
858  */
859 void **radix_tree_next_chunk(struct radix_tree_root *root,
860 			     struct radix_tree_iter *iter, unsigned flags)
861 {
862 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
863 	struct radix_tree_node *node, *child;
864 	unsigned long index, offset, maxindex;
865 
866 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
867 		return NULL;
868 
869 	/*
870 	 * Catch next_index overflow after ~0UL. iter->index never overflows
871 	 * during iterating; it can be zero only at the beginning.
872 	 * And we cannot overflow iter->next_index in a single step,
873 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
874 	 *
875 	 * This condition also used by radix_tree_next_slot() to stop
876 	 * contiguous iterating, and forbid swithing to the next chunk.
877 	 */
878 	index = iter->next_index;
879 	if (!index && iter->index)
880 		return NULL;
881 
882  restart:
883 	radix_tree_load_root(root, &child, &maxindex);
884 	if (index > maxindex)
885 		return NULL;
886 	if (!child)
887 		return NULL;
888 
889 	if (!radix_tree_is_internal_node(child)) {
890 		/* Single-slot tree */
891 		iter->index = index;
892 		iter->next_index = maxindex + 1;
893 		iter->tags = 1;
894 		__set_iter_shift(iter, 0);
895 		return (void **)&root->rnode;
896 	}
897 
898 	do {
899 		node = entry_to_node(child);
900 		offset = radix_tree_descend(node, &child, index);
901 
902 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
903 				!tag_get(node, tag, offset) : !child) {
904 			/* Hole detected */
905 			if (flags & RADIX_TREE_ITER_CONTIG)
906 				return NULL;
907 
908 			if (flags & RADIX_TREE_ITER_TAGGED)
909 				offset = radix_tree_find_next_bit(
910 						node->tags[tag],
911 						RADIX_TREE_MAP_SIZE,
912 						offset + 1);
913 			else
914 				while (++offset	< RADIX_TREE_MAP_SIZE) {
915 					void *slot = node->slots[offset];
916 					if (is_sibling_entry(node, slot))
917 						continue;
918 					if (slot)
919 						break;
920 				}
921 			index &= ~node_maxindex(node);
922 			index += offset << node->shift;
923 			/* Overflow after ~0UL */
924 			if (!index)
925 				return NULL;
926 			if (offset == RADIX_TREE_MAP_SIZE)
927 				goto restart;
928 			child = rcu_dereference_raw(node->slots[offset]);
929 		}
930 
931 		if ((child == NULL) || (child == RADIX_TREE_RETRY))
932 			goto restart;
933 	} while (radix_tree_is_internal_node(child));
934 
935 	/* Update the iterator state */
936 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
937 	iter->next_index = (index | node_maxindex(node)) + 1;
938 	__set_iter_shift(iter, node->shift);
939 
940 	/* Construct iter->tags bit-mask from node->tags[tag] array */
941 	if (flags & RADIX_TREE_ITER_TAGGED) {
942 		unsigned tag_long, tag_bit;
943 
944 		tag_long = offset / BITS_PER_LONG;
945 		tag_bit  = offset % BITS_PER_LONG;
946 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
947 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
948 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
949 			/* Pick tags from next element */
950 			if (tag_bit)
951 				iter->tags |= node->tags[tag][tag_long + 1] <<
952 						(BITS_PER_LONG - tag_bit);
953 			/* Clip chunk size, here only BITS_PER_LONG tags */
954 			iter->next_index = index + BITS_PER_LONG;
955 		}
956 	}
957 
958 	return node->slots + offset;
959 }
960 EXPORT_SYMBOL(radix_tree_next_chunk);
961 
962 /**
963  * radix_tree_range_tag_if_tagged - for each item in given range set given
964  *				   tag if item has another tag set
965  * @root:		radix tree root
966  * @first_indexp:	pointer to a starting index of a range to scan
967  * @last_index:		last index of a range to scan
968  * @nr_to_tag:		maximum number items to tag
969  * @iftag:		tag index to test
970  * @settag:		tag index to set if tested tag is set
971  *
972  * This function scans range of radix tree from first_index to last_index
973  * (inclusive).  For each item in the range if iftag is set, the function sets
974  * also settag. The function stops either after tagging nr_to_tag items or
975  * after reaching last_index.
