1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <zhangpeng.00@bytedance.com> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 struct maple_pnode *parent; 124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 125 union { 126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 127 struct { 128 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 129 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 130 }; 131 }; 132 unsigned char b_end; 133 enum maple_type type; 134 }; 135 136 /* 137 * The maple_subtree_state is used to build a tree to replace a segment of an 138 * existing tree in a more atomic way. Any walkers of the older tree will hit a 139 * dead node and restart on updates. 140 */ 141 struct maple_subtree_state { 142 struct ma_state *orig_l; /* Original left side of subtree */ 143 struct ma_state *orig_r; /* Original right side of subtree */ 144 struct ma_state *l; /* New left side of subtree */ 145 struct ma_state *m; /* New middle of subtree (rare) */ 146 struct ma_state *r; /* New right side of subtree */ 147 struct ma_topiary *free; /* nodes to be freed */ 148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 149 struct maple_big_node *bn; 150 }; 151 152 #ifdef CONFIG_KASAN_STACK 153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 154 #define noinline_for_kasan noinline_for_stack 155 #else 156 #define noinline_for_kasan inline 157 #endif 158 159 /* Functions */ 160 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 161 { 162 return kmem_cache_alloc(maple_node_cache, gfp); 163 } 164 165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 166 { 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 168 } 169 170 static inline void mt_free_one(struct maple_node *node) 171 { 172 kmem_cache_free(maple_node_cache, node); 173 } 174 175 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 176 { 177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 178 } 179 180 static void mt_free_rcu(struct rcu_head *head) 181 { 182 struct maple_node *node = container_of(head, struct maple_node, rcu); 183 184 kmem_cache_free(maple_node_cache, node); 185 } 186 187 /* 188 * ma_free_rcu() - Use rcu callback to free a maple node 189 * @node: The node to free 190 * 191 * The maple tree uses the parent pointer to indicate this node is no longer in 192 * use and will be freed. 193 */ 194 static void ma_free_rcu(struct maple_node *node) 195 { 196 WARN_ON(node->parent != ma_parent_ptr(node)); 197 call_rcu(&node->rcu, mt_free_rcu); 198 } 199 200 static void mas_set_height(struct ma_state *mas) 201 { 202 unsigned int new_flags = mas->tree->ma_flags; 203 204 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 207 mas->tree->ma_flags = new_flags; 208 } 209 210 static unsigned int mas_mt_height(struct ma_state *mas) 211 { 212 return mt_height(mas->tree); 213 } 214 215 static inline unsigned int mt_attr(struct maple_tree *mt) 216 { 217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 218 } 219 220 static __always_inline enum maple_type mte_node_type( 221 const struct maple_enode *entry) 222 { 223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 224 MAPLE_NODE_TYPE_MASK; 225 } 226 227 static __always_inline bool ma_is_dense(const enum maple_type type) 228 { 229 return type < maple_leaf_64; 230 } 231 232 static __always_inline bool ma_is_leaf(const enum maple_type type) 233 { 234 return type < maple_range_64; 235 } 236 237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 238 { 239 return ma_is_leaf(mte_node_type(entry)); 240 } 241 242 /* 243 * We also reserve values with the bottom two bits set to '10' which are 244 * below 4096 245 */ 246 static __always_inline bool mt_is_reserved(const void *entry) 247 { 248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 249 xa_is_internal(entry); 250 } 251 252 static __always_inline void mas_set_err(struct ma_state *mas, long err) 253 { 254 mas->node = MA_ERROR(err); 255 mas->status = ma_error; 256 } 257 258 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 259 { 260 return mas->status == ma_root; 261 } 262 263 static __always_inline bool mas_is_start(const struct ma_state *mas) 264 { 265 return mas->status == ma_start; 266 } 267 268 static __always_inline bool mas_is_none(const struct ma_state *mas) 269 { 270 return mas->status == ma_none; 271 } 272 273 static __always_inline bool mas_is_paused(const struct ma_state *mas) 274 { 275 return mas->status == ma_pause; 276 } 277 278 static __always_inline bool mas_is_overflow(struct ma_state *mas) 279 { 280 return mas->status == ma_overflow; 281 } 282 283 static inline bool mas_is_underflow(struct ma_state *mas) 284 { 285 return mas->status == ma_underflow; 286 } 287 288 static __always_inline struct maple_node *mte_to_node( 289 const struct maple_enode *entry) 290 { 291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 292 } 293 294 /* 295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 296 * @entry: The maple encoded node 297 * 298 * Return: a maple topiary pointer 299 */ 300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 301 { 302 return (struct maple_topiary *) 303 ((unsigned long)entry & ~MAPLE_NODE_MASK); 304 } 305 306 /* 307 * mas_mn() - Get the maple state node. 308 * @mas: The maple state 309 * 310 * Return: the maple node (not encoded - bare pointer). 311 */ 312 static inline struct maple_node *mas_mn(const struct ma_state *mas) 313 { 314 return mte_to_node(mas->node); 315 } 316 317 /* 318 * mte_set_node_dead() - Set a maple encoded node as dead. 319 * @mn: The maple encoded node. 320 */ 321 static inline void mte_set_node_dead(struct maple_enode *mn) 322 { 323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 324 smp_wmb(); /* Needed for RCU */ 325 } 326 327 /* Bit 1 indicates the root is a node */ 328 #define MAPLE_ROOT_NODE 0x02 329 /* maple_type stored bit 3-6 */ 330 #define MAPLE_ENODE_TYPE_SHIFT 0x03 331 /* Bit 2 means a NULL somewhere below */ 332 #define MAPLE_ENODE_NULL 0x04 333 334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 335 enum maple_type type) 336 { 337 return (void *)((unsigned long)node | 338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 339 } 340 341 static inline void *mte_mk_root(const struct maple_enode *node) 342 { 343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 344 } 345 346 static inline void *mte_safe_root(const struct maple_enode *node) 347 { 348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 349 } 350 351 static inline void *mte_set_full(const struct maple_enode *node) 352 { 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 354 } 355 356 static inline void *mte_clear_full(const struct maple_enode *node) 357 { 358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 359 } 360 361 static inline bool mte_has_null(const struct maple_enode *node) 362 { 363 return (unsigned long)node & MAPLE_ENODE_NULL; 364 } 365 366 static __always_inline bool ma_is_root(struct maple_node *node) 367 { 368 return ((unsigned long)node->parent & MA_ROOT_PARENT); 369 } 370 371 static __always_inline bool mte_is_root(const struct maple_enode *node) 372 { 373 return ma_is_root(mte_to_node(node)); 374 } 375 376 static inline bool mas_is_root_limits(const struct ma_state *mas) 377 { 378 return !mas->min && mas->max == ULONG_MAX; 379 } 380 381 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 382 { 383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 384 } 385 386 /* 387 * The Parent Pointer 388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 390 * bit values need an extra bit to store the offset. This extra bit comes from 391 * a reuse of the last bit in the node type. This is possible by using bit 1 to 392 * indicate if bit 2 is part of the type or the slot. 393 * 394 * Note types: 395 * 0x??1 = Root 396 * 0x?00 = 16 bit nodes 397 * 0x010 = 32 bit nodes 398 * 0x110 = 64 bit nodes 399 * 400 * Slot size and alignment 401 * 0b??1 : Root 402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 405 */ 406 407 #define MAPLE_PARENT_ROOT 0x01 408 409 #define MAPLE_PARENT_SLOT_SHIFT 0x03 410 #define MAPLE_PARENT_SLOT_MASK 0xF8 411 412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 414 415 #define MAPLE_PARENT_RANGE64 0x06 416 #define MAPLE_PARENT_RANGE32 0x04 417 #define MAPLE_PARENT_NOT_RANGE16 0x02 418 419 /* 420 * mte_parent_shift() - Get the parent shift for the slot storage. 421 * @parent: The parent pointer cast as an unsigned long 422 * Return: The shift into that pointer to the star to of the slot 423 */ 424 static inline unsigned long mte_parent_shift(unsigned long parent) 425 { 426 /* Note bit 1 == 0 means 16B */ 427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 428 return MAPLE_PARENT_SLOT_SHIFT; 429 430 return MAPLE_PARENT_16B_SLOT_SHIFT; 431 } 432 433 /* 434 * mte_parent_slot_mask() - Get the slot mask for the parent. 435 * @parent: The parent pointer cast as an unsigned long. 436 * Return: The slot mask for that parent. 437 */ 438 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 439 { 440 /* Note bit 1 == 0 means 16B */ 441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 442 return MAPLE_PARENT_SLOT_MASK; 443 444 return MAPLE_PARENT_16B_SLOT_MASK; 445 } 446 447 /* 448 * mas_parent_type() - Return the maple_type of the parent from the stored 449 * parent type. 450 * @mas: The maple state 451 * @enode: The maple_enode to extract the parent's enum 452 * Return: The node->parent maple_type 453 */ 454 static inline 455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 456 { 457 unsigned long p_type; 458 459 p_type = (unsigned long)mte_to_node(enode)->parent; 460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 461 return 0; 462 463 p_type &= MAPLE_NODE_MASK; 464 p_type &= ~mte_parent_slot_mask(p_type); 465 switch (p_type) { 466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 467 if (mt_is_alloc(mas->tree)) 468 return maple_arange_64; 469 return maple_range_64; 470 } 471 472 return 0; 473 } 474 475 /* 476 * mas_set_parent() - Set the parent node and encode the slot 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @node: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node - the maple node 645 * @type - the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node - the maple node 669 * @type - the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 * @offset: The offset of the highest sub-gap in this node. 884 * @end: The end of the data in this node. 885 */ 886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 887 enum maple_type type) 888 { 889 struct maple_metadata *meta; 890 unsigned long *pivots; 891 void __rcu **slots; 892 void *next; 893 894 switch (type) { 895 case maple_range_64: 896 pivots = mn->mr64.pivot; 897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 898 slots = mn->mr64.slot; 899 next = mt_slot_locked(mt, slots, 900 MAPLE_RANGE64_SLOTS - 1); 901 if (unlikely((mte_to_node(next) && 902 mte_node_type(next)))) 903 return; /* no metadata, could be node */ 904 } 905 fallthrough; 906 case maple_arange_64: 907 meta = ma_meta(mn, type); 908 break; 909 default: 910 return; 911 } 912 913 meta->gap = 0; 914 meta->end = 0; 915 } 916 917 /* 918 * ma_meta_end() - Get the data end of a node from the metadata 919 * @mn: The maple node 920 * @mt: The maple node type 921 */ 922 static inline unsigned char ma_meta_end(struct maple_node *mn, 923 enum maple_type mt) 924 { 925 struct maple_metadata *meta = ma_meta(mn, mt); 926 927 return meta->end; 928 } 929 930 /* 931 * ma_meta_gap() - Get the largest gap location of a node from the metadata 932 * @mn: The maple node 933 */ 934 static inline unsigned char ma_meta_gap(struct maple_node *mn) 935 { 936 return mn->ma64.meta.gap; 937 } 938 939 /* 940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 941 * @mn: The maple node 942 * @mn: The maple node type 943 * @offset: The location of the largest gap. 944 */ 945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 946 unsigned char offset) 947 { 948 949 struct maple_metadata *meta = ma_meta(mn, mt); 950 951 meta->gap = offset; 952 } 953 954 /* 955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 956 * @mat - the ma_topiary, a linked list of dead nodes. 957 * @dead_enode - the node to be marked as dead and added to the tail of the list 958 * 959 * Add the @dead_enode to the linked list in @mat. 960 */ 961 static inline void mat_add(struct ma_topiary *mat, 962 struct maple_enode *dead_enode) 963 { 964 mte_set_node_dead(dead_enode); 965 mte_to_mat(dead_enode)->next = NULL; 966 if (!mat->tail) { 967 mat->tail = mat->head = dead_enode; 968 return; 969 } 970 971 mte_to_mat(mat->tail)->next = dead_enode; 972 mat->tail = dead_enode; 973 } 974 975 static void mt_free_walk(struct rcu_head *head); 976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 977 bool free); 978 /* 979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 980 * @mas - the maple state 981 * @mat - the ma_topiary linked list of dead nodes to free. 982 * 983 * Destroy walk a dead list. 984 */ 985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 986 { 987 struct maple_enode *next; 988 struct maple_node *node; 989 bool in_rcu = mt_in_rcu(mas->tree); 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 node = mte_to_node(mat->head); 994 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 995 if (in_rcu) 996 call_rcu(&node->rcu, mt_free_walk); 997 mat->head = next; 998 } 999 } 1000 /* 1001 * mas_descend() - Descend into the slot stored in the ma_state. 1002 * @mas - the maple state. 1003 * 1004 * Note: Not RCU safe, only use in write side or debug code. 1005 */ 1006 static inline void mas_descend(struct ma_state *mas) 1007 { 1008 enum maple_type type; 1009 unsigned long *pivots; 1010 struct maple_node *node; 1011 void __rcu **slots; 1012 1013 node = mas_mn(mas); 1014 type = mte_node_type(mas->node); 1015 pivots = ma_pivots(node, type); 1016 slots = ma_slots(node, type); 1017 1018 if (mas->offset) 1019 mas->min = pivots[mas->offset - 1] + 1; 1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1021 mas->node = mas_slot(mas, slots, mas->offset); 1022 } 1023 1024 /* 1025 * mte_set_gap() - Set a maple node gap. 1026 * @mn: The encoded maple node 1027 * @gap: The offset of the gap to set 1028 * @val: The gap value 1029 */ 1030 static inline void mte_set_gap(const struct maple_enode *mn, 1031 unsigned char gap, unsigned long val) 1032 { 1033 switch (mte_node_type(mn)) { 1034 default: 1035 break; 1036 case maple_arange_64: 1037 mte_to_node(mn)->ma64.gap[gap] = val; 1038 break; 1039 } 1040 } 1041 1042 /* 1043 * mas_ascend() - Walk up a level of the tree. 1044 * @mas: The maple state 1045 * 1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1047 * may cause several levels of walking up to find the correct min and max. 1048 * May find a dead node which will cause a premature return. 1049 * Return: 1 on dead node, 0 otherwise 1050 */ 1051 static int mas_ascend(struct ma_state *mas) 1052 { 1053 struct maple_enode *p_enode; /* parent enode. */ 1054 struct maple_enode *a_enode; /* ancestor enode. */ 1055 struct maple_node *a_node; /* ancestor node. */ 1056 struct maple_node *p_node; /* parent node. */ 1057 unsigned char a_slot; 1058 enum maple_type a_type; 1059 unsigned long min, max; 1060 unsigned long *pivots; 1061 bool set_max = false, set_min = false; 1062 1063 a_node = mas_mn(mas); 1064 if (ma_is_root(a_node)) { 1065 mas->offset = 0; 1066 return 0; 1067 } 1068 1069 p_node = mte_parent(mas->node); 1070 if (unlikely(a_node == p_node)) 1071 return 1; 1072 1073 a_type = mas_parent_type(mas, mas->node); 1074 mas->offset = mte_parent_slot(mas->node); 1075 a_enode = mt_mk_node(p_node, a_type); 1076 1077 /* Check to make sure all parent information is still accurate */ 1078 if (p_node != mte_parent(mas->node)) 1079 return 1; 1080 1081 mas->node = a_enode; 1082 1083 if (mte_is_root(a_enode)) { 1084 mas->max = ULONG_MAX; 1085 mas->min = 0; 1086 return 0; 1087 } 1088 1089 min = 0; 1090 max = ULONG_MAX; 1091 if (!mas->offset) { 1092 min = mas->min; 1093 set_min = true; 1094 } 1095 1096 if (mas->max == ULONG_MAX) 1097 set_max = true; 1098 1099 do { 1100 p_enode = a_enode; 1101 a_type = mas_parent_type(mas, p_enode); 1102 a_node = mte_parent(p_enode); 1103 a_slot = mte_parent_slot(p_enode); 1104 a_enode = mt_mk_node(a_node, a_type); 1105 pivots = ma_pivots(a_node, a_type); 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (!set_min && a_slot) { 1111 set_min = true; 1112 min = pivots[a_slot - 1] + 1; 1113 } 1114 1115 if (!set_max && a_slot < mt_pivots[a_type]) { 1116 set_max = true; 1117 max = pivots[a_slot]; 1118 } 1119 1120 if (unlikely(ma_dead_node(a_node))) 1121 return 1; 1122 1123 if (unlikely(ma_is_root(a_node))) 1124 break; 1125 1126 } while (!set_min || !set_max); 1127 1128 mas->max = max; 1129 mas->min = min; 1130 return 0; 1131 } 1132 1133 /* 1134 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1135 * @mas: The maple state 1136 * 1137 * Return: A pointer to a maple node. 1138 */ 1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1140 { 1141 struct maple_alloc *ret, *node = mas->alloc; 1142 unsigned long total = mas_allocated(mas); 1143 unsigned int req = mas_alloc_req(mas); 1144 1145 /* nothing or a request pending. */ 1146 if (WARN_ON(!total)) 1147 return NULL; 1148 1149 if (total == 1) { 1150 /* single allocation in this ma_state */ 1151 mas->alloc = NULL; 1152 ret = node; 1153 goto single_node; 1154 } 1155 1156 if (node->node_count == 1) { 1157 /* Single allocation in this node. */ 1158 mas->alloc = node->slot[0]; 1159 mas->alloc->total = node->total - 1; 1160 ret = node; 1161 goto new_head; 1162 } 1163 node->total--; 1164 ret = node->slot[--node->node_count]; 1165 node->slot[node->node_count] = NULL; 1166 1167 single_node: 1168 new_head: 1169 if (req) { 1170 req++; 1171 mas_set_alloc_req(mas, req); 1172 } 1173 1174 memset(ret, 0, sizeof(*ret)); 1175 return (struct maple_node *)ret; 1176 } 1177 1178 /* 1179 * mas_push_node() - Push a node back on the maple state allocation. 1180 * @mas: The maple state 1181 * @used: The used maple node 1182 * 1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1184 * requested node count as necessary. 1185 */ 1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1187 { 1188 struct maple_alloc *reuse = (struct maple_alloc *)used; 1189 struct maple_alloc *head = mas->alloc; 1190 unsigned long count; 1191 unsigned int requested = mas_alloc_req(mas); 1192 1193 count = mas_allocated(mas); 1194 1195 reuse->request_count = 0; 1196 reuse->node_count = 0; 1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1198 head->slot[head->node_count++] = reuse; 1199 head->total++; 1200 goto done; 1201 } 1202 1203 reuse->total = 1; 1204 if ((head) && !((unsigned long)head & 0x1)) { 1205 reuse->slot[0] = head; 1206 reuse->node_count = 1; 1207 reuse->total += head->total; 1208 } 1209 1210 mas->alloc = reuse; 1211 done: 1212 if (requested > 1) 1213 mas_set_alloc_req(mas, requested - 1); 1214 } 1215 1216 /* 1217 * mas_alloc_nodes() - Allocate nodes into a maple state 1218 * @mas: The maple state 1219 * @gfp: The GFP Flags 1220 */ 1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1222 { 1223 struct maple_alloc *node; 1224 unsigned long allocated = mas_allocated(mas); 1225 unsigned int requested = mas_alloc_req(mas); 1226 unsigned int count; 1227 void **slots = NULL; 1228 unsigned int max_req = 0; 1229 1230 if (!requested) 1231 return; 1232 1233 mas_set_alloc_req(mas, 0); 1234 if (mas->mas_flags & MA_STATE_PREALLOC) { 1235 if (allocated) 1236 return; 1237 BUG_ON(!allocated); 1238 WARN_ON(!allocated); 1239 } 1240 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1242 node = (struct maple_alloc *)mt_alloc_one(gfp); 1243 if (!node) 1244 goto nomem_one; 1245 1246 if (allocated) { 1247 node->slot[0] = mas->alloc; 1248 node->node_count = 1; 1249 } else { 1250 node->node_count = 0; 1251 } 1252 1253 mas->alloc = node; 1254 node->total = ++allocated; 1255 requested--; 1256 } 1257 1258 node = mas->alloc; 1259 node->request_count = 0; 1260 while (requested) { 1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1262 slots = (void **)&node->slot[node->node_count]; 1263 max_req = min(requested, max_req); 1264 count = mt_alloc_bulk(gfp, max_req, slots); 1265 if (!count) 1266 goto nomem_bulk; 1267 1268 if (node->node_count == 0) { 1269 node->slot[0]->node_count = 0; 1270 node->slot[0]->request_count = 0; 1271 } 1272 1273 node->node_count += count; 1274 allocated += count; 1275 node = node->slot[0]; 1276 requested -= count; 1277 } 1278 mas->alloc->total = allocated; 1279 return; 1280 1281 nomem_bulk: 1282 /* Clean up potential freed allocations on bulk failure */ 1283 memset(slots, 0, max_req * sizeof(unsigned long)); 1284 nomem_one: 1285 mas_set_alloc_req(mas, requested); 1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1287 mas->alloc->total = allocated; 1288 mas_set_err(mas, -ENOMEM); 1289 } 1290 1291 /* 1292 * mas_free() - Free an encoded maple node 1293 * @mas: The maple state 1294 * @used: The encoded maple node to free. 1295 * 1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1297 * otherwise. 