1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <zhangpeng.00@bytedance.com> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 struct maple_pnode *parent; 124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 125 union { 126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 127 struct { 128 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 129 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 130 }; 131 }; 132 unsigned char b_end; 133 enum maple_type type; 134 }; 135 136 /* 137 * The maple_subtree_state is used to build a tree to replace a segment of an 138 * existing tree in a more atomic way. Any walkers of the older tree will hit a 139 * dead node and restart on updates. 140 */ 141 struct maple_subtree_state { 142 struct ma_state *orig_l; /* Original left side of subtree */ 143 struct ma_state *orig_r; /* Original right side of subtree */ 144 struct ma_state *l; /* New left side of subtree */ 145 struct ma_state *m; /* New middle of subtree (rare) */ 146 struct ma_state *r; /* New right side of subtree */ 147 struct ma_topiary *free; /* nodes to be freed */ 148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 149 struct maple_big_node *bn; 150 }; 151 152 #ifdef CONFIG_KASAN_STACK 153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 154 #define noinline_for_kasan noinline_for_stack 155 #else 156 #define noinline_for_kasan inline 157 #endif 158 159 /* Functions */ 160 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 161 { 162 return kmem_cache_alloc(maple_node_cache, gfp); 163 } 164 165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 166 { 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 168 } 169 170 static inline void mt_free_one(struct maple_node *node) 171 { 172 kmem_cache_free(maple_node_cache, node); 173 } 174 175 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 176 { 177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 178 } 179 180 static void mt_free_rcu(struct rcu_head *head) 181 { 182 struct maple_node *node = container_of(head, struct maple_node, rcu); 183 184 kmem_cache_free(maple_node_cache, node); 185 } 186 187 /* 188 * ma_free_rcu() - Use rcu callback to free a maple node 189 * @node: The node to free 190 * 191 * The maple tree uses the parent pointer to indicate this node is no longer in 192 * use and will be freed. 193 */ 194 static void ma_free_rcu(struct maple_node *node) 195 { 196 WARN_ON(node->parent != ma_parent_ptr(node)); 197 call_rcu(&node->rcu, mt_free_rcu); 198 } 199 200 static void mas_set_height(struct ma_state *mas) 201 { 202 unsigned int new_flags = mas->tree->ma_flags; 203 204 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 207 mas->tree->ma_flags = new_flags; 208 } 209 210 static unsigned int mas_mt_height(struct ma_state *mas) 211 { 212 return mt_height(mas->tree); 213 } 214 215 static inline unsigned int mt_attr(struct maple_tree *mt) 216 { 217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 218 } 219 220 static __always_inline enum maple_type mte_node_type( 221 const struct maple_enode *entry) 222 { 223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 224 MAPLE_NODE_TYPE_MASK; 225 } 226 227 static __always_inline bool ma_is_dense(const enum maple_type type) 228 { 229 return type < maple_leaf_64; 230 } 231 232 static __always_inline bool ma_is_leaf(const enum maple_type type) 233 { 234 return type < maple_range_64; 235 } 236 237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 238 { 239 return ma_is_leaf(mte_node_type(entry)); 240 } 241 242 /* 243 * We also reserve values with the bottom two bits set to '10' which are 244 * below 4096 245 */ 246 static __always_inline bool mt_is_reserved(const void *entry) 247 { 248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 249 xa_is_internal(entry); 250 } 251 252 static __always_inline void mas_set_err(struct ma_state *mas, long err) 253 { 254 mas->node = MA_ERROR(err); 255 mas->status = ma_error; 256 } 257 258 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 259 { 260 return mas->status == ma_root; 261 } 262 263 static __always_inline bool mas_is_start(const struct ma_state *mas) 264 { 265 return mas->status == ma_start; 266 } 267 268 static __always_inline bool mas_is_none(const struct ma_state *mas) 269 { 270 return mas->status == ma_none; 271 } 272 273 static __always_inline bool mas_is_paused(const struct ma_state *mas) 274 { 275 return mas->status == ma_pause; 276 } 277 278 static __always_inline bool mas_is_overflow(struct ma_state *mas) 279 { 280 return mas->status == ma_overflow; 281 } 282 283 static inline bool mas_is_underflow(struct ma_state *mas) 284 { 285 return mas->status == ma_underflow; 286 } 287 288 static __always_inline struct maple_node *mte_to_node( 289 const struct maple_enode *entry) 290 { 291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 292 } 293 294 /* 295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 296 * @entry: The maple encoded node 297 * 298 * Return: a maple topiary pointer 299 */ 300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 301 { 302 return (struct maple_topiary *) 303 ((unsigned long)entry & ~MAPLE_NODE_MASK); 304 } 305 306 /* 307 * mas_mn() - Get the maple state node. 308 * @mas: The maple state 309 * 310 * Return: the maple node (not encoded - bare pointer). 311 */ 312 static inline struct maple_node *mas_mn(const struct ma_state *mas) 313 { 314 return mte_to_node(mas->node); 315 } 316 317 /* 318 * mte_set_node_dead() - Set a maple encoded node as dead. 319 * @mn: The maple encoded node. 320 */ 321 static inline void mte_set_node_dead(struct maple_enode *mn) 322 { 323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 324 smp_wmb(); /* Needed for RCU */ 325 } 326 327 /* Bit 1 indicates the root is a node */ 328 #define MAPLE_ROOT_NODE 0x02 329 /* maple_type stored bit 3-6 */ 330 #define MAPLE_ENODE_TYPE_SHIFT 0x03 331 /* Bit 2 means a NULL somewhere below */ 332 #define MAPLE_ENODE_NULL 0x04 333 334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 335 enum maple_type type) 336 { 337 return (void *)((unsigned long)node | 338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 339 } 340 341 static inline void *mte_mk_root(const struct maple_enode *node) 342 { 343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 344 } 345 346 static inline void *mte_safe_root(const struct maple_enode *node) 347 { 348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 349 } 350 351 static inline void *mte_set_full(const struct maple_enode *node) 352 { 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 354 } 355 356 static inline void *mte_clear_full(const struct maple_enode *node) 357 { 358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 359 } 360 361 static inline bool mte_has_null(const struct maple_enode *node) 362 { 363 return (unsigned long)node & MAPLE_ENODE_NULL; 364 } 365 366 static __always_inline bool ma_is_root(struct maple_node *node) 367 { 368 return ((unsigned long)node->parent & MA_ROOT_PARENT); 369 } 370 371 static __always_inline bool mte_is_root(const struct maple_enode *node) 372 { 373 return ma_is_root(mte_to_node(node)); 374 } 375 376 static inline bool mas_is_root_limits(const struct ma_state *mas) 377 { 378 return !mas->min && mas->max == ULONG_MAX; 379 } 380 381 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 382 { 383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 384 } 385 386 /* 387 * The Parent Pointer 388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 390 * bit values need an extra bit to store the offset. This extra bit comes from 391 * a reuse of the last bit in the node type. This is possible by using bit 1 to 392 * indicate if bit 2 is part of the type or the slot. 393 * 394 * Note types: 395 * 0x??1 = Root 396 * 0x?00 = 16 bit nodes 397 * 0x010 = 32 bit nodes 398 * 0x110 = 64 bit nodes 399 * 400 * Slot size and alignment 401 * 0b??1 : Root 402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 405 */ 406 407 #define MAPLE_PARENT_ROOT 0x01 408 409 #define MAPLE_PARENT_SLOT_SHIFT 0x03 410 #define MAPLE_PARENT_SLOT_MASK 0xF8 411 412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 414 415 #define MAPLE_PARENT_RANGE64 0x06 416 #define MAPLE_PARENT_RANGE32 0x04 417 #define MAPLE_PARENT_NOT_RANGE16 0x02 418 419 /* 420 * mte_parent_shift() - Get the parent shift for the slot storage. 421 * @parent: The parent pointer cast as an unsigned long 422 * Return: The shift into that pointer to the star to of the slot 423 */ 424 static inline unsigned long mte_parent_shift(unsigned long parent) 425 { 426 /* Note bit 1 == 0 means 16B */ 427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 428 return MAPLE_PARENT_SLOT_SHIFT; 429 430 return MAPLE_PARENT_16B_SLOT_SHIFT; 431 } 432 433 /* 434 * mte_parent_slot_mask() - Get the slot mask for the parent. 435 * @parent: The parent pointer cast as an unsigned long. 436 * Return: The slot mask for that parent. 437 */ 438 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 439 { 440 /* Note bit 1 == 0 means 16B */ 441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 442 return MAPLE_PARENT_SLOT_MASK; 443 444 return MAPLE_PARENT_16B_SLOT_MASK; 445 } 446 447 /* 448 * mas_parent_type() - Return the maple_type of the parent from the stored 449 * parent type. 450 * @mas: The maple state 451 * @enode: The maple_enode to extract the parent's enum 452 * Return: The node->parent maple_type 453 */ 454 static inline 455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 456 { 457 unsigned long p_type; 458 459 p_type = (unsigned long)mte_to_node(enode)->parent; 460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 461 return 0; 462 463 p_type &= MAPLE_NODE_MASK; 464 p_type &= ~mte_parent_slot_mask(p_type); 465 switch (p_type) { 466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 467 if (mt_is_alloc(mas->tree)) 468 return maple_arange_64; 469 return maple_range_64; 470 } 471 472 return 0; 473 } 474 475 /* 476 * mas_set_parent() - Set the parent node and encode the slot 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @node: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node - the maple node 645 * @type - the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node - the maple node 669 * @type - the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 * @offset: The offset of the highest sub-gap in this node. 884 * @end: The end of the data in this node. 885 */ 886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 887 enum maple_type type) 888 { 889 struct maple_metadata *meta; 890 unsigned long *pivots; 891 void __rcu **slots; 892 void *next; 893 894 switch (type) { 895 case maple_range_64: 896 pivots = mn->mr64.pivot; 897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 898 slots = mn->mr64.slot; 899 next = mt_slot_locked(mt, slots, 900 MAPLE_RANGE64_SLOTS - 1); 901 if (unlikely((mte_to_node(next) && 902 mte_node_type(next)))) 903 return; /* no metadata, could be node */ 904 } 905 fallthrough; 906 case maple_arange_64: 907 meta = ma_meta(mn, type); 908 break; 909 default: 910 return; 911 } 912 913 meta->gap = 0; 914 meta->end = 0; 915 } 916 917 /* 918 * ma_meta_end() - Get the data end of a node from the metadata 919 * @mn: The maple node 920 * @mt: The maple node type 921 */ 922 static inline unsigned char ma_meta_end(struct maple_node *mn, 923 enum maple_type mt) 924 { 925 struct maple_metadata *meta = ma_meta(mn, mt); 926 927 return meta->end; 928 } 929 930 /* 931 * ma_meta_gap() - Get the largest gap location of a node from the metadata 932 * @mn: The maple node 933 */ 934 static inline unsigned char ma_meta_gap(struct maple_node *mn) 935 { 936 return mn->ma64.meta.gap; 937 } 938 939 /* 940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 941 * @mn: The maple node 942 * @mn: The maple node type 943 * @offset: The location of the largest gap. 944 */ 945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 946 unsigned char offset) 947 { 948 949 struct maple_metadata *meta = ma_meta(mn, mt); 950 951 meta->gap = offset; 952 } 953 954 /* 955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 956 * @mat - the ma_topiary, a linked list of dead nodes. 957 * @dead_enode - the node to be marked as dead and added to the tail of the list 958 * 959 * Add the @dead_enode to the linked list in @mat. 960 */ 961 static inline void mat_add(struct ma_topiary *mat, 962 struct maple_enode *dead_enode) 963 { 964 mte_set_node_dead(dead_enode); 965 mte_to_mat(dead_enode)->next = NULL; 966 if (!mat->tail) { 967 mat->tail = mat->head = dead_enode; 968 return; 969 } 970 971 mte_to_mat(mat->tail)->next = dead_enode; 972 mat->tail = dead_enode; 973 } 974 975 static void mt_free_walk(struct rcu_head *head); 976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 977 bool free); 978 /* 979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 980 * @mas - the maple state 981 * @mat - the ma_topiary linked list of dead nodes to free. 982 * 983 * Destroy walk a dead list. 984 */ 985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 986 { 987 struct maple_enode *next; 988 struct maple_node *node; 989 bool in_rcu = mt_in_rcu(mas->tree); 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 node = mte_to_node(mat->head); 994 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 995 if (in_rcu) 996 call_rcu(&node->rcu, mt_free_walk); 997 mat->head = next; 998 } 999 } 1000 /* 1001 * mas_descend() - Descend into the slot stored in the ma_state. 1002 * @mas - the maple state. 1003 * 1004 * Note: Not RCU safe, only use in write side or debug code. 1005 */ 1006 static inline void mas_descend(struct ma_state *mas) 1007 { 1008 enum maple_type type; 1009 unsigned long *pivots; 1010 struct maple_node *node; 1011 void __rcu **slots; 1012 1013 node = mas_mn(mas); 1014 type = mte_node_type(mas->node); 1015 pivots = ma_pivots(node, type); 1016 slots = ma_slots(node, type); 1017 1018 if (mas->offset) 1019 mas->min = pivots[mas->offset - 1] + 1; 1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1021 mas->node = mas_slot(mas, slots, mas->offset); 1022 } 1023 1024 /* 1025 * mte_set_gap() - Set a maple node gap. 1026 * @mn: The encoded maple node 1027 * @gap: The offset of the gap to set 1028 * @val: The gap value 1029 */ 1030 static inline void mte_set_gap(const struct maple_enode *mn, 1031 unsigned char gap, unsigned long val) 1032 { 1033 switch (mte_node_type(mn)) { 1034 default: 1035 break; 1036 case maple_arange_64: 1037 mte_to_node(mn)->ma64.gap[gap] = val; 1038 break; 1039 } 1040 } 1041 1042 /* 1043 * mas_ascend() - Walk up a level of the tree. 1044 * @mas: The maple state 1045 * 1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1047 * may cause several levels of walking up to find the correct min and max. 1048 * May find a dead node which will cause a premature return. 1049 * Return: 1 on dead node, 0 otherwise 1050 */ 1051 static int mas_ascend(struct ma_state *mas) 1052 { 1053 struct maple_enode *p_enode; /* parent enode. */ 1054 struct maple_enode *a_enode; /* ancestor enode. */ 1055 struct maple_node *a_node; /* ancestor node. */ 1056 struct maple_node *p_node; /* parent node. */ 1057 unsigned char a_slot; 1058 enum maple_type a_type; 1059 unsigned long min, max; 1060 unsigned long *pivots; 1061 bool set_max = false, set_min = false; 1062 1063 a_node = mas_mn(mas); 1064 if (ma_is_root(a_node)) { 1065 mas->offset = 0; 1066 return 0; 1067 } 1068 1069 p_node = mte_parent(mas->node); 1070 if (unlikely(a_node == p_node)) 1071 return 1; 1072 1073 a_type = mas_parent_type(mas, mas->node); 1074 mas->offset = mte_parent_slot(mas->node); 1075 a_enode = mt_mk_node(p_node, a_type); 1076 1077 /* Check to make sure all parent information is still accurate */ 1078 if (p_node != mte_parent(mas->node)) 1079 return 1; 1080 1081 mas->node = a_enode; 1082 1083 if (mte_is_root(a_enode)) { 1084 mas->max = ULONG_MAX; 1085 mas->min = 0; 1086 return 0; 1087 } 1088 1089 min = 0; 1090 max = ULONG_MAX; 1091 if (!mas->offset) { 1092 min = mas->min; 1093 set_min = true; 1094 } 1095 1096 if (mas->max == ULONG_MAX) 1097 set_max = true; 1098 1099 do { 1100 p_enode = a_enode; 1101 a_type = mas_parent_type(mas, p_enode); 1102 a_node = mte_parent(p_enode); 1103 a_slot = mte_parent_slot(p_enode); 1104 a_enode = mt_mk_node(a_node, a_type); 1105 pivots = ma_pivots(a_node, a_type); 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (!set_min && a_slot) { 1111 set_min = true; 1112 min = pivots[a_slot - 1] + 1; 1113 } 1114 1115 if (!set_max && a_slot < mt_pivots[a_type]) { 1116 set_max = true; 1117 max = pivots[a_slot]; 1118 } 1119 1120 if (unlikely(ma_dead_node(a_node))) 1121 return 1; 1122 1123 if (unlikely(ma_is_root(a_node))) 1124 break; 1125 1126 } while (!set_min || !set_max); 1127 1128 mas->max = max; 1129 mas->min = min; 1130 return 0; 1131 } 1132 1133 /* 1134 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1135 * @mas: The maple state 1136 * 1137 * Return: A pointer to a maple node. 1138 */ 1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1140 { 1141 struct maple_alloc *ret, *node = mas->alloc; 1142 unsigned long total = mas_allocated(mas); 1143 unsigned int req = mas_alloc_req(mas); 1144 1145 /* nothing or a request pending. */ 1146 if (WARN_ON(!total)) 1147 return NULL; 1148 1149 if (total == 1) { 1150 /* single allocation in this ma_state */ 1151 mas->alloc = NULL; 1152 ret = node; 1153 goto single_node; 1154 } 1155 1156 if (node->node_count == 1) { 1157 /* Single allocation in this node. */ 1158 mas->alloc = node->slot[0]; 1159 mas->alloc->total = node->total - 1; 1160 ret = node; 1161 goto new_head; 1162 } 1163 node->total--; 1164 ret = node->slot[--node->node_count]; 1165 node->slot[node->node_count] = NULL; 1166 1167 single_node: 1168 new_head: 1169 if (req) { 1170 req++; 1171 mas_set_alloc_req(mas, req); 1172 } 1173 1174 memset(ret, 0, sizeof(*ret)); 1175 return (struct maple_node *)ret; 1176 } 1177 1178 /* 1179 * mas_push_node() - Push a node back on the maple state allocation. 1180 * @mas: The maple state 1181 * @used: The used maple node 1182 * 1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1184 * requested node count as necessary. 1185 */ 1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1187 { 1188 struct maple_alloc *reuse = (struct maple_alloc *)used; 1189 struct maple_alloc *head = mas->alloc; 1190 unsigned long count; 1191 unsigned int requested = mas_alloc_req(mas); 1192 1193 count = mas_allocated(mas); 1194 1195 reuse->request_count = 0; 1196 reuse->node_count = 0; 1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1198 head->slot[head->node_count++] = reuse; 1199 head->total++; 1200 goto done; 1201 } 1202 1203 reuse->total = 1; 1204 if ((head) && !((unsigned long)head & 0x1)) { 1205 reuse->slot[0] = head; 1206 reuse->node_count = 1; 1207 reuse->total += head->total; 1208 } 1209 1210 mas->alloc = reuse; 1211 done: 1212 if (requested > 1) 1213 mas_set_alloc_req(mas, requested - 1); 1214 } 1215 1216 /* 1217 * mas_alloc_nodes() - Allocate nodes into a maple state 1218 * @mas: The maple state 1219 * @gfp: The GFP Flags 1220 */ 1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1222 { 1223 struct maple_alloc *node; 1224 unsigned long allocated = mas_allocated(mas); 1225 unsigned int requested = mas_alloc_req(mas); 1226 unsigned int count; 1227 void **slots = NULL; 1228 unsigned int max_req = 0; 1229 1230 if (!requested) 1231 return; 1232 1233 mas_set_alloc_req(mas, 0); 1234 if (mas->mas_flags & MA_STATE_PREALLOC) { 1235 if (allocated) 1236 return; 1237 BUG_ON(!allocated); 1238 WARN_ON(!allocated); 1239 } 1240 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1242 node = (struct maple_alloc *)mt_alloc_one(gfp); 1243 if (!node) 1244 goto nomem_one; 1245 1246 if (allocated) { 1247 node->slot[0] = mas->alloc; 1248 node->node_count = 1; 1249 } else { 1250 node->node_count = 0; 1251 } 1252 1253 mas->alloc = node; 1254 node->total = ++allocated; 1255 requested--; 1256 } 1257 1258 node = mas->alloc; 1259 node->request_count = 0; 1260 while (requested) { 1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1262 slots = (void **)&node->slot[node->node_count]; 1263 max_req = min(requested, max_req); 1264 count = mt_alloc_bulk(gfp, max_req, slots); 1265 if (!count) 1266 goto nomem_bulk; 1267 1268 if (node->node_count == 0) { 1269 node->slot[0]->node_count = 0; 1270 node->slot[0]->request_count = 0; 1271 } 1272 1273 node->node_count += count; 1274 allocated += count; 1275 node = node->slot[0]; 1276 requested -= count; 1277 } 1278 mas->alloc->total = allocated; 1279 return; 1280 1281 nomem_bulk: 1282 /* Clean up potential freed allocations on bulk failure */ 1283 memset(slots, 0, max_req * sizeof(unsigned long)); 1284 nomem_one: 1285 mas_set_alloc_req(mas, requested); 1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1287 mas->alloc->total = allocated; 1288 mas_set_err(mas, -ENOMEM); 1289 } 1290 1291 /* 1292 * mas_free() - Free an encoded maple node 1293 * @mas: The maple state 1294 * @used: The encoded maple node to free. 1295 * 1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1297 * otherwise. 1298 */ 1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1300 { 1301 struct maple_node *tmp = mte_to_node(used); 1302 1303 if (mt_in_rcu(mas->tree)) 1304 ma_free_rcu(tmp); 1305 else 1306 mas_push_node(mas, tmp); 1307 } 1308 1309 /* 1310 * mas_node_count() - Check if enough nodes are allocated and request more if 1311 * there is not enough nodes. 1312 * @mas: The maple state 1313 * @count: The number of nodes needed 1314 * @gfp: the gfp flags 1315 */ 1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1317 { 1318 unsigned long allocated = mas_allocated(mas); 1319 1320 if (allocated < count) { 1321 mas_set_alloc_req(mas, count - allocated); 1322 mas_alloc_nodes(mas, gfp); 1323 } 1324 } 1325 1326 /* 1327 * mas_node_count() - Check if enough nodes are allocated and request more if 1328 * there is not enough nodes. 1329 * @mas: The maple state 1330 * @count: The number of nodes needed 1331 * 1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1333 */ 1334 static void mas_node_count(struct ma_state *mas, int count) 1335 { 1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1337 } 1338 1339 /* 1340 * mas_start() - Sets up maple state for operations. 1341 * @mas: The maple state. 1342 * 1343 * If mas->status == mas_start, then set the min, max and depth to 1344 * defaults. 1345 * 1346 * Return: 1347 * - If mas->node is an error or not mas_start, return NULL. 1348 * - If it's an empty tree: NULL & mas->status == ma_none 1349 * - If it's a single entry: The entry & mas->status == mas_root 1350 * - If it's a tree: NULL & mas->status == safe root node. 1351 */ 1352 static inline struct maple_enode *mas_start(struct ma_state *mas) 1353 { 1354 if (likely(mas_is_start(mas))) { 1355 struct maple_enode *root; 1356 1357 mas->min = 0; 1358 mas->max = ULONG_MAX; 1359 1360 retry: 1361 mas->depth = 0; 1362 root = mas_root(mas); 1363 /* Tree with nodes */ 1364 if (likely(xa_is_node(root))) { 1365 mas->depth = 1; 1366 mas->status = ma_active; 1367 mas->node = mte_safe_root(root); 1368 mas->offset = 0; 1369 if (mte_dead_node(mas->node)) 1370 goto retry; 1371 1372 return NULL; 1373 } 1374 1375 /* empty tree */ 1376 if (unlikely(!root)) { 1377 mas->node = NULL; 1378 mas->status = ma_none; 1379 mas->offset = MAPLE_NODE_SLOTS; 1380 return NULL; 1381 } 1382 1383 /* Single entry tree */ 1384 mas->status = ma_root; 1385 mas->offset = MAPLE_NODE_SLOTS; 1386 1387 /* Single entry tree. */ 1388 if (mas->index > 0) 1389 return NULL; 1390 1391 return root; 1392 } 1393 1394 return NULL; 1395 } 1396 1397 /* 1398 * ma_data_end() - Find the end of the data in a node. 1399 * @node: The maple node 1400 * @type: The maple node type 1401 * @pivots: The array of pivots in the node 1402 * @max: The maximum value in the node 1403 * 1404 * Uses metadata to find the end of the data when possible. 1405 * Return: The zero indexed last slot with data (may be null). 1406 */ 1407 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1408 enum maple_type type, unsigned long *pivots, unsigned long max) 1409 { 1410 unsigned char offset; 1411 1412 if (!pivots) 1413 return 0; 1414 1415 if (type == maple_arange_64) 1416 return ma_meta_end(node, type); 1417 1418 offset = mt_pivots[type] - 1; 1419 if (likely(!pivots[offset])) 1420 return ma_meta_end(node, type); 1421 1422 if (likely(pivots[offset] == max)) 1423 return offset; 1424 1425 return mt_pivots[type]; 1426 } 1427 1428 /* 1429 * mas_data_end() - Find the end of the data (slot). 1430 * @mas: the maple state 1431 * 1432 * This method is optimized to check the metadata of a node if the node type 1433 * supports data end metadata. 1434 * 1435 * Return: The zero indexed last slot with data (may be null). 