xref: /linux/lib/math/gcd.c (revision f29f24b5568fd6169e0363c78f1a80db38d0e7e9)
1 #include <linux/kernel.h>
2 #include <linux/gcd.h>
3 #include <linux/export.h>
4 
5 /*
6  * This implements the binary GCD algorithm. (Often attributed to Stein,
7  * but as Knuth has noted, appears in a first-century Chinese math text.)
8  *
9  * This is faster than the division-based algorithm even on x86, which
10  * has decent hardware division.
11  */
12 
13 #if !defined(CONFIG_CPU_NO_EFFICIENT_FFS)
14 
15 /* If __ffs is available, the even/odd algorithm benchmarks slower. */
16 
17 /**
18  * gcd - calculate and return the greatest common divisor of 2 unsigned longs
19  * @a: first value
20  * @b: second value
21  */
22 unsigned long gcd(unsigned long a, unsigned long b)
23 {
24 	unsigned long r = a | b;
25 
26 	if (!a || !b)
27 		return r;
28 
29 	b >>= __ffs(b);
30 	if (b == 1)
31 		return r & -r;
32 
33 	for (;;) {
34 		a >>= __ffs(a);
35 		if (a == 1)
36 			return r & -r;
37 		if (a == b)
38 			return a << __ffs(r);
39 
40 		if (a < b)
41 			swap(a, b);
42 		a -= b;
43 	}
44 }
45 
46 #else
47 
48 /* If normalization is done by loops, the even/odd algorithm is a win. */
49 unsigned long gcd(unsigned long a, unsigned long b)
50 {
51 	unsigned long r = a | b;
52 
53 	if (!a || !b)
54 		return r;
55 
56 	/* Isolate lsbit of r */
57 	r &= -r;
58 
59 	while (!(b & r))
60 		b >>= 1;
61 	if (b == r)
62 		return r;
63 
64 	for (;;) {
65 		while (!(a & r))
66 			a >>= 1;
67 		if (a == r)
68 			return r;
69 		if (a == b)
70 			return a;
71 
72 		if (a < b)
73 			swap(a, b);
74 		a -= b;
75 		a >>= 1;
76 		if (a & r)
77 			a += b;
78 		a >>= 1;
79 	}
80 }
81 
82 #endif
83 
84 EXPORT_SYMBOL_GPL(gcd);
85