976  *
977  * The tags must be set from the leaf level only and propagated back up the
978  * path to the root. We must do this so that we resolve the full path before
979  * setting any tags on intermediate nodes. If we set tags as we descend, then
980  * we can get to the leaf node and find that the index that has the iftag
981  * set is outside the range we are scanning. This reults in dangling tags and
982  * can lead to problems with later tag operations (e.g. livelocks on lookups).
983  *
984  * The function returns the number of leaves where the tag was set and sets
985  * *first_indexp to the first unscanned index.
986  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
987  * be prepared to handle that.
988  */
989 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
990 		unsigned long *first_indexp, unsigned long last_index,
991 		unsigned long nr_to_tag,
992 		unsigned int iftag, unsigned int settag)
993 {
994 	struct radix_tree_node *parent, *node, *child;
995 	unsigned long maxindex;
996 	unsigned long tagged = 0;
997 	unsigned long index = *first_indexp;
998 
999 	radix_tree_load_root(root, &child, &maxindex);
1000 	last_index = min(last_index, maxindex);
1001 	if (index > last_index)
1002 		return 0;
1003 	if (!nr_to_tag)
1004 		return 0;
1005 	if (!root_tag_get(root, iftag)) {
1006 		*first_indexp = last_index + 1;
1007 		return 0;
1008 	}
1009 	if (!radix_tree_is_internal_node(child)) {
1010 		*first_indexp = last_index + 1;
1011 		root_tag_set(root, settag);
1012 		return 1;
1013 	}
1014 
1015 	node = entry_to_node(child);
1016 
1017 	for (;;) {
1018 		unsigned offset = radix_tree_descend(node, &child, index);
1019 		if (!child)
1020 			goto next;
1021 		if (!tag_get(node, iftag, offset))
1022 			goto next;
1023 		/* Sibling slots never have tags set on them */
1024 		if (radix_tree_is_internal_node(child)) {
1025 			node = entry_to_node(child);
1026 			continue;
1027 		}
1028 
1029 		/* tag the leaf */
1030 		tagged++;
1031 		tag_set(node, settag, offset);
1032 
1033 		/* walk back up the path tagging interior nodes */
1034 		parent = node;
1035 		for (;;) {
1036 			offset = parent->offset;
1037 			parent = parent->parent;
1038 			if (!parent)
1039 				break;
1040 			/* stop if we find a node with the tag already set */
1041 			if (tag_get(parent, settag, offset))
1042 				break;
1043 			tag_set(parent, settag, offset);
1044 		}
1045  next:
1046 		/* Go to next entry in node */
1047 		index = ((index >> node->shift) + 1) << node->shift;
1048 		/* Overflow can happen when last_index is ~0UL... */
1049 		if (index > last_index || !index)
1050 			break;
1051 		offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1052 		while (offset == 0) {
1053 			/*
1054 			 * We've fully scanned this node. Go up. Because
1055 			 * last_index is guaranteed to be in the tree, what
1056 			 * we do below cannot wander astray.
1057 			 */
1058 			node = node->parent;
1059 			offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1060 		}
1061 		if (is_sibling_entry(node, node->slots[offset]))
1062 			goto next;
1063 		if (tagged >= nr_to_tag)
1064 			break;
1065 	}
1066 	/*
1067 	 * We need not to tag the root tag if there is no tag which is set with
1068 	 * settag within the range from *first_indexp to last_index.
1069 	 */
1070 	if (tagged > 0)
1071 		root_tag_set(root, settag);
1072 	*first_indexp = index;
1073 
1074 	return tagged;
1075 }
1076 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1077 
1078 /**
1079  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1080  *	@root:		radix tree root
1081  *	@results:	where the results of the lookup are placed
1082  *	@first_index:	start the lookup from this key
1083  *	@max_items:	place up to this many items at *results
1084  *
1085  *	Performs an index-ascending scan of the tree for present items.  Places
1086  *	them at *@results and returns the number of items which were placed at
1087  *	*@results.
