xref: /linux/lib/math/rational.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * rational fractions
4  *
5  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6  * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
7  *
8  * helper functions when coping with rational numbers
9  */
10 
11 #include <linux/rational.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/kernel.h>
15 
16 /*
17  * calculate best rational approximation for a given fraction
18  * taking into account restricted register size, e.g. to find
19  * appropriate values for a pll with 5 bit denominator and
20  * 8 bit numerator register fields, trying to set up with a
21  * frequency ratio of 3.1415, one would say:
22  *
23  * rational_best_approximation(31415, 10000,
24  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
25  *
26  * you may look at given_numerator as a fixed point number,
27  * with the fractional part size described in given_denominator.
28  *
29  * for theoretical background, see:
30  * http://en.wikipedia.org/wiki/Continued_fraction
31  */
32 
33 void rational_best_approximation(
34 	unsigned long given_numerator, unsigned long given_denominator,
35 	unsigned long max_numerator, unsigned long max_denominator,
36 	unsigned long *best_numerator, unsigned long *best_denominator)
37 {
38 	/* n/d is the starting rational, which is continually
39 	 * decreased each iteration using the Euclidean algorithm.
40 	 *
41 	 * dp is the value of d from the prior iteration.
42 	 *
43 	 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
44 	 * approximations of the rational.  They are, respectively,
45 	 * the current, previous, and two prior iterations of it.
46 	 *
47 	 * a is current term of the continued fraction.
48 	 */
49 	unsigned long n, d, n0, d0, n1, d1, n2, d2;
50 	n = given_numerator;
51 	d = given_denominator;
52 	n0 = d1 = 0;
53 	n1 = d0 = 1;
54 
55 	for (;;) {
56 		unsigned long dp, a;
57 
58 		if (d == 0)
59 			break;
60 		/* Find next term in continued fraction, 'a', via
61 		 * Euclidean algorithm.
62 		 */
63 		dp = d;
64 		a = n / d;
65 		d = n % d;
66 		n = dp;
67 
68 		/* Calculate the current rational approximation (aka
69 		 * convergent), n2/d2, using the term just found and
70 		 * the two prior approximations.
71 		 */
72 		n2 = n0 + a * n1;
73 		d2 = d0 + a * d1;
74 
75 		/* If the current convergent exceeds the maxes, then
76 		 * return either the previous convergent or the
77 		 * largest semi-convergent, the final term of which is
78 		 * found below as 't'.
79 		 */
80 		if ((n2 > max_numerator) || (d2 > max_denominator)) {
81 			unsigned long t = min((max_numerator - n0) / n1,
82 					      (max_denominator - d0) / d1);
83 
84 			/* This tests if the semi-convergent is closer
85 			 * than the previous convergent.
86 			 */
87 			if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
88 				n1 = n0 + t * n1;
89 				d1 = d0 + t * d1;
90 			}
91 			break;
92 		}
93 		n0 = n1;
94 		n1 = n2;
95 		d0 = d1;
96 		d1 = d2;
97 	}
98 	*best_numerator = n1;
99 	*best_denominator = d1;
100 }
101 
102 EXPORT_SYMBOL(rational_best_approximation);
103