1436 */ 1437 static inline unsigned char mas_data_end(struct ma_state *mas) 1438 { 1439 enum maple_type type; 1440 struct maple_node *node; 1441 unsigned char offset; 1442 unsigned long *pivots; 1443 1444 type = mte_node_type(mas->node); 1445 node = mas_mn(mas); 1446 if (type == maple_arange_64) 1447 return ma_meta_end(node, type); 1448 1449 pivots = ma_pivots(node, type); 1450 if (unlikely(ma_dead_node(node))) 1451 return 0; 1452 1453 offset = mt_pivots[type] - 1; 1454 if (likely(!pivots[offset])) 1455 return ma_meta_end(node, type); 1456 1457 if (likely(pivots[offset] == mas->max)) 1458 return offset; 1459 1460 return mt_pivots[type]; 1461 } 1462 1463 /* 1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1465 * @mas - the maple state 1466 * 1467 * Return: The maximum gap in the leaf. 1468 */ 1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1470 { 1471 enum maple_type mt; 1472 unsigned long pstart, gap, max_gap; 1473 struct maple_node *mn; 1474 unsigned long *pivots; 1475 void __rcu **slots; 1476 unsigned char i; 1477 unsigned char max_piv; 1478 1479 mt = mte_node_type(mas->node); 1480 mn = mas_mn(mas); 1481 slots = ma_slots(mn, mt); 1482 max_gap = 0; 1483 if (unlikely(ma_is_dense(mt))) { 1484 gap = 0; 1485 for (i = 0; i < mt_slots[mt]; i++) { 1486 if (slots[i]) { 1487 if (gap > max_gap) 1488 max_gap = gap; 1489 gap = 0; 1490 } else { 1491 gap++; 1492 } 1493 } 1494 if (gap > max_gap) 1495 max_gap = gap; 1496 return max_gap; 1497 } 1498 1499 /* 1500 * Check the first implied pivot optimizes the loop below and slot 1 may 1501 * be skipped if there is a gap in slot 0. 1502 */ 1503 pivots = ma_pivots(mn, mt); 1504 if (likely(!slots[0])) { 1505 max_gap = pivots[0] - mas->min + 1; 1506 i = 2; 1507 } else { 1508 i = 1; 1509 } 1510 1511 /* reduce max_piv as the special case is checked before the loop */ 1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1513 /* 1514 * Check end implied pivot which can only be a gap on the right most 1515 * node. 1516 */ 1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1518 gap = ULONG_MAX - pivots[max_piv]; 1519 if (gap > max_gap) 1520 max_gap = gap; 1521 1522 if (max_gap > pivots[max_piv] - mas->min) 1523 return max_gap; 1524 } 1525 1526 for (; i <= max_piv; i++) { 1527 /* data == no gap. */ 1528 if (likely(slots[i])) 1529 continue; 1530 1531 pstart = pivots[i - 1]; 1532 gap = pivots[i] - pstart; 1533 if (gap > max_gap) 1534 max_gap = gap; 1535 1536 /* There cannot be two gaps in a row. */ 1537 i++; 1538 } 1539 return max_gap; 1540 } 1541 1542 /* 1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1544 * @node: The maple node 1545 * @gaps: The pointer to the gaps 1546 * @mt: The maple node type 1547 * @*off: Pointer to store the offset location of the gap. 1548 * 1549 * Uses the metadata data end to scan backwards across set gaps. 1550 * 1551 * Return: The maximum gap value 1552 */ 1553 static inline unsigned long 1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1555 unsigned char *off) 1556 { 1557 unsigned char offset, i; 1558 unsigned long max_gap = 0; 1559 1560 i = offset = ma_meta_end(node, mt); 1561 do { 1562 if (gaps[i] > max_gap) { 1563 max_gap = gaps[i]; 1564 offset = i; 1565 } 1566 } while (i--); 1567 1568 *off = offset; 1569 return max_gap; 1570 } 1571 1572 /* 1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1574 * @mas: The maple state. 1575 * 1576 * Return: The gap value. 1577 */ 1578 static inline unsigned long mas_max_gap(struct ma_state *mas) 1579 { 1580 unsigned long *gaps; 1581 unsigned char offset; 1582 enum maple_type mt; 1583 struct maple_node *node; 1584 1585 mt = mte_node_type(mas->node); 1586 if (ma_is_leaf(mt)) 1587 return mas_leaf_max_gap(mas); 1588 1589 node = mas_mn(mas); 1590 MAS_BUG_ON(mas, mt != maple_arange_64); 1591 offset = ma_meta_gap(node); 1592 gaps = ma_gaps(node, mt); 1593 return gaps[offset]; 1594 } 1595 1596 /* 1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1598 * @mas: The maple state 1599 * @offset: The gap offset in the parent to set 1600 * @new: The new gap value. 1601 * 1602 * Set the parent gap then continue to set the gap upwards, using the metadata 1603 * of the parent to see if it is necessary to check the node above. 1604 */ 1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1606 unsigned long new) 1607 { 1608 unsigned long meta_gap = 0; 1609 struct maple_node *pnode; 1610 struct maple_enode *penode; 1611 unsigned long *pgaps; 1612 unsigned char meta_offset; 1613 enum maple_type pmt; 1614 1615 pnode = mte_parent(mas->node); 1616 pmt = mas_parent_type(mas, mas->node); 1617 penode = mt_mk_node(pnode, pmt); 1618 pgaps = ma_gaps(pnode, pmt); 1619 1620 ascend: 1621 MAS_BUG_ON(mas, pmt != maple_arange_64); 1622 meta_offset = ma_meta_gap(pnode); 1623 meta_gap = pgaps[meta_offset]; 1624 1625 pgaps[offset] = new; 1626 1627 if (meta_gap == new) 1628 return; 1629 1630 if (offset != meta_offset) { 1631 if (meta_gap > new) 1632 return; 1633 1634 ma_set_meta_gap(pnode, pmt, offset); 1635 } else if (new < meta_gap) { 1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1637 ma_set_meta_gap(pnode, pmt, meta_offset); 1638 } 1639 1640 if (ma_is_root(pnode)) 1641 return; 1642 1643 /* Go to the parent node. */ 1644 pnode = mte_parent(penode); 1645 pmt = mas_parent_type(mas, penode); 1646 pgaps = ma_gaps(pnode, pmt); 1647 offset = mte_parent_slot(penode); 1648 penode = mt_mk_node(pnode, pmt); 1649 goto ascend; 1650 } 1651 1652 /* 1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1654 * @mas - the maple state. 1655 */ 1656 static inline void mas_update_gap(struct ma_state *mas) 1657 { 1658 unsigned char pslot; 1659 unsigned long p_gap; 1660 unsigned long max_gap; 1661 1662 if (!mt_is_alloc(mas->tree)) 1663 return; 1664 1665 if (mte_is_root(mas->node)) 1666 return; 1667 1668 max_gap = mas_max_gap(mas); 1669 1670 pslot = mte_parent_slot(mas->node); 1671 p_gap = ma_gaps(mte_parent(mas->node), 1672 mas_parent_type(mas, mas->node))[pslot]; 1673 1674 if (p_gap != max_gap) 1675 mas_parent_gap(mas, pslot, max_gap); 1676 } 1677 1678 /* 1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1680 * @parent with the slot encoded. 1681 * @mas - the maple state (for the tree) 1682 * @parent - the maple encoded node containing the children. 1683 */ 1684 static inline void mas_adopt_children(struct ma_state *mas, 1685 struct maple_enode *parent) 1686 { 1687 enum maple_type type = mte_node_type(parent); 1688 struct maple_node *node = mte_to_node(parent); 1689 void __rcu **slots = ma_slots(node, type); 1690 unsigned long *pivots = ma_pivots(node, type); 1691 struct maple_enode *child; 1692 unsigned char offset; 1693 1694 offset = ma_data_end(node, type, pivots, mas->max); 1695 do { 1696 child = mas_slot_locked(mas, slots, offset); 1697 mas_set_parent(mas, child, parent, offset); 1698 } while (offset--); 1699 } 1700 1701 /* 1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1703 * node as dead. 1704 * @mas - the maple state with the new node 1705 * @old_enode - The old maple encoded node to replace. 1706 */ 1707 static inline void mas_put_in_tree(struct ma_state *mas, 1708 struct maple_enode *old_enode) 1709 __must_hold(mas->tree->ma_lock) 1710 { 1711 unsigned char offset; 1712 void __rcu **slots; 1713 1714 if (mte_is_root(mas->node)) { 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1717 mas_set_height(mas); 1718 } else { 1719 1720 offset = mte_parent_slot(mas->node); 1721 slots = ma_slots(mte_parent(mas->node), 1722 mas_parent_type(mas, mas->node)); 1723 rcu_assign_pointer(slots[offset], mas->node); 1724 } 1725 1726 mte_set_node_dead(old_enode); 1727 } 1728 1729 /* 1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1731 * dead, and freeing it. 1732 * the parent encoding to locate the maple node in the tree. 1733 * @mas - the ma_state with @mas->node pointing to the new node. 1734 * @old_enode - The old maple encoded node. 1735 */ 1736 static inline void mas_replace_node(struct ma_state *mas, 1737 struct maple_enode *old_enode) 1738 __must_hold(mas->tree->ma_lock) 1739 { 1740 mas_put_in_tree(mas, old_enode); 1741 mas_free(mas, old_enode); 1742 } 1743 1744 /* 1745 * mas_find_child() - Find a child who has the parent @mas->node. 1746 * @mas: the maple state with the parent. 1747 * @child: the maple state to store the child. 1748 */ 1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1750 __must_hold(mas->tree->ma_lock) 1751 { 1752 enum maple_type mt; 1753 unsigned char offset; 1754 unsigned char end; 1755 unsigned long *pivots; 1756 struct maple_enode *entry; 1757 struct maple_node *node; 1758 void __rcu **slots; 1759 1760 mt = mte_node_type(mas->node); 1761 node = mas_mn(mas); 1762 slots = ma_slots(node, mt); 1763 pivots = ma_pivots(node, mt); 1764 end = ma_data_end(node, mt, pivots, mas->max); 1765 for (offset = mas->offset; offset <= end; offset++) { 1766 entry = mas_slot_locked(mas, slots, offset); 1767 if (mte_parent(entry) == node) { 1768 *child = *mas; 1769 mas->offset = offset + 1; 1770 child->offset = offset; 1771 mas_descend(child); 1772 child->offset = 0; 1773 return true; 1774 } 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1781 * old data or set b_node->b_end. 1782 * @b_node: the maple_big_node 1783 * @shift: the shift count 1784 */ 1785 static inline void mab_shift_right(struct maple_big_node *b_node, 1786 unsigned char shift) 1787 { 1788 unsigned long size = b_node->b_end * sizeof(unsigned long); 1789 1790 memmove(b_node->pivot + shift, b_node->pivot, size); 1791 memmove(b_node->slot + shift, b_node->slot, size); 1792 if (b_node->type == maple_arange_64) 1793 memmove(b_node->gap + shift, b_node->gap, size); 1794 } 1795 1796 /* 1797 * mab_middle_node() - Check if a middle node is needed (unlikely) 1798 * @b_node: the maple_big_node that contains the data. 1799 * @size: the amount of data in the b_node 1800 * @split: the potential split location 1801 * @slot_count: the size that can be stored in a single node being considered. 1802 * 1803 * Return: true if a middle node is required. 1804 */ 1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1806 unsigned char slot_count) 1807 { 1808 unsigned char size = b_node->b_end; 1809 1810 if (size >= 2 * slot_count) 1811 return true; 1812 1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1814 return true; 1815 1816 return false; 1817 } 1818 1819 /* 1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1821 * @b_node: the maple_big_node with the data 1822 * @split: the suggested split location 1823 * @slot_count: the number of slots in the node being considered. 1824 * 1825 * Return: the split location. 1826 */ 1827 static inline int mab_no_null_split(struct maple_big_node *b_node, 1828 unsigned char split, unsigned char slot_count) 1829 { 1830 if (!b_node->slot[split]) { 1831 /* 1832 * If the split is less than the max slot && the right side will 1833 * still be sufficient, then increment the split on NULL. 1834 */ 1835 if ((split < slot_count - 1) && 1836 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1837 split++; 1838 else 1839 split--; 1840 } 1841 return split; 1842 } 1843 1844 /* 1845 * mab_calc_split() - Calculate the split location and if there needs to be two 1846 * splits. 1847 * @bn: The maple_big_node with the data 1848 * @mid_split: The second split, if required. 0 otherwise. 1849 * 1850 * Return: The first split location. The middle split is set in @mid_split. 1851 */ 1852 static inline int mab_calc_split(struct ma_state *mas, 1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1854 { 1855 unsigned char b_end = bn->b_end; 1856 int split = b_end / 2; /* Assume equal split. */ 1857 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1858 1859 /* 1860 * To support gap tracking, all NULL entries are kept together and a node cannot 1861 * end on a NULL entry, with the exception of the left-most leaf. The 1862 * limitation means that the split of a node must be checked for this condition 1863 * and be able to put more data in one direction or the other. 1864 */ 1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1866 *mid_split = 0; 1867 split = b_end - mt_min_slots[bn->type]; 1868 1869 if (!ma_is_leaf(bn->type)) 1870 return split; 1871 1872 mas->mas_flags |= MA_STATE_REBALANCE; 1873 if (!bn->slot[split]) 1874 split--; 1875 return split; 1876 } 1877 1878 /* 1879 * Although extremely rare, it is possible to enter what is known as the 3-way 1880 * split scenario. The 3-way split comes about by means of a store of a range 1881 * that overwrites the end and beginning of two full nodes. The result is a set 1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1883 * also be located in different parent nodes which are also full. This can 1884 * carry upwards all the way to the root in the worst case. 1885 */ 1886 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1887 split = b_end / 3; 1888 *mid_split = split * 2; 1889 } else { 1890 slot_min = mt_min_slots[bn->type]; 1891 1892 *mid_split = 0; 1893 /* 1894 * Avoid having a range less than the slot count unless it 1895 * causes one node to be deficient. 1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1897 */ 1898 while ((split < slot_count - 1) && 1899 ((bn->pivot[split] - min) < slot_count - 1) && 1900 (b_end - split > slot_min)) 1901 split++; 1902 } 1903 1904 /* Avoid ending a node on a NULL entry */ 1905 split = mab_no_null_split(bn, split, slot_count); 1906 1907 if (unlikely(*mid_split)) 1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1909 1910 return split; 1911 } 1912 1913 /* 1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1915 * and set @b_node->b_end to the next free slot. 1916 * @mas: The maple state 1917 * @mas_start: The starting slot to copy 1918 * @mas_end: The end slot to copy (inclusively) 1919 * @b_node: The maple_big_node to place the data 1920 * @mab_start: The starting location in maple_big_node to store the data. 1921 */ 1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1923 unsigned char mas_end, struct maple_big_node *b_node, 1924 unsigned char mab_start) 1925 { 1926 enum maple_type mt; 1927 struct maple_node *node; 1928 void __rcu **slots; 1929 unsigned long *pivots, *gaps; 1930 int i = mas_start, j = mab_start; 1931 unsigned char piv_end; 1932 1933 node = mas_mn(mas); 1934 mt = mte_node_type(mas->node); 1935 pivots = ma_pivots(node, mt); 1936 if (!i) { 1937 b_node->pivot[j] = pivots[i++]; 1938 if (unlikely(i > mas_end)) 1939 goto complete; 1940 j++; 1941 } 1942 1943 piv_end = min(mas_end, mt_pivots[mt]); 1944 for (; i < piv_end; i++, j++) { 1945 b_node->pivot[j] = pivots[i]; 1946 if (unlikely(!b_node->pivot[j])) 1947 break; 1948 1949 if (unlikely(mas->max == b_node->pivot[j])) 1950 goto complete; 1951 } 1952 1953 if (likely(i <= mas_end)) 1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1955 1956 complete: 1957 b_node->b_end = ++j; 1958 j -= mab_start; 1959 slots = ma_slots(node, mt); 1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1962 gaps = ma_gaps(node, mt); 1963 memcpy(b_node->gap + mab_start, gaps + mas_start, 1964 sizeof(unsigned long) * j); 1965 } 1966 } 1967 1968 /* 1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1970 * @node: The maple node 1971 * @mt: The maple type 1972 * @end: The node end 1973 */ 1974 static inline void mas_leaf_set_meta(struct maple_node *node, 1975 enum maple_type mt, unsigned char end) 1976 { 1977 if (end < mt_slots[mt] - 1) 1978 ma_set_meta(node, mt, 0, end); 1979 } 1980 1981 /* 1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1983 * @b_node: the maple_big_node that has the data 1984 * @mab_start: the start location in @b_node. 1985 * @mab_end: The end location in @b_node (inclusively) 1986 * @mas: The maple state with the maple encoded node. 1987 */ 1988 static inline void mab_mas_cp(struct maple_big_node *b_node, 1989 unsigned char mab_start, unsigned char mab_end, 1990 struct ma_state *mas, bool new_max) 1991 { 1992 int i, j = 0; 1993 enum maple_type mt = mte_node_type(mas->node); 1994 struct maple_node *node = mte_to_node(mas->node); 1995 void __rcu **slots = ma_slots(node, mt); 1996 unsigned long *pivots = ma_pivots(node, mt); 1997 unsigned long *gaps = NULL; 1998 unsigned char end; 1999 2000 if (mab_end - mab_start > mt_pivots[mt]) 2001 mab_end--; 2002 2003 if (!pivots[mt_pivots[mt] - 1]) 2004 slots[mt_pivots[mt]] = NULL; 2005 2006 i = mab_start; 2007 do { 2008 pivots[j++] = b_node->pivot[i++]; 2009 } while (i <= mab_end && likely(b_node->pivot[i])); 2010 2011 memcpy(slots, b_node->slot + mab_start, 2012 sizeof(void *) * (i - mab_start)); 2013 2014 if (new_max) 2015 mas->max = b_node->pivot[i - 1]; 2016 2017 end = j - 1; 2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2019 unsigned long max_gap = 0; 2020 unsigned char offset = 0; 2021 2022 gaps = ma_gaps(node, mt); 2023 do { 2024 gaps[--j] = b_node->gap[--i]; 2025 if (gaps[j] > max_gap) { 2026 offset = j; 2027 max_gap = gaps[j]; 2028 } 2029 } while (j); 2030 2031 ma_set_meta(node, mt, offset, end); 2032 } else { 2033 mas_leaf_set_meta(node, mt, end); 2034 } 2035 } 2036 2037 /* 2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2039 * @mas: The maple state 2040 * @end: The maple node end 2041 * @mt: The maple node type 2042 */ 2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2044 enum maple_type mt) 2045 { 2046 if (!(mas->mas_flags & MA_STATE_BULK)) 2047 return; 2048 2049 if (mte_is_root(mas->node)) 2050 return; 2051 2052 if (end > mt_min_slots[mt]) { 2053 mas->mas_flags &= ~MA_STATE_REBALANCE; 2054 return; 2055 } 2056 } 2057 2058 /* 2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2060 * data from a maple encoded node. 2061 * @wr_mas: the maple write state 2062 * @b_node: the maple_big_node to fill with data 2063 * @offset_end: the offset to end copying 2064 * 2065 * Return: The actual end of the data stored in @b_node 2066 */ 2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2068 struct maple_big_node *b_node, unsigned char offset_end) 2069 { 2070 unsigned char slot; 2071 unsigned char b_end; 2072 /* Possible underflow of piv will wrap back to 0 before use. */ 2073 unsigned long piv; 2074 struct ma_state *mas = wr_mas->mas; 2075 2076 b_node->type = wr_mas->type; 2077 b_end = 0; 2078 slot = mas->offset; 2079 if (slot) { 2080 /* Copy start data up to insert. */ 2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2082 b_end = b_node->b_end; 2083 piv = b_node->pivot[b_end - 1]; 2084 } else 2085 piv = mas->min - 1; 2086 2087 if (piv + 1 < mas->index) { 2088 /* Handle range starting after old range */ 2089 b_node->slot[b_end] = wr_mas->content; 2090 if (!wr_mas->content) 2091 b_node->gap[b_end] = mas->index - 1 - piv; 2092 b_node->pivot[b_end++] = mas->index - 1; 2093 } 2094 2095 /* Store the new entry. */ 2096 mas->offset = b_end; 2097 b_node->slot[b_end] = wr_mas->entry; 2098 b_node->pivot[b_end] = mas->last; 2099 2100 /* Appended. */ 2101 if (mas->last >= mas->max) 2102 goto b_end; 2103 2104 /* Handle new range ending before old range ends */ 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2106 if (piv > mas->last) { 2107 if (piv == ULONG_MAX) 2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2109 2110 if (offset_end != slot) 2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2112 offset_end); 2113 2114 b_node->slot[++b_end] = wr_mas->content; 2115 if (!wr_mas->content) 2116 b_node->gap[b_end] = piv - mas->last + 1; 2117 b_node->pivot[b_end] = piv; 2118 } 2119 2120 slot = offset_end + 1; 2121 if (slot > mas->end) 2122 goto b_end; 2123 2124 /* Copy end data to the end of the node. */ 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2126 b_node->b_end--; 2127 return; 2128 2129 b_end: 2130 b_node->b_end = b_end; 2131 } 2132 2133 /* 2134 * mas_prev_sibling() - Find the previous node with the same parent. 2135 * @mas: the maple state 2136 * 2137 * Return: True if there is a previous sibling, false otherwise. 2138 */ 2139 static inline bool mas_prev_sibling(struct ma_state *mas) 2140 { 2141 unsigned int p_slot = mte_parent_slot(mas->node); 2142 2143 if (mte_is_root(mas->node)) 2144 return false; 2145 2146 if (!p_slot) 2147 return false; 2148 2149 mas_ascend(mas); 2150 mas->offset = p_slot - 1; 2151 mas_descend(mas); 2152 return true; 2153 } 2154 2155 /* 2156 * mas_next_sibling() - Find the next node with the same parent. 2157 * @mas: the maple state 2158 * 2159 * Return: true if there is a next sibling, false otherwise. 2160 */ 2161 static inline bool mas_next_sibling(struct ma_state *mas) 2162 { 2163 MA_STATE(parent, mas->tree, mas->index, mas->last); 2164 2165 if (mte_is_root(mas->node)) 2166 return false; 2167 2168 parent = *mas; 2169 mas_ascend(&parent); 2170 parent.offset = mte_parent_slot(mas->node) + 1; 2171 if (parent.offset > mas_data_end(&parent)) 2172 return false; 2173 2174 *mas = parent; 2175 mas_descend(mas); 2176 return true; 2177 } 2178 2179 /* 2180 * mte_node_or_none() - Set the enode and state. 2181 * @enode: The encoded maple node. 2182 * 2183 * Set the node to the enode and the status. 2184 */ 2185 static inline void mas_node_or_none(struct ma_state *mas, 2186 struct maple_enode *enode) 2187 { 2188 if (enode) { 2189 mas->node = enode; 2190 mas->status = ma_active; 2191 } else { 2192 mas->node = NULL; 2193 mas->status = ma_none; 2194 } 2195 } 2196 2197 /* 2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2199 * @wr_mas: The maple write state 2200 * 2201 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2202 */ 2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2204 { 2205 struct ma_state *mas = wr_mas->mas; 2206 unsigned char count, offset; 2207 2208 if (unlikely(ma_is_dense(wr_mas->type))) { 2209 wr_mas->r_max = wr_mas->r_min = mas->index; 2210 mas->offset = mas->index = mas->min; 2211 return; 2212 } 2213 2214 wr_mas->node = mas_mn(wr_mas->mas); 2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2217 wr_mas->pivots, mas->max); 2218 offset = mas->offset; 2219 2220 while (offset < count && mas->index > wr_mas->pivots[offset]) 2221 offset++; 2222 2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2225 wr_mas->offset_end = mas->offset = offset; 2226 } 2227 2228 /* 2229 * mast_rebalance_next() - Rebalance against the next node 2230 * @mast: The maple subtree state 2231 * @old_r: The encoded maple node to the right (next node). 2232 */ 2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2234 { 2235 unsigned char b_end = mast->bn->b_end; 2236 2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2238 mast->bn, b_end); 2239 mast->orig_r->last = mast->orig_r->max; 2240 } 2241 2242 /* 2243 * mast_rebalance_prev() - Rebalance against the previous node 2244 * @mast: The maple subtree state 2245 * @old_l: The encoded maple node to the left (previous node) 2246 */ 2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2248 { 2249 unsigned char end = mas_data_end(mast->orig_l) + 1; 2250 unsigned char b_end = mast->bn->b_end; 2251 2252 mab_shift_right(mast->bn, end); 2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2254 mast->l->min = mast->orig_l->min; 2255 mast->orig_l->index = mast->orig_l->min; 2256 mast->bn->b_end = end + b_end; 2257 mast->l->offset += end; 2258 } 2259 2260 /* 2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2262 * the node to the right. Checking the nodes to the right then the left at each 2263 * level upwards until root is reached. 2264 * Data is copied into the @mast->bn. 2265 * @mast: The maple_subtree_state. 2266 */ 2267 static inline 2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2269 { 2270 struct ma_state r_tmp = *mast->orig_r; 2271 struct ma_state l_tmp = *mast->orig_l; 2272 unsigned char depth = 0; 2273 2274 r_tmp = *mast->orig_r; 2275 l_tmp = *mast->orig_l; 2276 do { 2277 mas_ascend(mast->orig_r); 2278 mas_ascend(mast->orig_l); 2279 depth++; 2280 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2281 mast->orig_r->offset++; 2282 do { 2283 mas_descend(mast->orig_r); 2284 mast->orig_r->offset = 0; 2285 } while (--depth); 2286 2287 mast_rebalance_next(mast); 2288 *mast->orig_l = l_tmp; 2289 return true; 2290 } else if (mast->orig_l->offset != 0) { 2291 mast->orig_l->offset--; 2292 do { 2293 mas_descend(mast->orig_l); 2294 mast->orig_l->offset = 2295 mas_data_end(mast->orig_l); 2296 } while (--depth); 2297 2298 mast_rebalance_prev(mast); 2299 *mast->orig_r = r_tmp; 2300 return true; 2301 } 2302 } while (!mte_is_root(mast->orig_r->node)); 2303 2304 *mast->orig_r = r_tmp; 2305 *mast->orig_l = l_tmp; 2306 return false; 2307 } 2308 2309 /* 2310 * mast_ascend() - Ascend the original left and right maple states. 2311 * @mast: the maple subtree state. 2312 * 2313 * Ascend the original left and right sides. Set the offsets to point to the 2314 * data already in the new tree (@mast->l and @mast->r). 2315 */ 2316 static inline void mast_ascend(struct maple_subtree_state *mast) 2317 { 2318 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2319 mas_ascend(mast->orig_l); 2320 mas_ascend(mast->orig_r); 2321 2322 mast->orig_r->offset = 0; 2323 mast->orig_r->index = mast->r->max; 2324 /* last should be larger than or equal to index */ 2325 if (mast->orig_r->last < mast->orig_r->index) 2326 mast->orig_r->last = mast->orig_r->index; 2327 2328 wr_mas.type = mte_node_type(mast->orig_r->node); 2329 mas_wr_node_walk(&wr_mas); 2330 /* Set up the left side of things */ 2331 mast->orig_l->offset = 0; 2332 mast->orig_l->index = mast->l->min; 2333 wr_mas.mas = mast->orig_l; 2334 wr_mas.type = mte_node_type(mast->orig_l->node); 2335 mas_wr_node_walk(&wr_mas); 2336 2337 mast->bn->type = wr_mas.type; 2338 } 2339 2340 /* 2341 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2342 * @mas: the maple state with the allocations. 2343 * @b_node: the maple_big_node with the type encoding. 2344 * 2345 * Use the node type from the maple_big_node to allocate a new node from the 2346 * ma_state. This function exists mainly for code readability. 