1088  *
1089  *	The implementation is naive.
1090  *
1091  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1092  *	rcu_read_lock. In this case, rather than the returned results being
1093  *	an atomic snapshot of the tree at a single point in time, the
1094  *	semantics of an RCU protected gang lookup are as though multiple
1095  *	radix_tree_lookups have been issued in individual locks, and results
1096  *	stored in 'results'.
1097  */
1098 unsigned int
1099 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1100 			unsigned long first_index, unsigned int max_items)
1101 {
1102 	struct radix_tree_iter iter;
1103 	void **slot;
1104 	unsigned int ret = 0;
1105 
1106 	if (unlikely(!max_items))
1107 		return 0;
1108 
1109 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1110 		results[ret] = rcu_dereference_raw(*slot);
1111 		if (!results[ret])
1112 			continue;
1113 		if (radix_tree_is_internal_node(results[ret])) {
1114 			slot = radix_tree_iter_retry(&iter);
1115 			continue;
1116 		}
1117 		if (++ret == max_items)
1118 			break;
1119 	}
1120 
1121 	return ret;
1122 }
1123 EXPORT_SYMBOL(radix_tree_gang_lookup);
1124 
1125 /**
1126  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1127  *	@root:		radix tree root
1128  *	@results:	where the results of the lookup are placed
1129  *	@indices:	where their indices should be placed (but usually NULL)
1130  *	@first_index:	start the lookup from this key
1131  *	@max_items:	place up to this many items at *results
1132  *
1133  *	Performs an index-ascending scan of the tree for present items.  Places
1134  *	their slots at *@results and returns the number of items which were
1135  *	placed at *@results.
1136  *
1137  *	The implementation is naive.
1138  *
1139  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1140  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1141  *	protection, radix_tree_deref_slot may fail requiring a retry.
1142  */
1143 unsigned int
1144 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1145 			void ***results, unsigned long *indices,
1146 			unsigned long first_index, unsigned int max_items)
1147 {
1148 	struct radix_tree_iter iter;
1149 	void **slot;
1150 	unsigned int ret = 0;
1151 
1152 	if (unlikely(!max_items))
1153 		return 0;
1154 
1155 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1156 		results[ret] = slot;
1157 		if (indices)
1158 			indices[ret] = iter.index;
1159 		if (++ret == max_items)
1160 			break;
1161 	}
1162 
1163 	return ret;
1164 }
1165 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1166 
1167 /**
1168  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1169  *	                             based on a tag
1170  *	@root:		radix tree root
1171  *	@results:	where the results of the lookup are placed
1172  *	@first_index:	start the lookup from this key
1173  *	@max_items:	place up to this many items at *results
1174  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1175  *
1176  *	Performs an index-ascending scan of the tree for present items which
1177  *	have the tag indexed by @tag set.  Places the items at *@results and
1178  *	returns the number of items which were placed at *@results.
1179  */
1180 unsigned int
1181 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1182 		unsigned long first_index, unsigned int max_items,
1183 		unsigned int tag)
1184 {
1185 	struct radix_tree_iter iter;
1186 	void **slot;
1187 	unsigned int ret = 0;
1188 
1189 	if (unlikely(!max_items))
1190 		return 0;
1191 
1192 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1193 		results[ret] = rcu_dereference_raw(*slot);
1194 		if (!results[ret])
1195 			continue;
1196 		if (radix_tree_is_internal_node(results[ret])) {
1197 			slot = radix_tree_iter_retry(&iter);
1198 			continue;
1199 		}
1200 		if (++ret == max_items)
1201 			break;
1202 	}
1203 
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1207 
1208 /**
1209  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1210  *					  radix tree based on a tag
1211  *	@root:		radix tree root
1212  *	@results:	where the results of the lookup are placed
1213  *	@first_index:	start the lookup from this key
1214  *	@max_items:	place up to this many items at *results
1215  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1216  *
1217  *	Performs an index-ascending scan of the tree for present items which
1218  *	have the tag indexed by @tag set.  Places the slots at *@results and
1219  *	returns the number of slots which were placed at *@results.