1298 */ 1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1300 { 1301 struct maple_node *tmp = mte_to_node(used); 1302 1303 if (mt_in_rcu(mas->tree)) 1304 ma_free_rcu(tmp); 1305 else 1306 mas_push_node(mas, tmp); 1307 } 1308 1309 /* 1310 * mas_node_count() - Check if enough nodes are allocated and request more if 1311 * there is not enough nodes. 1312 * @mas: The maple state 1313 * @count: The number of nodes needed 1314 * @gfp: the gfp flags 1315 */ 1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1317 { 1318 unsigned long allocated = mas_allocated(mas); 1319 1320 if (allocated < count) { 1321 mas_set_alloc_req(mas, count - allocated); 1322 mas_alloc_nodes(mas, gfp); 1323 } 1324 } 1325 1326 /* 1327 * mas_node_count() - Check if enough nodes are allocated and request more if 1328 * there is not enough nodes. 1329 * @mas: The maple state 1330 * @count: The number of nodes needed 1331 * 1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1333 */ 1334 static void mas_node_count(struct ma_state *mas, int count) 1335 { 1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1337 } 1338 1339 /* 1340 * mas_start() - Sets up maple state for operations. 1341 * @mas: The maple state. 1342 * 1343 * If mas->status == mas_start, then set the min, max and depth to 1344 * defaults. 1345 * 1346 * Return: 1347 * - If mas->node is an error or not mas_start, return NULL. 1348 * - If it's an empty tree: NULL & mas->status == ma_none 1349 * - If it's a single entry: The entry & mas->status == mas_root 1350 * - If it's a tree: NULL & mas->status == safe root node. 1351 */ 1352 static inline struct maple_enode *mas_start(struct ma_state *mas) 1353 { 1354 if (likely(mas_is_start(mas))) { 1355 struct maple_enode *root; 1356 1357 mas->min = 0; 1358 mas->max = ULONG_MAX; 1359 1360 retry: 1361 mas->depth = 0; 1362 root = mas_root(mas); 1363 /* Tree with nodes */ 1364 if (likely(xa_is_node(root))) { 1365 mas->depth = 1; 1366 mas->status = ma_active; 1367 mas->node = mte_safe_root(root); 1368 mas->offset = 0; 1369 if (mte_dead_node(mas->node)) 1370 goto retry; 1371 1372 return NULL; 1373 } 1374 1375 /* empty tree */ 1376 if (unlikely(!root)) { 1377 mas->node = NULL; 1378 mas->status = ma_none; 1379 mas->offset = MAPLE_NODE_SLOTS; 1380 return NULL; 1381 } 1382 1383 /* Single entry tree */ 1384 mas->status = ma_root; 1385 mas->offset = MAPLE_NODE_SLOTS; 1386 1387 /* Single entry tree. */ 1388 if (mas->index > 0) 1389 return NULL; 1390 1391 return root; 1392 } 1393 1394 return NULL; 1395 } 1396 1397 /* 1398 * ma_data_end() - Find the end of the data in a node. 1399 * @node: The maple node 1400 * @type: The maple node type 1401 * @pivots: The array of pivots in the node 1402 * @max: The maximum value in the node 1403 * 1404 * Uses metadata to find the end of the data when possible. 1405 * Return: The zero indexed last slot with data (may be null). 1406 */ 1407 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1408 enum maple_type type, unsigned long *pivots, unsigned long max) 1409 { 1410 unsigned char offset; 1411 1412 if (!pivots) 1413 return 0; 1414 1415 if (type == maple_arange_64) 1416 return ma_meta_end(node, type); 1417 1418 offset = mt_pivots[type] - 1; 1419 if (likely(!pivots[offset])) 1420 return ma_meta_end(node, type); 1421 1422 if (likely(pivots[offset] == max)) 1423 return offset; 1424 1425 return mt_pivots[type]; 1426 } 1427 1428 /* 1429 * mas_data_end() - Find the end of the data (slot). 1430 * @mas: the maple state 1431 * 1432 * This method is optimized to check the metadata of a node if the node type 1433 * supports data end metadata. 1434 * 1435 * Return: The zero indexed last slot with data (may be null). 1436 */ 1437 static inline unsigned char mas_data_end(struct ma_state *mas) 1438 { 1439 enum maple_type type; 1440 struct maple_node *node; 1441 unsigned char offset; 1442 unsigned long *pivots; 1443 1444 type = mte_node_type(mas->node); 1445 node = mas_mn(mas); 1446 if (type == maple_arange_64) 1447 return ma_meta_end(node, type); 1448 1449 pivots = ma_pivots(node, type); 1450 if (unlikely(ma_dead_node(node))) 1451 return 0; 1452 1453 offset = mt_pivots[type] - 1; 1454 if (likely(!pivots[offset])) 1455 return ma_meta_end(node, type); 1456 1457 if (likely(pivots[offset] == mas->max)) 1458 return offset; 1459 1460 return mt_pivots[type]; 1461 } 1462 1463 /* 1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1465 * @mas - the maple state 1466 * 1467 * Return: The maximum gap in the leaf. 1468 */ 1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1470 { 1471 enum maple_type mt; 1472 unsigned long pstart, gap, max_gap; 1473 struct maple_node *mn; 1474 unsigned long *pivots; 1475 void __rcu **slots; 1476 unsigned char i; 1477 unsigned char max_piv; 1478 1479 mt = mte_node_type(mas->node); 1480 mn = mas_mn(mas); 1481 slots = ma_slots(mn, mt); 1482 max_gap = 0; 1483 if (unlikely(ma_is_dense(mt))) { 1484 gap = 0; 1485 for (i = 0; i < mt_slots[mt]; i++) { 1486 if (slots[i]) { 1487 if (gap > max_gap) 1488 max_gap = gap; 1489 gap = 0; 1490 } else { 1491 gap++; 1492 } 1493 } 1494 if (gap > max_gap) 1495 max_gap = gap; 1496 return max_gap; 1497 } 1498 1499 /* 1500 * Check the first implied pivot optimizes the loop below and slot 1 may 1501 * be skipped if there is a gap in slot 0. 1502 */ 1503 pivots = ma_pivots(mn, mt); 1504 if (likely(!slots[0])) { 1505 max_gap = pivots[0] - mas->min + 1; 1506 i = 2; 1507 } else { 1508 i = 1; 1509 } 1510 1511 /* reduce max_piv as the special case is checked before the loop */ 1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1513 /* 1514 * Check end implied pivot which can only be a gap on the right most 1515 * node. 1516 */ 1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1518 gap = ULONG_MAX - pivots[max_piv]; 1519 if (gap > max_gap) 1520 max_gap = gap; 1521 1522 if (max_gap > pivots[max_piv] - mas->min) 1523 return max_gap; 1524 } 1525 1526 for (; i <= max_piv; i++) { 1527 /* data == no gap. */ 1528 if (likely(slots[i])) 1529 continue; 1530 1531 pstart = pivots[i - 1]; 1532 gap = pivots[i] - pstart; 1533 if (gap > max_gap) 1534 max_gap = gap; 1535 1536 /* There cannot be two gaps in a row. */ 1537 i++; 1538 } 1539 return max_gap; 1540 } 1541 1542 /* 1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1544 * @node: The maple node 1545 * @gaps: The pointer to the gaps 1546 * @mt: The maple node type 1547 * @*off: Pointer to store the offset location of the gap. 1548 * 1549 * Uses the metadata data end to scan backwards across set gaps. 1550 * 1551 * Return: The maximum gap value 1552 */ 1553 static inline unsigned long 1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1555 unsigned char *off) 1556 { 1557 unsigned char offset, i; 1558 unsigned long max_gap = 0; 1559 1560 i = offset = ma_meta_end(node, mt); 1561 do { 1562 if (gaps[i] > max_gap) { 1563 max_gap = gaps[i]; 1564 offset = i; 1565 } 1566 } while (i--); 1567 1568 *off = offset; 1569 return max_gap; 1570 } 1571 1572 /* 1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1574 * @mas: The maple state. 1575 * 1576 * Return: The gap value. 1577 */ 1578 static inline unsigned long mas_max_gap(struct ma_state *mas) 1579 { 1580 unsigned long *gaps; 1581 unsigned char offset; 1582 enum maple_type mt; 1583 struct maple_node *node; 1584 1585 mt = mte_node_type(mas->node); 1586 if (ma_is_leaf(mt)) 1587 return mas_leaf_max_gap(mas); 1588 1589 node = mas_mn(mas); 1590 MAS_BUG_ON(mas, mt != maple_arange_64); 1591 offset = ma_meta_gap(node); 1592 gaps = ma_gaps(node, mt); 1593 return gaps[offset]; 1594 } 1595 1596 /* 1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1598 * @mas: The maple state 1599 * @offset: The gap offset in the parent to set 1600 * @new: The new gap value. 1601 * 1602 * Set the parent gap then continue to set the gap upwards, using the metadata 1603 * of the parent to see if it is necessary to check the node above. 1604 */ 1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1606 unsigned long new) 1607 { 1608 unsigned long meta_gap = 0; 1609 struct maple_node *pnode; 1610 struct maple_enode *penode; 1611 unsigned long *pgaps; 1612 unsigned char meta_offset; 1613 enum maple_type pmt; 1614 1615 pnode = mte_parent(mas->node); 1616 pmt = mas_parent_type(mas, mas->node); 1617 penode = mt_mk_node(pnode, pmt); 1618 pgaps = ma_gaps(pnode, pmt); 1619 1620 ascend: 1621 MAS_BUG_ON(mas, pmt != maple_arange_64); 1622 meta_offset = ma_meta_gap(pnode); 1623 meta_gap = pgaps[meta_offset]; 1624 1625 pgaps[offset] = new; 1626 1627 if (meta_gap == new) 1628 return; 1629 1630 if (offset != meta_offset) { 1631 if (meta_gap > new) 1632 return; 1633 1634 ma_set_meta_gap(pnode, pmt, offset); 1635 } else if (new < meta_gap) { 1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1637 ma_set_meta_gap(pnode, pmt, meta_offset); 1638 } 1639 1640 if (ma_is_root(pnode)) 1641 return; 1642 1643 /* Go to the parent node. */ 1644 pnode = mte_parent(penode); 1645 pmt = mas_parent_type(mas, penode); 1646 pgaps = ma_gaps(pnode, pmt); 1647 offset = mte_parent_slot(penode); 1648 penode = mt_mk_node(pnode, pmt); 1649 goto ascend; 1650 } 1651 1652 /* 1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1654 * @mas - the maple state. 1655 */ 1656 static inline void mas_update_gap(struct ma_state *mas) 1657 { 1658 unsigned char pslot; 1659 unsigned long p_gap; 1660 unsigned long max_gap; 1661 1662 if (!mt_is_alloc(mas->tree)) 1663 return; 1664 1665 if (mte_is_root(mas->node)) 1666 return; 1667 1668 max_gap = mas_max_gap(mas); 1669 1670 pslot = mte_parent_slot(mas->node); 1671 p_gap = ma_gaps(mte_parent(mas->node), 1672 mas_parent_type(mas, mas->node))[pslot]; 1673 1674 if (p_gap != max_gap) 1675 mas_parent_gap(mas, pslot, max_gap); 1676 } 1677 1678 /* 1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1680 * @parent with the slot encoded. 1681 * @mas - the maple state (for the tree) 1682 * @parent - the maple encoded node containing the children. 1683 */ 1684 static inline void mas_adopt_children(struct ma_state *mas, 1685 struct maple_enode *parent) 1686 { 1687 enum maple_type type = mte_node_type(parent); 1688 struct maple_node *node = mte_to_node(parent); 1689 void __rcu **slots = ma_slots(node, type); 1690 unsigned long *pivots = ma_pivots(node, type); 1691 struct maple_enode *child; 1692 unsigned char offset; 1693 1694 offset = ma_data_end(node, type, pivots, mas->max); 1695 do { 1696 child = mas_slot_locked(mas, slots, offset); 1697 mas_set_parent(mas, child, parent, offset); 1698 } while (offset--); 1699 } 1700 1701 /* 1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1703 * node as dead. 1704 * @mas - the maple state with the new node 1705 * @old_enode - The old maple encoded node to replace. 1706 */ 1707 static inline void mas_put_in_tree(struct ma_state *mas, 1708 struct maple_enode *old_enode) 1709 __must_hold(mas->tree->ma_lock) 1710 { 1711 unsigned char offset; 1712 void __rcu **slots; 1713 1714 if (mte_is_root(mas->node)) { 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1717 mas_set_height(mas); 1718 } else { 1719 1720 offset = mte_parent_slot(mas->node); 1721 slots = ma_slots(mte_parent(mas->node), 1722 mas_parent_type(mas, mas->node)); 1723 rcu_assign_pointer(slots[offset], mas->node); 1724 } 1725 1726 mte_set_node_dead(old_enode); 1727 } 1728 1729 /* 1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1731 * dead, and freeing it. 1732 * the parent encoding to locate the maple node in the tree. 1733 * @mas - the ma_state with @mas->node pointing to the new node. 1734 * @old_enode - The old maple encoded node. 1735 */ 1736 static inline void mas_replace_node(struct ma_state *mas, 1737 struct maple_enode *old_enode) 1738 __must_hold(mas->tree->ma_lock) 1739 { 1740 mas_put_in_tree(mas, old_enode); 1741 mas_free(mas, old_enode); 1742 } 1743 1744 /* 1745 * mas_find_child() - Find a child who has the parent @mas->node. 1746 * @mas: the maple state with the parent. 1747 * @child: the maple state to store the child. 1748 */ 1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1750 __must_hold(mas->tree->ma_lock) 1751 { 1752 enum maple_type mt; 1753 unsigned char offset; 1754 unsigned char end; 1755 unsigned long *pivots; 1756 struct maple_enode *entry; 1757 struct maple_node *node; 1758 void __rcu **slots; 1759 1760 mt = mte_node_type(mas->node); 1761 node = mas_mn(mas); 1762 slots = ma_slots(node, mt); 1763 pivots = ma_pivots(node, mt); 1764 end = ma_data_end(node, mt, pivots, mas->max); 1765 for (offset = mas->offset; offset <= end; offset++) { 1766 entry = mas_slot_locked(mas, slots, offset); 1767 if (mte_parent(entry) == node) { 1768 *child = *mas; 1769 mas->offset = offset + 1; 1770 child->offset = offset; 1771 mas_descend(child); 1772 child->offset = 0; 1773 return true; 1774 } 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1781 * old data or set b_node->b_end. 1782 * @b_node: the maple_big_node 1783 * @shift: the shift count 1784 */ 1785 static inline void mab_shift_right(struct maple_big_node *b_node, 1786 unsigned char shift) 1787 { 1788 unsigned long size = b_node->b_end * sizeof(unsigned long); 1789 1790 memmove(b_node->pivot + shift, b_node->pivot, size); 1791 memmove(b_node->slot + shift, b_node->slot, size); 1792 if (b_node->type == maple_arange_64) 1793 memmove(b_node->gap + shift, b_node->gap, size); 1794 } 1795 1796 /* 1797 * mab_middle_node() - Check if a middle node is needed (unlikely) 1798 * @b_node: the maple_big_node that contains the data. 1799 * @size: the amount of data in the b_node 1800 * @split: the potential split location 1801 * @slot_count: the size that can be stored in a single node being considered. 1802 * 1803 * Return: true if a middle node is required. 1804 */ 1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1806 unsigned char slot_count) 1807 { 1808 unsigned char size = b_node->b_end; 1809 1810 if (size >= 2 * slot_count) 1811 return true; 1812 1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1814 return true; 1815 1816 return false; 1817 } 1818 1819 /* 1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1821 * @b_node: the maple_big_node with the data 1822 * @split: the suggested split location 1823 * @slot_count: the number of slots in the node being considered. 1824 * 1825 * Return: the split location. 1826 */ 1827 static inline int mab_no_null_split(struct maple_big_node *b_node, 1828 unsigned char split, unsigned char slot_count) 1829 { 1830 if (!b_node->slot[split]) { 1831 /* 1832 * If the split is less than the max slot && the right side will 1833 * still be sufficient, then increment the split on NULL. 1834 */ 1835 if ((split < slot_count - 1) && 1836 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1837 split++; 1838 else 1839 split--; 1840 } 1841 return split; 1842 } 1843 1844 /* 1845 * mab_calc_split() - Calculate the split location and if there needs to be two 1846 * splits. 1847 * @bn: The maple_big_node with the data 1848 * @mid_split: The second split, if required. 0 otherwise. 1849 * 1850 * Return: The first split location. The middle split is set in @mid_split. 1851 */ 1852 static inline int mab_calc_split(struct ma_state *mas, 1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1854 { 1855 unsigned char b_end = bn->b_end; 1856 int split = b_end / 2; /* Assume equal split. */ 1857 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1858 1859 /* 1860 * To support gap tracking, all NULL entries are kept together and a node cannot 1861 * end on a NULL entry, with the exception of the left-most leaf. The 1862 * limitation means that the split of a node must be checked for this condition 1863 * and be able to put more data in one direction or the other. 1864 */ 1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1866 *mid_split = 0; 1867 split = b_end - mt_min_slots[bn->type]; 1868 1869 if (!ma_is_leaf(bn->type)) 1870 return split; 1871 1872 mas->mas_flags |= MA_STATE_REBALANCE; 1873 if (!bn->slot[split]) 1874 split--; 1875 return split; 1876 } 1877 1878 /* 1879 * Although extremely rare, it is possible to enter what is known as the 3-way 1880 * split scenario. The 3-way split comes about by means of a store of a range 1881 * that overwrites the end and beginning of two full nodes. The result is a set 1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1883 * also be located in different parent nodes which are also full. This can 1884 * carry upwards all the way to the root in the worst case. 1885 */ 1886 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1887 split = b_end / 3; 1888 *mid_split = split * 2; 1889 } else { 1890 slot_min = mt_min_slots[bn->type]; 1891 1892 *mid_split = 0; 1893 /* 1894 * Avoid having a range less than the slot count unless it 1895 * causes one node to be deficient. 1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1897 */ 1898 while ((split < slot_count - 1) && 1899 ((bn->pivot[split] - min) < slot_count - 1) && 1900 (b_end - split > slot_min)) 1901 split++; 1902 } 1903 1904 /* Avoid ending a node on a NULL entry */ 1905 split = mab_no_null_split(bn, split, slot_count); 1906 1907 if (unlikely(*mid_split)) 1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1909 1910 return split; 1911 } 1912 1913 /* 1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1915 * and set @b_node->b_end to the next free slot. 1916 * @mas: The maple state 1917 * @mas_start: The starting slot to copy 1918 * @mas_end: The end slot to copy (inclusively) 1919 * @b_node: The maple_big_node to place the data 1920 * @mab_start: The starting location in maple_big_node to store the data. 1921 */ 1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1923 unsigned char mas_end, struct maple_big_node *b_node, 1924 unsigned char mab_start) 1925 { 1926 enum maple_type mt; 1927 struct maple_node *node; 1928 void __rcu **slots; 1929 unsigned long *pivots, *gaps; 1930 int i = mas_start, j = mab_start; 1931 unsigned char piv_end; 1932 1933 node = mas_mn(mas); 1934 mt = mte_node_type(mas->node); 1935 pivots = ma_pivots(node, mt); 1936 if (!i) { 1937 b_node->pivot[j] = pivots[i++]; 1938 if (unlikely(i > mas_end)) 1939 goto complete; 1940 j++; 1941 } 1942 1943 piv_end = min(mas_end, mt_pivots[mt]); 1944 for (; i < piv_end; i++, j++) { 1945 b_node->pivot[j] = pivots[i]; 1946 if (unlikely(!b_node->pivot[j])) 1947 break; 1948 1949 if (unlikely(mas->max == b_node->pivot[j])) 1950 goto complete; 1951 } 1952 1953 if (likely(i <= mas_end)) 1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1955 1956 complete: 1957 b_node->b_end = ++j; 1958 j -= mab_start; 1959 slots = ma_slots(node, mt); 1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1962 gaps = ma_gaps(node, mt); 1963 memcpy(b_node->gap + mab_start, gaps + mas_start, 1964 sizeof(unsigned long) * j); 1965 } 1966 } 1967 1968 /* 1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1970 * @node: The maple node 1971 * @mt: The maple type 1972 * @end: The node end 1973 */ 1974 static inline void mas_leaf_set_meta(struct maple_node *node, 1975 enum maple_type mt, unsigned char end) 1976 { 1977 if (end < mt_slots[mt] - 1) 1978 ma_set_meta(node, mt, 0, end); 1979 } 1980 1981 /* 1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1983 * @b_node: the maple_big_node that has the data 1984 * @mab_start: the start location in @b_node. 1985 * @mab_end: The end location in @b_node (inclusively) 1986 * @mas: The maple state with the maple encoded node. 1987 */ 1988 static inline void mab_mas_cp(struct maple_big_node *b_node, 1989 unsigned char mab_start, unsigned char mab_end, 1990 struct ma_state *mas, bool new_max) 1991 { 1992 int i, j = 0; 1993 enum maple_type mt = mte_node_type(mas->node); 1994 struct maple_node *node = mte_to_node(mas->node); 1995 void __rcu **slots = ma_slots(node, mt); 1996 unsigned long *pivots = ma_pivots(node, mt); 1997 unsigned long *gaps = NULL; 1998 unsigned char end; 1999 2000 if (mab_end - mab_start > mt_pivots[mt]) 2001 mab_end--; 2002 2003 if (!pivots[mt_pivots[mt] - 1]) 2004 slots[mt_pivots[mt]] = NULL; 2005 2006 i = mab_start; 2007 do { 2008 pivots[j++] = b_node->pivot[i++]; 2009 } while (i <= mab_end && likely(b_node->pivot[i])); 2010 2011 memcpy(slots, b_node->slot + mab_start, 2012 sizeof(void *) * (i - mab_start)); 2013 2014 if (new_max) 2015 mas->max = b_node->pivot[i - 1]; 2016 2017 end = j - 1; 2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2019 unsigned long max_gap = 0; 2020 unsigned char offset = 0; 2021 2022 gaps = ma_gaps(node, mt); 2023 do { 2024 gaps[--j] = b_node->gap[--i]; 2025 if (gaps[j] > max_gap) { 2026 offset = j; 2027 max_gap = gaps[j]; 2028 } 2029 } while (j); 2030 2031 ma_set_meta(node, mt, offset, end); 2032 } else { 2033 mas_leaf_set_meta(node, mt, end); 2034 } 2035 } 2036 2037 /* 2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2039 * @mas: The maple state 2040 * @end: The maple node end 2041 * @mt: The maple node type 2042 */ 2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2044 enum maple_type mt) 2045 { 2046 if (!