2347 * 2348 * Return: A new maple encoded node 2349 */ 2350 static inline struct maple_enode 2351 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2352 { 2353 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2354 } 2355 2356 /* 2357 * mas_mab_to_node() - Set up right and middle nodes 2358 * 2359 * @mas: the maple state that contains the allocations. 2360 * @b_node: the node which contains the data. 2361 * @left: The pointer which will have the left node 2362 * @right: The pointer which may have the right node 2363 * @middle: the pointer which may have the middle node (rare) 2364 * @mid_split: the split location for the middle node 2365 * 2366 * Return: the split of left. 2367 */ 2368 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2369 struct maple_big_node *b_node, struct maple_enode **left, 2370 struct maple_enode **right, struct maple_enode **middle, 2371 unsigned char *mid_split, unsigned long min) 2372 { 2373 unsigned char split = 0; 2374 unsigned char slot_count = mt_slots[b_node->type]; 2375 2376 *left = mas_new_ma_node(mas, b_node); 2377 *right = NULL; 2378 *middle = NULL; 2379 *mid_split = 0; 2380 2381 if (b_node->b_end < slot_count) { 2382 split = b_node->b_end; 2383 } else { 2384 split = mab_calc_split(mas, b_node, mid_split, min); 2385 *right = mas_new_ma_node(mas, b_node); 2386 } 2387 2388 if (*mid_split) 2389 *middle = mas_new_ma_node(mas, b_node); 2390 2391 return split; 2392 2393 } 2394 2395 /* 2396 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2397 * pointer. 2398 * @b_node - the big node to add the entry 2399 * @mas - the maple state to get the pivot (mas->max) 2400 * @entry - the entry to add, if NULL nothing happens. 2401 */ 2402 static inline void mab_set_b_end(struct maple_big_node *b_node, 2403 struct ma_state *mas, 2404 void *entry) 2405 { 2406 if (!entry) 2407 return; 2408 2409 b_node->slot[b_node->b_end] = entry; 2410 if (mt_is_alloc(mas->tree)) 2411 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2412 b_node->pivot[b_node->b_end++] = mas->max; 2413 } 2414 2415 /* 2416 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2417 * of @mas->node to either @left or @right, depending on @slot and @split 2418 * 2419 * @mas - the maple state with the node that needs a parent 2420 * @left - possible parent 1 2421 * @right - possible parent 2 2422 * @slot - the slot the mas->node was placed 2423 * @split - the split location between @left and @right 2424 */ 2425 static inline void mas_set_split_parent(struct ma_state *mas, 2426 struct maple_enode *left, 2427 struct maple_enode *right, 2428 unsigned char *slot, unsigned char split) 2429 { 2430 if (mas_is_none(mas)) 2431 return; 2432 2433 if ((*slot) <= split) 2434 mas_set_parent(mas, mas->node, left, *slot); 2435 else if (right) 2436 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2437 2438 (*slot)++; 2439 } 2440 2441 /* 2442 * mte_mid_split_check() - Check if the next node passes the mid-split 2443 * @**l: Pointer to left encoded maple node. 2444 * @**m: Pointer to middle encoded maple node. 2445 * @**r: Pointer to right encoded maple node. 2446 * @slot: The offset 2447 * @*split: The split location. 2448 * @mid_split: The middle split. 2449 */ 2450 static inline void mte_mid_split_check(struct maple_enode **l, 2451 struct maple_enode **r, 2452 struct maple_enode *right, 2453 unsigned char slot, 2454 unsigned char *split, 2455 unsigned char mid_split) 2456 { 2457 if (*r == right) 2458 return; 2459 2460 if (slot < mid_split) 2461 return; 2462 2463 *l = *r; 2464 *r = right; 2465 *split = mid_split; 2466 } 2467 2468 /* 2469 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2470 * is taken from @mast->l. 2471 * @mast - the maple subtree state 2472 * @left - the left node 2473 * @right - the right node 2474 * @split - the split location. 2475 */ 2476 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2477 struct maple_enode *left, 2478 struct maple_enode *middle, 2479 struct maple_enode *right, 2480 unsigned char split, 2481 unsigned char mid_split) 2482 { 2483 unsigned char slot; 2484 struct maple_enode *l = left; 2485 struct maple_enode *r = right; 2486 2487 if (mas_is_none(mast->l)) 2488 return; 2489 2490 if (middle) 2491 r = middle; 2492 2493 slot = mast->l->offset; 2494 2495 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2496 mas_set_split_parent(mast->l, l, r, &slot, split); 2497 2498 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2499 mas_set_split_parent(mast->m, l, r, &slot, split); 2500 2501 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2502 mas_set_split_parent(mast->r, l, r, &slot, split); 2503 } 2504 2505 /* 2506 * mas_topiary_node() - Dispose of a single node 2507 * @mas: The maple state for pushing nodes 2508 * @enode: The encoded maple node 2509 * @in_rcu: If the tree is in rcu mode 2510 * 2511 * The node will either be RCU freed or pushed back on the maple state. 2512 */ 2513 static inline void mas_topiary_node(struct ma_state *mas, 2514 struct ma_state *tmp_mas, bool in_rcu) 2515 { 2516 struct maple_node *tmp; 2517 struct maple_enode *enode; 2518 2519 if (mas_is_none(tmp_mas)) 2520 return; 2521 2522 enode = tmp_mas->node; 2523 tmp = mte_to_node(enode); 2524 mte_set_node_dead(enode); 2525 if (in_rcu) 2526 ma_free_rcu(tmp); 2527 else 2528 mas_push_node(mas, tmp); 2529 } 2530 2531 /* 2532 * mas_topiary_replace() - Replace the data with new data, then repair the 2533 * parent links within the new tree. Iterate over the dead sub-tree and collect 2534 * the dead subtrees and topiary the nodes that are no longer of use. 2535 * 2536 * The new tree will have up to three children with the correct parent. Keep 2537 * track of the new entries as they need to be followed to find the next level 2538 * of new entries. 2539 * 2540 * The old tree will have up to three children with the old parent. Keep track 2541 * of the old entries as they may have more nodes below replaced. Nodes within 2542 * [index, last] are dead subtrees, others need to be freed and followed. 2543 * 2544 * @mas: The maple state pointing at the new data 2545 * @old_enode: The maple encoded node being replaced 2546 * 2547 */ 2548 static inline void mas_topiary_replace(struct ma_state *mas, 2549 struct maple_enode *old_enode) 2550 { 2551 struct ma_state tmp[3], tmp_next[3]; 2552 MA_TOPIARY(subtrees, mas->tree); 2553 bool in_rcu; 2554 int i, n; 2555 2556 /* Place data in tree & then mark node as old */ 2557 mas_put_in_tree(mas, old_enode); 2558 2559 /* Update the parent pointers in the tree */ 2560 tmp[0] = *mas; 2561 tmp[0].offset = 0; 2562 tmp[1].status = ma_none; 2563 tmp[2].status = ma_none; 2564 while (!mte_is_leaf(tmp[0].node)) { 2565 n = 0; 2566 for (i = 0; i < 3; i++) { 2567 if (mas_is_none(&tmp[i])) 2568 continue; 2569 2570 while (n < 3) { 2571 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2572 break; 2573 n++; 2574 } 2575 2576 mas_adopt_children(&tmp[i], tmp[i].node); 2577 } 2578 2579 if (MAS_WARN_ON(mas, n == 0)) 2580 break; 2581 2582 while (n < 3) 2583 tmp_next[n++].status = ma_none; 2584 2585 for (i = 0; i < 3; i++) 2586 tmp[i] = tmp_next[i]; 2587 } 2588 2589 /* Collect the old nodes that need to be discarded */ 2590 if (mte_is_leaf(old_enode)) 2591 return mas_free(mas, old_enode); 2592 2593 tmp[0] = *mas; 2594 tmp[0].offset = 0; 2595 tmp[0].node = old_enode; 2596 tmp[1].status = ma_none; 2597 tmp[2].status = ma_none; 2598 in_rcu = mt_in_rcu(mas->tree); 2599 do { 2600 n = 0; 2601 for (i = 0; i < 3; i++) { 2602 if (mas_is_none(&tmp[i])) 2603 continue; 2604 2605 while (n < 3) { 2606 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2607 break; 2608 2609 if ((tmp_next[n].min >= tmp_next->index) && 2610 (tmp_next[n].max <= tmp_next->last)) { 2611 mat_add(&subtrees, tmp_next[n].node); 2612 tmp_next[n].status = ma_none; 2613 } else { 2614 n++; 2615 } 2616 } 2617 } 2618 2619 if (MAS_WARN_ON(mas, n == 0)) 2620 break; 2621 2622 while (n < 3) 2623 tmp_next[n++].status = ma_none; 2624 2625 for (i = 0; i < 3; i++) { 2626 mas_topiary_node(mas, &tmp[i], in_rcu); 2627 tmp[i] = tmp_next[i]; 2628 } 2629 } while (!mte_is_leaf(tmp[0].node)); 2630 2631 for (i = 0; i < 3; i++) 2632 mas_topiary_node(mas, &tmp[i], in_rcu); 2633 2634 mas_mat_destroy(mas, &subtrees); 2635 } 2636 2637 /* 2638 * mas_wmb_replace() - Write memory barrier and replace 2639 * @mas: The maple state 2640 * @old: The old maple encoded node that is being replaced. 2641 * 2642 * Updates gap as necessary. 2643 */ 2644 static inline void mas_wmb_replace(struct ma_state *mas, 2645 struct maple_enode *old_enode) 2646 { 2647 /* Insert the new data in the tree */ 2648 mas_topiary_replace(mas, old_enode); 2649 2650 if (mte_is_leaf(mas->node)) 2651 return; 2652 2653 mas_update_gap(mas); 2654 } 2655 2656 /* 2657 * mast_cp_to_nodes() - Copy data out to nodes. 2658 * @mast: The maple subtree state 2659 * @left: The left encoded maple node 2660 * @middle: The middle encoded maple node 2661 * @right: The right encoded maple node 2662 * @split: The location to split between left and (middle ? middle : right) 2663 * @mid_split: The location to split between middle and right. 2664 */ 2665 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2666 struct maple_enode *left, struct maple_enode *middle, 2667 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2668 { 2669 bool new_lmax = true; 2670 2671 mas_node_or_none(mast->l, left); 2672 mas_node_or_none(mast->m, middle); 2673 mas_node_or_none(mast->r, right); 2674 2675 mast->l->min = mast->orig_l->min; 2676 if (split == mast->bn->b_end) { 2677 mast->l->max = mast->orig_r->max; 2678 new_lmax = false; 2679 } 2680 2681 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2682 2683 if (middle) { 2684 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2685 mast->m->min = mast->bn->pivot[split] + 1; 2686 split = mid_split; 2687 } 2688 2689 mast->r->max = mast->orig_r->max; 2690 if (right) { 2691 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2692 mast->r->min = mast->bn->pivot[split] + 1; 2693 } 2694 } 2695 2696 /* 2697 * mast_combine_cp_left - Copy in the original left side of the tree into the 2698 * combined data set in the maple subtree state big node. 2699 * @mast: The maple subtree state 2700 */ 2701 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2702 { 2703 unsigned char l_slot = mast->orig_l->offset; 2704 2705 if (!l_slot) 2706 return; 2707 2708 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2709 } 2710 2711 /* 2712 * mast_combine_cp_right: Copy in the original right side of the tree into the 2713 * combined data set in the maple subtree state big node. 2714 * @mast: The maple subtree state 2715 */ 2716 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2717 { 2718 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2719 return; 2720 2721 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2722 mt_slot_count(mast->orig_r->node), mast->bn, 2723 mast->bn->b_end); 2724 mast->orig_r->last = mast->orig_r->max; 2725 } 2726 2727 /* 2728 * mast_sufficient: Check if the maple subtree state has enough data in the big 2729 * node to create at least one sufficient node 2730 * @mast: the maple subtree state 2731 */ 2732 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2733 { 2734 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2735 return true; 2736 2737 return false; 2738 } 2739 2740 /* 2741 * mast_overflow: Check if there is too much data in the subtree state for a 2742 * single node. 2743 * @mast: The maple subtree state 2744 */ 2745 static inline bool mast_overflow(struct maple_subtree_state *mast) 2746 { 2747 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2748 return true; 2749 2750 return false; 2751 } 2752 2753 static inline void *mtree_range_walk(struct ma_state *mas) 2754 { 2755 unsigned long *pivots; 2756 unsigned char offset; 2757 struct maple_node *node; 2758 struct maple_enode *next, *last; 2759 enum maple_type type; 2760 void __rcu **slots; 2761 unsigned char end; 2762 unsigned long max, min; 2763 unsigned long prev_max, prev_min; 2764 2765 next = mas->node; 2766 min = mas->min; 2767 max = mas->max; 2768 do { 2769 last = next; 2770 node = mte_to_node(next); 2771 type = mte_node_type(next); 2772 pivots = ma_pivots(node, type); 2773 end = ma_data_end(node, type, pivots, max); 2774 prev_min = min; 2775 prev_max = max; 2776 if (pivots[0] >= mas->index) { 2777 offset = 0; 2778 max = pivots[0]; 2779 goto next; 2780 } 2781 2782 offset = 1; 2783 while (offset < end) { 2784 if (pivots[offset] >= mas->index) { 2785 max = pivots[offset]; 2786 break; 2787 } 2788 offset++; 2789 } 2790 2791 min = pivots[offset - 1] + 1; 2792 next: 2793 slots = ma_slots(node, type); 2794 next = mt_slot(mas->tree, slots, offset); 2795 if (unlikely(ma_dead_node(node))) 2796 goto dead_node; 2797 } while (!ma_is_leaf(type)); 2798 2799 mas->end = end; 2800 mas->offset = offset; 2801 mas->index = min; 2802 mas->last = max; 2803 mas->min = prev_min; 2804 mas->max = prev_max; 2805 mas->node = last; 2806 return (void *)next; 2807 2808 dead_node: 2809 mas_reset(mas); 2810 return NULL; 2811 } 2812 2813 /* 2814 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2815 * @mas: The starting maple state 2816 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2817 * @count: The estimated count of iterations needed. 2818 * 2819 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2820 * is hit. First @b_node is split into two entries which are inserted into the 2821 * next iteration of the loop. @b_node is returned populated with the final 2822 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2823 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2824 * to account of what has been copied into the new sub-tree. The update of 2825 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2826 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2827 * the new sub-tree in case the sub-tree becomes the full tree. 2828 * 2829 * Return: the number of elements in b_node during the last loop. 2830 */ 2831 static int mas_spanning_rebalance(struct ma_state *mas, 2832 struct maple_subtree_state *mast, unsigned char count) 2833 { 2834 unsigned char split, mid_split; 2835 unsigned char slot = 0; 2836 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2837 struct maple_enode *old_enode; 2838 2839 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2840 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2841 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2842 2843 /* 2844 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2845 * Rebalancing is done by use of the ``struct maple_topiary``. 2846 */ 2847 mast->l = &l_mas; 2848 mast->m = &m_mas; 2849 mast->r = &r_mas; 2850 l_mas.status = r_mas.status = m_mas.status = ma_none; 2851 2852 /* Check if this is not root and has sufficient data. */ 2853 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2854 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2855 mast_spanning_rebalance(mast); 2856 2857 l_mas.depth = 0; 2858 2859 /* 2860 * Each level of the tree is examined and balanced, pushing data to the left or 2861 * right, or rebalancing against left or right nodes is employed to avoid 2862 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2863 * the tree is created, there may be a mix of new and old nodes. The old nodes 2864 * will have the incorrect parent pointers and currently be in two trees: the 2865 * original tree and the partially new tree. To remedy the parent pointers in 2866 * the old tree, the new data is swapped into the active tree and a walk down 2867 * the tree is performed and the parent pointers are updated. 2868 * See mas_topiary_replace() for more information. 2869 */ 2870 while (count--) { 2871 mast->bn->b_end--; 2872 mast->bn->type = mte_node_type(mast->orig_l->node); 2873 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2874 &mid_split, mast->orig_l->min); 2875 mast_set_split_parents(mast, left, middle, right, split, 2876 mid_split); 2877 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2878 2879 /* 2880 * Copy data from next level in the tree to mast->bn from next 2881 * iteration 2882 */ 2883 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2884 mast->bn->type = mte_node_type(left); 2885 l_mas.depth++; 2886 2887 /* Root already stored in l->node. */ 2888 if (mas_is_root_limits(mast->l)) 2889 goto new_root; 2890 2891 mast_ascend(mast); 2892 mast_combine_cp_left(mast); 2893 l_mas.offset = mast->bn->b_end; 2894 mab_set_b_end(mast->bn, &l_mas, left); 2895 mab_set_b_end(mast->bn, &m_mas, middle); 2896 mab_set_b_end(mast->bn, &r_mas, right); 2897 2898 /* Copy anything necessary out of the right node. */ 2899 mast_combine_cp_right(mast); 2900 mast->orig_l->last = mast->orig_l->max; 2901 2902 if (mast_sufficient(mast)) 2903 continue; 2904 2905 if (mast_overflow(mast)) 2906 continue; 2907 2908 /* May be a new root stored in mast->bn */ 2909 if (mas_is_root_limits(mast->orig_l)) 2910 break; 2911 2912 mast_spanning_rebalance(mast); 2913 2914 /* rebalancing from other nodes may require another loop. */ 2915 if (!count) 2916 count++; 2917 } 2918 2919 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2920 mte_node_type(mast->orig_l->node)); 2921 l_mas.depth++; 2922 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2923 mas_set_parent(mas, left, l_mas.node, slot); 2924 if (middle) 2925 mas_set_parent(mas, middle, l_mas.node, ++slot); 2926 2927 if (right) 2928 mas_set_parent(mas, right, l_mas.node, ++slot); 2929 2930 if (mas_is_root_limits(mast->l)) { 2931 new_root: 2932 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2933 while (!mte_is_root(mast->orig_l->node)) 2934 mast_ascend(mast); 2935 } else { 2936 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2937 } 2938 2939 old_enode = mast->orig_l->node; 2940 mas->depth = l_mas.depth; 2941 mas->node = l_mas.node; 2942 mas->min = l_mas.min; 2943 mas->max = l_mas.max; 2944 mas->offset = l_mas.offset; 2945 mas_wmb_replace(mas, old_enode); 2946 mtree_range_walk(mas); 2947 return mast->bn->b_end; 2948 } 2949 2950 /* 2951 * mas_rebalance() - Rebalance a given node. 2952 * @mas: The maple state 2953 * @b_node: The big maple node. 2954 * 2955 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2956 * Continue upwards until tree is sufficient. 2957 * 2958 * Return: the number of elements in b_node during the last loop. 2959 */ 2960 static inline int mas_rebalance(struct ma_state *mas, 2961 struct maple_big_node *b_node) 2962 { 2963 char empty_count = mas_mt_height(mas); 2964 struct maple_subtree_state mast; 2965 unsigned char shift, b_end = ++b_node->b_end; 2966 2967 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2968 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2969 2970 trace_ma_op(__func__, mas); 2971 2972 /* 2973 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2974 * against the node to the right if it exists, otherwise the node to the 2975 * left of this node is rebalanced against this node. If rebalancing 2976 * causes just one node to be produced instead of two, then the parent 2977 * is also examined and rebalanced if it is insufficient. Every level 2978 * tries to combine the data in the same way. If one node contains the 2979 * entire range of the tree, then that node is used as a new root node. 2980 */ 2981 mas_node_count(mas, empty_count * 2 - 1); 2982 if (mas_is_err(mas)) 2983 return 0; 2984 2985 mast.orig_l = &l_mas; 2986 mast.orig_r = &r_mas; 2987 mast.bn = b_node; 2988 mast.bn->type = mte_node_type(mas->node); 2989 2990 l_mas = r_mas = *mas; 2991 2992 if (mas_next_sibling(&r_mas)) { 2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2994 r_mas.last = r_mas.index = r_mas.max; 2995 } else { 2996 mas_prev_sibling(&l_mas); 2997 shift = mas_data_end(&l_mas) + 1; 2998 mab_shift_right(b_node, shift); 2999 mas->offset += shift; 3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3001 b_node->b_end = shift + b_end; 3002 l_mas.index = l_mas.last = l_mas.min; 3003 } 3004 3005 return mas_spanning_rebalance(mas, &mast, empty_count); 3006 } 3007 3008 /* 3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3010 * state. 3011 * @mas: The maple state 3012 * @end: The end of the left-most node. 3013 * 3014 * During a mass-insert event (such as forking), it may be necessary to 3015 * rebalance the left-most node when it is not sufficient. 3016 */ 3017 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3018 { 3019 enum maple_type mt = mte_node_type(mas->node); 3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3021 struct maple_enode *eparent, *old_eparent; 3022 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3023 void __rcu **l_slots, **slots; 3024 unsigned long *l_pivs, *pivs, gap; 3025 bool in_rcu = mt_in_rcu(mas->tree); 3026 3027 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3028 3029 l_mas = *mas; 3030 mas_prev_sibling(&l_mas); 3031 3032 /* set up node. */ 3033 if (in_rcu) { 3034 /* Allocate for both left and right as well as parent. */ 3035 mas_node_count(mas, 3); 3036 if (mas_is_err(mas)) 3037 return; 3038 3039 newnode = mas_pop_node(mas); 3040 } else { 3041 newnode = &reuse; 3042 } 3043 3044 node = mas_mn(mas); 3045 newnode->parent = node->parent; 3046 slots = ma_slots(newnode, mt); 3047 pivs = ma_pivots(newnode, mt); 3048 left = mas_mn(&l_mas); 3049 l_slots = ma_slots(left, mt); 3050 l_pivs = ma_pivots(left, mt); 3051 if (!l_slots[split]) 3052 split++; 3053 tmp = mas_data_end(&l_mas) - split; 3054 3055 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3056 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3057 pivs[tmp] = l_mas.max; 3058 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3059 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3060 3061 l_mas.max = l_pivs[split]; 3062 mas->min = l_mas.max + 1; 3063 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3064 mas_parent_type(&l_mas, l_mas.node)); 3065 tmp += end; 3066 if (!in_rcu) { 3067 unsigned char max_p = mt_pivots[mt]; 3068 unsigned char max_s = mt_slots[mt]; 3069 3070 if (tmp < max_p) 3071 memset(pivs + tmp, 0, 3072 sizeof(unsigned long) * (max_p - tmp)); 3073 3074 if (tmp < mt_slots[mt]) 3075 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3076 3077 memcpy(node, newnode, sizeof(struct maple_node)); 3078 ma_set_meta(node, mt, 0, tmp - 1); 3079 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3080 l_pivs[split]); 3081 3082 /* Remove data from l_pivs. */ 3083 tmp = split + 1; 3084 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3085 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3086 ma_set_meta(left, mt, 0, split); 3087 eparent = old_eparent; 3088 3089 goto done; 3090 } 3091 3092 /* RCU requires replacing both l_mas, mas, and parent. */ 3093 mas->node = mt_mk_node(newnode, mt); 3094 ma_set_meta(newnode, mt, 0, tmp); 3095 3096 new_left = mas_pop_node(mas); 3097 new_left->parent = left->parent; 3098 mt = mte_node_type(l_mas.node); 3099 slots = ma_slots(new_left, mt); 3100 pivs = ma_pivots(new_left, mt); 3101 memcpy(slots, l_slots, sizeof(void *) * split); 3102 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3103 ma_set_meta(new_left, mt, 0, split); 3104 l_mas.node = mt_mk_node(new_left, mt); 3105 3106 /* replace parent. */ 3107 offset = mte_parent_slot(mas->node); 3108 mt = mas_parent_type(&l_mas, l_mas.node); 3109 parent = mas_pop_node(mas); 3110 slots = ma_slots(parent, mt); 3111 pivs = ma_pivots(parent, mt); 3112 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3113 rcu_assign_pointer(slots[offset], mas->node); 3114 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3115 pivs[offset - 1] = l_mas.max; 3116 eparent = mt_mk_node(parent, mt); 3117 done: 3118 gap = mas_leaf_max_gap(mas); 3119 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3120 gap = mas_leaf_max_gap(&l_mas); 3121 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3122 mas_ascend(mas); 3123 3124 if (in_rcu) { 3125 mas_replace_node(mas, old_eparent); 3126 mas_adopt_children(mas, mas->node); 3127 } 3128 3129 mas_update_gap(mas); 3130 } 3131 3132 /* 3133 * mas_split_final_node() - Split the final node in a subtree operation. 3134 * @mast: the maple subtree state 3135 * @mas: The maple state 3136 * @height: The height of the tree in case it's a new root. 3137 */ 3138 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3139 struct ma_state *mas, int height) 3140 { 3141 struct maple_enode *ancestor; 3142 3143 if (mte_is_root(mas->node)) { 3144 if (mt_is_alloc(mas->tree)) 3145 mast->bn->type = maple_arange_64; 3146 else 3147 mast->bn->type = maple_range_64; 3148 mas->depth = height; 3149 } 3150 /* 3151 * Only a single node is used here, could be root. 3152 * The Big_node data should just fit in a single node. 3153 */ 3154 ancestor = mas_new_ma_node(mas, mast->bn); 3155 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3156 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3157 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3158 3159 mast->l->node = ancestor; 3160 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3161 mas->offset = mast->bn->b_end - 1; 3162 } 3163 3164 /* 3165 * mast_fill_bnode() - Copy data into the big node in the subtree state 3166 * @mast: The maple subtree state 3167 * @mas: the maple state 3168 * @skip: The number of entries to skip for new nodes insertion. 