1220  */
1221 unsigned int
1222 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1223 		unsigned long first_index, unsigned int max_items,
1224 		unsigned int tag)
1225 {
1226 	struct radix_tree_iter iter;
1227 	void **slot;
1228 	unsigned int ret = 0;
1229 
1230 	if (unlikely(!max_items))
1231 		return 0;
1232 
1233 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1234 		results[ret] = slot;
1235 		if (++ret == max_items)
1236 			break;
1237 	}
1238 
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1242 
1243 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1244 #include <linux/sched.h> /* for cond_resched() */
1245 
1246 struct locate_info {
1247 	unsigned long found_index;
1248 	bool stop;
1249 };
1250 
1251 /*
1252  * This linear search is at present only useful to shmem_unuse_inode().
1253  */
1254 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1255 			      unsigned long index, struct locate_info *info)
1256 {
1257 	unsigned long i;
1258 
1259 	do {
1260 		unsigned int shift = slot->shift;
1261 
1262 		for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1263 		     i < RADIX_TREE_MAP_SIZE;
1264 		     i++, index += (1UL << shift)) {
1265 			struct radix_tree_node *node =
1266 					rcu_dereference_raw(slot->slots[i]);
1267 			if (node == RADIX_TREE_RETRY)
1268 				goto out;
1269 			if (!radix_tree_is_internal_node(node)) {
1270 				if (node == item) {
1271 					info->found_index = index;
1272 					info->stop = true;
1273 					goto out;
1274 				}
1275 				continue;
1276 			}
1277 			node = entry_to_node(node);
1278 			if (is_sibling_entry(slot, node))
1279 				continue;
1280 			slot = node;
1281 			break;
1282 		}
1283 	} while (i < RADIX_TREE_MAP_SIZE);
1284 
1285 out:
1286 	if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1287 		info->stop = true;
1288 	return index;
1289 }
1290 
1291 /**
1292  *	radix_tree_locate_item - search through radix tree for item
1293  *	@root:		radix tree root
1294  *	@item:		item to be found
1295  *
1296  *	Returns index where item was found, or -1 if not found.
1297  *	Caller must hold no lock (since this time-consuming function needs
1298  *	to be preemptible), and must check afterwards if item is still there.
1299  */
1300 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1301 {
1302 	struct radix_tree_node *node;
1303 	unsigned long max_index;
1304 	unsigned long cur_index = 0;
1305 	struct locate_info info = {
1306 		.found_index = -1,
1307 		.stop = false,
1308 	};
1309 
1310 	do {
1311 		rcu_read_lock();
1312 		node = rcu_dereference_raw(root->rnode);
1313 		if (!radix_tree_is_internal_node(node)) {
1314 			rcu_read_unlock();
1315 			if (node == item)
1316 				info.found_index = 0;
1317 			break;
1318 		}
1319 
1320 		node = entry_to_node(node);
1321 
1322 		max_index = node_maxindex(node);
1323 		if (cur_index > max_index) {
1324 			rcu_read_unlock();
1325 			break;
1326 		}
1327 
1328 		cur_index = __locate(node, item, cur_index, &info);
1329 		rcu_read_unlock();
1330 		cond_resched();
1331 	} while (!info.stop && cur_index <= max_index);
1332 
1333 	return info.found_index;
1334 }
1335 #else
1336 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1337 {
1338 	return -1;
1339 }
1340 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1341 
1342 /**
1343  *	radix_tree_shrink    -    shrink radix tree to minimum height
1344  *	@root		radix tree root
1345  */
1346 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1347 {
1348 	bool shrunk = false;
1349 
1350 	for (;;) {
1351 		struct radix_tree_node *node = root->rnode;
1352 		struct radix_tree_node *child;
1353 
1354 		if (!radix_tree_is_internal_node(node))
1355 			break;
1356 		node = entry_to_node(node);
1357 
1358 		/*
1359 		 * The candidate node has more than one child, or its child
1360 		 * is not at the leftmost slot, or the child is a multiorder
1361 		 * entry, we cannot shrink.