(mas->mas_flags & MA_STATE_BULK)) 2047 return; 2048 2049 if (mte_is_root(mas->node)) 2050 return; 2051 2052 if (end > mt_min_slots[mt]) { 2053 mas->mas_flags &= ~MA_STATE_REBALANCE; 2054 return; 2055 } 2056 } 2057 2058 /* 2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2060 * data from a maple encoded node. 2061 * @wr_mas: the maple write state 2062 * @b_node: the maple_big_node to fill with data 2063 * @offset_end: the offset to end copying 2064 * 2065 * Return: The actual end of the data stored in @b_node 2066 */ 2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2068 struct maple_big_node *b_node, unsigned char offset_end) 2069 { 2070 unsigned char slot; 2071 unsigned char b_end; 2072 /* Possible underflow of piv will wrap back to 0 before use. */ 2073 unsigned long piv; 2074 struct ma_state *mas = wr_mas->mas; 2075 2076 b_node->type = wr_mas->type; 2077 b_end = 0; 2078 slot = mas->offset; 2079 if (slot) { 2080 /* Copy start data up to insert. */ 2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2082 b_end = b_node->b_end; 2083 piv = b_node->pivot[b_end - 1]; 2084 } else 2085 piv = mas->min - 1; 2086 2087 if (piv + 1 < mas->index) { 2088 /* Handle range starting after old range */ 2089 b_node->slot[b_end] = wr_mas->content; 2090 if (!wr_mas->content) 2091 b_node->gap[b_end] = mas->index - 1 - piv; 2092 b_node->pivot[b_end++] = mas->index - 1; 2093 } 2094 2095 /* Store the new entry. */ 2096 mas->offset = b_end; 2097 b_node->slot[b_end] = wr_mas->entry; 2098 b_node->pivot[b_end] = mas->last; 2099 2100 /* Appended. */ 2101 if (mas->last >= mas->max) 2102 goto b_end; 2103 2104 /* Handle new range ending before old range ends */ 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2106 if (piv > mas->last) { 2107 if (piv == ULONG_MAX) 2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2109 2110 if (offset_end != slot) 2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2112 offset_end); 2113 2114 b_node->slot[++b_end] = wr_mas->content; 2115 if (!wr_mas->content) 2116 b_node->gap[b_end] = piv - mas->last + 1; 2117 b_node->pivot[b_end] = piv; 2118 } 2119 2120 slot = offset_end + 1; 2121 if (slot > mas->end) 2122 goto b_end; 2123 2124 /* Copy end data to the end of the node. */ 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2126 b_node->b_end--; 2127 return; 2128 2129 b_end: 2130 b_node->b_end = b_end; 2131 } 2132 2133 /* 2134 * mas_prev_sibling() - Find the previous node with the same parent. 2135 * @mas: the maple state 2136 * 2137 * Return: True if there is a previous sibling, false otherwise. 2138 */ 2139 static inline bool mas_prev_sibling(struct ma_state *mas) 2140 { 2141 unsigned int p_slot = mte_parent_slot(mas->node); 2142 2143 if (mte_is_root(mas->node)) 2144 return false; 2145 2146 if (!p_slot) 2147 return false; 2148 2149 mas_ascend(mas); 2150 mas->offset = p_slot - 1; 2151 mas_descend(mas); 2152 return true; 2153 } 2154 2155 /* 2156 * mas_next_sibling() - Find the next node with the same parent. 2157 * @mas: the maple state 2158 * 2159 * Return: true if there is a next sibling, false otherwise. 2160 */ 2161 static inline bool mas_next_sibling(struct ma_state *mas) 2162 { 2163 MA_STATE(parent, mas->tree, mas->index, mas->last); 2164 2165 if (mte_is_root(mas->node)) 2166 return false; 2167 2168 parent = *mas; 2169 mas_ascend(&parent); 2170 parent.offset = mte_parent_slot(mas->node) + 1; 2171 if (parent.offset > mas_data_end(&parent)) 2172 return false; 2173 2174 *mas = parent; 2175 mas_descend(mas); 2176 return true; 2177 } 2178 2179 /* 2180 * mte_node_or_none() - Set the enode and state. 2181 * @enode: The encoded maple node. 2182 * 2183 * Set the node to the enode and the status. 2184 */ 2185 static inline void mas_node_or_none(struct ma_state *mas, 2186 struct maple_enode *enode) 2187 { 2188 if (enode) { 2189 mas->node = enode; 2190 mas->status = ma_active; 2191 } else { 2192 mas->node = NULL; 2193 mas->status = ma_none; 2194 } 2195 } 2196 2197 /* 2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2199 * @wr_mas: The maple write state 2200 * 2201 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2202 */ 2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2204 { 2205 struct ma_state *mas = wr_mas->mas; 2206 unsigned char count, offset; 2207 2208 if (unlikely(ma_is_dense(wr_mas->type))) { 2209 wr_mas->r_max = wr_mas->r_min = mas->index; 2210 mas->offset = mas->index = mas->min; 2211 return; 2212 } 2213 2214 wr_mas->node = mas_mn(wr_mas->mas); 2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2217 wr_mas->pivots, mas->max); 2218 offset = mas->offset; 2219 2220 while (offset < count && mas->index > wr_mas->pivots[offset]) 2221 offset++; 2222 2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2225 wr_mas->offset_end = mas->offset = offset; 2226 } 2227 2228 /* 2229 * mast_rebalance_next() - Rebalance against the next node 2230 * @mast: The maple subtree state 2231 * @old_r: The encoded maple node to the right (next node). 2232 */ 2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2234 { 2235 unsigned char b_end = mast->bn->b_end; 2236 2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2238 mast->bn, b_end); 2239 mast->orig_r->last = mast->orig_r->max; 2240 } 2241 2242 /* 2243 * mast_rebalance_prev() - Rebalance against the previous node 2244 * @mast: The maple subtree state 2245 * @old_l: The encoded maple node to the left (previous node) 2246 */ 2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2248 { 2249 unsigned char end = mas_data_end(mast->orig_l) + 1; 2250 unsigned char b_end = mast->bn->b_end; 2251 2252 mab_shift_right(mast->bn, end); 2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2254 mast->l->min = mast->orig_l->min; 2255 mast->orig_l->index = mast->orig_l->min; 2256 mast->bn->b_end = end + b_end; 2257 mast->l->offset += end; 2258 } 2259 2260 /* 2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2262 * the node to the right. Checking the nodes to the right then the left at each 2263 * level upwards until root is reached. 2264 * Data is copied into the @mast->bn. 2265 * @mast: The maple_subtree_state. 2266 */ 2267 static inline 2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2269 { 2270 struct ma_state r_tmp = *mast->orig_r; 2271 struct ma_state l_tmp = *mast->orig_l; 2272 unsigned char depth = 0; 2273 2274 r_tmp = *mast->orig_r; 2275 l_tmp = *mast->orig_l; 2276 do { 2277 mas_ascend(mast->orig_r); 2278 mas_ascend(mast->orig_l); 2279 depth++; 2280 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2281 mast->orig_r->offset++; 2282 do { 2283 mas_descend(mast->orig_r); 2284 mast->orig_r->offset = 0; 2285 } while (--depth); 2286 2287 mast_rebalance_next(mast); 2288 *mast->orig_l = l_tmp; 2289 return true; 2290 } else if (mast->orig_l->offset != 0) { 2291 mast->orig_l->offset--; 2292 do { 2293 mas_descend(mast->orig_l); 2294 mast->orig_l->offset = 2295 mas_data_end(mast->orig_l); 2296 } while (--depth); 2297 2298 mast_rebalance_prev(mast); 2299 *mast->orig_r = r_tmp; 2300 return true; 2301 } 2302 } while (!mte_is_root(mast->orig_r->node)); 2303 2304 *mast->orig_r = r_tmp; 2305 *mast->orig_l = l_tmp; 2306 return false; 2307 } 2308 2309 /* 2310 * mast_ascend() - Ascend the original left and right maple states. 2311 * @mast: the maple subtree state. 2312 * 2313 * Ascend the original left and right sides. Set the offsets to point to the 2314 * data already in the new tree (@mast->l and @mast->r). 2315 */ 2316 static inline void mast_ascend(struct maple_subtree_state *mast) 2317 { 2318 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2319 mas_ascend(mast->orig_l); 2320 mas_ascend(mast->orig_r); 2321 2322 mast->orig_r->offset = 0; 2323 mast->orig_r->index = mast->r->max; 2324 /* last should be larger than or equal to index */ 2325 if (mast->orig_r->last < mast->orig_r->index) 2326 mast->orig_r->last = mast->orig_r->index; 2327 2328 wr_mas.type = mte_node_type(mast->orig_r->node); 2329 mas_wr_node_walk(&wr_mas); 2330 /* Set up the left side of things */ 2331 mast->orig_l->offset = 0; 2332 mast->orig_l->index = mast->l->min; 2333 wr_mas.mas = mast->orig_l; 2334 wr_mas.type = mte_node_type(mast->orig_l->node); 2335 mas_wr_node_walk(&wr_mas); 2336 2337 mast->bn->type = wr_mas.type; 2338 } 2339 2340 /* 2341 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2342 * @mas: the maple state with the allocations. 2343 * @b_node: the maple_big_node with the type encoding. 2344 * 2345 * Use the node type from the maple_big_node to allocate a new node from the 2346 * ma_state. This function exists mainly for code readability. 2347 * 2348 * Return: A new maple encoded node 2349 */ 2350 static inline struct maple_enode 2351 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2352 { 2353 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2354 } 2355 2356 /* 2357 * mas_mab_to_node() - Set up right and middle nodes 2358 * 2359 * @mas: the maple state that contains the allocations. 2360 * @b_node: the node which contains the data. 2361 * @left: The pointer which will have the left node 2362 * @right: The pointer which may have the right node 2363 * @middle: the pointer which may have the middle node (rare) 2364 * @mid_split: the split location for the middle node 2365 * 2366 * Return: the split of left. 2367 */ 2368 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2369 struct maple_big_node *b_node, struct maple_enode **left, 2370 struct maple_enode **right, struct maple_enode **middle, 2371 unsigned char *mid_split, unsigned long min) 2372 { 2373 unsigned char split = 0; 2374 unsigned char slot_count = mt_slots[b_node->type]; 2375 2376 *left = mas_new_ma_node(mas, b_node); 2377 *right = NULL; 2378 *middle = NULL; 2379 *mid_split = 0; 2380 2381 if (b_node->b_end < slot_count) { 2382 split = b_node->b_end; 2383 } else { 2384 split = mab_calc_split(mas, b_node, mid_split, min); 2385 *right = mas_new_ma_node(mas, b_node); 2386 } 2387 2388 if (*mid_split) 2389 *middle = mas_new_ma_node(mas, b_node); 2390 2391 return split; 2392 2393 } 2394 2395 /* 2396 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2397 * pointer. 2398 * @b_node - the big node to add the entry 2399 * @mas - the maple state to get the pivot (mas->max) 2400 * @entry - the entry to add, if NULL nothing happens. 2401 */ 2402 static inline void mab_set_b_end(struct maple_big_node *b_node, 2403 struct ma_state *mas, 2404 void *entry) 2405 { 2406 if (!entry) 2407 return; 2408 2409 b_node->slot[b_node->b_end] = entry; 2410 if (mt_is_alloc(mas->tree)) 2411 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2412 b_node->pivot[b_node->b_end++] = mas->max; 2413 } 2414 2415 /* 2416 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2417 * of @mas->node to either @left or @right, depending on @slot and @split 2418 * 2419 * @mas - the maple state with the node that needs a parent 2420 * @left - possible parent 1 2421 * @right - possible parent 2 2422 * @slot - the slot the mas->node was placed 2423 * @split - the split location between @left and @right 2424 */ 2425 static inline void mas_set_split_parent(struct ma_state *mas, 2426 struct maple_enode *left, 2427 struct maple_enode *right, 2428 unsigned char *slot, unsigned char split) 2429 { 2430 if (mas_is_none(mas)) 2431 return; 2432 2433 if ((*slot) <= split) 2434 mas_set_parent(mas, mas->node, left, *slot); 2435 else if (right) 2436 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2437 2438 (*slot)++; 2439 } 2440 2441 /* 2442 * mte_mid_split_check() - Check if the next node passes the mid-split 2443 * @**l: Pointer to left encoded maple node. 2444 * @**m: Pointer to middle encoded maple node. 2445 * @**r: Pointer to right encoded maple node. 2446 * @slot: The offset 2447 * @*split: The split location. 2448 * @mid_split: The middle split. 2449 */ 2450 static inline void mte_mid_split_check(struct maple_enode **l, 2451 struct maple_enode **r, 2452 struct maple_enode *right, 2453 unsigned char slot, 2454 unsigned char *split, 2455 unsigned char mid_split) 2456 { 2457 if (*r == right) 2458 return; 2459 2460 if (slot < mid_split) 2461 return; 2462 2463 *l = *r; 2464 *r = right; 2465 *split = mid_split; 2466 } 2467 2468 /* 2469 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2470 * is taken from @mast->l. 2471 * @mast - the maple subtree state 2472 * @left - the left node 2473 * @right - the right node 2474 * @split - the split location. 2475 */ 2476 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2477 struct maple_enode *left, 2478 struct maple_enode *middle, 2479 struct maple_enode *right, 2480 unsigned char split, 2481 unsigned char mid_split) 2482 { 2483 unsigned char slot; 2484 struct maple_enode *l = left; 2485 struct maple_enode *r = right; 2486 2487 if (mas_is_none(mast->l)) 2488 return; 2489 2490 if (middle) 2491 r = middle; 2492 2493 slot = mast->l->offset; 2494 2495 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2496 mas_set_split_parent(mast->l, l, r, &slot, split); 2497 2498 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2499 mas_set_split_parent(mast->m, l, r, &slot, split); 2500 2501 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2502 mas_set_split_parent(mast->r, l, r, &slot, split); 2503 } 2504 2505 /* 2506 * mas_topiary_node() - Dispose of a single node 2507 * @mas: The maple state for pushing nodes 2508 * @enode: The encoded maple node 2509 * @in_rcu: If the tree is in rcu mode 2510 * 2511 * The node will either be RCU freed or pushed back on the maple state. 2512 */ 2513 static inline void mas_topiary_node(struct ma_state *mas, 2514 struct ma_state *tmp_mas, bool in_rcu) 2515 { 2516 struct maple_node *tmp; 2517 struct maple_enode *enode; 2518 2519 if (mas_is_none(tmp_mas)) 2520 return; 2521 2522 enode = tmp_mas->node; 2523 tmp = mte_to_node(enode); 2524 mte_set_node_dead(enode); 2525 if (in_rcu) 2526 ma_free_rcu(tmp); 2527 else 2528 mas_push_node(mas, tmp); 2529 } 2530 2531 /* 2532 * mas_topiary_replace() - Replace the data with new data, then repair the 2533 * parent links within the new tree. Iterate over the dead sub-tree and collect 2534 * the dead subtrees and topiary the nodes that are no longer of use. 2535 * 2536 * The new tree will have up to three children with the correct parent. Keep 2537 * track of the new entries as they need to be followed to find the next level 2538 * of new entries. 2539 * 2540 * The old tree will have up to three children with the old parent. Keep track 2541 * of the old entries as they may have more nodes below replaced. Nodes within 2542 * [index, last] are dead subtrees, others need to be freed and followed. 2543 * 2544 * @mas: The maple state pointing at the new data 2545 * @old_enode: The maple encoded node being replaced 2546 * 2547 */ 2548 static inline void mas_topiary_replace(struct ma_state *mas, 2549 struct maple_enode *old_enode) 2550 { 2551 struct ma_state tmp[3], tmp_next[3]; 2552 MA_TOPIARY(subtrees, mas->tree); 2553 bool in_rcu; 2554 int i, n; 2555 2556 /* Place data in tree & then mark node as old */ 2557 mas_put_in_tree(mas, old_enode); 2558 2559 /* Update the parent pointers in the tree */ 2560 tmp[0] = *mas; 2561 tmp[0].offset = 0; 2562 tmp[1].status = ma_none; 2563 tmp[2].status = ma_none; 2564 while (!mte_is_leaf(tmp[0].node)) { 2565 n = 0; 2566 for (i = 0; i < 3; i++) { 2567 if (mas_is_none(&tmp[i])) 2568 continue; 2569 2570 while (n < 3) { 2571 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2572 break; 2573 n++; 2574 } 2575 2576 mas_adopt_children(&tmp[i], tmp[i].node); 2577 } 2578 2579 if (MAS_WARN_ON(mas, n == 0)) 2580 break; 2581 2582 while (n < 3) 2583 tmp_next[n++].status = ma_none; 2584 2585 for (i = 0; i < 3; i++) 2586 tmp[i] = tmp_next[i]; 2587 } 2588 2589 /* Collect the old nodes that need to be discarded */ 2590 if (mte_is_leaf(old_enode)) 2591 return mas_free(mas, old_enode); 2592 2593 tmp[0] = *mas; 2594 tmp[0].offset = 0; 2595 tmp[0].node = old_enode; 2596 tmp[1].status = ma_none; 2597 tmp[2].status = ma_none; 2598 in_rcu = mt_in_rcu(mas->tree); 2599 do { 2600 n = 0; 2601 for (i = 0; i < 3; i++) { 2602 if (mas_is_none(&tmp[i])) 2603 continue; 2604 2605 while (n < 3) { 2606 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2607 break; 2608 2609 if ((tmp_next[n].min >= tmp_next->index) && 2610 (tmp_next[n].max <= tmp_next->last)) { 2611 mat_add(&subtrees, tmp_next[n].node); 2612 tmp_next[n].status = ma_none; 2613 } else { 2614 n++; 2615 } 2616 } 2617 } 2618 2619 if (MAS_WARN_ON(mas, n == 0)) 2620 break; 2621 2622 while (n < 3) 2623 tmp_next[n++].status = ma_none; 2624 2625 for (i = 0; i < 3; i++) { 2626 mas_topiary_node(mas, &tmp[i], in_rcu); 2627 tmp[i] = tmp_next[i]; 2628 } 2629 } while (!mte_is_leaf(tmp[0].node)); 2630 2631 for (i = 0; i < 3; i++) 2632 mas_topiary_node(mas, &tmp[i], in_rcu); 2633 2634 mas_mat_destroy(mas, &subtrees); 2635 } 2636 2637 /* 2638 * mas_wmb_replace() - Write memory barrier and replace 2639 * @mas: The maple state 2640 * @old: The old maple encoded node that is being replaced. 2641 * 2642 * Updates gap as necessary. 2643 */ 2644 static inline void mas_wmb_replace(struct ma_state *mas, 2645 struct maple_enode *old_enode) 2646 { 2647 /* Insert the new data in the tree */ 2648 mas_topiary_replace(mas, old_enode); 2649 2650 if (mte_is_leaf(mas->node)) 2651 return; 2652 2653 mas_update_gap(mas); 2654 } 2655 2656 /* 2657 * mast_cp_to_nodes() - Copy data out to nodes. 2658 * @mast: The maple subtree state 2659 * @left: The left encoded maple node 2660 * @middle: The middle encoded maple node 2661 * @right: The right encoded maple node 2662 * @split: The location to split between left and (middle ? middle : right) 2663 * @mid_split: The location to split between middle and right. 