3169 */ 3170 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3171 struct ma_state *mas, 3172 unsigned char skip) 3173 { 3174 bool cp = true; 3175 unsigned char split; 3176 3177 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3178 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3179 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3180 mast->bn->b_end = 0; 3181 3182 if (mte_is_root(mas->node)) { 3183 cp = false; 3184 } else { 3185 mas_ascend(mas); 3186 mas->offset = mte_parent_slot(mas->node); 3187 } 3188 3189 if (cp && mast->l->offset) 3190 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3191 3192 split = mast->bn->b_end; 3193 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3194 mast->r->offset = mast->bn->b_end; 3195 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3196 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3197 cp = false; 3198 3199 if (cp) 3200 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3201 mast->bn, mast->bn->b_end); 3202 3203 mast->bn->b_end--; 3204 mast->bn->type = mte_node_type(mas->node); 3205 } 3206 3207 /* 3208 * mast_split_data() - Split the data in the subtree state big node into regular 3209 * nodes. 3210 * @mast: The maple subtree state 3211 * @mas: The maple state 3212 * @split: The location to split the big node 3213 */ 3214 static inline void mast_split_data(struct maple_subtree_state *mast, 3215 struct ma_state *mas, unsigned char split) 3216 { 3217 unsigned char p_slot; 3218 3219 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3220 mte_set_pivot(mast->r->node, 0, mast->r->max); 3221 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3222 mast->l->offset = mte_parent_slot(mas->node); 3223 mast->l->max = mast->bn->pivot[split]; 3224 mast->r->min = mast->l->max + 1; 3225 if (mte_is_leaf(mas->node)) 3226 return; 3227 3228 p_slot = mast->orig_l->offset; 3229 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3230 &p_slot, split); 3231 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3232 &p_slot, split); 3233 } 3234 3235 /* 3236 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3237 * data to the right or left node if there is room. 3238 * @mas: The maple state 3239 * @height: The current height of the maple state 3240 * @mast: The maple subtree state 3241 * @left: Push left or not. 3242 * 3243 * Keeping the height of the tree low means faster lookups. 3244 * 3245 * Return: True if pushed, false otherwise. 3246 */ 3247 static inline bool mas_push_data(struct ma_state *mas, int height, 3248 struct maple_subtree_state *mast, bool left) 3249 { 3250 unsigned char slot_total = mast->bn->b_end; 3251 unsigned char end, space, split; 3252 3253 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3254 tmp_mas = *mas; 3255 tmp_mas.depth = mast->l->depth; 3256 3257 if (left && !mas_prev_sibling(&tmp_mas)) 3258 return false; 3259 else if (!left && !mas_next_sibling(&tmp_mas)) 3260 return false; 3261 3262 end = mas_data_end(&tmp_mas); 3263 slot_total += end; 3264 space = 2 * mt_slot_count(mas->node) - 2; 3265 /* -2 instead of -1 to ensure there isn't a triple split */ 3266 if (ma_is_leaf(mast->bn->type)) 3267 space--; 3268 3269 if (mas->max == ULONG_MAX) 3270 space--; 3271 3272 if (slot_total >= space) 3273 return false; 3274 3275 /* Get the data; Fill mast->bn */ 3276 mast->bn->b_end++; 3277 if (left) { 3278 mab_shift_right(mast->bn, end + 1); 3279 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3280 mast->bn->b_end = slot_total + 1; 3281 } else { 3282 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3283 } 3284 3285 /* Configure mast for splitting of mast->bn */ 3286 split = mt_slots[mast->bn->type] - 2; 3287 if (left) { 3288 /* Switch mas to prev node */ 3289 *mas = tmp_mas; 3290 /* Start using mast->l for the left side. */ 3291 tmp_mas.node = mast->l->node; 3292 *mast->l = tmp_mas; 3293 } else { 3294 tmp_mas.node = mast->r->node; 3295 *mast->r = tmp_mas; 3296 split = slot_total - split; 3297 } 3298 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3299 /* Update parent slot for split calculation. */ 3300 if (left) 3301 mast->orig_l->offset += end + 1; 3302 3303 mast_split_data(mast, mas, split); 3304 mast_fill_bnode(mast, mas, 2); 3305 mas_split_final_node(mast, mas, height + 1); 3306 return true; 3307 } 3308 3309 /* 3310 * mas_split() - Split data that is too big for one node into two. 3311 * @mas: The maple state 3312 * @b_node: The maple big node 3313 * Return: 1 on success, 0 on failure. 3314 */ 3315 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3316 { 3317 struct maple_subtree_state mast; 3318 int height = 0; 3319 unsigned char mid_split, split = 0; 3320 struct maple_enode *old; 3321 3322 /* 3323 * Splitting is handled differently from any other B-tree; the Maple 3324 * Tree splits upwards. Splitting up means that the split operation 3325 * occurs when the walk of the tree hits the leaves and not on the way 3326 * down. The reason for splitting up is that it is impossible to know 3327 * how much space will be needed until the leaf is (or leaves are) 3328 * reached. Since overwriting data is allowed and a range could 3329 * overwrite more than one range or result in changing one entry into 3 3330 * entries, it is impossible to know if a split is required until the 3331 * data is examined. 3332 * 3333 * Splitting is a balancing act between keeping allocations to a minimum 3334 * and avoiding a 'jitter' event where a tree is expanded to make room 3335 * for an entry followed by a contraction when the entry is removed. To 3336 * accomplish the balance, there are empty slots remaining in both left 3337 * and right nodes after a split. 3338 */ 3339 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3340 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3341 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3342 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3343 3344 trace_ma_op(__func__, mas); 3345 mas->depth = mas_mt_height(mas); 3346 /* Allocation failures will happen early. */ 3347 mas_node_count(mas, 1 + mas->depth * 2); 3348 if (mas_is_err(mas)) 3349 return 0; 3350 3351 mast.l = &l_mas; 3352 mast.r = &r_mas; 3353 mast.orig_l = &prev_l_mas; 3354 mast.orig_r = &prev_r_mas; 3355 mast.bn = b_node; 3356 3357 while (height++ <= mas->depth) { 3358 if (mt_slots[b_node->type] > b_node->b_end) { 3359 mas_split_final_node(&mast, mas, height); 3360 break; 3361 } 3362 3363 l_mas = r_mas = *mas; 3364 l_mas.node = mas_new_ma_node(mas, b_node); 3365 r_mas.node = mas_new_ma_node(mas, b_node); 3366 /* 3367 * Another way that 'jitter' is avoided is to terminate a split up early if the 3368 * left or right node has space to spare. This is referred to as "pushing left" 3369 * or "pushing right" and is similar to the B* tree, except the nodes left or 3370 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3371 * is a significant savings. 3372 */ 3373 /* Try to push left. */ 3374 if (mas_push_data(mas, height, &mast, true)) 3375 break; 3376 /* Try to push right. */ 3377 if (mas_push_data(mas, height, &mast, false)) 3378 break; 3379 3380 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3381 mast_split_data(&mast, mas, split); 3382 /* 3383 * Usually correct, mab_mas_cp in the above call overwrites 3384 * r->max. 3385 */ 3386 mast.r->max = mas->max; 3387 mast_fill_bnode(&mast, mas, 1); 3388 prev_l_mas = *mast.l; 3389 prev_r_mas = *mast.r; 3390 } 3391 3392 /* Set the original node as dead */ 3393 old = mas->node; 3394 mas->node = l_mas.node; 3395 mas_wmb_replace(mas, old); 3396 mtree_range_walk(mas); 3397 return 1; 3398 } 3399 3400 /* 3401 * mas_reuse_node() - Reuse the node to store the data. 3402 * @wr_mas: The maple write state 3403 * @bn: The maple big node 3404 * @end: The end of the data. 3405 * 3406 * Will always return false in RCU mode. 3407 * 3408 * Return: True if node was reused, false otherwise. 3409 */ 3410 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3411 struct maple_big_node *bn, unsigned char end) 3412 { 3413 /* Need to be rcu safe. */ 3414 if (mt_in_rcu(wr_mas->mas->tree)) 3415 return false; 3416 3417 if (end > bn->b_end) { 3418 int clear = mt_slots[wr_mas->type] - bn->b_end; 3419 3420 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3421 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3422 } 3423 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3424 return true; 3425 } 3426 3427 /* 3428 * mas_commit_b_node() - Commit the big node into the tree. 3429 * @wr_mas: The maple write state 3430 * @b_node: The maple big node 3431 * @end: The end of the data. 3432 */ 3433 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3434 struct maple_big_node *b_node, unsigned char end) 3435 { 3436 struct maple_node *node; 3437 struct maple_enode *old_enode; 3438 unsigned char b_end = b_node->b_end; 3439 enum maple_type b_type = b_node->type; 3440 3441 old_enode = wr_mas->mas->node; 3442 if ((b_end < mt_min_slots[b_type]) && 3443 (!mte_is_root(old_enode)) && 3444 (mas_mt_height(wr_mas->mas) > 1)) 3445 return mas_rebalance(wr_mas->mas, b_node); 3446 3447 if (b_end >= mt_slots[b_type]) 3448 return mas_split(wr_mas->mas, b_node); 3449 3450 if (mas_reuse_node(wr_mas, b_node, end)) 3451 goto reuse_node; 3452 3453 mas_node_count(wr_mas->mas, 1); 3454 if (mas_is_err(wr_mas->mas)) 3455 return 0; 3456 3457 node = mas_pop_node(wr_mas->mas); 3458 node->parent = mas_mn(wr_mas->mas)->parent; 3459 wr_mas->mas->node = mt_mk_node(node, b_type); 3460 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3461 mas_replace_node(wr_mas->mas, old_enode); 3462 reuse_node: 3463 mas_update_gap(wr_mas->mas); 3464 wr_mas->mas->end = b_end; 3465 return 1; 3466 } 3467 3468 /* 3469 * mas_root_expand() - Expand a root to a node 3470 * @mas: The maple state 3471 * @entry: The entry to store into the tree 3472 */ 3473 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3474 { 3475 void *contents = mas_root_locked(mas); 3476 enum maple_type type = maple_leaf_64; 3477 struct maple_node *node; 3478 void __rcu **slots; 3479 unsigned long *pivots; 3480 int slot = 0; 3481 3482 mas_node_count(mas, 1); 3483 if (unlikely(mas_is_err(mas))) 3484 return 0; 3485 3486 node = mas_pop_node(mas); 3487 pivots = ma_pivots(node, type); 3488 slots = ma_slots(node, type); 3489 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3490 mas->node = mt_mk_node(node, type); 3491 mas->status = ma_active; 3492 3493 if (mas->index) { 3494 if (contents) { 3495 rcu_assign_pointer(slots[slot], contents); 3496 if (likely(mas->index > 1)) 3497 slot++; 3498 } 3499 pivots[slot++] = mas->index - 1; 3500 } 3501 3502 rcu_assign_pointer(slots[slot], entry); 3503 mas->offset = slot; 3504 pivots[slot] = mas->last; 3505 if (mas->last != ULONG_MAX) 3506 pivots[++slot] = ULONG_MAX; 3507 3508 mas->depth = 1; 3509 mas_set_height(mas); 3510 ma_set_meta(node, maple_leaf_64, 0, slot); 3511 /* swap the new root into the tree */ 3512 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3513 return slot; 3514 } 3515 3516 static inline void mas_store_root(struct ma_state *mas, void *entry) 3517 { 3518 if (likely((mas->last != 0) || (mas->index != 0))) 3519 mas_root_expand(mas, entry); 3520 else if (((unsigned long) (entry) & 3) == 2) 3521 mas_root_expand(mas, entry); 3522 else { 3523 rcu_assign_pointer(mas->tree->ma_root, entry); 3524 mas->status = ma_start; 3525 } 3526 } 3527 3528 /* 3529 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3530 * spans the node. 3531 * @mas: The maple state 3532 * @piv: The pivot value being written 3533 * @type: The maple node type 3534 * @entry: The data to write 3535 * 3536 * Spanning writes are writes that start in one node and end in another OR if 3537 * the write of a %NULL will cause the node to end with a %NULL. 3538 * 3539 * Return: True if this is a spanning write, false otherwise. 3540 */ 3541 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3542 { 3543 unsigned long max = wr_mas->r_max; 3544 unsigned long last = wr_mas->mas->last; 3545 enum maple_type type = wr_mas->type; 3546 void *entry = wr_mas->entry; 3547 3548 /* Contained in this pivot, fast path */ 3549 if (last < max) 3550 return false; 3551 3552 if (ma_is_leaf(type)) { 3553 max = wr_mas->mas->max; 3554 if (last < max) 3555 return false; 3556 } 3557 3558 if (last == max) { 3559 /* 3560 * The last entry of leaf node cannot be NULL unless it is the 3561 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3562 */ 3563 if (entry || last == ULONG_MAX) 3564 return false; 3565 } 3566 3567 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3568 return true; 3569 } 3570 3571 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3572 { 3573 wr_mas->type = mte_node_type(wr_mas->mas->node); 3574 mas_wr_node_walk(wr_mas); 3575 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3576 } 3577 3578 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3579 { 3580 wr_mas->mas->max = wr_mas->r_max; 3581 wr_mas->mas->min = wr_mas->r_min; 3582 wr_mas->mas->node = wr_mas->content; 3583 wr_mas->mas->offset = 0; 3584 wr_mas->mas->depth++; 3585 } 3586 /* 3587 * mas_wr_walk() - Walk the tree for a write. 3588 * @wr_mas: The maple write state 3589 * 3590 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3591 * 3592 * Return: True if it's contained in a node, false on spanning write. 3593 */ 3594 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3595 { 3596 struct ma_state *mas = wr_mas->mas; 3597 3598 while (true) { 3599 mas_wr_walk_descend(wr_mas); 3600 if (unlikely(mas_is_span_wr(wr_mas))) 3601 return false; 3602 3603 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3604 mas->offset); 3605 if (ma_is_leaf(wr_mas->type)) 3606 return true; 3607 3608 mas_wr_walk_traverse(wr_mas); 3609 } 3610 3611 return true; 3612 } 3613 3614 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3615 { 3616 struct ma_state *mas = wr_mas->mas; 3617 3618 while (true) { 3619 mas_wr_walk_descend(wr_mas); 3620 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3621 mas->offset); 3622 if (ma_is_leaf(wr_mas->type)) 3623 return true; 3624 mas_wr_walk_traverse(wr_mas); 3625 3626 } 3627 return true; 3628 } 3629 /* 3630 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3631 * @l_wr_mas: The left maple write state 3632 * @r_wr_mas: The right maple write state 3633 */ 3634 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3635 struct ma_wr_state *r_wr_mas) 3636 { 3637 struct ma_state *r_mas = r_wr_mas->mas; 3638 struct ma_state *l_mas = l_wr_mas->mas; 3639 unsigned char l_slot; 3640 3641 l_slot = l_mas->offset; 3642 if (!l_wr_mas->content) 3643 l_mas->index = l_wr_mas->r_min; 3644 3645 if ((l_mas->index == l_wr_mas->r_min) && 3646 (l_slot && 3647 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3648 if (l_slot > 1) 3649 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3650 else 3651 l_mas->index = l_mas->min; 3652 3653 l_mas->offset = l_slot - 1; 3654 } 3655 3656 if (!r_wr_mas->content) { 3657 if (r_mas->last < r_wr_mas->r_max) 3658 r_mas->last = r_wr_mas->r_max; 3659 r_mas->offset++; 3660 } else if ((r_mas->last == r_wr_mas->r_max) && 3661 (r_mas->last < r_mas->max) && 3662 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3663 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3664 r_wr_mas->type, r_mas->offset + 1); 3665 r_mas->offset++; 3666 } 3667 } 3668 3669 static inline void *mas_state_walk(struct ma_state *mas) 3670 { 3671 void *entry; 3672 3673 entry = mas_start(mas); 3674 if (mas_is_none(mas)) 3675 return NULL; 3676 3677 if (mas_is_ptr(mas)) 3678 return entry; 3679 3680 return mtree_range_walk(mas); 3681 } 3682 3683 /* 3684 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3685 * to date. 3686 * 3687 * @mas: The maple state. 3688 * 3689 * Note: Leaves mas in undesirable state. 3690 * Return: The entry for @mas->index or %NULL on dead node. 3691 */ 3692 static inline void *mtree_lookup_walk(struct ma_state *mas) 3693 { 3694 unsigned long *pivots; 3695 unsigned char offset; 3696 struct maple_node *node; 3697 struct maple_enode *next; 3698 enum maple_type type; 3699 void __rcu **slots; 3700 unsigned char end; 3701 3702 next = mas->node; 3703 do { 3704 node = mte_to_node(next); 3705 type = mte_node_type(next); 3706 pivots = ma_pivots(node, type); 3707 end = mt_pivots[type]; 3708 offset = 0; 3709 do { 3710 if (pivots[offset] >= mas->index) 3711 break; 3712 } while (++offset < end); 3713 3714 slots = ma_slots(node, type); 3715 next = mt_slot(mas->tree, slots, offset); 3716 if (unlikely(ma_dead_node(node))) 3717 goto dead_node; 3718 } while (!ma_is_leaf(type)); 3719 3720 return (void *)next; 3721 3722 dead_node: 3723 mas_reset(mas); 3724 return NULL; 3725 } 3726 3727 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3728 /* 3729 * mas_new_root() - Create a new root node that only contains the entry passed 3730 * in. 3731 * @mas: The maple state 3732 * @entry: The entry to store. 3733 * 3734 * Only valid when the index == 0 and the last == ULONG_MAX 3735 * 3736 * Return 0 on error, 1 on success. 3737 */ 3738 static inline int mas_new_root(struct ma_state *mas, void *entry) 3739 { 3740 struct maple_enode *root = mas_root_locked(mas); 3741 enum maple_type type = maple_leaf_64; 3742 struct maple_node *node; 3743 void __rcu **slots; 3744 unsigned long *pivots; 3745 3746 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3747 mas->depth = 0; 3748 mas_set_height(mas); 3749 rcu_assign_pointer(mas->tree->ma_root, entry); 3750 mas->status = ma_start; 3751 goto done; 3752 } 3753 3754 mas_node_count(mas, 1); 3755 if (mas_is_err(mas)) 3756 return 0; 3757 3758 node = mas_pop_node(mas); 3759 pivots = ma_pivots(node, type); 3760 slots = ma_slots(node, type); 3761 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3762 mas->node = mt_mk_node(node, type); 3763 mas->status = ma_active; 3764 rcu_assign_pointer(slots[0], entry); 3765 pivots[0] = mas->last; 3766 mas->depth = 1; 3767 mas_set_height(mas); 3768 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3769 3770 done: 3771 if (xa_is_node(root)) 3772 mte_destroy_walk(root, mas->tree); 3773 3774 return 1; 3775 } 3776 /* 3777 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3778 * and new nodes where necessary, then place the sub-tree in the actual tree. 3779 * Note that mas is expected to point to the node which caused the store to 3780 * span. 3781 * @wr_mas: The maple write state 3782 * 3783 * Return: 0 on error, positive on success. 3784 */ 3785 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3786 { 3787 struct maple_subtree_state mast; 3788 struct maple_big_node b_node; 3789 struct ma_state *mas; 3790 unsigned char height; 3791 3792 /* Left and Right side of spanning store */ 3793 MA_STATE(l_mas, NULL, 0, 0); 3794 MA_STATE(r_mas, NULL, 0, 0); 3795 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3796 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3797 3798 /* 3799 * A store operation that spans multiple nodes is called a spanning 3800 * store and is handled early in the store call stack by the function 3801 * mas_is_span_wr(). When a spanning store is identified, the maple 3802 * state is duplicated. The first maple state walks the left tree path 3803 * to ``index``, the duplicate walks the right tree path to ``last``. 3804 * The data in the two nodes are combined into a single node, two nodes, 3805 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3806 * written to the last entry of a node is considered a spanning store as 3807 * a rebalance is required for the operation to complete and an overflow 3808 * of data may happen. 3809 */ 3810 mas = wr_mas->mas; 3811 trace_ma_op(__func__, mas); 3812 3813 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3814 return mas_new_root(mas, wr_mas->entry); 3815 /* 3816 * Node rebalancing may occur due to this store, so there may be three new 3817 * entries per level plus a new root. 3818 */ 3819 height = mas_mt_height(mas); 3820 mas_node_count(mas, 1 + height * 3); 3821 if (mas_is_err(mas)) 3822 return 0; 3823 3824 /* 3825 * Set up right side. Need to get to the next offset after the spanning 3826 * store to ensure it's not NULL and to combine both the next node and 3827 * the node with the start together. 3828 */ 3829 r_mas = *mas; 3830 /* Avoid overflow, walk to next slot in the tree. */ 3831 if (r_mas.last + 1) 3832 r_mas.last++; 3833 3834 r_mas.index = r_mas.last; 3835 mas_wr_walk_index(&r_wr_mas); 3836 r_mas.last = r_mas.index = mas->last; 3837 3838 /* Set up left side. */ 3839 l_mas = *mas; 3840 mas_wr_walk_index(&l_wr_mas); 3841 3842 if (!wr_mas->entry) { 3843 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3844 mas->offset = l_mas.offset; 3845 mas->index = l_mas.index; 3846 mas->last = l_mas.last = r_mas.last; 3847 } 3848 3849 /* expanding NULLs may make this cover the entire range */ 3850 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3851 mas_set_range(mas, 0, ULONG_MAX); 3852 return mas_new_root(mas, wr_mas->entry); 3853 } 3854 3855 memset(&b_node, 0, sizeof(struct maple_big_node)); 3856 /* Copy l_mas and store the value in b_node. */ 3857 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3858 /* Copy r_mas into b_node. */ 3859 if (r_mas.offset <= r_mas.end) 3860 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3861 &b_node, b_node.b_end + 1); 3862 else 3863 b_node.b_end++; 3864 3865 /* Stop spanning searches by searching for just index. */ 3866 l_mas.index = l_mas.last = mas->index; 3867 3868 mast.bn = &b_node; 3869 mast.orig_l = &l_mas; 3870 mast.orig_r = &r_mas; 3871 /* Combine l_mas and r_mas and split them up evenly again. */ 3872 return mas_spanning_rebalance(mas, &mast, height + 1); 3873 } 3874 3875 /* 3876 * mas_wr_node_store() - Attempt to store the value in a node 3877 * @wr_mas: The maple write state 3878 * 3879 * Attempts to reuse the node, but may allocate. 3880 * 3881 * Return: True if stored, false otherwise 3882 */ 3883 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 3884 unsigned char new_end) 3885 { 3886 struct ma_state *mas = wr_mas->mas; 3887 void __rcu **dst_slots; 3888 unsigned long *dst_pivots; 3889 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3890 struct maple_node reuse, *newnode; 3891 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3892 bool in_rcu = mt_in_rcu(mas->tree); 3893 3894 /* Check if there is enough data. The room is enough. */ 3895 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 3896 !(mas->mas_flags & MA_STATE_BULK)) 3897 return false; 3898 3899 if (mas->last == wr_mas->end_piv) 3900 offset_end++; /* don't copy this offset */ 3901 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3902 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3903 3904 /* set up node. */ 3905 if (in_rcu) { 3906 mas_node_count(mas, 1); 3907 if (mas_is_err(mas)) 3908 return false; 3909 3910 newnode = mas_pop_node(mas); 3911 } else { 3912 memset(&reuse, 0, sizeof(struct maple_node)); 3913 newnode = &reuse; 3914 } 3915 3916 newnode->parent = mas_mn(mas)->parent; 3917 dst_pivots = ma_pivots(newnode, wr_mas->type); 3918 dst_slots = ma_slots(newnode, wr_mas->type); 3919 /* Copy from start to insert point */ 3920 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3921 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3922 3923 /* Handle insert of new range starting after old range */ 3924 if (wr_mas->r_min < mas->index) { 3925 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3926 dst_pivots[mas->offset++] = mas->index - 1; 3927 } 3928 3929 /* Store the new entry and range end. */ 3930 if (mas->offset < node_pivots) 3931 dst_pivots[mas->offset] = mas->last; 3932 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3933 3934 /* 3935 * this range wrote to the end of the node or it overwrote the rest of 3936 * the data 3937 */ 3938 if (offset_end > mas->end) 3939 goto done; 3940 3941 dst_offset = mas->offset + 1; 3942 /* Copy to the end of node if necessary. */ 3943 copy_size = mas->end - offset_end + 1; 3944 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3945 sizeof(void *) * copy_size); 3946 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3947 sizeof(unsigned long) * (copy_size - 1)); 3948 3949 if (new_end < node_pivots) 3950 dst_pivots[new_end] = mas->max; 3951 3952 done: 3953 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3954 if (in_rcu) { 3955 struct maple_enode *old_enode = mas->node; 3956 3957 mas->node = mt_mk_node(newnode, wr_mas->type); 3958 mas_replace_node(mas, old_enode); 3959 } else { 3960 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3961 } 3962 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3963 mas_update_gap(mas); 3964 mas->end = new_end; 3965 return true; 3966 } 3967 3968 /* 3969 * mas_wr_slot_store: Attempt to store a value in a slot. 3970 * @wr_mas: the maple write state 3971 * 3972 * Return: True if stored, false otherwise 3973 */ 3974 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 3975 { 3976 struct ma_state *mas = wr_mas->mas; 3977 unsigned char offset = mas->offset; 3978 void __rcu **slots = wr_mas->slots; 3979 bool gap = false; 3980 3981 gap |= !mt_slot_locked(mas->tree, slots, offset); 3982 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3983 3984 if (wr_mas->offset_end - offset == 1) { 3985 if (mas->index == wr_mas->r_min) { 3986 /* Overwriting the range and a part of the next one */ 3987 rcu_assign_pointer(slots[offset], wr_mas->entry); 3988 wr_mas->pivots[offset] = mas->last; 3989 } else { 3990 /* Overwriting a part of the range and the next one */ 3991 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3992 wr_mas->pivots[offset] = mas->index - 1; 3993 mas->offset++; /* Keep mas accurate. */ 3994 } 3995 } else if (!mt_in_rcu(mas->tree)) { 3996 /* 3997 * Expand the range, only partially overwriting the previous and 3998 * next ranges 3999 */ 4000 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 4001 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4002 wr_mas->pivots[offset] = mas->index - 1; 4003 wr_mas->pivots[offset + 1] = mas->last; 4004 mas->offset++; /* Keep mas accurate. */ 4005 } else { 4006 return false; 4007 } 4008 4009 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4010 /* 4011 * Only update gap when the new entry is empty or there is an empty 4012 * entry in the original two ranges. 