1362 		 */
1363 		if (node->count != 1)
1364 			break;
1365 		child = node->slots[0];
1366 		if (!child)
1367 			break;
1368 		if (!radix_tree_is_internal_node(child) && node->shift)
1369 			break;
1370 
1371 		if (radix_tree_is_internal_node(child))
1372 			entry_to_node(child)->parent = NULL;
1373 
1374 		/*
1375 		 * We don't need rcu_assign_pointer(), since we are simply
1376 		 * moving the node from one part of the tree to another: if it
1377 		 * was safe to dereference the old pointer to it
1378 		 * (node->slots[0]), it will be safe to dereference the new
1379 		 * one (root->rnode) as far as dependent read barriers go.
1380 		 */
1381 		root->rnode = child;
1382 
1383 		/*
1384 		 * We have a dilemma here. The node's slot[0] must not be
1385 		 * NULLed in case there are concurrent lookups expecting to
1386 		 * find the item. However if this was a bottom-level node,
1387 		 * then it may be subject to the slot pointer being visible
1388 		 * to callers dereferencing it. If item corresponding to
1389 		 * slot[0] is subsequently deleted, these callers would expect
1390 		 * their slot to become empty sooner or later.
1391 		 *
1392 		 * For example, lockless pagecache will look up a slot, deref
1393 		 * the page pointer, and if the page has 0 refcount it means it
1394 		 * was concurrently deleted from pagecache so try the deref
1395 		 * again. Fortunately there is already a requirement for logic
1396 		 * to retry the entire slot lookup -- the indirect pointer
1397 		 * problem (replacing direct root node with an indirect pointer
1398 		 * also results in a stale slot). So tag the slot as indirect
1399 		 * to force callers to retry.
1400 		 */
1401 		if (!radix_tree_is_internal_node(child))
1402 			node->slots[0] = RADIX_TREE_RETRY;
1403 
1404 		radix_tree_node_free(node);
1405 		shrunk = true;
1406 	}
1407 
1408 	return shrunk;
1409 }
1410 
1411 /**
1412  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1413  *	@root:		radix tree root
1414  *	@node:		node containing @index
1415  *
1416  *	After clearing the slot at @index in @node from radix tree
1417  *	rooted at @root, call this function to attempt freeing the
1418  *	node and shrinking the tree.
1419  *
1420  *	Returns %true if @node was freed, %false otherwise.
1421  */
1422 bool __radix_tree_delete_node(struct radix_tree_root *root,
1423 			      struct radix_tree_node *node)
1424 {
1425 	bool deleted = false;
1426 
1427 	do {
1428 		struct radix_tree_node *parent;
1429 
1430 		if (node->count) {
1431 			if (node == entry_to_node(root->rnode))
1432 				deleted |= radix_tree_shrink(root);
1433 			return deleted;
1434 		}
1435 
1436 		parent = node->parent;
1437 		if (parent) {
1438 			parent->slots[node->offset] = NULL;
1439 			parent->count--;
1440 		} else {
1441 			root_tag_clear_all(root);
1442 			root->rnode = NULL;
1443 		}
1444 
1445 		radix_tree_node_free(node);
1446 		deleted = true;
1447 
1448 		node = parent;
1449 	} while (node);
1450 
1451 	return deleted;
1452 }
1453 
1454 static inline void delete_sibling_entries(struct radix_tree_node *node,
1455 					void *ptr, unsigned offset)
1456 {
1457 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1458 	int i;
1459 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1460 		if (node->slots[offset + i] != ptr)
1461 			break;
1462 		node->slots[offset + i] = NULL;
1463 		node->count--;
1464 	}
1465 #endif
1466 }
1467 
1468 /**
1469  *	radix_tree_delete_item    -    delete an item from a radix tree
1470  *	@root:		radix tree root
1471  *	@index:		index key
1472  *	@item:		expected item
1473  *
1474  *	Remove @item at @index from the radix tree rooted at @root.
1475  *
1476  *	Returns the address of the deleted item, or NULL if it was not present
1477  *	or the entry at the given @index was not @item.