2664 */ 2665 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2666 struct maple_enode *left, struct maple_enode *middle, 2667 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2668 { 2669 bool new_lmax = true; 2670 2671 mas_node_or_none(mast->l, left); 2672 mas_node_or_none(mast->m, middle); 2673 mas_node_or_none(mast->r, right); 2674 2675 mast->l->min = mast->orig_l->min; 2676 if (split == mast->bn->b_end) { 2677 mast->l->max = mast->orig_r->max; 2678 new_lmax = false; 2679 } 2680 2681 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2682 2683 if (middle) { 2684 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2685 mast->m->min = mast->bn->pivot[split] + 1; 2686 split = mid_split; 2687 } 2688 2689 mast->r->max = mast->orig_r->max; 2690 if (right) { 2691 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2692 mast->r->min = mast->bn->pivot[split] + 1; 2693 } 2694 } 2695 2696 /* 2697 * mast_combine_cp_left - Copy in the original left side of the tree into the 2698 * combined data set in the maple subtree state big node. 2699 * @mast: The maple subtree state 2700 */ 2701 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2702 { 2703 unsigned char l_slot = mast->orig_l->offset; 2704 2705 if (!l_slot) 2706 return; 2707 2708 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2709 } 2710 2711 /* 2712 * mast_combine_cp_right: Copy in the original right side of the tree into the 2713 * combined data set in the maple subtree state big node. 2714 * @mast: The maple subtree state 2715 */ 2716 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2717 { 2718 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2719 return; 2720 2721 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2722 mt_slot_count(mast->orig_r->node), mast->bn, 2723 mast->bn->b_end); 2724 mast->orig_r->last = mast->orig_r->max; 2725 } 2726 2727 /* 2728 * mast_sufficient: Check if the maple subtree state has enough data in the big 2729 * node to create at least one sufficient node 2730 * @mast: the maple subtree state 2731 */ 2732 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2733 { 2734 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2735 return true; 2736 2737 return false; 2738 } 2739 2740 /* 2741 * mast_overflow: Check if there is too much data in the subtree state for a 2742 * single node. 2743 * @mast: The maple subtree state 2744 */ 2745 static inline bool mast_overflow(struct maple_subtree_state *mast) 2746 { 2747 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2748 return true; 2749 2750 return false; 2751 } 2752 2753 static inline void *mtree_range_walk(struct ma_state *mas) 2754 { 2755 unsigned long *pivots; 2756 unsigned char offset; 2757 struct maple_node *node; 2758 struct maple_enode *next, *last; 2759 enum maple_type type; 2760 void __rcu **slots; 2761 unsigned char end; 2762 unsigned long max, min; 2763 unsigned long prev_max, prev_min; 2764 2765 next = mas->node; 2766 min = mas->min; 2767 max = mas->max; 2768 do { 2769 last = next; 2770 node = mte_to_node(next); 2771 type = mte_node_type(next); 2772 pivots = ma_pivots(node, type); 2773 end = ma_data_end(node, type, pivots, max); 2774 prev_min = min; 2775 prev_max = max; 2776 if (pivots[0] >= mas->index) { 2777 offset = 0; 2778 max = pivots[0]; 2779 goto next; 2780 } 2781 2782 offset = 1; 2783 while (offset < end) { 2784 if (pivots[offset] >= mas->index) { 2785 max = pivots[offset]; 2786 break; 2787 } 2788 offset++; 2789 } 2790 2791 min = pivots[offset - 1] + 1; 2792 next: 2793 slots = ma_slots(node, type); 2794 next = mt_slot(mas->tree, slots, offset); 2795 if (unlikely(ma_dead_node(node))) 2796 goto dead_node; 2797 } while (!ma_is_leaf(type)); 2798 2799 mas->end = end; 2800 mas->offset = offset; 2801 mas->index = min; 2802 mas->last = max; 2803 mas->min = prev_min; 2804 mas->max = prev_max; 2805 mas->node = last; 2806 return (void *)next; 2807 2808 dead_node: 2809 mas_reset(mas); 2810 return NULL; 2811 } 2812 2813 /* 2814 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2815 * @mas: The starting maple state 2816 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2817 * @count: The estimated count of iterations needed. 2818 * 2819 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2820 * is hit. First @b_node is split into two entries which are inserted into the 2821 * next iteration of the loop. @b_node is returned populated with the final 2822 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2823 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2824 * to account of what has been copied into the new sub-tree. The update of 2825 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2826 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2827 * the new sub-tree in case the sub-tree becomes the full tree. 2828 * 2829 * Return: the number of elements in b_node during the last loop. 2830 */ 2831 static int mas_spanning_rebalance(struct ma_state *mas, 2832 struct maple_subtree_state *mast, unsigned char count) 2833 { 2834 unsigned char split, mid_split; 2835 unsigned char slot = 0; 2836 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2837 struct maple_enode *old_enode; 2838 2839 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2840 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2841 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2842 2843 /* 2844 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2845 * Rebalancing is done by use of the ``struct maple_topiary``. 2846 */ 2847 mast->l = &l_mas; 2848 mast->m = &m_mas; 2849 mast->r = &r_mas; 2850 l_mas.status = r_mas.status = m_mas.status = ma_none; 2851 2852 /* Check if this is not root and has sufficient data. */ 2853 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2854 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2855 mast_spanning_rebalance(mast); 2856 2857 l_mas.depth = 0; 2858 2859 /* 2860 * Each level of the tree is examined and balanced, pushing data to the left or 2861 * right, or rebalancing against left or right nodes is employed to avoid 2862 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2863 * the tree is created, there may be a mix of new and old nodes. The old nodes 2864 * will have the incorrect parent pointers and currently be in two trees: the 2865 * original tree and the partially new tree. To remedy the parent pointers in 2866 * the old tree, the new data is swapped into the active tree and a walk down 2867 * the tree is performed and the parent pointers are updated. 2868 * See mas_topiary_replace() for more information. 2869 */ 2870 while (count--) { 2871 mast->bn->b_end--; 2872 mast->bn->type = mte_node_type(mast->orig_l->node); 2873 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2874 &mid_split, mast->orig_l->min); 2875 mast_set_split_parents(mast, left, middle, right, split, 2876 mid_split); 2877 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2878 2879 /* 2880 * Copy data from next level in the tree to mast->bn from next 2881 * iteration 2882 */ 2883 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2884 mast->bn->type = mte_node_type(left); 2885 l_mas.depth++; 2886 2887 /* Root already stored in l->node. */ 2888 if (mas_is_root_limits(mast->l)) 2889 goto new_root; 2890 2891 mast_ascend(mast); 2892 mast_combine_cp_left(mast); 2893 l_mas.offset = mast->bn->b_end; 2894 mab_set_b_end(mast->bn, &l_mas, left); 2895 mab_set_b_end(mast->bn, &m_mas, middle); 2896 mab_set_b_end(mast->bn, &r_mas, right); 2897 2898 /* Copy anything necessary out of the right node. */ 2899 mast_combine_cp_right(mast); 2900 mast->orig_l->last = mast->orig_l->max; 2901 2902 if (mast_sufficient(mast)) 2903 continue; 2904 2905 if (mast_overflow(mast)) 2906 continue; 2907 2908 /* May be a new root stored in mast->bn */ 2909 if (mas_is_root_limits(mast->orig_l)) 2910 break; 2911 2912 mast_spanning_rebalance(mast); 2913 2914 /* rebalancing from other nodes may require another loop. */ 2915 if (!count) 2916 count++; 2917 } 2918 2919 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2920 mte_node_type(mast->orig_l->node)); 2921 l_mas.depth++; 2922 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2923 mas_set_parent(mas, left, l_mas.node, slot); 2924 if (middle) 2925 mas_set_parent(mas, middle, l_mas.node, ++slot); 2926 2927 if (right) 2928 mas_set_parent(mas, right, l_mas.node, ++slot); 2929 2930 if (mas_is_root_limits(mast->l)) { 2931 new_root: 2932 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2933 while (!mte_is_root(mast->orig_l->node)) 2934 mast_ascend(mast); 2935 } else { 2936 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2937 } 2938 2939 old_enode = mast->orig_l->node; 2940 mas->depth = l_mas.depth; 2941 mas->node = l_mas.node; 2942 mas->min = l_mas.min; 2943 mas->max = l_mas.max; 2944 mas->offset = l_mas.offset; 2945 mas_wmb_replace(mas, old_enode); 2946 mtree_range_walk(mas); 2947 return mast->bn->b_end; 2948 } 2949 2950 /* 2951 * mas_rebalance() - Rebalance a given node. 2952 * @mas: The maple state 2953 * @b_node: The big maple node. 2954 * 2955 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2956 * Continue upwards until tree is sufficient. 2957 * 2958 * Return: the number of elements in b_node during the last loop. 2959 */ 2960 static inline int mas_rebalance(struct ma_state *mas, 2961 struct maple_big_node *b_node) 2962 { 2963 char empty_count = mas_mt_height(mas); 2964 struct maple_subtree_state mast; 2965 unsigned char shift, b_end = ++b_node->b_end; 2966 2967 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2968 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2969 2970 trace_ma_op(__func__, mas); 2971 2972 /* 2973 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2974 * against the node to the right if it exists, otherwise the node to the 2975 * left of this node is rebalanced against this node. If rebalancing 2976 * causes just one node to be produced instead of two, then the parent 2977 * is also examined and rebalanced if it is insufficient. Every level 2978 * tries to combine the data in the same way. If one node contains the 2979 * entire range of the tree, then that node is used as a new root node. 2980 */ 2981 mas_node_count(mas, empty_count * 2 - 1); 2982 if (mas_is_err(mas)) 2983 return 0; 2984 2985 mast.orig_l = &l_mas; 2986 mast.orig_r = &r_mas; 2987 mast.bn = b_node; 2988 mast.bn->type = mte_node_type(mas->node); 2989 2990 l_mas = r_mas = *mas; 2991 2992 if (mas_next_sibling(&r_mas)) { 2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2994 r_mas.last = r_mas.index = r_mas.max; 2995 } else { 2996 mas_prev_sibling(&l_mas); 2997 shift = mas_data_end(&l_mas) + 1; 2998 mab_shift_right(b_node, shift); 2999 mas->offset += shift; 3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3001 b_node->b_end = shift + b_end; 3002 l_mas.index = l_mas.last = l_mas.min; 3003 } 3004 3005 return mas_spanning_rebalance(mas, &mast, empty_count); 3006 } 3007 3008 /* 3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3010 * state. 3011 * @mas: The maple state 3012 * @end: The end of the left-most node. 3013 * 3014 * During a mass-insert event (such as forking), it may be necessary to 3015 * rebalance the left-most node when it is not sufficient. 3016 */ 3017 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3018 { 3019 enum maple_type mt = mte_node_type(mas->node); 3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3021 struct maple_enode *eparent, *old_eparent; 3022 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3023 void __rcu **l_slots, **slots; 3024 unsigned long *l_pivs, *pivs, gap; 3025 bool in_rcu = mt_in_rcu(mas->tree); 3026 3027 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3028 3029 l_mas = *mas; 3030 mas_prev_sibling(&l_mas); 3031 3032 /* set up node. */ 3033 if (in_rcu) { 3034 /* Allocate for both left and right as well as parent. */ 3035 mas_node_count(mas, 3); 3036 if (mas_is_err(mas)) 3037 return; 3038 3039 newnode = mas_pop_node(mas); 3040 } else { 3041 newnode = &reuse; 3042 } 3043 3044 node = mas_mn(mas); 3045 newnode->parent = node->parent; 3046 slots = ma_slots(newnode, mt); 3047 pivs = ma_pivots(newnode, mt); 3048 left = mas_mn(&l_mas); 3049 l_slots = ma_slots(left, mt); 3050 l_pivs = ma_pivots(left, mt); 3051 if (!l_slots[split]) 3052 split++; 3053 tmp = mas_data_end(&l_mas) - split; 3054 3055 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3056 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3057 pivs[tmp] = l_mas.max; 3058 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3059 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3060 3061 l_mas.max = l_pivs[split]; 3062 mas->min = l_mas.max + 1; 3063 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3064 mas_parent_type(&l_mas, l_mas.node)); 3065 tmp += end; 3066 if (!in_rcu) { 3067 unsigned char max_p = mt_pivots[mt]; 3068 unsigned char max_s = mt_slots[mt]; 3069 3070 if (tmp < max_p) 3071 memset(pivs + tmp, 0, 3072 sizeof(unsigned long) * (max_p - tmp)); 3073 3074 if (tmp < mt_slots[mt]) 3075 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3076 3077 memcpy(node, newnode, sizeof(struct maple_node)); 3078 ma_set_meta(node, mt, 0, tmp - 1); 3079 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3080 l_pivs[split]); 3081 3082 /* Remove data from l_pivs. */ 3083 tmp = split + 1; 3084 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3085 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3086 ma_set_meta(left, mt, 0, split); 3087 eparent = old_eparent; 3088 3089 goto done; 3090 } 3091 3092 /* RCU requires replacing both l_mas, mas, and parent. */ 3093 mas->node = mt_mk_node(newnode, mt); 3094 ma_set_meta(newnode, mt, 0, tmp); 3095 3096 new_left = mas_pop_node(mas); 3097 new_left->parent = left->parent; 3098 mt = mte_node_type(l_mas.node); 3099 slots = ma_slots(new_left, mt); 3100 pivs = ma_pivots(new_left, mt); 3101 memcpy(slots, l_slots, sizeof(void *) * split); 3102 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3103 ma_set_meta(new_left, mt, 0, split); 3104 l_mas.node = mt_mk_node(new_left, mt); 3105 3106 /* replace parent. */ 3107 offset = mte_parent_slot(mas->node); 3108 mt = mas_parent_type(&l_mas, l_mas.node); 3109 parent = mas_pop_node(mas); 3110 slots = ma_slots(parent, mt); 3111 pivs = ma_pivots(parent, mt); 3112 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3113 rcu_assign_pointer(slots[offset], mas->node); 3114 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3115 pivs[offset - 1] = l_mas.max; 3116 eparent = mt_mk_node(parent, mt); 3117 done: 3118 gap = mas_leaf_max_gap(mas); 3119 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3120 gap = mas_leaf_max_gap(&l_mas); 3121 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3122 mas_ascend(mas); 3123 3124 if (in_rcu) { 3125 mas_replace_node(mas, old_eparent); 3126 mas_adopt_children(mas, mas->node); 3127 } 3128 3129 mas_update_gap(mas); 3130 } 3131 3132 /* 3133 * mas_split_final_node() - Split the final node in a subtree operation. 3134 * @mast: the maple subtree state 3135 * @mas: The maple state 3136 * @height: The height of the tree in case it's a new root. 3137 */ 3138 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3139 struct ma_state *mas, int height) 3140 { 3141 struct maple_enode *ancestor; 3142 3143 if (mte_is_root(mas->node)) { 3144 if (mt_is_alloc(mas->tree)) 3145 mast->bn->type = maple_arange_64; 3146 else 3147 mast->bn->type = maple_range_64; 3148 mas->depth = height; 3149 } 3150 /* 3151 * Only a single node is used here, could be root. 3152 * The Big_node data should just fit in a single node. 3153 */ 3154 ancestor = mas_new_ma_node(mas, mast->bn); 3155 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3156 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3157 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3158 3159 mast->l->node = ancestor; 3160 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3161 mas->offset = mast->bn->b_end - 1; 3162 } 3163 3164 /* 3165 * mast_fill_bnode() - Copy data into the big node in the subtree state 3166 * @mast: The maple subtree state 3167 * @mas: the maple state 3168 * @skip: The number of entries to skip for new nodes insertion. 3169 */ 3170 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3171 struct ma_state *mas, 3172 unsigned char skip) 3173 { 3174 bool cp = true; 3175 unsigned char split; 3176 3177 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3178 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3179 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3180 mast->bn->b_end = 0; 3181 3182 if (mte_is_root(mas->node)) { 3183 cp = false; 3184 } else { 3185 mas_ascend(mas); 3186 mas->offset = mte_parent_slot(mas->node); 3187 } 3188 3189 if (cp && mast->l->offset) 3190 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3191 3192 split = mast->bn->b_end; 3193 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3194 mast->r->offset = mast->bn->b_end; 3195 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3196 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3197 cp = false; 3198 3199 if (cp) 3200 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3201 mast->bn, mast->bn->b_end); 3202 3203 mast->bn->b_end--; 3204 mast->bn->type = mte_node_type(mas->node); 3205 } 3206 3207 /* 3208 * mast_split_data() - Split the data in the subtree state big node into regular 3209 * nodes. 3210 * @mast: The maple subtree state 3211 * @mas: The maple state 3212 * @split: The location to split the big node 3213 */ 3214 static inline void mast_split_data(struct maple_subtree_state *mast, 3215 struct ma_state *mas, unsigned char split) 3216 { 3217 unsigned char p_slot; 3218 3219 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3220 mte_set_pivot(mast->r->node, 0, mast->r->max); 3221 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3222 mast->l->offset = mte_parent_slot(mas->node); 3223 mast->l->max = mast->bn->pivot[split]; 3224 mast->r->min = mast->l->max + 1; 3225 if (mte_is_leaf(mas->node)) 3226 return; 3227 3228 p_slot = mast->orig_l->offset; 3229 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3230 &p_slot, split); 3231 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3232 &p_slot, split); 3233 } 3234 3235 /* 3236 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3237 * data to the right or left node if there is room. 3238 * @mas: The maple state 3239 * @height: The current height of the maple state 3240 * @mast: The maple subtree state 3241 * @left: Push left or not. 3242 * 3243 * Keeping the height of the tree low means faster lookups. 3244 * 3245 * Return: True if pushed, false otherwise. 3246 */ 3247 static inline bool mas_push_data(struct ma_state *mas, int height, 3248 struct maple_subtree_state *mast, bool left) 3249 { 3250 unsigned char slot_total = mast->bn->b_end; 3251 unsigned char end, space, split; 3252 3253 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3254 tmp_mas = *mas; 3255 tmp_mas.depth = mast->l->depth; 3256 3257 if (left && !mas_prev_sibling(&tmp_mas)) 3258 return false; 3259 else if (!left && !mas_next_sibling(&tmp_mas)) 3260 return false; 3261 3262 end = mas_data_end(&tmp_mas); 3263 slot_total += end; 3264 space = 2 * mt_slot_count(mas->node) - 2; 3265 /* -2 instead of -1 to ensure there isn't a triple split */ 3266 if (ma_is_leaf(mast->bn->type)) 3267 space--; 3268 3269 if (mas->max == ULONG_MAX) 3270 space--; 3271 3272 if (slot_total >= space) 3273 return false; 3274 3275 /* Get the data; Fill mast->bn */ 3276 mast->bn->b_end++; 3277 if (left) { 3278 mab_shift_right(mast->bn, end + 1); 3279 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3280 mast->bn->b_end = slot_total + 1; 3281 } else { 3282 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3283 } 3284 3285 /* Configure mast for splitting of mast->bn */ 3286 split = mt_slots[mast->bn->type] - 2; 3287 if (left) { 3288 /* Switch mas to prev node */ 3289 *mas = tmp_mas; 3290 /* Start using mast->l for the left side. */ 3291 tmp_mas.node = mast->l->node; 3292 *mast->l = tmp_mas; 3293 } else { 3294 tmp_mas.node = mast->r->node; 3295 *mast->r = tmp_mas; 3296 split = slot_total - split; 3297 } 3298 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3299 /* Update parent slot for split calculation. */ 3300 if (left) 3301 mast->orig_l->offset += end + 1; 3302 3303 mast_split_data(mast, mas, split); 3304 mast_fill_bnode(mast, mas, 2); 3305 mas_split_final_node(mast, mas, height + 1); 3306 return true; 3307 } 3308 3309 /* 3310 * mas_split() - Split data that is too big for one node into two. 3311 * @mas: The maple state 3312 * @b_node: The maple big node 3313 * Return: 1 on success, 0 on failure. 3314 */ 3315 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3316 { 3317 struct maple_subtree_state mast; 3318 int height = 0; 3319 unsigned char mid_split, split = 0; 3320 struct maple_enode *old; 3321 3322 /* 3323 * Splitting is handled differently from any other B-tree; the Maple 3324 * Tree splits upwards. Splitting up means that the split operation 3325 * occurs when the walk of the tree hits the leaves and not on the way 3326 * down. The reason for splitting up is that it is impossible to know 3327 * how much space will be needed until the leaf is (or leaves are) 3328 * reached. Since overwriting data is allowed and a range could 3329 * overwrite more than one range or result in changing one entry into 3 3330 * entries, it is impossible to know if a split is required until the 3331 * data is examined. 