4013 */ 4014 if (!wr_mas->entry || gap) 4015 mas_update_gap(mas); 4016 4017 return true; 4018 } 4019 4020 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4021 { 4022 struct ma_state *mas = wr_mas->mas; 4023 4024 if (!wr_mas->slots[wr_mas->offset_end]) { 4025 /* If this one is null, the next and prev are not */ 4026 mas->last = wr_mas->end_piv; 4027 } else { 4028 /* Check next slot(s) if we are overwriting the end */ 4029 if ((mas->last == wr_mas->end_piv) && 4030 (mas->end != wr_mas->offset_end) && 4031 !wr_mas->slots[wr_mas->offset_end + 1]) { 4032 wr_mas->offset_end++; 4033 if (wr_mas->offset_end == mas->end) 4034 mas->last = mas->max; 4035 else 4036 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4037 wr_mas->end_piv = mas->last; 4038 } 4039 } 4040 4041 if (!wr_mas->content) { 4042 /* If this one is null, the next and prev are not */ 4043 mas->index = wr_mas->r_min; 4044 } else { 4045 /* Check prev slot if we are overwriting the start */ 4046 if (mas->index == wr_mas->r_min && mas->offset && 4047 !wr_mas->slots[mas->offset - 1]) { 4048 mas->offset--; 4049 wr_mas->r_min = mas->index = 4050 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4051 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4052 } 4053 } 4054 } 4055 4056 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4057 { 4058 while ((wr_mas->offset_end < wr_mas->mas->end) && 4059 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4060 wr_mas->offset_end++; 4061 4062 if (wr_mas->offset_end < wr_mas->mas->end) 4063 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4064 else 4065 wr_mas->end_piv = wr_mas->mas->max; 4066 4067 if (!wr_mas->entry) 4068 mas_wr_extend_null(wr_mas); 4069 } 4070 4071 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4072 { 4073 struct ma_state *mas = wr_mas->mas; 4074 unsigned char new_end = mas->end + 2; 4075 4076 new_end -= wr_mas->offset_end - mas->offset; 4077 if (wr_mas->r_min == mas->index) 4078 new_end--; 4079 4080 if (wr_mas->end_piv == mas->last) 4081 new_end--; 4082 4083 return new_end; 4084 } 4085 4086 /* 4087 * mas_wr_append: Attempt to append 4088 * @wr_mas: the maple write state 4089 * @new_end: The end of the node after the modification 4090 * 4091 * This is currently unsafe in rcu mode since the end of the node may be cached 4092 * by readers while the node contents may be updated which could result in 4093 * inaccurate information. 4094 * 4095 * Return: True if appended, false otherwise 4096 */ 4097 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4098 unsigned char new_end) 4099 { 4100 struct ma_state *mas; 4101 void __rcu **slots; 4102 unsigned char end; 4103 4104 mas = wr_mas->mas; 4105 if (mt_in_rcu(mas->tree)) 4106 return false; 4107 4108 end = mas->end; 4109 if (mas->offset != end) 4110 return false; 4111 4112 if (new_end < mt_pivots[wr_mas->type]) { 4113 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4114 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 4115 } 4116 4117 slots = wr_mas->slots; 4118 if (new_end == end + 1) { 4119 if (mas->last == wr_mas->r_max) { 4120 /* Append to end of range */ 4121 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4122 wr_mas->pivots[end] = mas->index - 1; 4123 mas->offset = new_end; 4124 } else { 4125 /* Append to start of range */ 4126 rcu_assign_pointer(slots[new_end], wr_mas->content); 4127 wr_mas->pivots[end] = mas->last; 4128 rcu_assign_pointer(slots[end], wr_mas->entry); 4129 } 4130 } else { 4131 /* Append to the range without touching any boundaries. */ 4132 rcu_assign_pointer(slots[new_end], wr_mas->content); 4133 wr_mas->pivots[end + 1] = mas->last; 4134 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4135 wr_mas->pivots[end] = mas->index - 1; 4136 mas->offset = end + 1; 4137 } 4138 4139 if (!wr_mas->content || !wr_mas->entry) 4140 mas_update_gap(mas); 4141 4142 mas->end = new_end; 4143 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4144 return true; 4145 } 4146 4147 /* 4148 * mas_wr_bnode() - Slow path for a modification. 4149 * @wr_mas: The write maple state 4150 * 4151 * This is where split, rebalance end up. 4152 */ 4153 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4154 { 4155 struct maple_big_node b_node; 4156 4157 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4158 memset(&b_node, 0, sizeof(struct maple_big_node)); 4159 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4160 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end); 4161 } 4162 4163 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4164 { 4165 struct ma_state *mas = wr_mas->mas; 4166 unsigned char new_end; 4167 4168 /* Direct replacement */ 4169 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4170 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4171 if (!!wr_mas->entry ^ !!wr_mas->content) 4172 mas_update_gap(mas); 4173 return; 4174 } 4175 4176 /* 4177 * new_end exceeds the size of the maple node and cannot enter the fast 4178 * path. 4179 */ 4180 new_end = mas_wr_new_end(wr_mas); 4181 if (new_end >= mt_slots[wr_mas->type]) 4182 goto slow_path; 4183 4184 /* Attempt to append */ 4185 if (mas_wr_append(wr_mas, new_end)) 4186 return; 4187 4188 if (new_end == mas->end && mas_wr_slot_store(wr_mas)) 4189 return; 4190 4191 if (mas_wr_node_store(wr_mas, new_end)) 4192 return; 4193 4194 if (mas_is_err(mas)) 4195 return; 4196 4197 slow_path: 4198 mas_wr_bnode(wr_mas); 4199 } 4200 4201 /* 4202 * mas_wr_store_entry() - Internal call to store a value 4203 * @mas: The maple state 4204 * @entry: The entry to store. 4205 * 4206 * Return: The contents that was stored at the index. 4207 */ 4208 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4209 { 4210 struct ma_state *mas = wr_mas->mas; 4211 4212 wr_mas->content = mas_start(mas); 4213 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4214 mas_store_root(mas, wr_mas->entry); 4215 return wr_mas->content; 4216 } 4217 4218 if (unlikely(!mas_wr_walk(wr_mas))) { 4219 mas_wr_spanning_store(wr_mas); 4220 return wr_mas->content; 4221 } 4222 4223 /* At this point, we are at the leaf node that needs to be altered. */ 4224 mas_wr_end_piv(wr_mas); 4225 /* New root for a single pointer */ 4226 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4227 mas_new_root(mas, wr_mas->entry); 4228 return wr_mas->content; 4229 } 4230 4231 mas_wr_modify(wr_mas); 4232 return wr_mas->content; 4233 } 4234 4235 /** 4236 * mas_insert() - Internal call to insert a value 4237 * @mas: The maple state 4238 * @entry: The entry to store 4239 * 4240 * Return: %NULL or the contents that already exists at the requested index 4241 * otherwise. The maple state needs to be checked for error conditions. 4242 */ 4243 static inline void *mas_insert(struct ma_state *mas, void *entry) 4244 { 4245 MA_WR_STATE(wr_mas, mas, entry); 4246 4247 /* 4248 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4249 * tree. If the insert fits exactly into an existing gap with a value 4250 * of NULL, then the slot only needs to be written with the new value. 4251 * If the range being inserted is adjacent to another range, then only a 4252 * single pivot needs to be inserted (as well as writing the entry). If 4253 * the new range is within a gap but does not touch any other ranges, 4254 * then two pivots need to be inserted: the start - 1, and the end. As 4255 * usual, the entry must be written. Most operations require a new node 4256 * to be allocated and replace an existing node to ensure RCU safety, 4257 * when in RCU mode. The exception to requiring a newly allocated node 4258 * is when inserting at the end of a node (appending). When done 4259 * carefully, appending can reuse the node in place. 4260 */ 4261 wr_mas.content = mas_start(mas); 4262 if (wr_mas.content) 4263 goto exists; 4264 4265 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4266 mas_store_root(mas, entry); 4267 return NULL; 4268 } 4269 4270 /* spanning writes always overwrite something */ 4271 if (!mas_wr_walk(&wr_mas)) 4272 goto exists; 4273 4274 /* At this point, we are at the leaf node that needs to be altered. */ 4275 wr_mas.offset_end = mas->offset; 4276 wr_mas.end_piv = wr_mas.r_max; 4277 4278 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4279 goto exists; 4280 4281 if (!entry) 4282 return NULL; 4283 4284 mas_wr_modify(&wr_mas); 4285 return wr_mas.content; 4286 4287 exists: 4288 mas_set_err(mas, -EEXIST); 4289 return wr_mas.content; 4290 4291 } 4292 4293 /** 4294 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry 4295 * @mas: The maple state. 4296 * @startp: Pointer to ID. 4297 * @range_lo: Lower bound of range to search. 4298 * @range_hi: Upper bound of range to search. 4299 * @entry: The entry to store. 4300 * @next: Pointer to next ID to allocate. 4301 * @gfp: The GFP_FLAGS to use for allocations. 4302 * 4303 * Return: 0 if the allocation succeeded without wrapping, 1 if the 4304 * allocation succeeded after wrapping, or -EBUSY if there are no 4305 * free entries. 4306 */ 4307 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 4308 void *entry, unsigned long range_lo, unsigned long range_hi, 4309 unsigned long *next, gfp_t gfp) 4310 { 4311 unsigned long min = range_lo; 4312 int ret = 0; 4313 4314 range_lo = max(min, *next); 4315 ret = mas_empty_area(mas, range_lo, range_hi, 1); 4316 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { 4317 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; 4318 ret = 1; 4319 } 4320 if (ret < 0 && range_lo > min) { 4321 ret = mas_empty_area(mas, min, range_hi, 1); 4322 if (ret == 0) 4323 ret = 1; 4324 } 4325 if (ret < 0) 4326 return ret; 4327 4328 do { 4329 mas_insert(mas, entry); 4330 } while (mas_nomem(mas, gfp)); 4331 if (mas_is_err(mas)) 4332 return xa_err(mas->node); 4333 4334 *startp = mas->index; 4335 *next = *startp + 1; 4336 if (*next == 0) 4337 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; 4338 4339 return ret; 4340 } 4341 EXPORT_SYMBOL(mas_alloc_cyclic); 4342 4343 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4344 { 4345 retry: 4346 mas_set(mas, index); 4347 mas_state_walk(mas); 4348 if (mas_is_start(mas)) 4349 goto retry; 4350 } 4351 4352 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4353 struct maple_node *node, const unsigned long index) 4354 { 4355 if (unlikely(ma_dead_node(node))) { 4356 mas_rewalk(mas, index); 4357 return true; 4358 } 4359 return false; 4360 } 4361 4362 /* 4363 * mas_prev_node() - Find the prev non-null entry at the same level in the 4364 * tree. The prev value will be mas->node[mas->offset] or the status will be 4365 * ma_none. 4366 * @mas: The maple state 4367 * @min: The lower limit to search 4368 * 4369 * The prev node value will be mas->node[mas->offset] or the status will be 4370 * ma_none. 4371 * Return: 1 if the node is dead, 0 otherwise. 4372 */ 4373 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4374 { 4375 enum maple_type mt; 4376 int offset, level; 4377 void __rcu **slots; 4378 struct maple_node *node; 4379 unsigned long *pivots; 4380 unsigned long max; 4381 4382 node = mas_mn(mas); 4383 if (!mas->min) 4384 goto no_entry; 4385 4386 max = mas->min - 1; 4387 if (max < min) 4388 goto no_entry; 4389 4390 level = 0; 4391 do { 4392 if (ma_is_root(node)) 4393 goto no_entry; 4394 4395 /* Walk up. */ 4396 if (unlikely(mas_ascend(mas))) 4397 return 1; 4398 offset = mas->offset; 4399 level++; 4400 node = mas_mn(mas); 4401 } while (!offset); 4402 4403 offset--; 4404 mt = mte_node_type(mas->node); 4405 while (level > 1) { 4406 level--; 4407 slots = ma_slots(node, mt); 4408 mas->node = mas_slot(mas, slots, offset); 4409 if (unlikely(ma_dead_node(node))) 4410 return 1; 4411 4412 mt = mte_node_type(mas->node); 4413 node = mas_mn(mas); 4414 pivots = ma_pivots(node, mt); 4415 offset = ma_data_end(node, mt, pivots, max); 4416 if (unlikely(ma_dead_node(node))) 4417 return 1; 4418 } 4419 4420 slots = ma_slots(node, mt); 4421 mas->node = mas_slot(mas, slots, offset); 4422 pivots = ma_pivots(node, mt); 4423 if (unlikely(ma_dead_node(node))) 4424 return 1; 4425 4426 if (likely(offset)) 4427 mas->min = pivots[offset - 1] + 1; 4428 mas->max = max; 4429 mas->offset = mas_data_end(mas); 4430 if (unlikely(mte_dead_node(mas->node))) 4431 return 1; 4432 4433 mas->end = mas->offset; 4434 return 0; 4435 4436 no_entry: 4437 if (unlikely(ma_dead_node(node))) 4438 return 1; 4439 4440 mas->status = ma_underflow; 4441 return 0; 4442 } 4443 4444 /* 4445 * mas_prev_slot() - Get the entry in the previous slot 4446 * 4447 * @mas: The maple state 4448 * @max: The minimum starting range 4449 * @empty: Can be empty 4450 * @set_underflow: Set the @mas->node to underflow state on limit. 4451 * 4452 * Return: The entry in the previous slot which is possibly NULL 4453 */ 4454 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4455 { 4456 void *entry; 4457 void __rcu **slots; 4458 unsigned long pivot; 4459 enum maple_type type; 4460 unsigned long *pivots; 4461 struct maple_node *node; 4462 unsigned long save_point = mas->index; 4463 4464 retry: 4465 node = mas_mn(mas); 4466 type = mte_node_type(mas->node); 4467 pivots = ma_pivots(node, type); 4468 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4469 goto retry; 4470 4471 if (mas->min <= min) { 4472 pivot = mas_safe_min(mas, pivots, mas->offset); 4473 4474 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4475 goto retry; 4476 4477 if (pivot <= min) 4478 goto underflow; 4479 } 4480 4481 again: 4482 if (likely(mas->offset)) { 4483 mas->offset--; 4484 mas->last = mas->index - 1; 4485 mas->index = mas_safe_min(mas, pivots, mas->offset); 4486 } else { 4487 if (mas->index <= min) 4488 goto underflow; 4489 4490 if (mas_prev_node(mas, min)) { 4491 mas_rewalk(mas, save_point); 4492 goto retry; 4493 } 4494 4495 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4496 return NULL; 4497 4498 mas->last = mas->max; 4499 node = mas_mn(mas); 4500 type = mte_node_type(mas->node); 4501 pivots = ma_pivots(node, type); 4502 mas->index = pivots[mas->offset - 1] + 1; 4503 } 4504 4505 slots = ma_slots(node, type); 4506 entry = mas_slot(mas, slots, mas->offset); 4507 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4508 goto retry; 4509 4510 4511 if (likely(entry)) 4512 return entry; 4513 4514 if (!empty) { 4515 if (mas->index <= min) { 4516 mas->status = ma_underflow; 4517 return NULL; 4518 } 4519 4520 goto again; 4521 } 4522 4523 return entry; 4524 4525 underflow: 4526 mas->status = ma_underflow; 4527 return NULL; 4528 } 4529 4530 /* 4531 * mas_next_node() - Get the next node at the same level in the tree. 4532 * @mas: The maple state 4533 * @max: The maximum pivot value to check. 4534 * 4535 * The next value will be mas->node[mas->offset] or the status will have 4536 * overflowed. 4537 * Return: 1 on dead node, 0 otherwise. 4538 */ 4539 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4540 unsigned long max) 4541 { 4542 unsigned long min; 4543 unsigned long *pivots; 4544 struct maple_enode *enode; 4545 struct maple_node *tmp; 4546 int level = 0; 4547 unsigned char node_end; 4548 enum maple_type mt; 4549 void __rcu **slots; 4550 4551 if (mas->max >= max) 4552 goto overflow; 4553 4554 min = mas->max + 1; 4555 level = 0; 4556 do { 4557 if (ma_is_root(node)) 4558 goto overflow; 4559 4560 /* Walk up. */ 4561 if (unlikely(mas_ascend(mas))) 4562 return 1; 4563 4564 level++; 4565 node = mas_mn(mas); 4566 mt = mte_node_type(mas->node); 4567 pivots = ma_pivots(node, mt); 4568 node_end = ma_data_end(node, mt, pivots, mas->max); 4569 if (unlikely(ma_dead_node(node))) 4570 return 1; 4571 4572 } while (unlikely(mas->offset == node_end)); 4573 4574 slots = ma_slots(node, mt); 4575 mas->offset++; 4576 enode = mas_slot(mas, slots, mas->offset); 4577 if (unlikely(ma_dead_node(node))) 4578 return 1; 4579 4580 if (level > 1) 4581 mas->offset = 0; 4582 4583 while (unlikely(level > 1)) { 4584 level--; 4585 mas->node = enode; 4586 node = mas_mn(mas); 4587 mt = mte_node_type(mas->node); 4588 slots = ma_slots(node, mt); 4589 enode = mas_slot(mas, slots, 0); 4590 if (unlikely(ma_dead_node(node))) 4591 return 1; 4592 } 4593 4594 if (!mas->offset) 4595 pivots = ma_pivots(node, mt); 4596 4597 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4598 tmp = mte_to_node(enode); 4599 mt = mte_node_type(enode); 4600 pivots = ma_pivots(tmp, mt); 4601 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4602 if (unlikely(ma_dead_node(node))) 4603 return 1; 4604 4605 mas->node = enode; 4606 mas->min = min; 4607 return 0; 4608 4609 overflow: 4610 if (unlikely(ma_dead_node(node))) 4611 return 1; 4612 4613 mas->status = ma_overflow; 4614 return 0; 4615 } 4616 4617 /* 4618 * mas_next_slot() - Get the entry in the next slot 4619 * 4620 * @mas: The maple state 4621 * @max: The maximum starting range 4622 * @empty: Can be empty 4623 * @set_overflow: Should @mas->node be set to overflow when the limit is 4624 * reached. 4625 * 4626 * Return: The entry in the next slot which is possibly NULL 4627 */ 4628 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4629 { 4630 void __rcu **slots; 4631 unsigned long *pivots; 4632 unsigned long pivot; 4633 enum maple_type type; 4634 struct maple_node *node; 4635 unsigned long save_point = mas->last; 4636 void *entry; 4637 4638 retry: 4639 node = mas_mn(mas); 4640 type = mte_node_type(mas->node); 4641 pivots = ma_pivots(node, type); 4642 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4643 goto retry; 4644 4645 if (mas->max >= max) { 4646 if (likely(mas->offset < mas->end)) 4647 pivot = pivots[mas->offset]; 4648 else 4649 pivot = mas->max; 4650 4651 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4652 goto retry; 4653 4654 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4655 mas->status = ma_overflow; 4656 return NULL; 4657 } 4658 } 4659 4660 if (likely(mas->offset < mas->end)) { 4661 mas->index = pivots[mas->offset] + 1; 4662 again: 4663 mas->offset++; 4664 if (likely(mas->offset < mas->end)) 4665 mas->last = pivots[mas->offset]; 4666 else 4667 mas->last = mas->max; 4668 } else { 4669 if (mas->last >= max) { 4670 mas->status = ma_overflow; 4671 return NULL; 4672 } 4673 4674 if (mas_next_node(mas, node, max)) { 4675 mas_rewalk(mas, save_point); 4676 goto retry; 4677 } 4678 4679 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4680 return NULL; 4681 4682 mas->offset = 0; 4683 mas->index = mas->min; 4684 node = mas_mn(mas); 4685 type = mte_node_type(mas->node); 4686 pivots = ma_pivots(node, type); 4687 mas->last = pivots[0]; 4688 } 4689 4690 slots = ma_slots(node, type); 4691 entry = mt_slot(mas->tree, slots, mas->offset); 4692 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4693 goto retry; 4694 4695 if (entry) 4696 return entry; 4697 4698 4699 if (!empty) { 4700 if (mas->last >= max) { 4701 mas->status = ma_overflow; 4702 return NULL; 4703 } 4704 4705 mas->index = mas->last + 1; 4706 goto again; 4707 } 4708 4709 return entry; 4710 } 4711 4712 /* 4713 * mas_next_entry() - Internal function to get the next entry. 4714 * @mas: The maple state 4715 * @limit: The maximum range start. 4716 * 4717 * Set the @mas->node to the next entry and the range_start to 4718 * the beginning value for the entry. Does not check beyond @limit. 4719 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4720 * @mas->last on overflow. 4721 * Restarts on dead nodes. 4722 * 4723 * Return: the next entry or %NULL. 4724 */ 4725 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4726 { 4727 if (mas->last >= limit) { 4728 mas->status = ma_overflow; 4729 return NULL; 4730 } 4731 4732 return mas_next_slot(mas, limit, false); 4733 } 4734 4735 /* 4736 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4737 * highest gap address of a given size in a given node and descend. 4738 * @mas: The maple state 4739 * @size: The needed size. 4740 * 4741 * Return: True if found in a leaf, false otherwise. 4742 * 4743 */ 4744 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4745 unsigned long *gap_min, unsigned long *gap_max) 4746 { 4747 enum maple_type type = mte_node_type(mas->node); 4748 struct maple_node *node = mas_mn(mas); 4749 unsigned long *pivots, *gaps; 4750 void __rcu **slots; 4751 unsigned long gap = 0; 4752 unsigned long max, min; 4753 unsigned char offset; 4754 4755 if (unlikely(mas_is_err(mas))) 4756 return true; 4757 4758 if (ma_is_dense(type)) { 4759 /* dense nodes. */ 4760 mas->offset = (unsigned char)(mas->index - mas->min); 4761 return true; 4762 } 4763 4764 pivots = ma_pivots(node, type); 4765 slots = ma_slots(node, type); 4766 gaps = ma_gaps(node, type); 4767 offset = mas->offset; 4768 min = mas_safe_min(mas, pivots, offset); 4769 /* Skip out of bounds. */ 4770 while (mas->last < min) 4771 min = mas_safe_min(mas, pivots, --offset); 4772 4773 max = mas_safe_pivot(mas, pivots, offset, type); 4774 while (mas->index <= max) { 4775 gap = 0; 4776 if (gaps) 4777 gap = gaps[offset]; 4778 else if (!mas_slot(mas, slots, offset)) 4779 gap = max - min + 1; 4780 4781 if (gap) { 4782 if ((size <= gap) && (size <= mas->last - min + 1)) 4783 break; 4784 4785 if (!gaps) { 4786 /* Skip the next slot, it cannot be a gap. */ 4787 if (offset < 2) 4788 goto ascend; 4789 4790 offset -= 2; 4791 max = pivots[offset]; 4792 min = mas_safe_min(mas, pivots, offset); 4793 continue; 4794 } 4795 } 4796 4797 if (!offset) 4798 goto ascend; 4799 4800 offset--; 4801 max = min - 1; 4802 min = mas_safe_min(mas, pivots, offset); 4803 } 4804 4805 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4806 goto no_space; 4807 4808 if (unlikely(ma_is_leaf(type))) { 4809 mas->offset = offset; 4810 *gap_min = min; 4811 *gap_max = min + gap - 1; 4812 return true; 4813 } 4814 4815 /* descend, only happens under lock. */ 4816 mas->node = mas_slot(mas, slots, offset); 4817 mas->min = min; 4818 mas->max = max; 4819 mas->offset = mas_data_end(mas); 4820 return false; 4821 4822 ascend: 4823 if (!mte_is_root(mas->node)) 4824 return false; 4825 4826 no_space: 4827 mas_set_err(mas, -EBUSY); 4828 return false; 4829 } 4830 4831 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4832 { 4833 enum maple_type type = mte_node_type(mas->node); 4834 unsigned long pivot, min, gap = 0; 4835 unsigned char offset, data_end; 4836 unsigned long *gaps, *pivots; 4837 void __rcu **slots; 4838 struct maple_node *node; 4839 bool found = false; 4840 4841 if (ma_is_dense(type)) { 4842 mas->offset = (unsigned char)(mas->index - mas->min); 4843 return true; 4844 } 4845 4846 node = mas_mn(mas); 4847 pivots = ma_pivots(node, type); 4848 slots = ma_slots(node, type); 4849 gaps = ma_gaps(node, type); 4850 offset = mas->offset; 4851 min = mas_safe_min(mas, pivots, offset); 4852 data_end = ma_data_end(node, type, pivots, mas->max); 4853 for (; offset <= data_end; offset++) { 4854 pivot = mas_safe_pivot(mas, pivots, offset, type); 4855 4856 /* Not within lower bounds */ 4857 if (mas->index > pivot) 4858 goto next_slot; 4859 4860 if (gaps) 4861 gap = gaps[offset]; 4862 else if (!mas_slot(mas, slots, offset)) 4863 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4864 else 4865 goto next_slot; 4866 4867 if (gap >= size) { 4868 if (ma_is_leaf(type)) { 4869 found = true; 4870 goto done; 4871 } 4872 if (mas->index <= pivot) { 4873 mas->node = mas_slot(mas, slots, offset); 4874 mas->min = min; 4875 mas->max = pivot; 4876 offset = 0; 4877 break; 4878 } 4879 } 4880 next_slot: 4881 min = pivot + 1; 4882 if (mas->last <= pivot) { 4883 mas_set_err(mas, -EBUSY); 4884 return true; 4885 } 4886 } 4887 4888 if (mte_is_root(mas->node)) 4889 found = true; 4890 done: 4891 mas->offset = offset; 4892 return found; 4893 } 4894 4895 /** 4896 * mas_walk() - Search for @mas->index in the tree. 4897 * @mas: The maple state. 4898 * 4899 * mas->index and mas->last will be set to the range if there is a value. If 4900 * mas->status is ma_none, reset to ma_start 4901 * 4902 * Return: the entry at the location or %NULL. 4903 */ 4904 void *mas_walk(struct ma_state *mas) 4905 { 4906 void *entry; 4907 4908 if (!mas_is_active(mas) || !mas_is_start(mas)) 4909 mas->status = ma_start; 4910 retry: 4911 entry = mas_state_walk(mas); 4912 if (mas_is_start(mas)) { 4913 goto retry; 4914 } else if (mas_is_none(mas)) { 4915 mas->index = 0; 4916 mas->last = ULONG_MAX; 4917 } else if (mas_is_ptr(mas)) { 4918 if (!mas->index) { 4919 mas->last = 0; 4920 return entry; 4921 } 4922 4923 mas->index = 1; 4924 mas->last = ULONG_MAX; 4925 mas->status = ma_none; 4926 return NULL; 4927 } 4928 4929 return entry; 4930 } 4931 EXPORT_SYMBOL_GPL(mas_walk); 4932 4933 static inline bool mas_rewind_node(struct ma_state *mas) 4934 { 4935 unsigned char slot; 4936 4937 do { 4938 if (mte_is_root(mas->node)) { 4939 slot = mas->offset; 4940 if (!slot) 4941 return false; 4942 } else { 4943 mas_ascend(mas); 4944 slot = mas->offset; 4945 } 4946 } while (!slot); 4947 4948 mas->offset = --slot; 4949 return true; 4950 } 4951 4952 /* 4953 * mas_skip_node() - Internal function. Skip over a node. 4954 * @mas: The maple state. 