xref: /linux/lib/polynomial.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic polynomial calculation using integer coefficients.
4  *
5  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
6  *
7  * Authors:
8  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
9  *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
10  *
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/polynomial.h>
16 
17 /*
18  * Originally this was part of drivers/hwmon/bt1-pvt.c.
19  * There the following conversion is used and should serve as an example here:
20  *
21  * The original translation formulae of the temperature (in degrees of Celsius)
22  * to PVT data and vice-versa are following:
23  *
24  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
25  *     1.7204e2
26  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
27  *     3.1020e-1*(N^1) - 4.838e1
28  *
29  * where T = [-48.380, 147.438]C and N = [0, 1023].
30  *
31  * They must be accordingly altered to be suitable for the integer arithmetics.
32  * The technique is called 'factor redistribution', which just makes sure the
33  * multiplications and divisions are made so to have a result of the operations
34  * within the integer numbers limit. In addition we need to translate the
35  * formulae to accept millidegrees of Celsius. Here what they look like after
36  * the alterations:
37  *
38  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
39  *     17204e2) / 1e4
40  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
41  *     48380
42  * where T = [-48380, 147438] mC and N = [0, 1023].
43  *
44  * static const struct polynomial poly_temp_to_N = {
45  *         .total_divider = 10000,
46  *         .terms = {
47  *                 {4, 18322, 10000, 10000},
48  *                 {3, 2343, 10000, 10},
49  *                 {2, 87018, 10000, 10},
50  *                 {1, 39269, 1000, 1},
51  *                 {0, 1720400, 1, 1}
52  *         }
53  * };
54  *
55  * static const struct polynomial poly_N_to_temp = {
56  *         .total_divider = 1,
57  *         .terms = {
58  *                 {4, -16743, 1000, 1},
59  *                 {3, 81542, 1000, 1},
60  *                 {2, -182010, 1000, 1},
61  *                 {1, 310200, 1000, 1},
62  *                 {0, -48380, 1, 1}
63  *         }
64  * };
65  */
66 
67 /**
68  * polynomial_calc - calculate a polynomial using integer arithmetic
69  *
70  * @poly: pointer to the descriptor of the polynomial
71  * @data: input value of the polynimal
72  *
73  * Calculate the result of a polynomial using only integer arithmetic. For
74  * this to work without too much loss of precision the coefficients has to
75  * be altered. This is called factor redistribution.
76  *
77  * Returns the result of the polynomial calculation.
78  */
79 long polynomial_calc(const struct polynomial *poly, long data)
80 {
81 	const struct polynomial_term *term = poly->terms;
82 	long total_divider = poly->total_divider ?: 1;
83 	long tmp, ret = 0;
84 	int deg;
85 
86 	/*
87 	 * Here is the polynomial calculation function, which performs the
88 	 * redistributed terms calculations. It's pretty straightforward.
89 	 * We walk over each degree term up to the free one, and perform
90 	 * the redistributed multiplication of the term coefficient, its
91 	 * divider (as for the rationale fraction representation), data
92 	 * power and the rational fraction divider leftover. Then all of
93 	 * this is collected in a total sum variable, which value is
94 	 * normalized by the total divider before being returned.
95 	 */
96 	do {
97 		tmp = term->coef;
98 		for (deg = 0; deg < term->deg; ++deg)
99 			tmp = mult_frac(tmp, data, term->divider);
100 		ret += tmp / term->divider_leftover;
101 	} while ((term++)->deg);
102 
103 	return ret / total_divider;
104 }
105 EXPORT_SYMBOL_GPL(polynomial_calc);
106 
107 MODULE_DESCRIPTION("Generic polynomial calculations");
108 MODULE_LICENSE("GPL");
109