3332 * 3333 * Splitting is a balancing act between keeping allocations to a minimum 3334 * and avoiding a 'jitter' event where a tree is expanded to make room 3335 * for an entry followed by a contraction when the entry is removed. To 3336 * accomplish the balance, there are empty slots remaining in both left 3337 * and right nodes after a split. 3338 */ 3339 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3340 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3341 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3342 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3343 3344 trace_ma_op(__func__, mas); 3345 mas->depth = mas_mt_height(mas); 3346 /* Allocation failures will happen early. */ 3347 mas_node_count(mas, 1 + mas->depth * 2); 3348 if (mas_is_err(mas)) 3349 return 0; 3350 3351 mast.l = &l_mas; 3352 mast.r = &r_mas; 3353 mast.orig_l = &prev_l_mas; 3354 mast.orig_r = &prev_r_mas; 3355 mast.bn = b_node; 3356 3357 while (height++ <= mas->depth) { 3358 if (mt_slots[b_node->type] > b_node->b_end) { 3359 mas_split_final_node(&mast, mas, height); 3360 break; 3361 } 3362 3363 l_mas = r_mas = *mas; 3364 l_mas.node = mas_new_ma_node(mas, b_node); 3365 r_mas.node = mas_new_ma_node(mas, b_node); 3366 /* 3367 * Another way that 'jitter' is avoided is to terminate a split up early if the 3368 * left or right node has space to spare. This is referred to as "pushing left" 3369 * or "pushing right" and is similar to the B* tree, except the nodes left or 3370 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3371 * is a significant savings. 3372 */ 3373 /* Try to push left. */ 3374 if (mas_push_data(mas, height, &mast, true)) 3375 break; 3376 /* Try to push right. */ 3377 if (mas_push_data(mas, height, &mast, false)) 3378 break; 3379 3380 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3381 mast_split_data(&mast, mas, split); 3382 /* 3383 * Usually correct, mab_mas_cp in the above call overwrites 3384 * r->max. 3385 */ 3386 mast.r->max = mas->max; 3387 mast_fill_bnode(&mast, mas, 1); 3388 prev_l_mas = *mast.l; 3389 prev_r_mas = *mast.r; 3390 } 3391 3392 /* Set the original node as dead */ 3393 old = mas->node; 3394 mas->node = l_mas.node; 3395 mas_wmb_replace(mas, old); 3396 mtree_range_walk(mas); 3397 return 1; 3398 } 3399 3400 /* 3401 * mas_reuse_node() - Reuse the node to store the data. 3402 * @wr_mas: The maple write state 3403 * @bn: The maple big node 3404 * @end: The end of the data. 3405 * 3406 * Will always return false in RCU mode. 3407 * 3408 * Return: True if node was reused, false otherwise. 3409 */ 3410 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3411 struct maple_big_node *bn, unsigned char end) 3412 { 3413 /* Need to be rcu safe. */ 3414 if (mt_in_rcu(wr_mas->mas->tree)) 3415 return false; 3416 3417 if (end > bn->b_end) { 3418 int clear = mt_slots[wr_mas->type] - bn->b_end; 3419 3420 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3421 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3422 } 3423 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3424 return true; 3425 } 3426 3427 /* 3428 * mas_commit_b_node() - Commit the big node into the tree. 3429 * @wr_mas: The maple write state 3430 * @b_node: The maple big node 3431 * @end: The end of the data. 3432 */ 3433 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3434 struct maple_big_node *b_node, unsigned char end) 3435 { 3436 struct maple_node *node; 3437 struct maple_enode *old_enode; 3438 unsigned char b_end = b_node->b_end; 3439 enum maple_type b_type = b_node->type; 3440 3441 old_enode = wr_mas->mas->node; 3442 if ((b_end < mt_min_slots[b_type]) && 3443 (!mte_is_root(old_enode)) && 3444 (mas_mt_height(wr_mas->mas) > 1)) 3445 return mas_rebalance(wr_mas->mas, b_node); 3446 3447 if (b_end >= mt_slots[b_type]) 3448 return mas_split(wr_mas->mas, b_node); 3449 3450 if (mas_reuse_node(wr_mas, b_node, end)) 3451 goto reuse_node; 3452 3453 mas_node_count(wr_mas->mas, 1); 3454 if (mas_is_err(wr_mas->mas)) 3455 return 0; 3456 3457 node = mas_pop_node(wr_mas->mas); 3458 node->parent = mas_mn(wr_mas->mas)->parent; 3459 wr_mas->mas->node = mt_mk_node(node, b_type); 3460 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3461 mas_replace_node(wr_mas->mas, old_enode); 3462 reuse_node: 3463 mas_update_gap(wr_mas->mas); 3464 wr_mas->mas->end = b_end; 3465 return 1; 3466 } 3467 3468 /* 3469 * mas_root_expand() - Expand a root to a node 3470 * @mas: The maple state 3471 * @entry: The entry to store into the tree 3472 */ 3473 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3474 { 3475 void *contents = mas_root_locked(mas); 3476 enum maple_type type = maple_leaf_64; 3477 struct maple_node *node; 3478 void __rcu **slots; 3479 unsigned long *pivots; 3480 int slot = 0; 3481 3482 mas_node_count(mas, 1); 3483 if (unlikely(mas_is_err(mas))) 3484 return 0; 3485 3486 node = mas_pop_node(mas); 3487 pivots = ma_pivots(node, type); 3488 slots = ma_slots(node, type); 3489 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3490 mas->node = mt_mk_node(node, type); 3491 mas->status = ma_active; 3492 3493 if (mas->index) { 3494 if (contents) { 3495 rcu_assign_pointer(slots[slot], contents); 3496 if (likely(mas->index > 1)) 3497 slot++; 3498 } 3499 pivots[slot++] = mas->index - 1; 3500 } 3501 3502 rcu_assign_pointer(slots[slot], entry); 3503 mas->offset = slot; 3504 pivots[slot] = mas->last; 3505 if (mas->last != ULONG_MAX) 3506 pivots[++slot] = ULONG_MAX; 3507 3508 mas->depth = 1; 3509 mas_set_height(mas); 3510 ma_set_meta(node, maple_leaf_64, 0, slot); 3511 /* swap the new root into the tree */ 3512 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3513 return slot; 3514 } 3515 3516 static inline void mas_store_root(struct ma_state *mas, void *entry) 3517 { 3518 if (likely((mas->last != 0) || (mas->index != 0))) 3519 mas_root_expand(mas, entry); 3520 else if (((unsigned long) (entry) & 3) == 2) 3521 mas_root_expand(mas, entry); 3522 else { 3523 rcu_assign_pointer(mas->tree->ma_root, entry); 3524 mas->status = ma_start; 3525 } 3526 } 3527 3528 /* 3529 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3530 * spans the node. 3531 * @mas: The maple state 3532 * @piv: The pivot value being written 3533 * @type: The maple node type 3534 * @entry: The data to write 3535 * 3536 * Spanning writes are writes that start in one node and end in another OR if 3537 * the write of a %NULL will cause the node to end with a %NULL. 3538 * 3539 * Return: True if this is a spanning write, false otherwise. 3540 */ 3541 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3542 { 3543 unsigned long max = wr_mas->r_max; 3544 unsigned long last = wr_mas->mas->last; 3545 enum maple_type type = wr_mas->type; 3546 void *entry = wr_mas->entry; 3547 3548 /* Contained in this pivot, fast path */ 3549 if (last < max) 3550 return false; 3551 3552 if (ma_is_leaf(type)) { 3553 max = wr_mas->mas->max; 3554 if (last < max) 3555 return false; 3556 } 3557 3558 if (last == max) { 3559 /* 3560 * The last entry of leaf node cannot be NULL unless it is the 3561 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3562 */ 3563 if (entry || last == ULONG_MAX) 3564 return false; 3565 } 3566 3567 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3568 return true; 3569 } 3570 3571 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3572 { 3573 wr_mas->type = mte_node_type(wr_mas->mas->node); 3574 mas_wr_node_walk(wr_mas); 3575 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3576 } 3577 3578 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3579 { 3580 wr_mas->mas->max = wr_mas->r_max; 3581 wr_mas->mas->min = wr_mas->r_min; 3582 wr_mas->mas->node = wr_mas->content; 3583 wr_mas->mas->offset = 0; 3584 wr_mas->mas->depth++; 3585 } 3586 /* 3587 * mas_wr_walk() - Walk the tree for a write. 3588 * @wr_mas: The maple write state 3589 * 3590 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3591 * 3592 * Return: True if it's contained in a node, false on spanning write. 3593 */ 3594 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3595 { 3596 struct ma_state *mas = wr_mas->mas; 3597 3598 while (true) { 3599 mas_wr_walk_descend(wr_mas); 3600 if (unlikely(mas_is_span_wr(wr_mas))) 3601 return false; 3602 3603 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3604 mas->offset); 3605 if (ma_is_leaf(wr_mas->type)) 3606 return true; 3607 3608 mas_wr_walk_traverse(wr_mas); 3609 } 3610 3611 return true; 3612 } 3613 3614 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3615 { 3616 struct ma_state *mas = wr_mas->mas; 3617 3618 while (true) { 3619 mas_wr_walk_descend(wr_mas); 3620 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3621 mas->offset); 3622 if (ma_is_leaf(wr_mas->type)) 3623 return true; 3624 mas_wr_walk_traverse(wr_mas); 3625 3626 } 3627 return true; 3628 } 3629 /* 3630 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3631 * @l_wr_mas: The left maple write state 3632 * @r_wr_mas: The right maple write state 3633 */ 3634 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3635 struct ma_wr_state *r_wr_mas) 3636 { 3637 struct ma_state *r_mas = r_wr_mas->mas; 3638 struct ma_state *l_mas = l_wr_mas->mas; 3639 unsigned char l_slot; 3640 3641 l_slot = l_mas->offset; 3642 if (!l_wr_mas->content) 3643 l_mas->index = l_wr_mas->r_min; 3644 3645 if ((l_mas->index == l_wr_mas->r_min) && 3646 (l_slot && 3647 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3648 if (l_slot > 1) 3649 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3650 else 3651 l_mas->index = l_mas->min; 3652 3653 l_mas->offset = l_slot - 1; 3654 } 3655 3656 if (!r_wr_mas->content) { 3657 if (r_mas->last < r_wr_mas->r_max) 3658 r_mas->last = r_wr_mas->r_max; 3659 r_mas->offset++; 3660 } else if ((r_mas->last == r_wr_mas->r_max) && 3661 (r_mas->last < r_mas->max) && 3662 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3663 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3664 r_wr_mas->type, r_mas->offset + 1); 3665 r_mas->offset++; 3666 } 3667 } 3668 3669 static inline void *mas_state_walk(struct ma_state *mas) 3670 { 3671 void *entry; 3672 3673 entry = mas_start(mas); 3674 if (mas_is_none(mas)) 3675 return NULL; 3676 3677 if (mas_is_ptr(mas)) 3678 return entry; 3679 3680 return mtree_range_walk(mas); 3681 } 3682 3683 /* 3684 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3685 * to date. 3686 * 3687 * @mas: The maple state. 3688 * 3689 * Note: Leaves mas in undesirable state. 3690 * Return: The entry for @mas->index or %NULL on dead node. 3691 */ 3692 static inline void *mtree_lookup_walk(struct ma_state *mas) 3693 { 3694 unsigned long *pivots; 3695 unsigned char offset; 3696 struct maple_node *node; 3697 struct maple_enode *next; 3698 enum maple_type type; 3699 void __rcu **slots; 3700 unsigned char end; 3701 3702 next = mas->node; 3703 do { 3704 node = mte_to_node(next); 3705 type = mte_node_type(next); 3706 pivots = ma_pivots(node, type); 3707 end = mt_pivots[type]; 3708 offset = 0; 3709 do { 3710 if (pivots[offset] >= mas->index) 3711 break; 3712 } while (++offset < end); 3713 3714 slots = ma_slots(node, type); 3715 next = mt_slot(mas->tree, slots, offset); 3716 if (unlikely(ma_dead_node(node))) 3717 goto dead_node; 3718 } while (!ma_is_leaf(type)); 3719 3720 return (void *)next; 3721 3722 dead_node: 3723 mas_reset(mas); 3724 return NULL; 3725 } 3726 3727 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3728 /* 3729 * mas_new_root() - Create a new root node that only contains the entry passed 3730 * in. 3731 * @mas: The maple state 3732 * @entry: The entry to store. 3733 * 3734 * Only valid when the index == 0 and the last == ULONG_MAX 3735 * 3736 * Return 0 on error, 1 on success. 3737 */ 3738 static inline int mas_new_root(struct ma_state *mas, void *entry) 3739 { 3740 struct maple_enode *root = mas_root_locked(mas); 3741 enum maple_type type = maple_leaf_64; 3742 struct maple_node *node; 3743 void __rcu **slots; 3744 unsigned long *pivots; 3745 3746 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3747 mas->depth = 0; 3748 mas_set_height(mas); 3749 rcu_assign_pointer(mas->tree->ma_root, entry); 3750 mas->status = ma_start; 3751 goto done; 3752 } 3753 3754 mas_node_count(mas, 1); 3755 if (mas_is_err(mas)) 3756 return 0; 3757 3758 node = mas_pop_node(mas); 3759 pivots = ma_pivots(node, type); 3760 slots = ma_slots(node, type); 3761 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3762 mas->node = mt_mk_node(node, type); 3763 mas->status = ma_active; 3764 rcu_assign_pointer(slots[0], entry); 3765 pivots[0] = mas->last; 3766 mas->depth = 1; 3767 mas_set_height(mas); 3768 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3769 3770 done: 3771 if (xa_is_node(root)) 3772 mte_destroy_walk(root, mas->tree); 3773 3774 return 1; 3775 } 3776 /* 3777 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3778 * and new nodes where necessary, then place the sub-tree in the actual tree. 3779 * Note that mas is expected to point to the node which caused the store to 3780 * span. 3781 * @wr_mas: The maple write state 3782 * 3783 * Return: 0 on error, positive on success. 3784 */ 3785 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3786 { 3787 struct maple_subtree_state mast; 3788 struct maple_big_node b_node; 3789 struct ma_state *mas; 3790 unsigned char height; 3791 3792 /* Left and Right side of spanning store */ 3793 MA_STATE(l_mas, NULL, 0, 0); 3794 MA_STATE(r_mas, NULL, 0, 0); 3795 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3796 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3797 3798 /* 3799 * A store operation that spans multiple nodes is called a spanning 3800 * store and is handled early in the store call stack by the function 3801 * mas_is_span_wr(). When a spanning store is identified, the maple 3802 * state is duplicated. The first maple state walks the left tree path 3803 * to ``index``, the duplicate walks the right tree path to ``last``. 3804 * The data in the two nodes are combined into a single node, two nodes, 3805 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3806 * written to the last entry of a node is considered a spanning store as 3807 * a rebalance is required for the operation to complete and an overflow 3808 * of data may happen. 3809 */ 3810 mas = wr_mas->mas; 3811 trace_ma_op(__func__, mas); 3812 3813 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3814 return mas_new_root(mas, wr_mas->entry); 3815 /* 3816 * Node rebalancing may occur due to this store, so there may be three new 3817 * entries per level plus a new root. 3818 */ 3819 height = mas_mt_height(mas); 3820 mas_node_count(mas, 1 + height * 3); 3821 if (mas_is_err(mas)) 3822 return 0; 3823 3824 /* 3825 * Set up right side. Need to get to the next offset after the spanning 3826 * store to ensure it's not NULL and to combine both the next node and 3827 * the node with the start together. 3828 */ 3829 r_mas = *mas; 3830 /* Avoid overflow, walk to next slot in the tree. */ 3831 if (r_mas.last + 1) 3832 r_mas.last++; 3833 3834 r_mas.index = r_mas.last; 3835 mas_wr_walk_index(&r_wr_mas); 3836 r_mas.last = r_mas.index = mas->last; 3837 3838 /* Set up left side. */ 3839 l_mas = *mas; 3840 mas_wr_walk_index(&l_wr_mas); 3841 3842 if (!wr_mas->entry) { 3843 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3844 mas->offset = l_mas.offset; 3845 mas->index = l_mas.index; 3846 mas->last = l_mas.last = r_mas.last; 3847 } 3848 3849 /* expanding NULLs may make this cover the entire range */ 3850 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3851 mas_set_range(mas, 0, ULONG_MAX); 3852 return mas_new_root(mas, wr_mas->entry); 3853 } 3854 3855 memset(&b_node, 0, sizeof(struct maple_big_node)); 3856 /* Copy l_mas and store the value in b_node. */ 3857 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3858 /* Copy r_mas into b_node. */ 3859 if (r_mas.offset <= r_mas.end) 3860 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3861 &b_node, b_node.b_end + 1); 3862 else 3863 b_node.b_end++; 3864 3865 /* Stop spanning searches by searching for just index. */ 3866 l_mas.index = l_mas.last = mas->index; 3867 3868 mast.bn = &b_node; 3869 mast.orig_l = &l_mas; 3870 mast.orig_r = &r_mas; 3871 /* Combine l_mas and r_mas and split them up evenly again. */ 3872 return mas_spanning_rebalance(mas, &mast, height + 1); 3873 } 3874 3875 /* 3876 * mas_wr_node_store() - Attempt to store the value in a node 3877 * @wr_mas: The maple write state 3878 * 3879 * Attempts to reuse the node, but may allocate. 3880 * 3881 * Return: True if stored, false otherwise 3882 */ 3883 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 3884 unsigned char new_end) 3885 { 3886 struct ma_state *mas = wr_mas->mas; 3887 void __rcu **dst_slots; 3888 unsigned long *dst_pivots; 3889 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3890 struct maple_node reuse, *newnode; 3891 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3892 bool in_rcu = mt_in_rcu(mas->tree); 3893 3894 /* Check if there is enough data. The room is enough. */ 3895 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 3896 !(mas->mas_flags & MA_STATE_BULK)) 3897 return false; 3898 3899 if (mas->last == wr_mas->end_piv) 3900 offset_end++; /* don't copy this offset */ 3901 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3902 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3903 3904 /* set up node. */ 3905 if (in_rcu) { 3906 mas_node_count(mas, 1); 3907 if (mas_is_err(mas)) 3908 return false; 3909 3910 newnode = mas_pop_node(mas); 3911 } else { 3912 memset(&reuse, 0, sizeof(struct maple_node)); 3913 newnode = &reuse; 3914 } 3915 3916 newnode->parent = mas_mn(mas)->parent; 3917 dst_pivots = ma_pivots(newnode, wr_mas->type); 3918 dst_slots = ma_slots(newnode, wr_mas->type); 3919 /* Copy from start to insert point */ 3920 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3921 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3922 3923 /* Handle insert of new range starting after old range */ 3924 if (wr_mas->r_min < mas->index) { 3925 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3926 dst_pivots[mas->offset++] = mas->index - 1; 3927 } 3928 3929 /* Store the new entry and range end. */ 3930 if (mas->offset < node_pivots) 3931 dst_pivots[mas->offset] = mas->last; 3932 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3933 3934 /* 3935 * this range wrote to the end of the node or it overwrote the rest of 3936 * the data 3937 */ 3938 if (offset_end > mas->end) 3939 goto done; 3940 3941 dst_offset = mas->offset + 1; 3942 /* Copy to the end of node if necessary. */ 3943 copy_size = mas->end - offset_end + 1; 3944 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3945 sizeof(void *) * copy_size); 3946 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3947 sizeof(unsigned long) * (copy_size - 1)); 3948 3949 if (new_end < node_pivots) 3950 dst_pivots[new_end] = mas->max; 3951 3952 done: 3953 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3954 if (in_rcu) { 3955 struct maple_enode *old_enode = mas->node; 3956 3957 mas->node = mt_mk_node(newnode, wr_mas->type); 3958 mas_replace_node(mas, old_enode); 3959 } else { 3960 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3961 } 3962 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3963 mas_update_gap(mas); 3964 mas->end = new_end; 3965 return true; 3966 } 3967 3968 /* 3969 * mas_wr_slot_store: Attempt to store a value in a slot. 3970 * @wr_mas: the maple write state 3971 * 3972 * Return: True if stored, false otherwise 3973 */ 3974 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 3975 { 3976 struct ma_state *mas = wr_mas->mas; 3977 unsigned char offset = mas->offset; 3978 void __rcu **slots = wr_mas->slots; 3979 bool gap = false; 3980 3981 gap |= !mt_slot_locked(mas->tree, slots, offset); 3982 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3983 3984 if (wr_mas->offset_end - offset == 1) { 3985 if (mas->index == wr_mas->r_min) { 3986 /* Overwriting the range and a part of the next one */ 3987 rcu_assign_pointer(slots[offset], wr_mas->entry); 3988 wr_mas->pivots[offset] = mas->last; 3989 } else { 3990 /* Overwriting a part of the range and the next one */ 3991 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3992 wr_mas->pivots[offset] = mas->index - 1; 3993 mas->offset++; /* Keep mas accurate. */ 3994 } 3995 } else if (!mt_in_rcu(mas->tree)) { 3996 /* 3997 * Expand the range, only partially overwriting the previous and 3998 * next ranges 3999 */ 4000 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 4001 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4002 wr_mas->pivots[offset] = mas->index - 1; 4003 wr_mas->pivots[offset + 1] = mas->last; 4004 mas->offset++; /* Keep mas accurate. */ 4005 } else { 4006 return false; 4007 } 4008 4009 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4010 /* 4011 * Only update gap when the new entry is empty or there is an empty 4012 * entry in the original two ranges. 