xref: /linux/lib/percpu-refcount.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 #define pr_fmt(fmt) "%s: " fmt "\n", __func__
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/wait.h>
6 #include <linux/percpu-refcount.h>
7 
8 /*
9  * Initially, a percpu refcount is just a set of percpu counters. Initially, we
10  * don't try to detect the ref hitting 0 - which means that get/put can just
11  * increment or decrement the local counter. Note that the counter on a
12  * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
13  * percpu counters will all sum to the correct value
14  *
15  * (More precisely: because modular arithmetic is commutative the sum of all the
16  * percpu_count vars will be equal to what it would have been if all the gets
17  * and puts were done to a single integer, even if some of the percpu integers
18  * overflow or underflow).
19  *
20  * The real trick to implementing percpu refcounts is shutdown. We can't detect
21  * the ref hitting 0 on every put - this would require global synchronization
22  * and defeat the whole purpose of using percpu refs.
23  *
24  * What we do is require the user to keep track of the initial refcount; we know
25  * the ref can't hit 0 before the user drops the initial ref, so as long as we
26  * convert to non percpu mode before the initial ref is dropped everything
27  * works.
28  *
29  * Converting to non percpu mode is done with some RCUish stuff in
30  * percpu_ref_kill. Additionally, we need a bias value so that the
31  * atomic_long_t can't hit 0 before we've added up all the percpu refs.
32  */
33 
34 #define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))
35 
36 static DEFINE_SPINLOCK(percpu_ref_switch_lock);
37 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
38 
39 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
40 {
41 	return (unsigned long __percpu *)
42 		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
43 }
44 
45 /**
46  * percpu_ref_init - initialize a percpu refcount
47  * @ref: percpu_ref to initialize
48  * @release: function which will be called when refcount hits 0
49  * @flags: PERCPU_REF_INIT_* flags
50  * @gfp: allocation mask to use
51  *
52  * Initializes @ref.  If @flags is zero, @ref starts in percpu mode with a
53  * refcount of 1; analagous to atomic_long_set(ref, 1).  See the
54  * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
55  *
56  * Note that @release must not sleep - it may potentially be called from RCU
57  * callback context by percpu_ref_kill().
58  */
59 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
60 		    unsigned int flags, gfp_t gfp)
61 {
62 	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
63 			     __alignof__(unsigned long));
64 	unsigned long start_count = 0;
65 
66 	ref->percpu_count_ptr = (unsigned long)
67 		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
68 	if (!ref->percpu_count_ptr)
69 		return -ENOMEM;
70 
71 	ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
72 
73 	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
74 		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
75 	else
76 		start_count += PERCPU_COUNT_BIAS;
77 
78 	if (flags & PERCPU_REF_INIT_DEAD)
79 		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
80 	else
81 		start_count++;
82 
83 	atomic_long_set(&ref->count, start_count);
84 
85 	ref->release = release;
86 	ref->confirm_switch = NULL;
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(percpu_ref_init);
90 
91 /**
92  * percpu_ref_exit - undo percpu_ref_init()
93  * @ref: percpu_ref to exit
94  *
95  * This function exits @ref.  The caller is responsible for ensuring that
96  * @ref is no longer in active use.  The usual places to invoke this
97  * function from are the @ref->release() callback or in init failure path
98  * where percpu_ref_init() succeeded but other parts of the initialization
99  * of the embedding object failed.