4955 * 4956 * Return: true if there is another node, false otherwise. 4957 */ 4958 static inline bool mas_skip_node(struct ma_state *mas) 4959 { 4960 if (mas_is_err(mas)) 4961 return false; 4962 4963 do { 4964 if (mte_is_root(mas->node)) { 4965 if (mas->offset >= mas_data_end(mas)) { 4966 mas_set_err(mas, -EBUSY); 4967 return false; 4968 } 4969 } else { 4970 mas_ascend(mas); 4971 } 4972 } while (mas->offset >= mas_data_end(mas)); 4973 4974 mas->offset++; 4975 return true; 4976 } 4977 4978 /* 4979 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 4980 * @size 4981 * @mas: The maple state 4982 * @size: The size of the gap required 4983 * 4984 * Search between @mas->index and @mas->last for a gap of @size. 4985 */ 4986 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 4987 { 4988 struct maple_enode *last = NULL; 4989 4990 /* 4991 * There are 4 options: 4992 * go to child (descend) 4993 * go back to parent (ascend) 4994 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 4995 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 4996 */ 4997 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 4998 if (last == mas->node) 4999 mas_skip_node(mas); 5000 else 5001 last = mas->node; 5002 } 5003 } 5004 5005 /* 5006 * mas_sparse_area() - Internal function. Return upper or lower limit when 5007 * searching for a gap in an empty tree. 5008 * @mas: The maple state 5009 * @min: the minimum range 5010 * @max: The maximum range 5011 * @size: The size of the gap 5012 * @fwd: Searching forward or back 5013 */ 5014 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5015 unsigned long max, unsigned long size, bool fwd) 5016 { 5017 if (!unlikely(mas_is_none(mas)) && min == 0) { 5018 min++; 5019 /* 5020 * At this time, min is increased, we need to recheck whether 5021 * the size is satisfied. 5022 */ 5023 if (min > max || max - min + 1 < size) 5024 return -EBUSY; 5025 } 5026 /* mas_is_ptr */ 5027 5028 if (fwd) { 5029 mas->index = min; 5030 mas->last = min + size - 1; 5031 } else { 5032 mas->last = max; 5033 mas->index = max - size + 1; 5034 } 5035 return 0; 5036 } 5037 5038 /* 5039 * mas_empty_area() - Get the lowest address within the range that is 5040 * sufficient for the size requested. 5041 * @mas: The maple state 5042 * @min: The lowest value of the range 5043 * @max: The highest value of the range 5044 * @size: The size needed 5045 */ 5046 int mas_empty_area(struct ma_state *mas, unsigned long min, 5047 unsigned long max, unsigned long size) 5048 { 5049 unsigned char offset; 5050 unsigned long *pivots; 5051 enum maple_type mt; 5052 struct maple_node *node; 5053 5054 if (min > max) 5055 return -EINVAL; 5056 5057 if (size == 0 || max - min < size - 1) 5058 return -EINVAL; 5059 5060 if (mas_is_start(mas)) 5061 mas_start(mas); 5062 else if (mas->offset >= 2) 5063 mas->offset -= 2; 5064 else if (!mas_skip_node(mas)) 5065 return -EBUSY; 5066 5067 /* Empty set */ 5068 if (mas_is_none(mas) || mas_is_ptr(mas)) 5069 return mas_sparse_area(mas, min, max, size, true); 5070 5071 /* The start of the window can only be within these values */ 5072 mas->index = min; 5073 mas->last = max; 5074 mas_awalk(mas, size); 5075 5076 if (unlikely(mas_is_err(mas))) 5077 return xa_err(mas->node); 5078 5079 offset = mas->offset; 5080 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5081 return -EBUSY; 5082 5083 node = mas_mn(mas); 5084 mt = mte_node_type(mas->node); 5085 pivots = ma_pivots(node, mt); 5086 min = mas_safe_min(mas, pivots, offset); 5087 if (mas->index < min) 5088 mas->index = min; 5089 mas->last = mas->index + size - 1; 5090 mas->end = ma_data_end(node, mt, pivots, mas->max); 5091 return 0; 5092 } 5093 EXPORT_SYMBOL_GPL(mas_empty_area); 5094 5095 /* 5096 * mas_empty_area_rev() - Get the highest address within the range that is 5097 * sufficient for the size requested. 5098 * @mas: The maple state 5099 * @min: The lowest value of the range 5100 * @max: The highest value of the range 5101 * @size: The size needed 5102 */ 5103 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5104 unsigned long max, unsigned long size) 5105 { 5106 struct maple_enode *last = mas->node; 5107 5108 if (min > max) 5109 return -EINVAL; 5110 5111 if (size == 0 || max - min < size - 1) 5112 return -EINVAL; 5113 5114 if (mas_is_start(mas)) { 5115 mas_start(mas); 5116 mas->offset = mas_data_end(mas); 5117 } else if (mas->offset >= 2) { 5118 mas->offset -= 2; 5119 } else if (!mas_rewind_node(mas)) { 5120 return -EBUSY; 5121 } 5122 5123 /* Empty set. */ 5124 if (mas_is_none(mas) || mas_is_ptr(mas)) 5125 return mas_sparse_area(mas, min, max, size, false); 5126 5127 /* The start of the window can only be within these values. */ 5128 mas->index = min; 5129 mas->last = max; 5130 5131 while (!mas_rev_awalk(mas, size, &min, &max)) { 5132 if (last == mas->node) { 5133 if (!mas_rewind_node(mas)) 5134 return -EBUSY; 5135 } else { 5136 last = mas->node; 5137 } 5138 } 5139 5140 if (mas_is_err(mas)) 5141 return xa_err(mas->node); 5142 5143 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5144 return -EBUSY; 5145 5146 /* Trim the upper limit to the max. */ 5147 if (max < mas->last) 5148 mas->last = max; 5149 5150 mas->index = mas->last - size + 1; 5151 mas->end = mas_data_end(mas); 5152 return 0; 5153 } 5154 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5155 5156 /* 5157 * mte_dead_leaves() - Mark all leaves of a node as dead. 5158 * @mas: The maple state 5159 * @slots: Pointer to the slot array 5160 * @type: The maple node type 5161 * 5162 * Must hold the write lock. 5163 * 5164 * Return: The number of leaves marked as dead. 5165 */ 5166 static inline 5167 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5168 void __rcu **slots) 5169 { 5170 struct maple_node *node; 5171 enum maple_type type; 5172 void *entry; 5173 int offset; 5174 5175 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5176 entry = mt_slot(mt, slots, offset); 5177 type = mte_node_type(entry); 5178 node = mte_to_node(entry); 5179 /* Use both node and type to catch LE & BE metadata */ 5180 if (!node || !type) 5181 break; 5182 5183 mte_set_node_dead(entry); 5184 node->type = type; 5185 rcu_assign_pointer(slots[offset], node); 5186 } 5187 5188 return offset; 5189 } 5190 5191 /** 5192 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5193 * @enode: The maple encoded node 5194 * @offset: The starting offset 5195 * 5196 * Note: This can only be used from the RCU callback context. 5197 */ 5198 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5199 { 5200 struct maple_node *node, *next; 5201 void __rcu **slots = NULL; 5202 5203 next = mte_to_node(*enode); 5204 do { 5205 *enode = ma_enode_ptr(next); 5206 node = mte_to_node(*enode); 5207 slots = ma_slots(node, node->type); 5208 next = rcu_dereference_protected(slots[offset], 5209 lock_is_held(&rcu_callback_map)); 5210 offset = 0; 5211 } while (!ma_is_leaf(next->type)); 5212 5213 return slots; 5214 } 5215 5216 /** 5217 * mt_free_walk() - Walk & free a tree in the RCU callback context 5218 * @head: The RCU head that's within the node. 5219 * 5220 * Note: This can only be used from the RCU callback context. 5221 */ 5222 static void mt_free_walk(struct rcu_head *head) 5223 { 5224 void __rcu **slots; 5225 struct maple_node *node, *start; 5226 struct maple_enode *enode; 5227 unsigned char offset; 5228 enum maple_type type; 5229 5230 node = container_of(head, struct maple_node, rcu); 5231 5232 if (ma_is_leaf(node->type)) 5233 goto free_leaf; 5234 5235 start = node; 5236 enode = mt_mk_node(node, node->type); 5237 slots = mte_dead_walk(&enode, 0); 5238 node = mte_to_node(enode); 5239 do { 5240 mt_free_bulk(node->slot_len, slots); 5241 offset = node->parent_slot + 1; 5242 enode = node->piv_parent; 5243 if (mte_to_node(enode) == node) 5244 goto free_leaf; 5245 5246 type = mte_node_type(enode); 5247 slots = ma_slots(mte_to_node(enode), type); 5248 if ((offset < mt_slots[type]) && 5249 rcu_dereference_protected(slots[offset], 5250 lock_is_held(&rcu_callback_map))) 5251 slots = mte_dead_walk(&enode, offset); 5252 node = mte_to_node(enode); 5253 } while ((node != start) || (node->slot_len < offset)); 5254 5255 slots = ma_slots(node, node->type); 5256 mt_free_bulk(node->slot_len, slots); 5257 5258 free_leaf: 5259 mt_free_rcu(&node->rcu); 5260 } 5261 5262 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5263 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5264 { 5265 struct maple_node *node; 5266 struct maple_enode *next = *enode; 5267 void __rcu **slots = NULL; 5268 enum maple_type type; 5269 unsigned char next_offset = 0; 5270 5271 do { 5272 *enode = next; 5273 node = mte_to_node(*enode); 5274 type = mte_node_type(*enode); 5275 slots = ma_slots(node, type); 5276 next = mt_slot_locked(mt, slots, next_offset); 5277 if ((mte_dead_node(next))) 5278 next = mt_slot_locked(mt, slots, ++next_offset); 5279 5280 mte_set_node_dead(*enode); 5281 node->type = type; 5282 node->piv_parent = prev; 5283 node->parent_slot = offset; 5284 offset = next_offset; 5285 next_offset = 0; 5286 prev = *enode; 5287 } while (!mte_is_leaf(next)); 5288 5289 return slots; 5290 } 5291 5292 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5293 bool free) 5294 { 5295 void __rcu **slots; 5296 struct maple_node *node = mte_to_node(enode); 5297 struct maple_enode *start; 5298 5299 if (mte_is_leaf(enode)) { 5300 node->type = mte_node_type(enode); 5301 goto free_leaf; 5302 } 5303 5304 start = enode; 5305 slots = mte_destroy_descend(&enode, mt, start, 0); 5306 node = mte_to_node(enode); // Updated in the above call. 5307 do { 5308 enum maple_type type; 5309 unsigned char offset; 5310 struct maple_enode *parent, *tmp; 5311 5312 node->slot_len = mte_dead_leaves(enode, mt, slots); 5313 if (free) 5314 mt_free_bulk(node->slot_len, slots); 5315 offset = node->parent_slot + 1; 5316 enode = node->piv_parent; 5317 if (mte_to_node(enode) == node) 5318 goto free_leaf; 5319 5320 type = mte_node_type(enode); 5321 slots = ma_slots(mte_to_node(enode), type); 5322 if (offset >= mt_slots[type]) 5323 goto next; 5324 5325 tmp = mt_slot_locked(mt, slots, offset); 5326 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5327 parent = enode; 5328 enode = tmp; 5329 slots = mte_destroy_descend(&enode, mt, parent, offset); 5330 } 5331 next: 5332 node = mte_to_node(enode); 5333 } while (start != enode); 5334 5335 node = mte_to_node(enode); 5336 node->slot_len = mte_dead_leaves(enode, mt, slots); 5337 if (free) 5338 mt_free_bulk(node->slot_len, slots); 5339 5340 free_leaf: 5341 if (free) 5342 mt_free_rcu(&node->rcu); 5343 else 5344 mt_clear_meta(mt, node, node->type); 5345 } 5346 5347 /* 5348 * mte_destroy_walk() - Free a tree or sub-tree. 5349 * @enode: the encoded maple node (maple_enode) to start 5350 * @mt: the tree to free - needed for node types. 5351 * 5352 * Must hold the write lock. 5353 */ 5354 static inline void mte_destroy_walk(struct maple_enode *enode, 5355 struct maple_tree *mt) 5356 { 5357 struct maple_node *node = mte_to_node(enode); 5358 5359 if (mt_in_rcu(mt)) { 5360 mt_destroy_walk(enode, mt, false); 5361 call_rcu(&node->rcu, mt_free_walk); 5362 } else { 5363 mt_destroy_walk(enode, mt, true); 5364 } 5365 } 5366 5367 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5368 { 5369 if (!mas_is_active(wr_mas->mas)) { 5370 if (mas_is_start(wr_mas->mas)) 5371 return; 5372 5373 if (unlikely(mas_is_paused(wr_mas->mas))) 5374 goto reset; 5375 5376 if (unlikely(mas_is_none(wr_mas->mas))) 5377 goto reset; 5378 5379 if (unlikely(mas_is_overflow(wr_mas->mas))) 5380 goto reset; 5381 5382 if (unlikely(mas_is_underflow(wr_mas->mas))) 5383 goto reset; 5384 } 5385 5386 /* 5387 * A less strict version of mas_is_span_wr() where we allow spanning 5388 * writes within this node. This is to stop partial walks in 5389 * mas_prealloc() from being reset. 5390 */ 5391 if (wr_mas->mas->last > wr_mas->mas->max) 5392 goto reset; 5393 5394 if (wr_mas->entry) 5395 return; 5396 5397 if (mte_is_leaf(wr_mas->mas->node) && 5398 wr_mas->mas->last == wr_mas->mas->max) 5399 goto reset; 5400 5401 return; 5402 5403 reset: 5404 mas_reset(wr_mas->mas); 5405 } 5406 5407 /* Interface */ 5408 5409 /** 5410 * mas_store() - Store an @entry. 5411 * @mas: The maple state. 5412 * @entry: The entry to store. 5413 * 5414 * The @mas->index and @mas->last is used to set the range for the @entry. 5415 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5416 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5417 * 5418 * Return: the first entry between mas->index and mas->last or %NULL. 5419 */ 5420 void *mas_store(struct ma_state *mas, void *entry) 5421 { 5422 MA_WR_STATE(wr_mas, mas, entry); 5423 5424 trace_ma_write(__func__, mas, 0, entry); 5425 #ifdef CONFIG_DEBUG_MAPLE_TREE 5426 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5427 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5428 5429 if (mas->index > mas->last) { 5430 mas_set_err(mas, -EINVAL); 5431 return NULL; 5432 } 5433 5434 #endif 5435 5436 /* 5437 * Storing is the same operation as insert with the added caveat that it 5438 * can overwrite entries. Although this seems simple enough, one may 5439 * want to examine what happens if a single store operation was to 5440 * overwrite multiple entries within a self-balancing B-Tree. 5441 */ 5442 mas_wr_store_setup(&wr_mas); 5443 mas_wr_store_entry(&wr_mas); 5444 return wr_mas.content; 5445 } 5446 EXPORT_SYMBOL_GPL(mas_store); 5447 5448 /** 5449 * mas_store_gfp() - Store a value into the tree. 5450 * @mas: The maple state 5451 * @entry: The entry to store 5452 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5453 * 5454 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5455 * be allocated. 5456 */ 5457 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5458 { 5459 MA_WR_STATE(wr_mas, mas, entry); 5460 5461 mas_wr_store_setup(&wr_mas); 5462 trace_ma_write(__func__, mas, 0, entry); 5463 retry: 5464 mas_wr_store_entry(&wr_mas); 5465 if (unlikely(mas_nomem(mas, gfp))) 5466 goto retry; 5467 5468 if (unlikely(mas_is_err(mas))) 5469 return xa_err(mas->node); 5470 5471 return 0; 5472 } 5473 EXPORT_SYMBOL_GPL(mas_store_gfp); 5474 5475 /** 5476 * mas_store_prealloc() - Store a value into the tree using memory 5477 * preallocated in the maple state. 5478 * @mas: The maple state 5479 * @entry: The entry to store. 5480 */ 5481 void mas_store_prealloc(struct ma_state *mas, void *entry) 5482 { 5483 MA_WR_STATE(wr_mas, mas, entry); 5484 5485 mas_wr_store_setup(&wr_mas); 5486 trace_ma_write(__func__, mas, 0, entry); 5487 mas_wr_store_entry(&wr_mas); 5488 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5489 mas_destroy(mas); 5490 } 5491 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5492 5493 /** 5494 * mas_preallocate() - Preallocate enough nodes for a store operation 5495 * @mas: The maple state 5496 * @entry: The entry that will be stored 5497 * @gfp: The GFP_FLAGS to use for allocations. 5498 * 5499 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5500 */ 5501 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5502 { 5503 MA_WR_STATE(wr_mas, mas, entry); 5504 unsigned char node_size; 5505 int request = 1; 5506 int ret; 5507 5508 5509 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 5510 goto ask_now; 5511 5512 mas_wr_store_setup(&wr_mas); 5513 wr_mas.content = mas_start(mas); 5514 /* Root expand */ 5515 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5516 goto ask_now; 5517 5518 if (unlikely(!mas_wr_walk(&wr_mas))) { 5519 /* Spanning store, use worst case for now */ 5520 request = 1 + mas_mt_height(mas) * 3; 5521 goto ask_now; 5522 } 5523 5524 /* At this point, we are at the leaf node that needs to be altered. */ 5525 /* Exact fit, no nodes needed. */ 5526 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last) 5527 return 0; 5528 5529 mas_wr_end_piv(&wr_mas); 5530 node_size = mas_wr_new_end(&wr_mas); 5531 5532 /* Slot store, does not require additional nodes */ 5533 if (node_size == mas->end) { 5534 /* reuse node */ 5535 if (!mt_in_rcu(mas->tree)) 5536 return 0; 5537 /* shifting boundary */ 5538 if (wr_mas.offset_end - mas->offset == 1) 5539 return 0; 5540 } 5541 5542 if (node_size >= mt_slots[wr_mas.type]) { 5543 /* Split, worst case for now. */ 5544 request = 1 + mas_mt_height(mas) * 2; 5545 goto ask_now; 5546 } 5547 5548 /* New root needs a single node */ 5549 if (unlikely(mte_is_root(mas->node))) 5550 goto ask_now; 5551 5552 /* Potential spanning rebalance collapsing a node, use worst-case */ 5553 if (node_size - 1 <= mt_min_slots[wr_mas.type]) 5554 request = mas_mt_height(mas) * 2 - 1; 5555 5556 /* node store, slot store needs one node */ 5557 ask_now: 5558 mas_node_count_gfp(mas, request, gfp); 5559 mas->mas_flags |= MA_STATE_PREALLOC; 5560 if (likely(!mas_is_err(mas))) 5561 return 0; 5562 5563 mas_set_alloc_req(mas, 0); 5564 ret = xa_err(mas->node); 5565 mas_reset(mas); 5566 mas_destroy(mas); 5567 mas_reset(mas); 5568 return ret; 5569 } 5570 EXPORT_SYMBOL_GPL(mas_preallocate); 5571 5572 /* 5573 * mas_destroy() - destroy a maple state. 5574 * @mas: The maple state 5575 * 5576 * Upon completion, check the left-most node and rebalance against the node to 5577 * the right if necessary. Frees any allocated nodes associated with this maple 5578 * state. 5579 */ 5580 void mas_destroy(struct ma_state *mas) 5581 { 5582 struct maple_alloc *node; 5583 unsigned long total; 5584 5585 /* 5586 * When using mas_for_each() to insert an expected number of elements, 5587 * it is possible that the number inserted is less than the expected 5588 * number. To fix an invalid final node, a check is performed here to 5589 * rebalance the previous node with the final node. 5590 */ 5591 if (mas->mas_flags & MA_STATE_REBALANCE) { 5592 unsigned char end; 5593 5594 mas_start(mas); 5595 mtree_range_walk(mas); 5596 end = mas->end + 1; 5597 if (end < mt_min_slot_count(mas->node) - 1) 5598 mas_destroy_rebalance(mas, end); 5599 5600 mas->mas_flags &= ~MA_STATE_REBALANCE; 5601 } 5602 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5603 5604 total = mas_allocated(mas); 5605 while (total) { 5606 node = mas->alloc; 5607 mas->alloc = node->slot[0]; 5608 if (node->node_count > 1) { 5609 size_t count = node->node_count - 1; 5610 5611 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5612 total -= count; 5613 } 5614 mt_free_one(ma_mnode_ptr(node)); 5615 total--; 5616 } 5617 5618 mas->alloc = NULL; 5619 } 5620 EXPORT_SYMBOL_GPL(mas_destroy); 5621 5622 /* 5623 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5624 * @mas: The maple state 5625 * @nr_entries: The number of expected entries. 5626 * 5627 * This will attempt to pre-allocate enough nodes to store the expected number 5628 * of entries. The allocations will occur using the bulk allocator interface 5629 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5630 * to ensure any unused nodes are freed. 5631 * 5632 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5633 */ 5634 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5635 { 5636 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5637 struct maple_enode *enode = mas->node; 5638 int nr_nodes; 5639 int ret; 5640 5641 /* 5642 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5643 * forking a process and duplicating the VMAs from one tree to a new 5644 * tree. When such a situation arises, it is known that the new tree is 5645 * not going to be used until the entire tree is populated. For 5646 * performance reasons, it is best to use a bulk load with RCU disabled. 5647 * This allows for optimistic splitting that favours the left and reuse 5648 * of nodes during the operation. 5649 */ 5650 5651 /* Optimize splitting for bulk insert in-order */ 5652 mas->mas_flags |= MA_STATE_BULK; 5653 5654 /* 5655 * Avoid overflow, assume a gap between each entry and a trailing null. 5656 * If this is wrong, it just means allocation can happen during 5657 * insertion of entries. 5658 */ 5659 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5660 if (!mt_is_alloc(mas->tree)) 5661 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5662 5663 /* Leaves; reduce slots to keep space for expansion */ 5664 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5665 /* Internal nodes */ 5666 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5667 /* Add working room for split (2 nodes) + new parents */ 5668 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5669 5670 /* Detect if allocations run out */ 5671 mas->mas_flags |= MA_STATE_PREALLOC; 5672 5673 if (!mas_is_err(mas)) 5674 return 0; 5675 5676 ret = xa_err(mas->node); 5677 mas->node = enode; 5678 mas_destroy(mas); 5679 return ret; 5680 5681 } 5682 EXPORT_SYMBOL_GPL(mas_expected_entries); 5683 5684 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5685 void **entry) 5686 { 5687 bool was_none = mas_is_none(mas); 5688 5689 if (unlikely(mas->last >= max)) { 5690 mas->status = ma_overflow; 5691 return true; 5692 } 5693 5694 switch (mas->status) { 5695 case ma_active: 5696 return false; 5697 case ma_none: 5698 fallthrough; 5699 case ma_pause: 5700 mas->status = ma_start; 5701 fallthrough; 5702 case ma_start: 5703 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5704 break; 5705 case ma_overflow: 5706 /* Overflowed before, but the max changed */ 5707 mas->status = ma_active; 5708 break; 5709 case ma_underflow: 5710 /* The user expects the mas to be one before where it is */ 5711 mas->status = ma_active; 5712 *entry = mas_walk(mas); 5713 if (*entry) 5714 return true; 5715 break; 5716 case ma_root: 5717 break; 5718 case ma_error: 5719 return true; 5720 } 5721 5722 if (likely(mas_is_active(mas))) /* Fast path */ 5723 return false; 5724 5725 if (mas_is_ptr(mas)) { 5726 *entry = NULL; 5727 if (was_none && mas->index == 0) { 5728 mas->index = mas->last = 0; 5729 return true; 5730 } 5731 mas->index = 1; 5732 mas->last = ULONG_MAX; 5733 mas->status = ma_none; 5734 return true; 5735 } 5736 5737 if (mas_is_none(mas)) 5738 return true; 5739 5740 return false; 5741 } 5742 5743 /** 5744 * mas_next() - Get the next entry. 5745 * @mas: The maple state 5746 * @max: The maximum index to check. 5747 * 5748 * Returns the next entry after @mas->index. 5749 * Must hold rcu_read_lock or the write lock. 5750 * Can return the zero entry. 5751 * 5752 * Return: The next entry or %NULL 5753 */ 5754 void *mas_next(struct ma_state *mas, unsigned long max) 5755 { 5756 void *entry = NULL; 5757 5758 if (mas_next_setup(mas, max, &entry)) 5759 return entry; 5760 5761 /* Retries on dead nodes handled by mas_next_slot */ 5762 return mas_next_slot(mas, max, false); 5763 } 5764 EXPORT_SYMBOL_GPL(mas_next); 5765 5766 /** 5767 * mas_next_range() - Advance the maple state to the next range 5768 * @mas: The maple state 5769 * @max: The maximum index to check. 5770 * 5771 * Sets @mas->index and @mas->last to the range. 5772 * Must hold rcu_read_lock or the write lock. 5773 * Can return the zero entry. 5774 * 5775 * Return: The next entry or %NULL 5776 */ 5777 void *mas_next_range(struct ma_state *mas, unsigned long max) 5778 { 5779 void *entry = NULL; 5780 5781 if (mas_next_setup(mas, max, &entry)) 5782 return entry; 5783 5784 /* Retries on dead nodes handled by mas_next_slot */ 5785 return mas_next_slot(mas, max, true); 5786 } 5787 EXPORT_SYMBOL_GPL(mas_next_range); 5788 5789 /** 5790 * mt_next() - get the next value in the maple tree 5791 * @mt: The maple tree 5792 * @index: The start index 5793 * @max: The maximum index to check 5794 * 5795 * Takes RCU read lock internally to protect the search, which does not 5796 * protect the returned pointer after dropping RCU read lock. 5797 * See also: Documentation/core-api/maple_tree.rst 5798 * 5799 * Return: The entry higher than @index or %NULL if nothing is found. 5800 */ 5801 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5802 { 5803 void *entry = NULL; 5804 MA_STATE(mas, mt, index, index); 5805 5806 rcu_read_lock(); 5807 entry = mas_next(&mas, max); 5808 rcu_read_unlock(); 5809 return entry; 5810 } 5811 EXPORT_SYMBOL_GPL(mt_next); 5812 5813 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5814 { 5815 if (unlikely(mas->index <= min)) { 5816 mas->status = ma_underflow; 5817 return true; 5818 } 5819 5820 switch (mas->status) { 5821 case ma_active: 5822 return false; 5823 case ma_start: 5824 break; 5825 case ma_none: 5826 fallthrough; 5827 case ma_pause: 5828 mas->status = ma_start; 5829 break; 5830 case ma_underflow: 5831 /* underflowed before but the min changed */ 5832 mas->status = ma_active; 5833 break; 5834 case ma_overflow: 5835 /* User expects mas to be one after where it is */ 5836 mas->status = ma_active; 5837 *entry = mas_walk(mas); 5838 if (*entry) 5839 return true; 5840 break; 5841 case ma_root: 5842 break; 5843 case ma_error: 5844 return true; 5845 } 5846 5847 if (mas_is_start(mas)) 5848 mas_walk(mas); 5849 5850 if (unlikely(mas_is_ptr(mas))) { 5851 if (!mas->index) { 5852 mas->status = ma_none; 5853 return true; 5854 } 5855 mas->index = mas->last = 0; 5856 *entry = mas_root(mas); 5857 return true; 5858 } 5859 5860 if (mas_is_none(mas)) { 5861 if (mas->index) { 5862 /* Walked to out-of-range pointer? */ 5863 mas->index = mas->last = 0; 5864 mas->status = ma_root; 5865 *entry = mas_root(mas); 5866 return true; 5867 } 5868 return true; 5869 } 5870 5871 return false; 5872 } 5873 5874 /** 5875 * mas_prev() - Get the previous entry 5876 * @mas: The maple state 5877 * @min: The minimum value to check. 