4013 */ 4014 if (!wr_mas->entry || gap) 4015 mas_update_gap(mas); 4016 4017 return true; 4018 } 4019 4020 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4021 { 4022 struct ma_state *mas = wr_mas->mas; 4023 4024 if (!wr_mas->slots[wr_mas->offset_end]) { 4025 /* If this one is null, the next and prev are not */ 4026 mas->last = wr_mas->end_piv; 4027 } else { 4028 /* Check next slot(s) if we are overwriting the end */ 4029 if ((mas->last == wr_mas->end_piv) && 4030 (mas->end != wr_mas->offset_end) && 4031 !wr_mas->slots[wr_mas->offset_end + 1]) { 4032 wr_mas->offset_end++; 4033 if (wr_mas->offset_end == mas->end) 4034 mas->last = mas->max; 4035 else 4036 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4037 wr_mas->end_piv = mas->last; 4038 } 4039 } 4040 4041 if (!wr_mas->content) { 4042 /* If this one is null, the next and prev are not */ 4043 mas->index = wr_mas->r_min; 4044 } else { 4045 /* Check prev slot if we are overwriting the start */ 4046 if (mas->index == wr_mas->r_min && mas->offset && 4047 !wr_mas->slots[mas->offset - 1]) { 4048 mas->offset--; 4049 wr_mas->r_min = mas->index = 4050 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4051 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4052 } 4053 } 4054 } 4055 4056 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4057 { 4058 while ((wr_mas->offset_end < wr_mas->mas->end) && 4059 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4060 wr_mas->offset_end++; 4061 4062 if (wr_mas->offset_end < wr_mas->mas->end) 4063 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4064 else 4065 wr_mas->end_piv = wr_mas->mas->max; 4066 4067 if (!wr_mas->entry) 4068 mas_wr_extend_null(wr_mas); 4069 } 4070 4071 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4072 { 4073 struct ma_state *mas = wr_mas->mas; 4074 unsigned char new_end = mas->end + 2; 4075 4076 new_end -= wr_mas->offset_end - mas->offset; 4077 if (wr_mas->r_min == mas->index) 4078 new_end--; 4079 4080 if (wr_mas->end_piv == mas->last) 4081 new_end--; 4082 4083 return new_end; 4084 } 4085 4086 /* 4087 * mas_wr_append: Attempt to append 4088 * @wr_mas: the maple write state 4089 * @new_end: The end of the node after the modification 4090 * 4091 * This is currently unsafe in rcu mode since the end of the node may be cached 4092 * by readers while the node contents may be updated which could result in 4093 * inaccurate information. 4094 * 4095 * Return: True if appended, false otherwise 4096 */ 4097 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4098 unsigned char new_end) 4099 { 4100 struct ma_state *mas; 4101 void __rcu **slots; 4102 unsigned char end; 4103 4104 mas = wr_mas->mas; 4105 if (mt_in_rcu(mas->tree)) 4106 return false; 4107 4108 end = mas->end; 4109 if (mas->offset != end) 4110 return false; 4111 4112 if (new_end < mt_pivots[wr_mas->type]) { 4113 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4114 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 4115 } 4116 4117 slots = wr_mas->slots; 4118 if (new_end == end + 1) { 4119 if (mas->last == wr_mas->r_max) { 4120 /* Append to end of range */ 4121 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4122 wr_mas->pivots[end] = mas->index - 1; 4123 mas->offset = new_end; 4124 } else { 4125 /* Append to start of range */ 4126 rcu_assign_pointer(slots[new_end], wr_mas->content); 4127 wr_mas->pivots[end] = mas->last; 4128 rcu_assign_pointer(slots[end], wr_mas->entry); 4129 } 4130 } else { 4131 /* Append to the range without touching any boundaries. */ 4132 rcu_assign_pointer(slots[new_end], wr_mas->content); 4133 wr_mas->pivots[end + 1] = mas->last; 4134 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4135 wr_mas->pivots[end] = mas->index - 1; 4136 mas->offset = end + 1; 4137 } 4138 4139 if (!wr_mas->content || !wr_mas->entry) 4140 mas_update_gap(mas); 4141 4142 mas->end = new_end; 4143 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4144 return true; 4145 } 4146 4147 /* 4148 * mas_wr_bnode() - Slow path for a modification. 4149 * @wr_mas: The write maple state 4150 * 4151 * This is where split, rebalance end up. 4152 */ 4153 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4154 { 4155 struct maple_big_node b_node; 4156 4157 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4158 memset(&b_node, 0, sizeof(struct maple_big_node)); 4159 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4160 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end); 4161 } 4162 4163 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4164 { 4165 struct ma_state *mas = wr_mas->mas; 4166 unsigned char new_end; 4167 4168 /* Direct replacement */ 4169 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4170 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4171 if (!!wr_mas->entry ^ !!wr_mas->content) 4172 mas_update_gap(mas); 4173 return; 4174 } 4175 4176 /* 4177 * new_end exceeds the size of the maple node and cannot enter the fast 4178 * path. 4179 */ 4180 new_end = mas_wr_new_end(wr_mas); 4181 if (new_end >= mt_slots[wr_mas->type]) 4182 goto slow_path; 4183 4184 /* Attempt to append */ 4185 if (mas_wr_append(wr_mas, new_end)) 4186 return; 4187 4188 if (new_end == mas->end && mas_wr_slot_store(wr_mas)) 4189 return; 4190 4191 if (mas_wr_node_store(wr_mas, new_end)) 4192 return; 4193 4194 if (mas_is_err(mas)) 4195 return; 4196 4197 slow_path: 4198 mas_wr_bnode(wr_mas); 4199 } 4200 4201 /* 4202 * mas_wr_store_entry() - Internal call to store a value 4203 * @mas: The maple state 4204 * @entry: The entry to store. 4205 * 4206 * Return: The contents that was stored at the index. 4207 */ 4208 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4209 { 4210 struct ma_state *mas = wr_mas->mas; 4211 4212 wr_mas->content = mas_start(mas); 4213 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4214 mas_store_root(mas, wr_mas->entry); 4215 return wr_mas->content; 4216 } 4217 4218 if (unlikely(!mas_wr_walk(wr_mas))) { 4219 mas_wr_spanning_store(wr_mas); 4220 return wr_mas->content; 4221 } 4222 4223 /* At this point, we are at the leaf node that needs to be altered. */ 4224 mas_wr_end_piv(wr_mas); 4225 /* New root for a single pointer */ 4226 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4227 mas_new_root(mas, wr_mas->entry); 4228 return wr_mas->content; 4229 } 4230 4231 mas_wr_modify(wr_mas); 4232 return wr_mas->content; 4233 } 4234 4235 /** 4236 * mas_insert() - Internal call to insert a value 4237 * @mas: The maple state 4238 * @entry: The entry to store 4239 * 4240 * Return: %NULL or the contents that already exists at the requested index 4241 * otherwise. The maple state needs to be checked for error conditions. 4242 */ 4243 static inline void *mas_insert(struct ma_state *mas, void *entry) 4244 { 4245 MA_WR_STATE(wr_mas, mas, entry); 4246 4247 /* 4248 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4249 * tree. If the insert fits exactly into an existing gap with a value 4250 * of NULL, then the slot only needs to be written with the new value. 4251 * If the range being inserted is adjacent to another range, then only a 4252 * single pivot needs to be inserted (as well as writing the entry). If 4253 * the new range is within a gap but does not touch any other ranges, 4254 * then two pivots need to be inserted: the start - 1, and the end. As 4255 * usual, the entry must be written. Most operations require a new node 4256 * to be allocated and replace an existing node to ensure RCU safety, 4257 * when in RCU mode. The exception to requiring a newly allocated node 4258 * is when inserting at the end of a node (appending). When done 4259 * carefully, appending can reuse the node in place. 4260 */ 4261 wr_mas.content = mas_start(mas); 4262 if (wr_mas.content) 4263 goto exists; 4264 4265 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4266 mas_store_root(mas, entry); 4267 return NULL; 4268 } 4269 4270 /* spanning writes always overwrite something */ 4271 if (!mas_wr_walk(&wr_mas)) 4272 goto exists; 4273 4274 /* At this point, we are at the leaf node that needs to be altered. */ 4275 wr_mas.offset_end = mas->offset; 4276 wr_mas.end_piv = wr_mas.r_max; 4277 4278 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4279 goto exists; 4280 4281 if (!entry) 4282 return NULL; 4283 4284 mas_wr_modify(&wr_mas); 4285 return wr_mas.content; 4286 4287 exists: 4288 mas_set_err(mas, -EEXIST); 4289 return wr_mas.content; 4290 4291 } 4292 4293 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4294 { 4295 retry: 4296 mas_set(mas, index); 4297 mas_state_walk(mas); 4298 if (mas_is_start(mas)) 4299 goto retry; 4300 } 4301 4302 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4303 struct maple_node *node, const unsigned long index) 4304 { 4305 if (unlikely(ma_dead_node(node))) { 4306 mas_rewalk(mas, index); 4307 return true; 4308 } 4309 return false; 4310 } 4311 4312 /* 4313 * mas_prev_node() - Find the prev non-null entry at the same level in the 4314 * tree. The prev value will be mas->node[mas->offset] or the status will be 4315 * ma_none. 4316 * @mas: The maple state 4317 * @min: The lower limit to search 4318 * 4319 * The prev node value will be mas->node[mas->offset] or the status will be 4320 * ma_none. 4321 * Return: 1 if the node is dead, 0 otherwise. 4322 */ 4323 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4324 { 4325 enum maple_type mt; 4326 int offset, level; 4327 void __rcu **slots; 4328 struct maple_node *node; 4329 unsigned long *pivots; 4330 unsigned long max; 4331 4332 node = mas_mn(mas); 4333 if (!mas->min) 4334 goto no_entry; 4335 4336 max = mas->min - 1; 4337 if (max < min) 4338 goto no_entry; 4339 4340 level = 0; 4341 do { 4342 if (ma_is_root(node)) 4343 goto no_entry; 4344 4345 /* Walk up. */ 4346 if (unlikely(mas_ascend(mas))) 4347 return 1; 4348 offset = mas->offset; 4349 level++; 4350 node = mas_mn(mas); 4351 } while (!offset); 4352 4353 offset--; 4354 mt = mte_node_type(mas->node); 4355 while (level > 1) { 4356 level--; 4357 slots = ma_slots(node, mt); 4358 mas->node = mas_slot(mas, slots, offset); 4359 if (unlikely(ma_dead_node(node))) 4360 return 1; 4361 4362 mt = mte_node_type(mas->node); 4363 node = mas_mn(mas); 4364 pivots = ma_pivots(node, mt); 4365 offset = ma_data_end(node, mt, pivots, max); 4366 if (unlikely(ma_dead_node(node))) 4367 return 1; 4368 } 4369 4370 slots = ma_slots(node, mt); 4371 mas->node = mas_slot(mas, slots, offset); 4372 pivots = ma_pivots(node, mt); 4373 if (unlikely(ma_dead_node(node))) 4374 return 1; 4375 4376 if (likely(offset)) 4377 mas->min = pivots[offset - 1] + 1; 4378 mas->max = max; 4379 mas->offset = mas_data_end(mas); 4380 if (unlikely(mte_dead_node(mas->node))) 4381 return 1; 4382 4383 mas->end = mas->offset; 4384 return 0; 4385 4386 no_entry: 4387 if (unlikely(ma_dead_node(node))) 4388 return 1; 4389 4390 mas->status = ma_underflow; 4391 return 0; 4392 } 4393 4394 /* 4395 * mas_prev_slot() - Get the entry in the previous slot 4396 * 4397 * @mas: The maple state 4398 * @max: The minimum starting range 4399 * @empty: Can be empty 4400 * @set_underflow: Set the @mas->node to underflow state on limit. 4401 * 4402 * Return: The entry in the previous slot which is possibly NULL 4403 */ 4404 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4405 { 4406 void *entry; 4407 void __rcu **slots; 4408 unsigned long pivot; 4409 enum maple_type type; 4410 unsigned long *pivots; 4411 struct maple_node *node; 4412 unsigned long save_point = mas->index; 4413 4414 retry: 4415 node = mas_mn(mas); 4416 type = mte_node_type(mas->node); 4417 pivots = ma_pivots(node, type); 4418 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4419 goto retry; 4420 4421 if (mas->min <= min) { 4422 pivot = mas_safe_min(mas, pivots, mas->offset); 4423 4424 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4425 goto retry; 4426 4427 if (pivot <= min) 4428 goto underflow; 4429 } 4430 4431 again: 4432 if (likely(mas->offset)) { 4433 mas->offset--; 4434 mas->last = mas->index - 1; 4435 mas->index = mas_safe_min(mas, pivots, mas->offset); 4436 } else { 4437 if (mas->index <= min) 4438 goto underflow; 4439 4440 if (mas_prev_node(mas, min)) { 4441 mas_rewalk(mas, save_point); 4442 goto retry; 4443 } 4444 4445 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4446 return NULL; 4447 4448 mas->last = mas->max; 4449 node = mas_mn(mas); 4450 type = mte_node_type(mas->node); 4451 pivots = ma_pivots(node, type); 4452 mas->index = pivots[mas->offset - 1] + 1; 4453 } 4454 4455 slots = ma_slots(node, type); 4456 entry = mas_slot(mas, slots, mas->offset); 4457 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4458 goto retry; 4459 4460 4461 if (likely(entry)) 4462 return entry; 4463 4464 if (!empty) { 4465 if (mas->index <= min) { 4466 mas->status = ma_underflow; 4467 return NULL; 4468 } 4469 4470 goto again; 4471 } 4472 4473 return entry; 4474 4475 underflow: 4476 mas->status = ma_underflow; 4477 return NULL; 4478 } 4479 4480 /* 4481 * mas_next_node() - Get the next node at the same level in the tree. 4482 * @mas: The maple state 4483 * @max: The maximum pivot value to check. 4484 * 4485 * The next value will be mas->node[mas->offset] or the status will have 4486 * overflowed. 4487 * Return: 1 on dead node, 0 otherwise. 4488 */ 4489 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4490 unsigned long max) 4491 { 4492 unsigned long min; 4493 unsigned long *pivots; 4494 struct maple_enode *enode; 4495 struct maple_node *tmp; 4496 int level = 0; 4497 unsigned char node_end; 4498 enum maple_type mt; 4499 void __rcu **slots; 4500 4501 if (mas->max >= max) 4502 goto overflow; 4503 4504 min = mas->max + 1; 4505 level = 0; 4506 do { 4507 if (ma_is_root(node)) 4508 goto overflow; 4509 4510 /* Walk up. */ 4511 if (unlikely(mas_ascend(mas))) 4512 return 1; 4513 4514 level++; 4515 node = mas_mn(mas); 4516 mt = mte_node_type(mas->node); 4517 pivots = ma_pivots(node, mt); 4518 node_end = ma_data_end(node, mt, pivots, mas->max); 4519 if (unlikely(ma_dead_node(node))) 4520 return 1; 4521 4522 } while (unlikely(mas->offset == node_end)); 4523 4524 slots = ma_slots(node, mt); 4525 mas->offset++; 4526 enode = mas_slot(mas, slots, mas->offset); 4527 if (unlikely(ma_dead_node(node))) 4528 return 1; 4529 4530 if (level > 1) 4531 mas->offset = 0; 4532 4533 while (unlikely(level > 1)) { 4534 level--; 4535 mas->node = enode; 4536 node = mas_mn(mas); 4537 mt = mte_node_type(mas->node); 4538 slots = ma_slots(node, mt); 4539 enode = mas_slot(mas, slots, 0); 4540 if (unlikely(ma_dead_node(node))) 4541 return 1; 4542 } 4543 4544 if (!mas->offset) 4545 pivots = ma_pivots(node, mt); 4546 4547 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4548 tmp = mte_to_node(enode); 4549 mt = mte_node_type(enode); 4550 pivots = ma_pivots(tmp, mt); 4551 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4552 if (unlikely(ma_dead_node(node))) 4553 return 1; 4554 4555 mas->node = enode; 4556 mas->min = min; 4557 return 0; 4558 4559 overflow: 4560 if (unlikely(ma_dead_node(node))) 4561 return 1; 4562 4563 mas->status = ma_overflow; 4564 return 0; 4565 } 4566 4567 /* 4568 * mas_next_slot() - Get the entry in the next slot 4569 * 4570 * @mas: The maple state 4571 * @max: The maximum starting range 4572 * @empty: Can be empty 4573 * @set_overflow: Should @mas->node be set to overflow when the limit is 4574 * reached. 4575 * 4576 * Return: The entry in the next slot which is possibly NULL 4577 */ 4578 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4579 { 4580 void __rcu **slots; 4581 unsigned long *pivots; 4582 unsigned long pivot; 4583 enum maple_type type; 4584 struct maple_node *node; 4585 unsigned long save_point = mas->last; 4586 void *entry; 4587 4588 retry: 4589 node = mas_mn(mas); 4590 type = mte_node_type(mas->node); 4591 pivots = ma_pivots(node, type); 4592 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4593 goto retry; 4594 4595 if (mas->max >= max) { 4596 if (likely(mas->offset < mas->end)) 4597 pivot = pivots[mas->offset]; 4598 else 4599 pivot = mas->max; 4600 4601 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4602 goto retry; 4603 4604 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4605 mas->status = ma_overflow; 4606 return NULL; 4607 } 4608 } 4609 4610 if (likely(mas->offset < mas->end)) { 4611 mas->index = pivots[mas->offset] + 1; 4612 again: 4613 mas->offset++; 4614 if (likely(mas->offset < mas->end)) 4615 mas->last = pivots[mas->offset]; 4616 else 4617 mas->last = mas->max; 4618 } else { 4619 if (mas->last >= max) { 4620 mas->status = ma_overflow; 4621 return NULL; 4622 } 4623 4624 if (mas_next_node(mas, node, max)) { 4625 mas_rewalk(mas, save_point); 4626 goto retry; 4627 } 4628 4629 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4630 return NULL; 4631 4632 mas->offset = 0; 4633 mas->index = mas->min; 4634 node = mas_mn(mas); 4635 type = mte_node_type(mas->node); 4636 pivots = ma_pivots(node, type); 4637 mas->last = pivots[0]; 4638 } 4639 4640 slots = ma_slots(node, type); 4641 entry = mt_slot(mas->tree, slots, mas->offset); 4642 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4643 goto retry; 4644 4645 if (entry) 4646 return entry; 4647 4648 4649 if (!empty) { 4650 if (mas->last >= max) { 4651 mas->status = ma_overflow; 4652 return NULL; 4653 } 4654 4655 mas->index = mas->last + 1; 4656 goto again; 4657 } 4658 4659 return entry; 4660 } 4661 4662 /* 4663 * mas_next_entry() - Internal function to get the next entry. 4664 * @mas: The maple state 4665 * @limit: The maximum range start. 4666 * 4667 * Set the @mas->node to the next entry and the range_start to 4668 * the beginning value for the entry. Does not check beyond @limit. 4669 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4670 * @mas->last on overflow. 4671 * Restarts on dead nodes. 4672 * 4673 * Return: the next entry or %NULL. 4674 */ 4675 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4676 { 4677 if (mas->last >= limit) { 4678 mas->status = ma_overflow; 4679 return NULL; 4680 } 4681 4682 return mas_next_slot(mas, limit, false); 4683 } 4684 4685 /* 4686 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4687 * highest gap address of a given size in a given node and descend. 4688 * @mas: The maple state 4689 * @size: The needed size. 4690 * 4691 * Return: True if found in a leaf, false otherwise. 