100  */
101 void percpu_ref_exit(struct percpu_ref *ref)
102 {
103 	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
104 
105 	if (percpu_count) {
106 		/* non-NULL confirm_switch indicates switching in progress */
107 		WARN_ON_ONCE(ref->confirm_switch);
108 		free_percpu(percpu_count);
109 		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
110 	}
111 }
112 EXPORT_SYMBOL_GPL(percpu_ref_exit);
113 
114 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
115 {
116 	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
117 
118 	ref->confirm_switch(ref);
119 	ref->confirm_switch = NULL;
120 	wake_up_all(&percpu_ref_switch_waitq);
121 
122 	/* drop ref from percpu_ref_switch_to_atomic() */
123 	percpu_ref_put(ref);
124 }
125 
126 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
127 {
128 	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
129 	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
130 	unsigned long count = 0;
131 	int cpu;
132 
133 	for_each_possible_cpu(cpu)
134 		count += *per_cpu_ptr(percpu_count, cpu);
135 
136 	pr_debug("global %ld percpu %ld",
137 		 atomic_long_read(&ref->count), (long)count);
138 
139 	/*
140 	 * It's crucial that we sum the percpu counters _before_ adding the sum
141 	 * to &ref->count; since gets could be happening on one cpu while puts
142 	 * happen on another, adding a single cpu's count could cause
143 	 * @ref->count to hit 0 before we've got a consistent value - but the
144 	 * sum of all the counts will be consistent and correct.
145 	 *
146 	 * Subtracting the bias value then has to happen _after_ adding count to
147 	 * &ref->count; we need the bias value to prevent &ref->count from
148 	 * reaching 0 before we add the percpu counts. But doing it at the same
149 	 * time is equivalent and saves us atomic operations:
150 	 */
151 	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
152 
153 	WARN_ONCE(atomic_long_read(&ref->count) <= 0,
154 		  "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
155 		  ref->release, atomic_long_read(&ref->count));
156 
157 	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
158 	percpu_ref_call_confirm_rcu(rcu);
159 }
160 
161 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
162 {
163 }
164 
165 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
166 					  percpu_ref_func_t *confirm_switch)
167 {
168 	if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
169 		if (confirm_switch)
170 			confirm_switch(ref);
171 		return;
172 	}
173 
174 	/* switching from percpu to atomic */
175 	ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
176 
177 	/*
178 	 * Non-NULL ->confirm_switch is used to indicate that switching is
179 	 * in progress.  Use noop one if unspecified.
180 	 */
181 	ref->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch;
182 
183 	percpu_ref_get(ref);	/* put after confirmation */
184 	call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
185 }
186 
187 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
188 {
189 	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
190 	int cpu;
191 
192 	BUG_ON(!percpu_count);
193 
194 	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
195 		return;
196 
197 	atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
198 
199 	/*
200 	 * Restore per-cpu operation.  smp_store_release() is paired
201 	 * with READ_ONCE() in __ref_is_percpu() and guarantees that the
202 	 * zeroing is visible to all percpu accesses which can see the
203 	 * following __PERCPU_REF_ATOMIC clearing.
204 	 */
205 	for_each_possible_cpu(cpu)
206 		*per_cpu_ptr(percpu_count, cpu) = 0;
207 
208 	smp_store_release(&ref->percpu_count_ptr,
209 			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
210 }
211 
212 static void __percpu_ref_switch_mode(struct percpu_ref *ref,
213 				     percpu_ref_func_t *confirm_switch)
214 {
215 	lockdep_assert_held(&percpu_ref_switch_lock);
216 
217 	/*
218 	 * If the previous ATOMIC switching hasn't finished yet, wait for
219 	 * its completion.  If the caller ensures that ATOMIC switching
220 	 * isn't in progress, this function can be called from any context.
221 	 */
222 	wait_event_lock_irq(percpu_ref_switch_waitq, !ref->confirm_switch,
223 			    percpu_ref_switch_lock);
224 
225 	if (ref->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
226 		__percpu_ref_switch_to_atomic(ref, confirm_switch);
227 	else
228 		__percpu_ref_switch_to_percpu(ref);
229 }
230 
231 /**
232  * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
233  * @ref: percpu_ref to switch to atomic mode
234  * @confirm_switch: optional confirmation callback
235  *
236  * There's no reason to use this function for the usual reference counting.
237  * Use percpu_ref_kill[_and_confirm]().