1478  */
1479 void *radix_tree_delete_item(struct radix_tree_root *root,
1480 			     unsigned long index, void *item)
1481 {
1482 	struct radix_tree_node *node;
1483 	unsigned int offset;
1484 	void **slot;
1485 	void *entry;
1486 	int tag;
1487 
1488 	entry = __radix_tree_lookup(root, index, &node, &slot);
1489 	if (!entry)
1490 		return NULL;
1491 
1492 	if (item && entry != item)
1493 		return NULL;
1494 
1495 	if (!node) {
1496 		root_tag_clear_all(root);
1497 		root->rnode = NULL;
1498 		return entry;
1499 	}
1500 
1501 	offset = get_slot_offset(node, slot);
1502 
1503 	/* Clear all tags associated with the item to be deleted.  */
1504 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1505 		node_tag_clear(root, node, tag, offset);
1506 
1507 	delete_sibling_entries(node, node_to_entry(slot), offset);
1508 	node->slots[offset] = NULL;
1509 	node->count--;
1510 
1511 	__radix_tree_delete_node(root, node);
1512 
1513 	return entry;
1514 }
1515 EXPORT_SYMBOL(radix_tree_delete_item);
1516 
1517 /**
1518  *	radix_tree_delete    -    delete an item from a radix tree
1519  *	@root:		radix tree root
1520  *	@index:		index key
1521  *
1522  *	Remove the item at @index from the radix tree rooted at @root.
1523  *
1524  *	Returns the address of the deleted item, or NULL if it was not present.
1525  */
1526 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1527 {
1528 	return radix_tree_delete_item(root, index, NULL);
1529 }
1530 EXPORT_SYMBOL(radix_tree_delete);
1531 
1532 struct radix_tree_node *radix_tree_replace_clear_tags(
1533 			struct radix_tree_root *root,
1534 			unsigned long index, void *entry)
1535 {
1536 	struct radix_tree_node *node;
1537 	void **slot;
1538 
1539 	__radix_tree_lookup(root, index, &node, &slot);
1540 
1541 	if (node) {
1542 		unsigned int tag, offset = get_slot_offset(node, slot);
1543 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1544 			node_tag_clear(root, node, tag, offset);
1545 	} else {
1546 		/* Clear root node tags */
1547 		root->gfp_mask &= __GFP_BITS_MASK;
1548 	}
1549 
1550 	radix_tree_replace_slot(slot, entry);
1551 	return node;
1552 }
1553 
1554 /**
1555  *	radix_tree_tagged - test whether any items in the tree are tagged
1556  *	@root:		radix tree root
1557  *	@tag:		tag to test
1558  */
1559 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1560 {
1561 	return root_tag_get(root, tag);
1562 }
1563 EXPORT_SYMBOL(radix_tree_tagged);
1564 
1565 static void
1566 radix_tree_node_ctor(void *arg)
1567 {
1568 	struct radix_tree_node *node = arg;
1569 
1570 	memset(node, 0, sizeof(*node));
1571 	INIT_LIST_HEAD(&node->private_list);
1572 }
1573 
1574 static int radix_tree_callback(struct notifier_block *nfb,
1575 				unsigned long action, void *hcpu)
1576 {
1577 	int cpu = (long)hcpu;
1578 	struct radix_tree_preload *rtp;
1579 	struct radix_tree_node *node;
1580 
1581 	/* Free per-cpu pool of preloaded nodes */
1582 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1583 		rtp = &per_cpu(radix_tree_preloads, cpu);
1584 		while (rtp->nr) {
1585 			node = rtp->nodes;
1586 			rtp->nodes = node->private_data;
1587 			kmem_cache_free(radix_tree_node_cachep, node);
1588 			rtp->nr--;
1589 		}
1590 	}
1591 	return NOTIFY_OK;
1592 }
1593 
1594 void __init radix_tree_init(void)
1595 {
1596 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1597 			sizeof(struct radix_tree_node), 0,
1598 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1599 			radix_tree_node_ctor);
1600 	hotcpu_notifier(radix_tree_callback, 0);
1601 }
1602