4692 * 4693 */ 4694 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4695 unsigned long *gap_min, unsigned long *gap_max) 4696 { 4697 enum maple_type type = mte_node_type(mas->node); 4698 struct maple_node *node = mas_mn(mas); 4699 unsigned long *pivots, *gaps; 4700 void __rcu **slots; 4701 unsigned long gap = 0; 4702 unsigned long max, min; 4703 unsigned char offset; 4704 4705 if (unlikely(mas_is_err(mas))) 4706 return true; 4707 4708 if (ma_is_dense(type)) { 4709 /* dense nodes. */ 4710 mas->offset = (unsigned char)(mas->index - mas->min); 4711 return true; 4712 } 4713 4714 pivots = ma_pivots(node, type); 4715 slots = ma_slots(node, type); 4716 gaps = ma_gaps(node, type); 4717 offset = mas->offset; 4718 min = mas_safe_min(mas, pivots, offset); 4719 /* Skip out of bounds. */ 4720 while (mas->last < min) 4721 min = mas_safe_min(mas, pivots, --offset); 4722 4723 max = mas_safe_pivot(mas, pivots, offset, type); 4724 while (mas->index <= max) { 4725 gap = 0; 4726 if (gaps) 4727 gap = gaps[offset]; 4728 else if (!mas_slot(mas, slots, offset)) 4729 gap = max - min + 1; 4730 4731 if (gap) { 4732 if ((size <= gap) && (size <= mas->last - min + 1)) 4733 break; 4734 4735 if (!gaps) { 4736 /* Skip the next slot, it cannot be a gap. */ 4737 if (offset < 2) 4738 goto ascend; 4739 4740 offset -= 2; 4741 max = pivots[offset]; 4742 min = mas_safe_min(mas, pivots, offset); 4743 continue; 4744 } 4745 } 4746 4747 if (!offset) 4748 goto ascend; 4749 4750 offset--; 4751 max = min - 1; 4752 min = mas_safe_min(mas, pivots, offset); 4753 } 4754 4755 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4756 goto no_space; 4757 4758 if (unlikely(ma_is_leaf(type))) { 4759 mas->offset = offset; 4760 *gap_min = min; 4761 *gap_max = min + gap - 1; 4762 return true; 4763 } 4764 4765 /* descend, only happens under lock. */ 4766 mas->node = mas_slot(mas, slots, offset); 4767 mas->min = min; 4768 mas->max = max; 4769 mas->offset = mas_data_end(mas); 4770 return false; 4771 4772 ascend: 4773 if (!mte_is_root(mas->node)) 4774 return false; 4775 4776 no_space: 4777 mas_set_err(mas, -EBUSY); 4778 return false; 4779 } 4780 4781 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4782 { 4783 enum maple_type type = mte_node_type(mas->node); 4784 unsigned long pivot, min, gap = 0; 4785 unsigned char offset, data_end; 4786 unsigned long *gaps, *pivots; 4787 void __rcu **slots; 4788 struct maple_node *node; 4789 bool found = false; 4790 4791 if (ma_is_dense(type)) { 4792 mas->offset = (unsigned char)(mas->index - mas->min); 4793 return true; 4794 } 4795 4796 node = mas_mn(mas); 4797 pivots = ma_pivots(node, type); 4798 slots = ma_slots(node, type); 4799 gaps = ma_gaps(node, type); 4800 offset = mas->offset; 4801 min = mas_safe_min(mas, pivots, offset); 4802 data_end = ma_data_end(node, type, pivots, mas->max); 4803 for (; offset <= data_end; offset++) { 4804 pivot = mas_safe_pivot(mas, pivots, offset, type); 4805 4806 /* Not within lower bounds */ 4807 if (mas->index > pivot) 4808 goto next_slot; 4809 4810 if (gaps) 4811 gap = gaps[offset]; 4812 else if (!mas_slot(mas, slots, offset)) 4813 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4814 else 4815 goto next_slot; 4816 4817 if (gap >= size) { 4818 if (ma_is_leaf(type)) { 4819 found = true; 4820 goto done; 4821 } 4822 if (mas->index <= pivot) { 4823 mas->node = mas_slot(mas, slots, offset); 4824 mas->min = min; 4825 mas->max = pivot; 4826 offset = 0; 4827 break; 4828 } 4829 } 4830 next_slot: 4831 min = pivot + 1; 4832 if (mas->last <= pivot) { 4833 mas_set_err(mas, -EBUSY); 4834 return true; 4835 } 4836 } 4837 4838 if (mte_is_root(mas->node)) 4839 found = true; 4840 done: 4841 mas->offset = offset; 4842 return found; 4843 } 4844 4845 /** 4846 * mas_walk() - Search for @mas->index in the tree. 4847 * @mas: The maple state. 4848 * 4849 * mas->index and mas->last will be set to the range if there is a value. If 4850 * mas->status is ma_none, reset to ma_start 4851 * 4852 * Return: the entry at the location or %NULL. 4853 */ 4854 void *mas_walk(struct ma_state *mas) 4855 { 4856 void *entry; 4857 4858 if (!mas_is_active(mas) || !mas_is_start(mas)) 4859 mas->status = ma_start; 4860 retry: 4861 entry = mas_state_walk(mas); 4862 if (mas_is_start(mas)) { 4863 goto retry; 4864 } else if (mas_is_none(mas)) { 4865 mas->index = 0; 4866 mas->last = ULONG_MAX; 4867 } else if (mas_is_ptr(mas)) { 4868 if (!mas->index) { 4869 mas->last = 0; 4870 return entry; 4871 } 4872 4873 mas->index = 1; 4874 mas->last = ULONG_MAX; 4875 mas->status = ma_none; 4876 return NULL; 4877 } 4878 4879 return entry; 4880 } 4881 EXPORT_SYMBOL_GPL(mas_walk); 4882 4883 static inline bool mas_rewind_node(struct ma_state *mas) 4884 { 4885 unsigned char slot; 4886 4887 do { 4888 if (mte_is_root(mas->node)) { 4889 slot = mas->offset; 4890 if (!slot) 4891 return false; 4892 } else { 4893 mas_ascend(mas); 4894 slot = mas->offset; 4895 } 4896 } while (!slot); 4897 4898 mas->offset = --slot; 4899 return true; 4900 } 4901 4902 /* 4903 * mas_skip_node() - Internal function. Skip over a node. 4904 * @mas: The maple state. 4905 * 4906 * Return: true if there is another node, false otherwise. 4907 */ 4908 static inline bool mas_skip_node(struct ma_state *mas) 4909 { 4910 if (mas_is_err(mas)) 4911 return false; 4912 4913 do { 4914 if (mte_is_root(mas->node)) { 4915 if (mas->offset >= mas_data_end(mas)) { 4916 mas_set_err(mas, -EBUSY); 4917 return false; 4918 } 4919 } else { 4920 mas_ascend(mas); 4921 } 4922 } while (mas->offset >= mas_data_end(mas)); 4923 4924 mas->offset++; 4925 return true; 4926 } 4927 4928 /* 4929 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 4930 * @size 4931 * @mas: The maple state 4932 * @size: The size of the gap required 4933 * 4934 * Search between @mas->index and @mas->last for a gap of @size. 4935 */ 4936 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 4937 { 4938 struct maple_enode *last = NULL; 4939 4940 /* 4941 * There are 4 options: 4942 * go to child (descend) 4943 * go back to parent (ascend) 4944 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 4945 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 4946 */ 4947 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 4948 if (last == mas->node) 4949 mas_skip_node(mas); 4950 else 4951 last = mas->node; 4952 } 4953 } 4954 4955 /* 4956 * mas_sparse_area() - Internal function. Return upper or lower limit when 4957 * searching for a gap in an empty tree. 4958 * @mas: The maple state 4959 * @min: the minimum range 4960 * @max: The maximum range 4961 * @size: The size of the gap 4962 * @fwd: Searching forward or back 4963 */ 4964 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 4965 unsigned long max, unsigned long size, bool fwd) 4966 { 4967 if (!unlikely(mas_is_none(mas)) && min == 0) { 4968 min++; 4969 /* 4970 * At this time, min is increased, we need to recheck whether 4971 * the size is satisfied. 4972 */ 4973 if (min > max || max - min + 1 < size) 4974 return -EBUSY; 4975 } 4976 /* mas_is_ptr */ 4977 4978 if (fwd) { 4979 mas->index = min; 4980 mas->last = min + size - 1; 4981 } else { 4982 mas->last = max; 4983 mas->index = max - size + 1; 4984 } 4985 return 0; 4986 } 4987 4988 /* 4989 * mas_empty_area() - Get the lowest address within the range that is 4990 * sufficient for the size requested. 4991 * @mas: The maple state 4992 * @min: The lowest value of the range 4993 * @max: The highest value of the range 4994 * @size: The size needed 4995 */ 4996 int mas_empty_area(struct ma_state *mas, unsigned long min, 4997 unsigned long max, unsigned long size) 4998 { 4999 unsigned char offset; 5000 unsigned long *pivots; 5001 enum maple_type mt; 5002 struct maple_node *node; 5003 5004 if (min > max) 5005 return -EINVAL; 5006 5007 if (size == 0 || max - min < size - 1) 5008 return -EINVAL; 5009 5010 if (mas_is_start(mas)) 5011 mas_start(mas); 5012 else if (mas->offset >= 2) 5013 mas->offset -= 2; 5014 else if (!mas_skip_node(mas)) 5015 return -EBUSY; 5016 5017 /* Empty set */ 5018 if (mas_is_none(mas) || mas_is_ptr(mas)) 5019 return mas_sparse_area(mas, min, max, size, true); 5020 5021 /* The start of the window can only be within these values */ 5022 mas->index = min; 5023 mas->last = max; 5024 mas_awalk(mas, size); 5025 5026 if (unlikely(mas_is_err(mas))) 5027 return xa_err(mas->node); 5028 5029 offset = mas->offset; 5030 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5031 return -EBUSY; 5032 5033 node = mas_mn(mas); 5034 mt = mte_node_type(mas->node); 5035 pivots = ma_pivots(node, mt); 5036 min = mas_safe_min(mas, pivots, offset); 5037 if (mas->index < min) 5038 mas->index = min; 5039 mas->last = mas->index + size - 1; 5040 mas->end = ma_data_end(node, mt, pivots, mas->max); 5041 return 0; 5042 } 5043 EXPORT_SYMBOL_GPL(mas_empty_area); 5044 5045 /* 5046 * mas_empty_area_rev() - Get the highest address within the range that is 5047 * sufficient for the size requested. 5048 * @mas: The maple state 5049 * @min: The lowest value of the range 5050 * @max: The highest value of the range 5051 * @size: The size needed 5052 */ 5053 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5054 unsigned long max, unsigned long size) 5055 { 5056 struct maple_enode *last = mas->node; 5057 5058 if (min > max) 5059 return -EINVAL; 5060 5061 if (size == 0 || max - min < size - 1) 5062 return -EINVAL; 5063 5064 if (mas_is_start(mas)) { 5065 mas_start(mas); 5066 mas->offset = mas_data_end(mas); 5067 } else if (mas->offset >= 2) { 5068 mas->offset -= 2; 5069 } else if (!mas_rewind_node(mas)) { 5070 return -EBUSY; 5071 } 5072 5073 /* Empty set. */ 5074 if (mas_is_none(mas) || mas_is_ptr(mas)) 5075 return mas_sparse_area(mas, min, max, size, false); 5076 5077 /* The start of the window can only be within these values. */ 5078 mas->index = min; 5079 mas->last = max; 5080 5081 while (!mas_rev_awalk(mas, size, &min, &max)) { 5082 if (last == mas->node) { 5083 if (!mas_rewind_node(mas)) 5084 return -EBUSY; 5085 } else { 5086 last = mas->node; 5087 } 5088 } 5089 5090 if (mas_is_err(mas)) 5091 return xa_err(mas->node); 5092 5093 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5094 return -EBUSY; 5095 5096 /* Trim the upper limit to the max. */ 5097 if (max < mas->last) 5098 mas->last = max; 5099 5100 mas->index = mas->last - size + 1; 5101 mas->end = mas_data_end(mas); 5102 return 0; 5103 } 5104 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5105 5106 /* 5107 * mte_dead_leaves() - Mark all leaves of a node as dead. 5108 * @mas: The maple state 5109 * @slots: Pointer to the slot array 5110 * @type: The maple node type 5111 * 5112 * Must hold the write lock. 5113 * 5114 * Return: The number of leaves marked as dead. 5115 */ 5116 static inline 5117 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5118 void __rcu **slots) 5119 { 5120 struct maple_node *node; 5121 enum maple_type type; 5122 void *entry; 5123 int offset; 5124 5125 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5126 entry = mt_slot(mt, slots, offset); 5127 type = mte_node_type(entry); 5128 node = mte_to_node(entry); 5129 /* Use both node and type to catch LE & BE metadata */ 5130 if (!node || !type) 5131 break; 5132 5133 mte_set_node_dead(entry); 5134 node->type = type; 5135 rcu_assign_pointer(slots[offset], node); 5136 } 5137 5138 return offset; 5139 } 5140 5141 /** 5142 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5143 * @enode: The maple encoded node 5144 * @offset: The starting offset 5145 * 5146 * Note: This can only be used from the RCU callback context. 5147 */ 5148 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5149 { 5150 struct maple_node *node, *next; 5151 void __rcu **slots = NULL; 5152 5153 next = mte_to_node(*enode); 5154 do { 5155 *enode = ma_enode_ptr(next); 5156 node = mte_to_node(*enode); 5157 slots = ma_slots(node, node->type); 5158 next = rcu_dereference_protected(slots[offset], 5159 lock_is_held(&rcu_callback_map)); 5160 offset = 0; 5161 } while (!ma_is_leaf(next->type)); 5162 5163 return slots; 5164 } 5165 5166 /** 5167 * mt_free_walk() - Walk & free a tree in the RCU callback context 5168 * @head: The RCU head that's within the node. 5169 * 5170 * Note: This can only be used from the RCU callback context. 5171 */ 5172 static void mt_free_walk(struct rcu_head *head) 5173 { 5174 void __rcu **slots; 5175 struct maple_node *node, *start; 5176 struct maple_enode *enode; 5177 unsigned char offset; 5178 enum maple_type type; 5179 5180 node = container_of(head, struct maple_node, rcu); 5181 5182 if (ma_is_leaf(node->type)) 5183 goto free_leaf; 5184 5185 start = node; 5186 enode = mt_mk_node(node, node->type); 5187 slots = mte_dead_walk(&enode, 0); 5188 node = mte_to_node(enode); 5189 do { 5190 mt_free_bulk(node->slot_len, slots); 5191 offset = node->parent_slot + 1; 5192 enode = node->piv_parent; 5193 if (mte_to_node(enode) == node) 5194 goto free_leaf; 5195 5196 type = mte_node_type(enode); 5197 slots = ma_slots(mte_to_node(enode), type); 5198 if ((offset < mt_slots[type]) && 5199 rcu_dereference_protected(slots[offset], 5200 lock_is_held(&rcu_callback_map))) 5201 slots = mte_dead_walk(&enode, offset); 5202 node = mte_to_node(enode); 5203 } while ((node != start) || (node->slot_len < offset)); 5204 5205 slots = ma_slots(node, node->type); 5206 mt_free_bulk(node->slot_len, slots); 5207 5208 free_leaf: 5209 mt_free_rcu(&node->rcu); 5210 } 5211 5212 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5213 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5214 { 5215 struct maple_node *node; 5216 struct maple_enode *next = *enode; 5217 void __rcu **slots = NULL; 5218 enum maple_type type; 5219 unsigned char next_offset = 0; 5220 5221 do { 5222 *enode = next; 5223 node = mte_to_node(*enode); 5224 type = mte_node_type(*enode); 5225 slots = ma_slots(node, type); 5226 next = mt_slot_locked(mt, slots, next_offset); 5227 if ((mte_dead_node(next))) 5228 next = mt_slot_locked(mt, slots, ++next_offset); 5229 5230 mte_set_node_dead(*enode); 5231 node->type = type; 5232 node->piv_parent = prev; 5233 node->parent_slot = offset; 5234 offset = next_offset; 5235 next_offset = 0; 5236 prev = *enode; 5237 } while (!mte_is_leaf(next)); 5238 5239 return slots; 5240 } 5241 5242 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5243 bool free) 5244 { 5245 void __rcu **slots; 5246 struct maple_node *node = mte_to_node(enode); 5247 struct maple_enode *start; 5248 5249 if (mte_is_leaf(enode)) { 5250 node->type = mte_node_type(enode); 5251 goto free_leaf; 5252 } 5253 5254 start = enode; 5255 slots = mte_destroy_descend(&enode, mt, start, 0); 5256 node = mte_to_node(enode); // Updated in the above call. 5257 do { 5258 enum maple_type type; 5259 unsigned char offset; 5260 struct maple_enode *parent, *tmp; 5261 5262 node->slot_len = mte_dead_leaves(enode, mt, slots); 5263 if (free) 5264 mt_free_bulk(node->slot_len, slots); 5265 offset = node->parent_slot + 1; 5266 enode = node->piv_parent; 5267 if (mte_to_node(enode) == node) 5268 goto free_leaf; 5269 5270 type = mte_node_type(enode); 5271 slots = ma_slots(mte_to_node(enode), type); 5272 if (offset >= mt_slots[type]) 5273 goto next; 5274 5275 tmp = mt_slot_locked(mt, slots, offset); 5276 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5277 parent = enode; 5278 enode = tmp; 5279 slots = mte_destroy_descend(&enode, mt, parent, offset); 5280 } 5281 next: 5282 node = mte_to_node(enode); 5283 } while (start != enode); 5284 5285 node = mte_to_node(enode); 5286 node->slot_len = mte_dead_leaves(enode, mt, slots); 5287 if (free) 5288 mt_free_bulk(node->slot_len, slots); 5289 5290 free_leaf: 5291 if (free) 5292 mt_free_rcu(&node->rcu); 5293 else 5294 mt_clear_meta(mt, node, node->type); 5295 } 5296 5297 /* 5298 * mte_destroy_walk() - Free a tree or sub-tree. 5299 * @enode: the encoded maple node (maple_enode) to start 5300 * @mt: the tree to free - needed for node types. 5301 * 5302 * Must hold the write lock. 5303 */ 5304 static inline void mte_destroy_walk(struct maple_enode *enode, 5305 struct maple_tree *mt) 5306 { 5307 struct maple_node *node = mte_to_node(enode); 5308 5309 if (mt_in_rcu(mt)) { 5310 mt_destroy_walk(enode, mt, false); 5311 call_rcu(&node->rcu, mt_free_walk); 5312 } else { 5313 mt_destroy_walk(enode, mt, true); 5314 } 5315 } 5316 5317 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5318 { 5319 if (!mas_is_active(wr_mas->mas)) { 5320 if (mas_is_start(wr_mas->mas)) 5321 return; 5322 5323 if (unlikely(mas_is_paused(wr_mas->mas))) 5324 goto reset; 5325 5326 if (unlikely(mas_is_none(wr_mas->mas))) 5327 goto reset; 5328 5329 if (unlikely(mas_is_overflow(wr_mas->mas))) 5330 goto reset; 5331 5332 if (unlikely(mas_is_underflow(wr_mas->mas))) 5333 goto reset; 5334 } 5335 5336 /* 5337 * A less strict version of mas_is_span_wr() where we allow spanning 5338 * writes within this node. This is to stop partial walks in 5339 * mas_prealloc() from being reset. 5340 */ 5341 if (wr_mas->mas->last > wr_mas->mas->max) 5342 goto reset; 5343 5344 if (wr_mas->entry) 5345 return; 5346 5347 if (mte_is_leaf(wr_mas->mas->node) && 5348 wr_mas->mas->last == wr_mas->mas->max) 5349 goto reset; 5350 5351 return; 5352 5353 reset: 5354 mas_reset(wr_mas->mas); 5355 } 5356 5357 /* Interface */ 5358 5359 /** 5360 * mas_store() - Store an @entry. 5361 * @mas: The maple state. 5362 * @entry: The entry to store. 5363 * 5364 * The @mas->index and @mas->last is used to set the range for the @entry. 5365 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5366 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5367 * 5368 * Return: the first entry between mas->index and mas->last or %NULL. 5369 */ 5370 void *mas_store(struct ma_state *mas, void *entry) 5371 { 5372 MA_WR_STATE(wr_mas, mas, entry); 5373 5374 trace_ma_write(__func__, mas, 0, entry); 5375 #ifdef CONFIG_DEBUG_MAPLE_TREE 5376 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5377 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5378 5379 if (mas->index > mas->last) { 5380 mas_set_err(mas, -EINVAL); 5381 return NULL; 5382 } 5383 5384 #endif 5385 5386 /* 5387 * Storing is the same operation as insert with the added caveat that it 5388 * can overwrite entries. Although this seems simple enough, one may 5389 * want to examine what happens if a single store operation was to 5390 * overwrite multiple entries within a self-balancing B-Tree. 5391 */ 5392 mas_wr_store_setup(&wr_mas); 5393 mas_wr_store_entry(&wr_mas); 5394 return wr_mas.content; 5395 } 5396 EXPORT_SYMBOL_GPL(mas_store); 5397 5398 /** 5399 * mas_store_gfp() - Store a value into the tree. 5400 * @mas: The maple state 5401 * @entry: The entry to store 5402 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5403 * 5404 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5405 * be allocated. 5406 */ 5407 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5408 { 5409 MA_WR_STATE(wr_mas, mas, entry); 5410 5411 mas_wr_store_setup(&wr_mas); 5412 trace_ma_write(__func__, mas, 0, entry); 5413 retry: 5414 mas_wr_store_entry(&wr_mas); 5415 if (unlikely(mas_nomem(mas, gfp))) 5416 goto retry; 5417 5418 if (unlikely(mas_is_err(mas))) 5419 return xa_err(mas->node); 5420 5421 return 0; 5422 } 5423 EXPORT_SYMBOL_GPL(mas_store_gfp); 5424 5425 /** 5426 * mas_store_prealloc() - Store a value into the tree using memory 5427 * preallocated in the maple state. 5428 * @mas: The maple state 5429 * @entry: The entry to store. 5430 */ 5431 void mas_store_prealloc(struct ma_state *mas, void *entry) 5432 { 5433 MA_WR_STATE(wr_mas, mas, entry); 5434 5435 mas_wr_store_setup(&wr_mas); 5436 trace_ma_write(__func__, mas, 0, entry); 5437 mas_wr_store_entry(&wr_mas); 5438 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5439 mas_destroy(mas); 5440 } 5441 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5442 5443 /** 5444 * mas_preallocate() - Preallocate enough nodes for a store operation 5445 * @mas: The maple state 5446 * @entry: The entry that will be stored 5447 * @gfp: The GFP_FLAGS to use for allocations. 5448 * 5449 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5450 */ 5451 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5452 { 5453 MA_WR_STATE(wr_mas, mas, entry); 5454 unsigned char node_size; 5455 int request = 1; 5456 int ret; 5457 5458 5459 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 5460 goto ask_now; 5461 5462 mas_wr_store_setup(&wr_mas); 5463 wr_mas.content = mas_start(mas); 5464 /* Root expand */ 5465 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5466 goto ask_now; 5467 5468 if (unlikely(!mas_wr_walk(&wr_mas))) { 5469 /* Spanning store, use worst case for now */ 5470 request = 1 + mas_mt_height(mas) * 3; 5471 goto ask_now; 5472 } 5473 5474 /* At this point, we are at the leaf node that needs to be altered. */ 5475 /* Exact fit, no nodes needed. */ 5476 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last) 5477 return 0; 5478 5479 mas_wr_end_piv(&wr_mas); 5480 node_size = mas_wr_new_end(&wr_mas); 5481 5482 /* Slot store, does not require additional nodes */ 5483 if (node_size == mas->end) { 5484 /* reuse node */ 5485 if (!mt_in_rcu(mas->tree)) 5486 return 0; 5487 /* shifting boundary */ 5488 if (wr_mas.offset_end - mas->offset == 1) 5489 return 0; 5490 } 5491 5492 if (node_size >= mt_slots[wr_mas.type]) { 5493 /* Split, worst case for now. */ 5494 request = 1 + mas_mt_height(mas) * 2; 5495 goto ask_now; 5496 } 5497 5498 /* New root needs a single node */ 5499 if (unlikely(mte_is_root(mas->node))) 5500 goto ask_now; 5501 5502 /* Potential spanning rebalance collapsing a node, use worst-case */ 5503 if (node_size - 1 <= mt_min_slots[wr_mas.type]) 5504 request = mas_mt_height(mas) * 2 - 1; 5505 5506 /* node store, slot store needs one node */ 5507 ask_now: 5508 mas_node_count_gfp(mas, request, gfp); 5509 mas->mas_flags |= MA_STATE_PREALLOC; 5510 if (likely(!mas_is_err(mas))) 5511 return 0; 5512 5513 mas_set_alloc_req(mas, 0); 5514 ret = xa_err(mas->node); 5515 mas_reset(mas); 5516 mas_destroy(mas); 5517 mas_reset(mas); 5518 return ret; 5519 } 5520 EXPORT_SYMBOL_GPL(mas_preallocate); 5521 5522 /* 5523 * mas_destroy() - destroy a maple state. 