238  *
239  * Schedule switching of @ref to atomic mode.  All its percpu counts will
240  * be collected to the main atomic counter.  On completion, when all CPUs
241  * are guaraneed to be in atomic mode, @confirm_switch, which may not
242  * block, is invoked.  This function may be invoked concurrently with all
243  * the get/put operations and can safely be mixed with kill and reinit
244  * operations.  Note that @ref will stay in atomic mode across kill/reinit
245  * cycles until percpu_ref_switch_to_percpu() is called.
246  *
247  * This function may block if @ref is in the process of switching to atomic
248  * mode.  If the caller ensures that @ref is not in the process of
249  * switching to atomic mode, this function can be called from any context.
250  */
251 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
252 				 percpu_ref_func_t *confirm_switch)
253 {
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
257 
258 	ref->force_atomic = true;
259 	__percpu_ref_switch_mode(ref, confirm_switch);
260 
261 	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
262 }
263 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
264 
265 /**
266  * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
267  * @ref: percpu_ref to switch to atomic mode
268  *
269  * Schedule switching the ref to atomic mode, and wait for the
270  * switch to complete.  Caller must ensure that no other thread
271  * will switch back to percpu mode.
272  */
273 void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
274 {
275 	percpu_ref_switch_to_atomic(ref, NULL);
276 	wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
277 }
278 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
279 
280 /**
281  * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
282  * @ref: percpu_ref to switch to percpu mode
283  *
284  * There's no reason to use this function for the usual reference counting.
285  * To re-use an expired ref, use percpu_ref_reinit().
286  *
287  * Switch @ref to percpu mode.  This function may be invoked concurrently
288  * with all the get/put operations and can safely be mixed with kill and
289  * reinit operations.  This function reverses the sticky atomic state set
290  * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
291  * dying or dead, the actual switching takes place on the following
292  * percpu_ref_reinit().
293  *
294  * This function may block if @ref is in the process of switching to atomic
295  * mode.  If the caller ensures that @ref is not in the process of
296  * switching to atomic mode, this function can be called from any context.
297  */
298 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
299 {
300 	unsigned long flags;
301 
302 	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
303 
304 	ref->force_atomic = false;
305 	__percpu_ref_switch_mode(ref, NULL);
306 
307 	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
308 }
309 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
310 
311 /**
312  * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
313  * @ref: percpu_ref to kill
314  * @confirm_kill: optional confirmation callback
315  *
316  * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
317  * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
318  * called after @ref is seen as dead from all CPUs at which point all
319  * further invocations of percpu_ref_tryget_live() will fail.  See
320  * percpu_ref_tryget_live() for details.
321  *
322  * This function normally doesn't block and can be called from any context
323  * but it may block if @confirm_kill is specified and @ref is in the
324  * process of switching to atomic mode by percpu_ref_switch_to_atomic().
325  *
326  * There are no implied RCU grace periods between kill and release.
327  */
328 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
329 				 percpu_ref_func_t *confirm_kill)
330 {
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
334 
335 	WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
336 		  "%s called more than once on %pf!", __func__, ref->release);
337 
338 	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
339 	__percpu_ref_switch_mode(ref, confirm_kill);
340 	percpu_ref_put(ref);
341 
342 	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
343 }
344 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
345 
346 /**
347  * percpu_ref_reinit - re-initialize a percpu refcount
348  * @ref: perpcu_ref to re-initialize
349  *
350  * Re-initialize @ref so that it's in the same state as when it finished
351  * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
352  * initialized successfully and reached 0 but not exited.
353  *
354  * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
355  * this function is in progress.
356  */
357 void percpu_ref_reinit(struct percpu_ref *ref)
358 {
359 	unsigned long flags;
360 
361 	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
362 
363 	WARN_ON_ONCE(!percpu_ref_is_zero(ref));
364 
365 	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
366 	percpu_ref_get(ref);
367 	__percpu_ref_switch_mode(ref, NULL);
368 
369 	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
370 }
371 EXPORT_SYMBOL_GPL(percpu_ref_reinit);
372