5878 * 5879 * Must hold rcu_read_lock or the write lock. 5880 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5881 * searchable nodes. 5882 * 5883 * Return: the previous value or %NULL. 5884 */ 5885 void *mas_prev(struct ma_state *mas, unsigned long min) 5886 { 5887 void *entry = NULL; 5888 5889 if (mas_prev_setup(mas, min, &entry)) 5890 return entry; 5891 5892 return mas_prev_slot(mas, min, false); 5893 } 5894 EXPORT_SYMBOL_GPL(mas_prev); 5895 5896 /** 5897 * mas_prev_range() - Advance to the previous range 5898 * @mas: The maple state 5899 * @min: The minimum value to check. 5900 * 5901 * Sets @mas->index and @mas->last to the range. 5902 * Must hold rcu_read_lock or the write lock. 5903 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5904 * searchable nodes. 5905 * 5906 * Return: the previous value or %NULL. 5907 */ 5908 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5909 { 5910 void *entry = NULL; 5911 5912 if (mas_prev_setup(mas, min, &entry)) 5913 return entry; 5914 5915 return mas_prev_slot(mas, min, true); 5916 } 5917 EXPORT_SYMBOL_GPL(mas_prev_range); 5918 5919 /** 5920 * mt_prev() - get the previous value in the maple tree 5921 * @mt: The maple tree 5922 * @index: The start index 5923 * @min: The minimum index to check 5924 * 5925 * Takes RCU read lock internally to protect the search, which does not 5926 * protect the returned pointer after dropping RCU read lock. 5927 * See also: Documentation/core-api/maple_tree.rst 5928 * 5929 * Return: The entry before @index or %NULL if nothing is found. 5930 */ 5931 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5932 { 5933 void *entry = NULL; 5934 MA_STATE(mas, mt, index, index); 5935 5936 rcu_read_lock(); 5937 entry = mas_prev(&mas, min); 5938 rcu_read_unlock(); 5939 return entry; 5940 } 5941 EXPORT_SYMBOL_GPL(mt_prev); 5942 5943 /** 5944 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5945 * @mas: The maple state to pause 5946 * 5947 * Some users need to pause a walk and drop the lock they're holding in 5948 * order to yield to a higher priority thread or carry out an operation 5949 * on an entry. Those users should call this function before they drop 5950 * the lock. It resets the @mas to be suitable for the next iteration 5951 * of the loop after the user has reacquired the lock. If most entries 5952 * found during a walk require you to call mas_pause(), the mt_for_each() 5953 * iterator may be more appropriate. 5954 * 5955 */ 5956 void mas_pause(struct ma_state *mas) 5957 { 5958 mas->status = ma_pause; 5959 mas->node = NULL; 5960 } 5961 EXPORT_SYMBOL_GPL(mas_pause); 5962 5963 /** 5964 * mas_find_setup() - Internal function to set up mas_find*(). 5965 * @mas: The maple state 5966 * @max: The maximum index 5967 * @entry: Pointer to the entry 5968 * 5969 * Returns: True if entry is the answer, false otherwise. 5970 */ 5971 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5972 { 5973 switch (mas->status) { 5974 case ma_active: 5975 if (mas->last < max) 5976 return false; 5977 return true; 5978 case ma_start: 5979 break; 5980 case ma_pause: 5981 if (unlikely(mas->last >= max)) 5982 return true; 5983 5984 mas->index = ++mas->last; 5985 mas->status = ma_start; 5986 break; 5987 case ma_none: 5988 if (unlikely(mas->last >= max)) 5989 return true; 5990 5991 mas->index = mas->last; 5992 mas->status = ma_start; 5993 break; 5994 case ma_underflow: 5995 /* mas is pointing at entry before unable to go lower */ 5996 if (unlikely(mas->index >= max)) { 5997 mas->status = ma_overflow; 5998 return true; 5999 } 6000 6001 mas->status = ma_active; 6002 *entry = mas_walk(mas); 6003 if (*entry) 6004 return true; 6005 break; 6006 case ma_overflow: 6007 if (unlikely(mas->last >= max)) 6008 return true; 6009 6010 mas->status = ma_active; 6011 *entry = mas_walk(mas); 6012 if (*entry) 6013 return true; 6014 break; 6015 case ma_root: 6016 break; 6017 case ma_error: 6018 return true; 6019 } 6020 6021 if (mas_is_start(mas)) { 6022 /* First run or continue */ 6023 if (mas->index > max) 6024 return true; 6025 6026 *entry = mas_walk(mas); 6027 if (*entry) 6028 return true; 6029 6030 } 6031 6032 if (unlikely(mas_is_ptr(mas))) 6033 goto ptr_out_of_range; 6034 6035 if (unlikely(mas_is_none(mas))) 6036 return true; 6037 6038 if (mas->index == max) 6039 return true; 6040 6041 return false; 6042 6043 ptr_out_of_range: 6044 mas->status = ma_none; 6045 mas->index = 1; 6046 mas->last = ULONG_MAX; 6047 return true; 6048 } 6049 6050 /** 6051 * mas_find() - On the first call, find the entry at or after mas->index up to 6052 * %max. Otherwise, find the entry after mas->index. 6053 * @mas: The maple state 6054 * @max: The maximum value to check. 6055 * 6056 * Must hold rcu_read_lock or the write lock. 6057 * If an entry exists, last and index are updated accordingly. 6058 * May set @mas->status to ma_overflow. 6059 * 6060 * Return: The entry or %NULL. 6061 */ 6062 void *mas_find(struct ma_state *mas, unsigned long max) 6063 { 6064 void *entry = NULL; 6065 6066 if (mas_find_setup(mas, max, &entry)) 6067 return entry; 6068 6069 /* Retries on dead nodes handled by mas_next_slot */ 6070 entry = mas_next_slot(mas, max, false); 6071 /* Ignore overflow */ 6072 mas->status = ma_active; 6073 return entry; 6074 } 6075 EXPORT_SYMBOL_GPL(mas_find); 6076 6077 /** 6078 * mas_find_range() - On the first call, find the entry at or after 6079 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6080 * @mas: The maple state 6081 * @max: The maximum value to check. 6082 * 6083 * Must hold rcu_read_lock or the write lock. 6084 * If an entry exists, last and index are updated accordingly. 6085 * May set @mas->status to ma_overflow. 6086 * 6087 * Return: The entry or %NULL. 6088 */ 6089 void *mas_find_range(struct ma_state *mas, unsigned long max) 6090 { 6091 void *entry = NULL; 6092 6093 if (mas_find_setup(mas, max, &entry)) 6094 return entry; 6095 6096 /* Retries on dead nodes handled by mas_next_slot */ 6097 return mas_next_slot(mas, max, true); 6098 } 6099 EXPORT_SYMBOL_GPL(mas_find_range); 6100 6101 /** 6102 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6103 * @mas: The maple state 6104 * @min: The minimum index 6105 * @entry: Pointer to the entry 6106 * 6107 * Returns: True if entry is the answer, false otherwise. 6108 */ 6109 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6110 void **entry) 6111 { 6112 6113 switch (mas->status) { 6114 case ma_active: 6115 goto active; 6116 case ma_start: 6117 break; 6118 case ma_pause: 6119 if (unlikely(mas->index <= min)) { 6120 mas->status = ma_underflow; 6121 return true; 6122 } 6123 mas->last = --mas->index; 6124 mas->status = ma_start; 6125 break; 6126 case ma_none: 6127 if (mas->index <= min) 6128 goto none; 6129 6130 mas->last = mas->index; 6131 mas->status = ma_start; 6132 break; 6133 case ma_overflow: /* user expects the mas to be one after where it is */ 6134 if (unlikely(mas->index <= min)) { 6135 mas->status = ma_underflow; 6136 return true; 6137 } 6138 6139 mas->status = ma_active; 6140 break; 6141 case ma_underflow: /* user expects the mas to be one before where it is */ 6142 if (unlikely(mas->index <= min)) 6143 return true; 6144 6145 mas->status = ma_active; 6146 break; 6147 case ma_root: 6148 break; 6149 case ma_error: 6150 return true; 6151 } 6152 6153 if (mas_is_start(mas)) { 6154 /* First run or continue */ 6155 if (mas->index < min) 6156 return true; 6157 6158 *entry = mas_walk(mas); 6159 if (*entry) 6160 return true; 6161 } 6162 6163 if (unlikely(mas_is_ptr(mas))) 6164 goto none; 6165 6166 if (unlikely(mas_is_none(mas))) { 6167 /* 6168 * Walked to the location, and there was nothing so the previous 6169 * location is 0. 6170 */ 6171 mas->last = mas->index = 0; 6172 mas->status = ma_root; 6173 *entry = mas_root(mas); 6174 return true; 6175 } 6176 6177 active: 6178 if (mas->index < min) 6179 return true; 6180 6181 return false; 6182 6183 none: 6184 mas->status = ma_none; 6185 return true; 6186 } 6187 6188 /** 6189 * mas_find_rev: On the first call, find the first non-null entry at or below 6190 * mas->index down to %min. Otherwise find the first non-null entry below 6191 * mas->index down to %min. 6192 * @mas: The maple state 6193 * @min: The minimum value to check. 6194 * 6195 * Must hold rcu_read_lock or the write lock. 6196 * If an entry exists, last and index are updated accordingly. 6197 * May set @mas->status to ma_underflow. 6198 * 6199 * Return: The entry or %NULL. 6200 */ 6201 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6202 { 6203 void *entry = NULL; 6204 6205 if (mas_find_rev_setup(mas, min, &entry)) 6206 return entry; 6207 6208 /* Retries on dead nodes handled by mas_prev_slot */ 6209 return mas_prev_slot(mas, min, false); 6210 6211 } 6212 EXPORT_SYMBOL_GPL(mas_find_rev); 6213 6214 /** 6215 * mas_find_range_rev: On the first call, find the first non-null entry at or 6216 * below mas->index down to %min. Otherwise advance to the previous slot after 6217 * mas->index down to %min. 6218 * @mas: The maple state 6219 * @min: The minimum value to check. 6220 * 6221 * Must hold rcu_read_lock or the write lock. 6222 * If an entry exists, last and index are updated accordingly. 6223 * May set @mas->status to ma_underflow. 6224 * 6225 * Return: The entry or %NULL. 6226 */ 6227 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6228 { 6229 void *entry = NULL; 6230 6231 if (mas_find_rev_setup(mas, min, &entry)) 6232 return entry; 6233 6234 /* Retries on dead nodes handled by mas_prev_slot */ 6235 return mas_prev_slot(mas, min, true); 6236 } 6237 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6238 6239 /** 6240 * mas_erase() - Find the range in which index resides and erase the entire 6241 * range. 6242 * @mas: The maple state 6243 * 6244 * Must hold the write lock. 6245 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6246 * erases that range. 6247 * 6248 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6249 */ 6250 void *mas_erase(struct ma_state *mas) 6251 { 6252 void *entry; 6253 MA_WR_STATE(wr_mas, mas, NULL); 6254 6255 if (!mas_is_active(mas) || !mas_is_start(mas)) 6256 mas->status = ma_start; 6257 6258 /* Retry unnecessary when holding the write lock. */ 6259 entry = mas_state_walk(mas); 6260 if (!entry) 6261 return NULL; 6262 6263 write_retry: 6264 /* Must reset to ensure spanning writes of last slot are detected */ 6265 mas_reset(mas); 6266 mas_wr_store_setup(&wr_mas); 6267 mas_wr_store_entry(&wr_mas); 6268 if (mas_nomem(mas, GFP_KERNEL)) 6269 goto write_retry; 6270 6271 return entry; 6272 } 6273 EXPORT_SYMBOL_GPL(mas_erase); 6274 6275 /** 6276 * mas_nomem() - Check if there was an error allocating and do the allocation 6277 * if necessary If there are allocations, then free them. 6278 * @mas: The maple state 6279 * @gfp: The GFP_FLAGS to use for allocations 6280 * Return: true on allocation, false otherwise. 6281 */ 6282 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6283 __must_hold(mas->tree->ma_lock) 6284 { 6285 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6286 mas_destroy(mas); 6287 return false; 6288 } 6289 6290 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6291 mtree_unlock(mas->tree); 6292 mas_alloc_nodes(mas, gfp); 6293 mtree_lock(mas->tree); 6294 } else { 6295 mas_alloc_nodes(mas, gfp); 6296 } 6297 6298 if (!mas_allocated(mas)) 6299 return false; 6300 6301 mas->status = ma_start; 6302 return true; 6303 } 6304 6305 void __init maple_tree_init(void) 6306 { 6307 maple_node_cache = kmem_cache_create("maple_node", 6308 sizeof(struct maple_node), sizeof(struct maple_node), 6309 SLAB_PANIC, NULL); 6310 } 6311 6312 /** 6313 * mtree_load() - Load a value stored in a maple tree 6314 * @mt: The maple tree 6315 * @index: The index to load 6316 * 6317 * Return: the entry or %NULL 6318 */ 6319 void *mtree_load(struct maple_tree *mt, unsigned long index) 6320 { 6321 MA_STATE(mas, mt, index, index); 6322 void *entry; 6323 6324 trace_ma_read(__func__, &mas); 6325 rcu_read_lock(); 6326 retry: 6327 entry = mas_start(&mas); 6328 if (unlikely(mas_is_none(&mas))) 6329 goto unlock; 6330 6331 if (unlikely(mas_is_ptr(&mas))) { 6332 if (index) 6333 entry = NULL; 6334 6335 goto unlock; 6336 } 6337 6338 entry = mtree_lookup_walk(&mas); 6339 if (!entry && unlikely(mas_is_start(&mas))) 6340 goto retry; 6341 unlock: 6342 rcu_read_unlock(); 6343 if (xa_is_zero(entry)) 6344 return NULL; 6345 6346 return entry; 6347 } 6348 EXPORT_SYMBOL(mtree_load); 6349 6350 /** 6351 * mtree_store_range() - Store an entry at a given range. 6352 * @mt: The maple tree 6353 * @index: The start of the range 6354 * @last: The end of the range 6355 * @entry: The entry to store 6356 * @gfp: The GFP_FLAGS to use for allocations 6357 * 6358 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6359 * be allocated. 6360 */ 6361 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6362 unsigned long last, void *entry, gfp_t gfp) 6363 { 6364 MA_STATE(mas, mt, index, last); 6365 MA_WR_STATE(wr_mas, &mas, entry); 6366 6367 trace_ma_write(__func__, &mas, 0, entry); 6368 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6369 return -EINVAL; 6370 6371 if (index > last) 6372 return -EINVAL; 6373 6374 mtree_lock(mt); 6375 retry: 6376 mas_wr_store_entry(&wr_mas); 6377 if (mas_nomem(&mas, gfp)) 6378 goto retry; 6379 6380 mtree_unlock(mt); 6381 if (mas_is_err(&mas)) 6382 return xa_err(mas.node); 6383 6384 return 0; 6385 } 6386 EXPORT_SYMBOL(mtree_store_range); 6387 6388 /** 6389 * mtree_store() - Store an entry at a given index. 6390 * @mt: The maple tree 6391 * @index: The index to store the value 6392 * @entry: The entry to store 6393 * @gfp: The GFP_FLAGS to use for allocations 6394 * 6395 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6396 * be allocated. 6397 */ 6398 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6399 gfp_t gfp) 6400 { 6401 return mtree_store_range(mt, index, index, entry, gfp); 6402 } 6403 EXPORT_SYMBOL(mtree_store); 6404 6405 /** 6406 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6407 * @mt: The maple tree 6408 * @first: The start of the range 6409 * @last: The end of the range 6410 * @entry: The entry to store 6411 * @gfp: The GFP_FLAGS to use for allocations. 6412 * 6413 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6414 * request, -ENOMEM if memory could not be allocated. 6415 */ 6416 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6417 unsigned long last, void *entry, gfp_t gfp) 6418 { 6419 MA_STATE(ms, mt, first, last); 6420 6421 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6422 return -EINVAL; 6423 6424 if (first > last) 6425 return -EINVAL; 6426 6427 mtree_lock(mt); 6428 retry: 6429 mas_insert(&ms, entry); 6430 if (mas_nomem(&ms, gfp)) 6431 goto retry; 6432 6433 mtree_unlock(mt); 6434 if (mas_is_err(&ms)) 6435 return xa_err(ms.node); 6436 6437 return 0; 6438 } 6439 EXPORT_SYMBOL(mtree_insert_range); 6440 6441 /** 6442 * mtree_insert() - Insert an entry at a given index if there is no value. 6443 * @mt: The maple tree 6444 * @index : The index to store the value 6445 * @entry: The entry to store 6446 * @gfp: The GFP_FLAGS to use for allocations. 6447 * 6448 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6449 * request, -ENOMEM if memory could not be allocated. 6450 */ 6451 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6452 gfp_t gfp) 6453 { 6454 return mtree_insert_range(mt, index, index, entry, gfp); 6455 } 6456 EXPORT_SYMBOL(mtree_insert); 6457 6458 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6459 void *entry, unsigned long size, unsigned long min, 6460 unsigned long max, gfp_t gfp) 6461 { 6462 int ret = 0; 6463 6464 MA_STATE(mas, mt, 0, 0); 6465 if (!mt_is_alloc(mt)) 6466 return -EINVAL; 6467 6468 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6469 return -EINVAL; 6470 6471 mtree_lock(mt); 6472 retry: 6473 ret = mas_empty_area(&mas, min, max, size); 6474 if (ret) 6475 goto unlock; 6476 6477 mas_insert(&mas, entry); 6478 /* 6479 * mas_nomem() may release the lock, causing the allocated area 6480 * to be unavailable, so try to allocate a free area again. 6481 */ 6482 if (mas_nomem(&mas, gfp)) 6483 goto retry; 6484 6485 if (mas_is_err(&mas)) 6486 ret = xa_err(mas.node); 6487 else 6488 *startp = mas.index; 6489 6490 unlock: 6491 mtree_unlock(mt); 6492 return ret; 6493 } 6494 EXPORT_SYMBOL(mtree_alloc_range); 6495 6496 /** 6497 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. 6498 * @mt: The maple tree. 6499 * @startp: Pointer to ID. 6500 * @range_lo: Lower bound of range to search. 6501 * @range_hi: Upper bound of range to search. 6502 * @entry: The entry to store. 6503 * @next: Pointer to next ID to allocate. 6504 * @gfp: The GFP_FLAGS to use for allocations. 6505 * 6506 * Finds an empty entry in @mt after @next, stores the new index into 6507 * the @id pointer, stores the entry at that index, then updates @next. 6508 * 6509 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. 6510 * 6511 * Context: Any context. Takes and releases the mt.lock. May sleep if 6512 * the @gfp flags permit. 6513 * 6514 * Return: 0 if the allocation succeeded without wrapping, 1 if the 6515 * allocation succeeded after wrapping, -ENOMEM if memory could not be 6516 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no 6517 * free entries. 6518 */ 6519 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 6520 void *entry, unsigned long range_lo, unsigned long range_hi, 6521 unsigned long *next, gfp_t gfp) 6522 { 6523 int ret; 6524 6525 MA_STATE(mas, mt, 0, 0); 6526 6527 if (!mt_is_alloc(mt)) 6528 return -EINVAL; 6529 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6530 return -EINVAL; 6531 mtree_lock(mt); 6532 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, 6533 next, gfp); 6534 mtree_unlock(mt); 6535 return ret; 6536 } 6537 EXPORT_SYMBOL(mtree_alloc_cyclic); 6538 6539 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6540 void *entry, unsigned long size, unsigned long min, 6541 unsigned long max, gfp_t gfp) 6542 { 6543 int ret = 0; 6544 6545 MA_STATE(mas, mt, 0, 0); 6546 if (!mt_is_alloc(mt)) 6547 return -EINVAL; 6548 6549 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6550 return -EINVAL; 6551 6552 mtree_lock(mt); 6553 retry: 6554 ret = mas_empty_area_rev(&mas, min, max, size); 6555 if (ret) 6556 goto unlock; 6557 6558 mas_insert(&mas, entry); 6559 /* 6560 * mas_nomem() may release the lock, causing the allocated area 6561 * to be unavailable, so try to allocate a free area again. 6562 */ 6563 if (mas_nomem(&mas, gfp)) 6564 goto retry; 6565 6566 if (mas_is_err(&mas)) 6567 ret = xa_err(mas.node); 6568 else 6569 *startp = mas.index; 6570 6571 unlock: 6572 mtree_unlock(mt); 6573 return ret; 6574 } 6575 EXPORT_SYMBOL(mtree_alloc_rrange); 6576 6577 /** 6578 * mtree_erase() - Find an index and erase the entire range. 6579 * @mt: The maple tree 6580 * @index: The index to erase 6581 * 6582 * Erasing is the same as a walk to an entry then a store of a NULL to that 6583 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6584 * 6585 * Return: The entry stored at the @index or %NULL 6586 */ 6587 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6588 { 6589 void *entry = NULL; 6590 6591 MA_STATE(mas, mt, index, index); 6592 trace_ma_op(__func__, &mas); 6593 6594 mtree_lock(mt); 6595 entry = mas_erase(&mas); 6596 mtree_unlock(mt); 6597 6598 return entry; 6599 } 6600 EXPORT_SYMBOL(mtree_erase); 6601 6602 /* 6603 * mas_dup_free() - Free an incomplete duplication of a tree. 6604 * @mas: The maple state of a incomplete tree. 6605 * 6606 * The parameter @mas->node passed in indicates that the allocation failed on 6607 * this node. This function frees all nodes starting from @mas->node in the 6608 * reverse order of mas_dup_build(). There is no need to hold the source tree 6609 * lock at this time. 6610 */ 6611 static void mas_dup_free(struct ma_state *mas) 6612 { 6613 struct maple_node *node; 6614 enum maple_type type; 6615 void __rcu **slots; 6616 unsigned char count, i; 6617 6618 /* Maybe the first node allocation failed. */ 6619 if (mas_is_none(mas)) 6620 return; 6621 6622 while (!mte_is_root(mas->node)) { 6623 mas_ascend(mas); 6624 if (mas->offset) { 6625 mas->offset--; 6626 do { 6627 mas_descend(mas); 6628 mas->offset = mas_data_end(mas); 6629 } while (!mte_is_leaf(mas->node)); 6630 6631 mas_ascend(mas); 6632 } 6633 6634 node = mte_to_node(mas->node); 6635 type = mte_node_type(mas->node); 6636 slots = ma_slots(node, type); 6637 count = mas_data_end(mas) + 1; 6638 for (i = 0; i < count; i++) 6639 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6640 mt_free_bulk(count, slots); 6641 } 6642 6643 node = mte_to_node(mas->node); 6644 mt_free_one(node); 6645 } 6646 6647 /* 6648 * mas_copy_node() - Copy a maple node and replace the parent. 6649 * @mas: The maple state of source tree. 6650 * @new_mas: The maple state of new tree. 6651 * @parent: The parent of the new node. 6652 * 6653 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6654 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6655 */ 6656 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6657 struct maple_pnode *parent) 6658 { 6659 struct maple_node *node = mte_to_node(mas->node); 6660 struct maple_node *new_node = mte_to_node(new_mas->node); 6661 unsigned long val; 6662 6663 /* Copy the node completely. */ 6664 memcpy(new_node, node, sizeof(struct maple_node)); 6665 /* Update the parent node pointer. */ 6666 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6667 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6668 } 6669 6670 /* 6671 * mas_dup_alloc() - Allocate child nodes for a maple node. 6672 * @mas: The maple state of source tree. 6673 * @new_mas: The maple state of new tree. 6674 * @gfp: The GFP_FLAGS to use for allocations. 6675 * 6676 * This function allocates child nodes for @new_mas->node during the duplication 6677 * process. If memory allocation fails, @mas is set to -ENOMEM. 6678 */ 6679 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6680 gfp_t gfp) 6681 { 6682 struct maple_node *node = mte_to_node(mas->node); 6683 struct maple_node *new_node = mte_to_node(new_mas->node); 6684 enum maple_type type; 6685 unsigned char request, count, i; 6686 void __rcu **slots; 6687 void __rcu **new_slots; 6688 unsigned long val; 6689 6690 /* Allocate memory for child nodes. */ 6691 type = mte_node_type(mas->node); 6692 new_slots = ma_slots(new_node, type); 6693 request = mas_data_end(mas) + 1; 6694 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6695 if (unlikely(count < request)) { 6696 memset(new_slots, 0, request * sizeof(void *)); 6697 mas_set_err(mas, -ENOMEM); 6698 return; 6699 } 6700 6701 /* Restore node type information in slots. */ 6702 slots = ma_slots(node, type); 6703 for (i = 0; i < count; i++) { 6704 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6705 val &= MAPLE_NODE_MASK; 6706 ((unsigned long *)new_slots)[i] |= val; 6707 } 6708 } 6709 6710 /* 6711 * mas_dup_build() - Build a new maple tree from a source tree 6712 * @mas: The maple state of source tree, need to be in MAS_START state. 6713 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6714 * @gfp: The GFP_FLAGS to use for allocations. 6715 * 6716 * This function builds a new tree in DFS preorder. If the memory allocation 6717 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6718 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6719 * 6720 * Note that the attributes of the two trees need to be exactly the same, and the 6721 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6722 */ 6723 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6724 gfp_t gfp) 6725 { 6726 struct maple_node *node; 6727 struct maple_pnode *parent = NULL; 6728 struct maple_enode *root; 6729 enum maple_type type; 6730 6731 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6732 unlikely(!mtree_empty(new_mas->tree))) { 6733 mas_set_err(mas, -EINVAL); 6734 return; 6735 } 6736 6737 root = mas_start(mas); 6738 if (mas_is_ptr(mas) || mas_is_none(mas)) 6739 goto set_new_tree; 6740 6741 node = mt_alloc_one(gfp); 6742 if (!node) { 6743 new_mas->status = ma_none; 6744 mas_set_err(mas, -ENOMEM); 6745 return; 6746 } 6747 6748 type = mte_node_type(mas->node); 6749 root = mt_mk_node(node, type); 6750 new_mas->node = root; 6751 new_mas->min = 0; 6752 new_mas->max = ULONG_MAX; 6753 root = mte_mk_root(root); 6754 while (1) { 6755 mas_copy_node(mas, new_mas, parent); 6756 if (!mte_is_leaf(mas->node)) { 6757 /* Only allocate child nodes for non-leaf nodes. */ 6758 mas_dup_alloc(mas, new_mas, gfp); 6759 if (unlikely(mas_is_err(mas))) 6760 return; 6761 } else { 6762 /* 6763 * This is the last leaf node and duplication is 6764 * completed. 6765 */ 6766 if (mas->max == ULONG_MAX) 6767 goto done; 6768 6769 /* This is not the last leaf node and needs to go up. */ 6770 do { 6771 mas_ascend(mas); 6772 mas_ascend(new_mas); 6773 } while (mas->offset == mas_data_end(mas)); 6774 6775 /* Move to the next subtree. */ 6776 mas->offset++; 6777 new_mas->offset++; 6778 } 6779 6780 mas_descend(mas); 6781 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6782 mas_descend(new_mas); 6783 mas->offset = 0; 6784 new_mas->offset = 0; 6785 } 6786 done: 6787 /* Specially handle the parent of the root node. */ 6788 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6789 set_new_tree: 6790 /* Make them the same height */ 6791 new_mas->tree->ma_flags = mas->tree->ma_flags; 6792 rcu_assign_pointer(new_mas->tree->ma_root, root); 6793 } 6794 6795 /** 6796 * __mt_dup(): Duplicate an entire maple tree 6797 * @mt: The source maple tree 6798 * @new: The new maple tree 6799 * @gfp: The GFP_FLAGS to use for allocations 6800 * 6801 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6802 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6803 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6804 * source node except for all the addresses stored in it. It will be faster than 6805 * traversing all elements in the source tree and inserting them one by one into 6806 * the new tree. 6807 * The user needs to ensure that the attributes of the source tree and the new 6808 * tree are the same, and the new tree needs to be an empty tree, otherwise 6809 * -EINVAL will be returned. 6810 * Note that the user needs to manually lock the source tree and the new tree. 6811 * 6812 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6813 * the attributes of the two trees are different or the new tree is not an empty 6814 * tree. 6815 */ 6816 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6817 { 6818 int ret = 0; 6819 MA_STATE(mas, mt, 0, 0); 6820 MA_STATE(new_mas, new, 0, 0); 6821 6822 mas_dup_build(&mas, &new_mas, gfp); 6823 if (unlikely(mas_is_err(&mas))) { 6824 ret = xa_err(mas.node); 6825 if (ret == -ENOMEM) 6826 mas_dup_free(&new_mas); 6827 } 6828 6829 return ret; 6830 } 6831 EXPORT_SYMBOL(__mt_dup); 6832 6833 /** 6834 * mtree_dup(): Duplicate an entire maple tree 6835 * @mt: The source maple tree 6836 * @new: The new maple tree 6837 * @gfp: The GFP_FLAGS to use for allocations 6838 * 6839 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6840 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6841 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6842 * source node except for all the addresses stored in it. It will be faster than 6843 * traversing all elements in the source tree and inserting them one by one into 6844 * the new tree. 6845 * The user needs to ensure that the attributes of the source tree and the new 6846 * tree are the same, and the new tree needs to be an empty tree, otherwise 6847 * -EINVAL will be returned. 6848 * 6849 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6850 * the attributes of the two trees are different or the new tree is not an empty 6851 * tree. 6852 */ 6853 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6854 { 6855 int ret = 0; 6856 MA_STATE(mas, mt, 0, 0); 6857 MA_STATE(new_mas, new, 0, 0); 6858 6859 mas_lock(&new_mas); 6860 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6861 mas_dup_build(&mas, &new_mas, gfp); 6862 mas_unlock(&mas); 6863 if (unlikely(mas_is_err(&mas))) { 6864 ret = xa_err(mas.node); 6865 if (ret == -ENOMEM) 6866 mas_dup_free(&new_mas); 6867 } 6868 6869 mas_unlock(&new_mas); 6870 return ret; 6871 } 6872 EXPORT_SYMBOL(mtree_dup); 6873 6874 /** 6875 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6876 * @mt: The maple tree 6877 * 6878 * Note: Does not handle locking. 6879 */ 6880 void __mt_destroy(struct maple_tree *mt) 6881 { 6882 void *root = mt_root_locked(mt); 6883 6884 rcu_assign_pointer(mt->ma_root, NULL); 6885 if (xa_is_node(root)) 6886 mte_destroy_walk(root, mt); 6887 6888 mt->ma_flags = mt_attr(mt); 6889 } 6890 EXPORT_SYMBOL_GPL(__mt_destroy); 6891 6892 /** 6893 * mtree_destroy() - Destroy a maple tree 6894 * @mt: The maple tree 6895 * 6896 * Frees all resources used by the tree. Handles locking. 6897 */ 6898 void mtree_destroy(struct maple_tree *mt) 6899 { 6900 mtree_lock(mt); 6901 __mt_destroy(mt); 6902 mtree_unlock(mt); 6903 } 6904 EXPORT_SYMBOL(mtree_destroy); 6905 6906 /** 6907 * mt_find() - Search from the start up until an entry is found. 6908 * @mt: The maple tree 6909 * @index: Pointer which contains the start location of the search 6910 * @max: The maximum value of the search range 6911 * 6912 * Takes RCU read lock internally to protect the search, which does not 6913 * protect the returned pointer after dropping RCU read lock. 6914 * See also: Documentation/core-api/maple_tree.rst 6915 * 6916 * In case that an entry is found @index is updated to point to the next 6917 * possible entry independent whether the found entry is occupying a 6918 * single index or a range if indices. 6919 * 6920 * Return: The entry at or after the @index or %NULL 6921 */ 6922 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6923 { 6924 MA_STATE(mas, mt, *index, *index); 6925 void *entry; 6926 #ifdef CONFIG_DEBUG_MAPLE_TREE 6927 unsigned long copy = *index; 6928 #endif 6929 6930 trace_ma_read(__func__, &mas); 6931 6932 if ((*index) > max) 6933 return NULL; 6934 6935 rcu_read_lock(); 6936 retry: 6937 entry = mas_state_walk(&mas); 6938 if (mas_is_start(&mas)) 6939 goto retry; 6940 6941 if (unlikely(xa_is_zero(entry))) 6942 entry = NULL; 6943 6944 if (entry) 6945 goto unlock; 6946 6947 while (mas_is_active(&mas) && (mas.last < max)) { 6948 entry = mas_next_entry(&mas, max); 6949 if (likely(entry && !xa_is_zero(entry))) 6950 break; 6951 } 6952 6953 if (unlikely(xa_is_zero(entry))) 6954 entry = NULL; 6955 unlock: 6956 rcu_read_unlock(); 6957 if (likely(entry)) { 6958 *index = mas.last + 1; 6959 #ifdef CONFIG_DEBUG_MAPLE_TREE 6960 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6961 pr_err("index not increased! %lx <= %lx\n", 6962 *index, copy); 6963 #endif 6964 } 6965 6966 return entry; 6967 } 6968 EXPORT_SYMBOL(mt_find); 6969 6970 /** 6971 * mt_find_after() - Search from the start up until an entry is found. 6972 * @mt: The maple tree 6973 * @index: Pointer which contains the start location of the search 6974 * @max: The maximum value to check 6975 * 6976 * Same as mt_find() except that it checks @index for 0 before 6977 * searching. If @index == 0, the search is aborted. This covers a wrap 6978 * around of @index to 0 in an iterator loop. 6979 * 6980 * Return: The entry at or after the @index or %NULL 6981 */ 6982 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6983 unsigned long max) 6984 { 6985 if (!(*index)) 6986 return NULL; 6987 6988 return mt_find(mt, index, max); 6989 } 6990 EXPORT_SYMBOL(mt_find_after); 6991 6992 #ifdef CONFIG_DEBUG_MAPLE_TREE 6993 atomic_t maple_tree_tests_run; 6994 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6995 atomic_t maple_tree_tests_passed; 6996 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6997 6998 #ifndef __KERNEL__ 6999 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 7000 void mt_set_non_kernel(unsigned int val) 7001 { 7002 kmem_cache_set_non_kernel(maple_node_cache, val); 7003 } 7004 7005 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 7006 unsigned long mt_get_alloc_size(void) 7007 { 7008 return kmem_cache_get_alloc(maple_node_cache); 7009 } 7010 7011 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 7012 void mt_zero_nr_tallocated(void) 7013 { 7014 kmem_cache_zero_nr_tallocated(maple_node_cache); 7015 } 7016 7017 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 7018 unsigned int mt_nr_tallocated(void) 7019 { 7020 return kmem_cache_nr_tallocated(maple_node_cache); 7021 } 7022 7023 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 7024 unsigned int mt_nr_allocated(void) 7025 { 7026 return kmem_cache_nr_allocated(maple_node_cache); 7027 } 7028 7029 void mt_cache_shrink(void) 7030 { 7031 } 7032 #else 7033 /* 7034 * mt_cache_shrink() - For testing, don't use this. 7035 * 7036 * Certain testcases can trigger an OOM when combined with other memory 7037 * debugging configuration options. This function is used to reduce the 7038 * possibility of an out of memory even due to kmem_cache objects remaining 7039 * around for longer than usual. 7040 */ 7041 void mt_cache_shrink(void) 7042 { 7043 kmem_cache_shrink(maple_node_cache); 7044 7045 } 7046 EXPORT_SYMBOL_GPL(mt_cache_shrink); 7047 7048 #endif /* not defined __KERNEL__ */ 7049 /* 7050 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 7051 * @mas: The maple state 7052 * @offset: The offset into the slot array to fetch. 7053 * 7054 * Return: The entry stored at @offset. 7055 */ 7056 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 7057 unsigned char offset) 7058 { 7059 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 7060 offset); 7061 } 7062 7063 /* Depth first search, post-order */ 7064 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 7065 { 7066 7067 struct maple_enode *p, *mn = mas->node; 7068 unsigned long p_min, p_max; 7069 7070 mas_next_node(mas, mas_mn(mas), max); 7071 if (!mas_is_overflow(mas)) 7072 return; 7073 7074 if (mte_is_root(mn)) 7075 return; 7076 7077 mas->node = mn; 7078 mas_ascend(mas); 7079 do { 7080 p = mas->node; 7081 p_min = mas->min; 7082 p_max = mas->max; 7083 mas_prev_node(mas, 0); 7084 } while (!mas_is_underflow(mas)); 7085 7086 mas->node = p; 7087 mas->max = p_max; 7088 mas->min = p_min; 7089 } 7090 7091 /* Tree validations */ 7092 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7093 unsigned long min, unsigned long max, unsigned int depth, 7094 enum mt_dump_format format); 7095 static void mt_dump_range(unsigned long min, unsigned long max, 7096 unsigned int depth, enum mt_dump_format format) 7097 { 7098 static const char spaces[] = " "; 7099 7100 switch(format) { 7101 case mt_dump_hex: 7102 if (min == max) 7103 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7104 else 7105 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7106 break; 7107 case mt_dump_dec: 7108 if (min == max) 7109 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7110 else 7111 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7112 } 7113 } 7114 7115 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7116 unsigned int depth, enum mt_dump_format format) 7117 { 7118 mt_dump_range(min, max, depth, format); 7119 7120 if (xa_is_value(entry)) 7121 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7122 xa_to_value(entry), entry); 7123 else if (xa_is_zero(entry)) 7124 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7125 else if (mt_is_reserved(entry)) 7126 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7127 else 7128 pr_cont("%p\n", entry); 7129 } 7130 7131 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7132 unsigned long min, unsigned long max, unsigned int depth, 7133 enum mt_dump_format format) 7134 { 7135 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7136 bool leaf = mte_is_leaf(entry); 7137 unsigned long first = min; 7138 int i; 7139 7140 pr_cont(" contents: "); 7141 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7142 switch(format) { 7143 case mt_dump_hex: 7144 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7145 break; 7146 case mt_dump_dec: 7147 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7148 } 7149 } 7150 pr_cont("%p\n", node->slot[i]); 7151 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7152 unsigned long last = max; 7153 7154 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7155 last = node->pivot[i]; 7156 else if (!node->slot[i] && max != mt_node_max(entry)) 7157 break; 7158 if (last == 0 && i > 0) 7159 break; 7160 if (leaf) 7161 mt_dump_entry(mt_slot(mt, node->slot, i), 7162 first, last, depth + 1, format); 7163 else if (node->slot[i]) 7164 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7165 first, last, depth + 1, format); 7166 7167 if (last == max) 7168 break; 7169 if (last > max) { 7170 switch(format) { 7171 case mt_dump_hex: 7172 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7173 node, last, max, i); 7174 break; 7175 case mt_dump_dec: 7176 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7177 node, last, max, i); 7178 } 7179 } 7180 first = last + 1; 7181 } 7182 } 7183 7184 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7185 unsigned long min, unsigned long max, unsigned int depth, 7186 enum mt_dump_format format) 7187 { 7188 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7189 bool leaf = mte_is_leaf(entry); 7190 unsigned long first = min; 7191 int i; 7192 7193 pr_cont(" contents: "); 7194 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7195 switch (format) { 7196 case mt_dump_hex: 7197 pr_cont("%lx ", node->gap[i]); 7198 break; 7199 case mt_dump_dec: 7200 pr_cont("%lu ", node->gap[i]); 7201 } 7202 } 7203 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7204 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7205 switch (format) { 7206 case mt_dump_hex: 7207 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7208 break; 7209 case mt_dump_dec: 7210 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7211 } 7212 } 7213 pr_cont("%p\n", node->slot[i]); 7214 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7215 unsigned long last = max; 7216 7217 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7218 last = node->pivot[i]; 7219 else if (!node->slot[i]) 7220 break; 7221 if (last == 0 && i > 0) 7222 break; 7223 if (leaf) 7224 mt_dump_entry(mt_slot(mt, node->slot, i), 7225 first, last, depth + 1, format); 7226 else if (node->slot[i]) 7227 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7228 first, last, depth + 1, format); 7229 7230 if (last == max) 7231 break; 7232 if (last > max) { 7233 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7234 node, last, max, i); 7235 break; 7236 } 7237 first = last + 1; 7238 } 7239 } 7240 7241 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7242 unsigned long min, unsigned long max, unsigned int depth, 7243 enum mt_dump_format format) 7244 { 7245 struct maple_node *node = mte_to_node(entry); 7246 unsigned int type = mte_node_type(entry); 7247 unsigned int i; 7248 7249 mt_dump_range(min, max, depth, format); 7250 7251 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7252 node ? node->parent : NULL); 7253 switch (type) { 7254 case maple_dense: 7255 pr_cont("\n"); 7256 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7257 if (min + i > max) 7258 pr_cont("OUT OF RANGE: "); 7259 mt_dump_entry(mt_slot(mt, node->slot, i), 7260 min + i, min + i, depth, format); 7261 } 7262 break; 7263 case maple_leaf_64: 7264 case maple_range_64: 7265 mt_dump_range64(mt, entry, min, max, depth, format); 7266 break; 7267 case maple_arange_64: 7268 mt_dump_arange64(mt, entry, min, max, depth, format); 7269 break; 7270 7271 default: 7272 pr_cont(" UNKNOWN TYPE\n"); 7273 } 7274 } 7275 7276 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7277 { 7278 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7279 7280 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7281 mt, mt->ma_flags, mt_height(mt), entry); 7282 if (!xa_is_node(entry)) 7283 mt_dump_entry(entry, 0, 0, 0, format); 7284 else if (entry) 7285 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7286 } 7287 EXPORT_SYMBOL_GPL(mt_dump); 7288 7289 /* 7290 * Calculate the maximum gap in a node and check if that's what is reported in 7291 * the parent (unless root). 7292 */ 7293 static void mas_validate_gaps(struct ma_state *mas) 7294 { 7295 struct maple_enode *mte = mas->node; 7296 struct maple_node *p_mn, *node = mte_to_node(mte); 7297 enum maple_type mt = mte_node_type(mas->node); 7298 unsigned long gap = 0, max_gap = 0; 7299 unsigned long p_end, p_start = mas->min; 7300 unsigned char p_slot, offset; 7301 unsigned long *gaps = NULL; 7302 unsigned long *pivots = ma_pivots(node, mt); 7303 unsigned int i; 7304 7305 if (ma_is_dense(mt)) { 7306 for (i = 0; i < mt_slot_count(mte); i++) { 7307 if (mas_get_slot(mas, i)) { 7308 if (gap > max_gap) 7309 max_gap = gap; 7310 gap = 0; 7311 continue; 7312 } 7313 gap++; 7314 } 7315 goto counted; 7316 } 7317 7318 gaps = ma_gaps(node, mt); 7319 for (i = 0; i < mt_slot_count(mte); i++) { 7320 p_end = mas_safe_pivot(mas, pivots, i, mt); 7321 7322 if (!gaps) { 7323 if (!mas_get_slot(mas, i)) 7324 gap = p_end - p_start + 1; 7325 } else { 7326 void *entry = mas_get_slot(mas, i); 7327 7328 gap = gaps[i]; 7329 MT_BUG_ON(mas->tree, !entry); 7330 7331 if (gap > p_end - p_start + 1) { 7332 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7333 mas_mn(mas), i, gap, p_end, p_start, 7334 p_end - p_start + 1); 7335 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7336 } 7337 } 7338 7339 if (gap > max_gap) 7340 max_gap = gap; 7341 7342 p_start = p_end + 1; 7343 if (p_end >= mas->max) 7344 break; 7345 } 7346 7347 counted: 7348 if (mt == maple_arange_64) { 7349 MT_BUG_ON(mas->tree, !gaps); 7350 offset = ma_meta_gap(node); 7351 if (offset > i) { 7352 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7353 MT_BUG_ON(mas->tree, 1); 7354 } 7355 7356 if (gaps[offset] != max_gap) { 7357 pr_err("gap %p[%u] is not the largest gap %lu\n", 7358 node, offset, max_gap); 7359 MT_BUG_ON(mas->tree, 1); 7360 } 7361 7362 for (i++ ; i < mt_slot_count(mte); i++) { 7363 if (gaps[i] != 0) { 7364 pr_err("gap %p[%u] beyond node limit != 0\n", 7365 node, i); 7366 MT_BUG_ON(mas->tree, 1); 7367 } 7368 } 7369 } 7370 7371 if (mte_is_root(mte)) 7372 return; 7373 7374 p_slot = mte_parent_slot(mas->node); 7375 p_mn = mte_parent(mte); 7376 MT_BUG_ON(mas->tree, max_gap > mas->max); 7377 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7378 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7379 mt_dump(mas->tree, mt_dump_hex); 7380 MT_BUG_ON(mas->tree, 1); 7381 } 7382 } 7383 7384 static void mas_validate_parent_slot(struct ma_state *mas) 7385 { 7386 struct maple_node *parent; 7387 struct maple_enode *node; 7388 enum maple_type p_type; 7389 unsigned char p_slot; 7390 void __rcu **slots; 7391 int i; 7392 7393 if (mte_is_root(mas->node)) 7394 return; 7395 7396 p_slot = mte_parent_slot(mas->node); 7397 p_type = mas_parent_type(mas, mas->node); 7398 parent = mte_parent(mas->node); 7399 slots = ma_slots(parent, p_type); 7400 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7401 7402 /* Check prev/next parent slot for duplicate node entry */ 7403 7404 for (i = 0; i < mt_slots[p_type]; i++) { 7405 node = mas_slot(mas, slots, i); 7406 if (i == p_slot) { 7407 if (node != mas->node) 7408 pr_err("parent %p[%u] does not have %p\n", 7409 parent, i, mas_mn(mas)); 7410 MT_BUG_ON(mas->tree, node != mas->node); 7411 } else if (node == mas->node) { 7412 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7413 mas_mn(mas), parent, i, p_slot); 7414 MT_BUG_ON(mas->tree, node == mas->node); 7415 } 7416 } 7417 } 7418 7419 static void mas_validate_child_slot(struct ma_state *mas) 7420 { 7421 enum maple_type type = mte_node_type(mas->node); 7422 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7423 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7424 struct maple_enode *child; 7425 unsigned char i; 7426 7427 if (mte_is_leaf(mas->node)) 7428 return; 7429 7430 for (i = 0; i < mt_slots[type]; i++) { 7431 child = mas_slot(mas, slots, i); 7432 7433 if (!child) { 7434 pr_err("Non-leaf node lacks child at %p[%u]\n", 7435 mas_mn(mas), i); 7436 MT_BUG_ON(mas->tree, 1); 7437 } 7438 7439 if (mte_parent_slot(child) != i) { 7440 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7441 mas_mn(mas), i, mte_to_node(child), 7442 mte_parent_slot(child)); 7443 MT_BUG_ON(mas->tree, 1); 7444 } 7445 7446 if (mte_parent(child) != mte_to_node(mas->node)) { 7447 pr_err("child %p has parent %p not %p\n", 7448 mte_to_node(child), mte_parent(child), 7449 mte_to_node(mas->node)); 7450 MT_BUG_ON(mas->tree, 1); 7451 } 7452 7453 if (i < mt_pivots[type] && pivots[i] == mas->max) 7454 break; 7455 } 7456 } 7457 7458 /* 7459 * Validate all pivots are within mas->min and mas->max, check metadata ends 7460 * where the maximum ends and ensure there is no slots or pivots set outside of 7461 * the end of the data. 7462 */ 7463 static void mas_validate_limits(struct ma_state *mas) 7464 { 7465 int i; 7466 unsigned long prev_piv = 0; 7467 enum maple_type type = mte_node_type(mas->node); 7468 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7469 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7470 7471 for (i = 0; i < mt_slots[type]; i++) { 7472 unsigned long piv; 7473 7474 piv = mas_safe_pivot(mas, pivots, i, type); 7475 7476 if (!piv && (i != 0)) { 7477 pr_err("Missing node limit pivot at %p[%u]", 7478 mas_mn(mas), i); 7479 MAS_WARN_ON(mas, 1); 7480 } 7481 7482 if (prev_piv > piv) { 7483 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7484 mas_mn(mas), i, piv, prev_piv); 7485 MAS_WARN_ON(mas, piv < prev_piv); 7486 } 7487 7488 if (piv < mas->min) { 7489 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7490 piv, mas->min); 7491 MAS_WARN_ON(mas, piv < mas->min); 7492 } 7493 if (piv > mas->max) { 7494 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7495 piv, mas->max); 7496 MAS_WARN_ON(mas, piv > mas->max); 7497 } 7498 prev_piv = piv; 7499 if (piv == mas->max) 7500 break; 7501 } 7502 7503 if (mas_data_end(mas) != i) { 7504 pr_err("node%p: data_end %u != the last slot offset %u\n", 7505 mas_mn(mas), mas_data_end(mas), i); 7506 MT_BUG_ON(mas->tree, 1); 7507 } 7508 7509 for (i += 1; i < mt_slots[type]; i++) { 7510 void *entry = mas_slot(mas, slots, i); 7511 7512 if (entry && (i != mt_slots[type] - 1)) { 7513 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7514 i, entry); 7515 MT_BUG_ON(mas->tree, entry != NULL); 7516 } 7517 7518 if (i < mt_pivots[type]) { 7519 unsigned long piv = pivots[i]; 7520 7521 if (!piv) 7522 continue; 7523 7524 pr_err("%p[%u] should not have piv %lu\n", 7525 mas_mn(mas), i, piv); 7526 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7527 } 7528 } 7529 } 7530 7531 static void mt_validate_nulls(struct maple_tree *mt) 7532 { 7533 void *entry, *last = (void *)1; 7534 unsigned char offset = 0; 7535 void __rcu **slots; 7536 MA_STATE(mas, mt, 0, 0); 7537 7538 mas_start(&mas); 7539 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7540 return; 7541 7542 while (!mte_is_leaf(mas.node)) 7543 mas_descend(&mas); 7544 7545 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7546 do { 7547 entry = mas_slot(&mas, slots, offset); 7548 if (!last && !entry) { 7549 pr_err("Sequential nulls end at %p[%u]\n", 7550 mas_mn(&mas), offset); 7551 } 7552 MT_BUG_ON(mt, !last && !entry); 7553 last = entry; 7554 if (offset == mas_data_end(&mas)) { 7555 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7556 if (mas_is_overflow(&mas)) 7557 return; 7558 offset = 0; 7559 slots = ma_slots(mte_to_node(mas.node), 7560 mte_node_type(mas.node)); 7561 } else { 7562 offset++; 7563 } 7564 7565 } while (!mas_is_overflow(&mas)); 7566 } 7567 7568 /* 7569 * validate a maple tree by checking: 7570 * 1. The limits (pivots are within mas->min to mas->max) 7571 * 2. The gap is correctly set in the parents 7572 */ 7573 void mt_validate(struct maple_tree *mt) 7574 { 7575 unsigned char end; 7576 7577 MA_STATE(mas, mt, 0, 0); 7578 rcu_read_lock(); 7579 mas_start(&mas); 7580 if (!mas_is_active(&mas)) 7581 goto done; 7582 7583 while (!mte_is_leaf(mas.node)) 7584 mas_descend(&mas); 7585 7586 while (!mas_is_overflow(&mas)) { 7587 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7588 end = mas_data_end(&mas); 7589 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7590 (mas.max != ULONG_MAX))) { 7591 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7592 } 7593 7594 mas_validate_parent_slot(&mas); 7595 mas_validate_limits(&mas); 7596 mas_validate_child_slot(&mas); 7597 if (mt_is_alloc(mt)) 7598 mas_validate_gaps(&mas); 7599 mas_dfs_postorder(&mas, ULONG_MAX); 7600 } 7601 mt_validate_nulls(mt); 7602 done: 7603 rcu_read_unlock(); 7604 7605 } 7606 EXPORT_SYMBOL_GPL(mt_validate); 7607 7608 void mas_dump(const struct ma_state *mas) 7609 { 7610 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7611 switch (mas->status) { 7612 case ma_active: 7613 pr_err("(ma_active)"); 7614 break; 7615 case ma_none: 7616 pr_err("(ma_none)"); 7617 break; 7618 case ma_root: 7619 pr_err("(ma_root)"); 7620 break; 7621 case ma_start: 7622 pr_err("(ma_start) "); 7623 break; 7624 case ma_pause: 7625 pr_err("(ma_pause) "); 7626 break; 7627 case ma_overflow: 7628 pr_err("(ma_overflow) "); 7629 break; 7630 case ma_underflow: 7631 pr_err("(ma_underflow) "); 7632 break; 7633 case ma_error: 7634 pr_err("(ma_error) "); 7635 break; 7636 } 7637 7638 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7639 mas->index, mas->last); 7640 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7641 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7642 if (mas->index > mas->last) 7643 pr_err("Check index & last\n"); 7644 } 7645 EXPORT_SYMBOL_GPL(mas_dump); 7646 7647 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7648 { 7649 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7650 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7651 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7652 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7653 wr_mas->end_piv); 7654 } 7655 EXPORT_SYMBOL_GPL(mas_wr_dump); 7656 7657 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7658