5524 * @mas: The maple state 5525 * 5526 * Upon completion, check the left-most node and rebalance against the node to 5527 * the right if necessary. Frees any allocated nodes associated with this maple 5528 * state. 5529 */ 5530 void mas_destroy(struct ma_state *mas) 5531 { 5532 struct maple_alloc *node; 5533 unsigned long total; 5534 5535 /* 5536 * When using mas_for_each() to insert an expected number of elements, 5537 * it is possible that the number inserted is less than the expected 5538 * number. To fix an invalid final node, a check is performed here to 5539 * rebalance the previous node with the final node. 5540 */ 5541 if (mas->mas_flags & MA_STATE_REBALANCE) { 5542 unsigned char end; 5543 5544 mas_start(mas); 5545 mtree_range_walk(mas); 5546 end = mas->end + 1; 5547 if (end < mt_min_slot_count(mas->node) - 1) 5548 mas_destroy_rebalance(mas, end); 5549 5550 mas->mas_flags &= ~MA_STATE_REBALANCE; 5551 } 5552 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5553 5554 total = mas_allocated(mas); 5555 while (total) { 5556 node = mas->alloc; 5557 mas->alloc = node->slot[0]; 5558 if (node->node_count > 1) { 5559 size_t count = node->node_count - 1; 5560 5561 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5562 total -= count; 5563 } 5564 mt_free_one(ma_mnode_ptr(node)); 5565 total--; 5566 } 5567 5568 mas->alloc = NULL; 5569 } 5570 EXPORT_SYMBOL_GPL(mas_destroy); 5571 5572 /* 5573 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5574 * @mas: The maple state 5575 * @nr_entries: The number of expected entries. 5576 * 5577 * This will attempt to pre-allocate enough nodes to store the expected number 5578 * of entries. The allocations will occur using the bulk allocator interface 5579 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5580 * to ensure any unused nodes are freed. 5581 * 5582 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5583 */ 5584 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5585 { 5586 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5587 struct maple_enode *enode = mas->node; 5588 int nr_nodes; 5589 int ret; 5590 5591 /* 5592 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5593 * forking a process and duplicating the VMAs from one tree to a new 5594 * tree. When such a situation arises, it is known that the new tree is 5595 * not going to be used until the entire tree is populated. For 5596 * performance reasons, it is best to use a bulk load with RCU disabled. 5597 * This allows for optimistic splitting that favours the left and reuse 5598 * of nodes during the operation. 5599 */ 5600 5601 /* Optimize splitting for bulk insert in-order */ 5602 mas->mas_flags |= MA_STATE_BULK; 5603 5604 /* 5605 * Avoid overflow, assume a gap between each entry and a trailing null. 5606 * If this is wrong, it just means allocation can happen during 5607 * insertion of entries. 5608 */ 5609 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5610 if (!mt_is_alloc(mas->tree)) 5611 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5612 5613 /* Leaves; reduce slots to keep space for expansion */ 5614 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5615 /* Internal nodes */ 5616 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5617 /* Add working room for split (2 nodes) + new parents */ 5618 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5619 5620 /* Detect if allocations run out */ 5621 mas->mas_flags |= MA_STATE_PREALLOC; 5622 5623 if (!mas_is_err(mas)) 5624 return 0; 5625 5626 ret = xa_err(mas->node); 5627 mas->node = enode; 5628 mas_destroy(mas); 5629 return ret; 5630 5631 } 5632 EXPORT_SYMBOL_GPL(mas_expected_entries); 5633 5634 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5635 void **entry) 5636 { 5637 bool was_none = mas_is_none(mas); 5638 5639 if (unlikely(mas->last >= max)) { 5640 mas->status = ma_overflow; 5641 return true; 5642 } 5643 5644 switch (mas->status) { 5645 case ma_active: 5646 return false; 5647 case ma_none: 5648 fallthrough; 5649 case ma_pause: 5650 mas->status = ma_start; 5651 fallthrough; 5652 case ma_start: 5653 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5654 break; 5655 case ma_overflow: 5656 /* Overflowed before, but the max changed */ 5657 mas->status = ma_active; 5658 break; 5659 case ma_underflow: 5660 /* The user expects the mas to be one before where it is */ 5661 mas->status = ma_active; 5662 *entry = mas_walk(mas); 5663 if (*entry) 5664 return true; 5665 break; 5666 case ma_root: 5667 break; 5668 case ma_error: 5669 return true; 5670 } 5671 5672 if (likely(mas_is_active(mas))) /* Fast path */ 5673 return false; 5674 5675 if (mas_is_ptr(mas)) { 5676 *entry = NULL; 5677 if (was_none && mas->index == 0) { 5678 mas->index = mas->last = 0; 5679 return true; 5680 } 5681 mas->index = 1; 5682 mas->last = ULONG_MAX; 5683 mas->status = ma_none; 5684 return true; 5685 } 5686 5687 if (mas_is_none(mas)) 5688 return true; 5689 5690 return false; 5691 } 5692 5693 /** 5694 * mas_next() - Get the next entry. 5695 * @mas: The maple state 5696 * @max: The maximum index to check. 5697 * 5698 * Returns the next entry after @mas->index. 5699 * Must hold rcu_read_lock or the write lock. 5700 * Can return the zero entry. 5701 * 5702 * Return: The next entry or %NULL 5703 */ 5704 void *mas_next(struct ma_state *mas, unsigned long max) 5705 { 5706 void *entry = NULL; 5707 5708 if (mas_next_setup(mas, max, &entry)) 5709 return entry; 5710 5711 /* Retries on dead nodes handled by mas_next_slot */ 5712 return mas_next_slot(mas, max, false); 5713 } 5714 EXPORT_SYMBOL_GPL(mas_next); 5715 5716 /** 5717 * mas_next_range() - Advance the maple state to the next range 5718 * @mas: The maple state 5719 * @max: The maximum index to check. 5720 * 5721 * Sets @mas->index and @mas->last to the range. 5722 * Must hold rcu_read_lock or the write lock. 5723 * Can return the zero entry. 5724 * 5725 * Return: The next entry or %NULL 5726 */ 5727 void *mas_next_range(struct ma_state *mas, unsigned long max) 5728 { 5729 void *entry = NULL; 5730 5731 if (mas_next_setup(mas, max, &entry)) 5732 return entry; 5733 5734 /* Retries on dead nodes handled by mas_next_slot */ 5735 return mas_next_slot(mas, max, true); 5736 } 5737 EXPORT_SYMBOL_GPL(mas_next_range); 5738 5739 /** 5740 * mt_next() - get the next value in the maple tree 5741 * @mt: The maple tree 5742 * @index: The start index 5743 * @max: The maximum index to check 5744 * 5745 * Takes RCU read lock internally to protect the search, which does not 5746 * protect the returned pointer after dropping RCU read lock. 5747 * See also: Documentation/core-api/maple_tree.rst 5748 * 5749 * Return: The entry higher than @index or %NULL if nothing is found. 5750 */ 5751 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5752 { 5753 void *entry = NULL; 5754 MA_STATE(mas, mt, index, index); 5755 5756 rcu_read_lock(); 5757 entry = mas_next(&mas, max); 5758 rcu_read_unlock(); 5759 return entry; 5760 } 5761 EXPORT_SYMBOL_GPL(mt_next); 5762 5763 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5764 { 5765 if (unlikely(mas->index <= min)) { 5766 mas->status = ma_underflow; 5767 return true; 5768 } 5769 5770 switch (mas->status) { 5771 case ma_active: 5772 return false; 5773 case ma_start: 5774 break; 5775 case ma_none: 5776 fallthrough; 5777 case ma_pause: 5778 mas->status = ma_start; 5779 break; 5780 case ma_underflow: 5781 /* underflowed before but the min changed */ 5782 mas->status = ma_active; 5783 break; 5784 case ma_overflow: 5785 /* User expects mas to be one after where it is */ 5786 mas->status = ma_active; 5787 *entry = mas_walk(mas); 5788 if (*entry) 5789 return true; 5790 break; 5791 case ma_root: 5792 break; 5793 case ma_error: 5794 return true; 5795 } 5796 5797 if (mas_is_start(mas)) 5798 mas_walk(mas); 5799 5800 if (unlikely(mas_is_ptr(mas))) { 5801 if (!mas->index) { 5802 mas->status = ma_none; 5803 return true; 5804 } 5805 mas->index = mas->last = 0; 5806 *entry = mas_root(mas); 5807 return true; 5808 } 5809 5810 if (mas_is_none(mas)) { 5811 if (mas->index) { 5812 /* Walked to out-of-range pointer? */ 5813 mas->index = mas->last = 0; 5814 mas->status = ma_root; 5815 *entry = mas_root(mas); 5816 return true; 5817 } 5818 return true; 5819 } 5820 5821 return false; 5822 } 5823 5824 /** 5825 * mas_prev() - Get the previous entry 5826 * @mas: The maple state 5827 * @min: The minimum value to check. 5828 * 5829 * Must hold rcu_read_lock or the write lock. 5830 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5831 * searchable nodes. 5832 * 5833 * Return: the previous value or %NULL. 5834 */ 5835 void *mas_prev(struct ma_state *mas, unsigned long min) 5836 { 5837 void *entry = NULL; 5838 5839 if (mas_prev_setup(mas, min, &entry)) 5840 return entry; 5841 5842 return mas_prev_slot(mas, min, false); 5843 } 5844 EXPORT_SYMBOL_GPL(mas_prev); 5845 5846 /** 5847 * mas_prev_range() - Advance to the previous range 5848 * @mas: The maple state 5849 * @min: The minimum value to check. 5850 * 5851 * Sets @mas->index and @mas->last to the range. 5852 * Must hold rcu_read_lock or the write lock. 5853 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5854 * searchable nodes. 5855 * 5856 * Return: the previous value or %NULL. 5857 */ 5858 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5859 { 5860 void *entry = NULL; 5861 5862 if (mas_prev_setup(mas, min, &entry)) 5863 return entry; 5864 5865 return mas_prev_slot(mas, min, true); 5866 } 5867 EXPORT_SYMBOL_GPL(mas_prev_range); 5868 5869 /** 5870 * mt_prev() - get the previous value in the maple tree 5871 * @mt: The maple tree 5872 * @index: The start index 5873 * @min: The minimum index to check 5874 * 5875 * Takes RCU read lock internally to protect the search, which does not 5876 * protect the returned pointer after dropping RCU read lock. 5877 * See also: Documentation/core-api/maple_tree.rst 5878 * 5879 * Return: The entry before @index or %NULL if nothing is found. 5880 */ 5881 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5882 { 5883 void *entry = NULL; 5884 MA_STATE(mas, mt, index, index); 5885 5886 rcu_read_lock(); 5887 entry = mas_prev(&mas, min); 5888 rcu_read_unlock(); 5889 return entry; 5890 } 5891 EXPORT_SYMBOL_GPL(mt_prev); 5892 5893 /** 5894 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5895 * @mas: The maple state to pause 5896 * 5897 * Some users need to pause a walk and drop the lock they're holding in 5898 * order to yield to a higher priority thread or carry out an operation 5899 * on an entry. Those users should call this function before they drop 5900 * the lock. It resets the @mas to be suitable for the next iteration 5901 * of the loop after the user has reacquired the lock. If most entries 5902 * found during a walk require you to call mas_pause(), the mt_for_each() 5903 * iterator may be more appropriate. 5904 * 5905 */ 5906 void mas_pause(struct ma_state *mas) 5907 { 5908 mas->status = ma_pause; 5909 mas->node = NULL; 5910 } 5911 EXPORT_SYMBOL_GPL(mas_pause); 5912 5913 /** 5914 * mas_find_setup() - Internal function to set up mas_find*(). 5915 * @mas: The maple state 5916 * @max: The maximum index 5917 * @entry: Pointer to the entry 5918 * 5919 * Returns: True if entry is the answer, false otherwise. 5920 */ 5921 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5922 { 5923 switch (mas->status) { 5924 case ma_active: 5925 if (mas->last < max) 5926 return false; 5927 return true; 5928 case ma_start: 5929 break; 5930 case ma_pause: 5931 if (unlikely(mas->last >= max)) 5932 return true; 5933 5934 mas->index = ++mas->last; 5935 mas->status = ma_start; 5936 break; 5937 case ma_none: 5938 if (unlikely(mas->last >= max)) 5939 return true; 5940 5941 mas->index = mas->last; 5942 mas->status = ma_start; 5943 break; 5944 case ma_underflow: 5945 /* mas is pointing at entry before unable to go lower */ 5946 if (unlikely(mas->index >= max)) { 5947 mas->status = ma_overflow; 5948 return true; 5949 } 5950 5951 mas->status = ma_active; 5952 *entry = mas_walk(mas); 5953 if (*entry) 5954 return true; 5955 break; 5956 case ma_overflow: 5957 if (unlikely(mas->last >= max)) 5958 return true; 5959 5960 mas->status = ma_active; 5961 *entry = mas_walk(mas); 5962 if (*entry) 5963 return true; 5964 break; 5965 case ma_root: 5966 break; 5967 case ma_error: 5968 return true; 5969 } 5970 5971 if (mas_is_start(mas)) { 5972 /* First run or continue */ 5973 if (mas->index > max) 5974 return true; 5975 5976 *entry = mas_walk(mas); 5977 if (*entry) 5978 return true; 5979 5980 } 5981 5982 if (unlikely(mas_is_ptr(mas))) 5983 goto ptr_out_of_range; 5984 5985 if (unlikely(mas_is_none(mas))) 5986 return true; 5987 5988 if (mas->index == max) 5989 return true; 5990 5991 return false; 5992 5993 ptr_out_of_range: 5994 mas->status = ma_none; 5995 mas->index = 1; 5996 mas->last = ULONG_MAX; 5997 return true; 5998 } 5999 6000 /** 6001 * mas_find() - On the first call, find the entry at or after mas->index up to 6002 * %max. Otherwise, find the entry after mas->index. 6003 * @mas: The maple state 6004 * @max: The maximum value to check. 6005 * 6006 * Must hold rcu_read_lock or the write lock. 6007 * If an entry exists, last and index are updated accordingly. 6008 * May set @mas->status to ma_overflow. 6009 * 6010 * Return: The entry or %NULL. 6011 */ 6012 void *mas_find(struct ma_state *mas, unsigned long max) 6013 { 6014 void *entry = NULL; 6015 6016 if (mas_find_setup(mas, max, &entry)) 6017 return entry; 6018 6019 /* Retries on dead nodes handled by mas_next_slot */ 6020 entry = mas_next_slot(mas, max, false); 6021 /* Ignore overflow */ 6022 mas->status = ma_active; 6023 return entry; 6024 } 6025 EXPORT_SYMBOL_GPL(mas_find); 6026 6027 /** 6028 * mas_find_range() - On the first call, find the entry at or after 6029 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6030 * @mas: The maple state 6031 * @max: The maximum value to check. 6032 * 6033 * Must hold rcu_read_lock or the write lock. 6034 * If an entry exists, last and index are updated accordingly. 6035 * May set @mas->status to ma_overflow. 6036 * 6037 * Return: The entry or %NULL. 6038 */ 6039 void *mas_find_range(struct ma_state *mas, unsigned long max) 6040 { 6041 void *entry = NULL; 6042 6043 if (mas_find_setup(mas, max, &entry)) 6044 return entry; 6045 6046 /* Retries on dead nodes handled by mas_next_slot */ 6047 return mas_next_slot(mas, max, true); 6048 } 6049 EXPORT_SYMBOL_GPL(mas_find_range); 6050 6051 /** 6052 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6053 * @mas: The maple state 6054 * @min: The minimum index 6055 * @entry: Pointer to the entry 6056 * 6057 * Returns: True if entry is the answer, false otherwise. 6058 */ 6059 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6060 void **entry) 6061 { 6062 6063 switch (mas->status) { 6064 case ma_active: 6065 goto active; 6066 case ma_start: 6067 break; 6068 case ma_pause: 6069 if (unlikely(mas->index <= min)) { 6070 mas->status = ma_underflow; 6071 return true; 6072 } 6073 mas->last = --mas->index; 6074 mas->status = ma_start; 6075 break; 6076 case ma_none: 6077 if (mas->index <= min) 6078 goto none; 6079 6080 mas->last = mas->index; 6081 mas->status = ma_start; 6082 break; 6083 case ma_overflow: /* user expects the mas to be one after where it is */ 6084 if (unlikely(mas->index <= min)) { 6085 mas->status = ma_underflow; 6086 return true; 6087 } 6088 6089 mas->status = ma_active; 6090 break; 6091 case ma_underflow: /* user expects the mas to be one before where it is */ 6092 if (unlikely(mas->index <= min)) 6093 return true; 6094 6095 mas->status = ma_active; 6096 break; 6097 case ma_root: 6098 break; 6099 case ma_error: 6100 return true; 6101 } 6102 6103 if (mas_is_start(mas)) { 6104 /* First run or continue */ 6105 if (mas->index < min) 6106 return true; 6107 6108 *entry = mas_walk(mas); 6109 if (*entry) 6110 return true; 6111 } 6112 6113 if (unlikely(mas_is_ptr(mas))) 6114 goto none; 6115 6116 if (unlikely(mas_is_none(mas))) { 6117 /* 6118 * Walked to the location, and there was nothing so the previous 6119 * location is 0. 6120 */ 6121 mas->last = mas->index = 0; 6122 mas->status = ma_root; 6123 *entry = mas_root(mas); 6124 return true; 6125 } 6126 6127 active: 6128 if (mas->index < min) 6129 return true; 6130 6131 return false; 6132 6133 none: 6134 mas->status = ma_none; 6135 return true; 6136 } 6137 6138 /** 6139 * mas_find_rev: On the first call, find the first non-null entry at or below 6140 * mas->index down to %min. Otherwise find the first non-null entry below 6141 * mas->index down to %min. 6142 * @mas: The maple state 6143 * @min: The minimum value to check. 6144 * 6145 * Must hold rcu_read_lock or the write lock. 6146 * If an entry exists, last and index are updated accordingly. 6147 * May set @mas->status to ma_underflow. 6148 * 6149 * Return: The entry or %NULL. 6150 */ 6151 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6152 { 6153 void *entry = NULL; 6154 6155 if (mas_find_rev_setup(mas, min, &entry)) 6156 return entry; 6157 6158 /* Retries on dead nodes handled by mas_prev_slot */ 6159 return mas_prev_slot(mas, min, false); 6160 6161 } 6162 EXPORT_SYMBOL_GPL(mas_find_rev); 6163 6164 /** 6165 * mas_find_range_rev: On the first call, find the first non-null entry at or 6166 * below mas->index down to %min. Otherwise advance to the previous slot after 6167 * mas->index down to %min. 6168 * @mas: The maple state 6169 * @min: The minimum value to check. 6170 * 6171 * Must hold rcu_read_lock or the write lock. 6172 * If an entry exists, last and index are updated accordingly. 6173 * May set @mas->status to ma_underflow. 6174 * 6175 * Return: The entry or %NULL. 6176 */ 6177 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6178 { 6179 void *entry = NULL; 6180 6181 if (mas_find_rev_setup(mas, min, &entry)) 6182 return entry; 6183 6184 /* Retries on dead nodes handled by mas_prev_slot */ 6185 return mas_prev_slot(mas, min, true); 6186 } 6187 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6188 6189 /** 6190 * mas_erase() - Find the range in which index resides and erase the entire 6191 * range. 6192 * @mas: The maple state 6193 * 6194 * Must hold the write lock. 6195 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6196 * erases that range. 6197 * 6198 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6199 */ 6200 void *mas_erase(struct ma_state *mas) 6201 { 6202 void *entry; 6203 MA_WR_STATE(wr_mas, mas, NULL); 6204 6205 if (!mas_is_active(mas) || !mas_is_start(mas)) 6206 mas->status = ma_start; 6207 6208 /* Retry unnecessary when holding the write lock. */ 6209 entry = mas_state_walk(mas); 6210 if (!entry) 6211 return NULL; 6212 6213 write_retry: 6214 /* Must reset to ensure spanning writes of last slot are detected */ 6215 mas_reset(mas); 6216 mas_wr_store_setup(&wr_mas); 6217 mas_wr_store_entry(&wr_mas); 6218 if (mas_nomem(mas, GFP_KERNEL)) 6219 goto write_retry; 6220 6221 return entry; 6222 } 6223 EXPORT_SYMBOL_GPL(mas_erase); 6224 6225 /** 6226 * mas_nomem() - Check if there was an error allocating and do the allocation 6227 * if necessary If there are allocations, then free them. 6228 * @mas: The maple state 6229 * @gfp: The GFP_FLAGS to use for allocations 6230 * Return: true on allocation, false otherwise. 6231 */ 6232 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6233 __must_hold(mas->tree->ma_lock) 6234 { 6235 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6236 mas_destroy(mas); 6237 return false; 6238 } 6239 6240 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6241 mtree_unlock(mas->tree); 6242 mas_alloc_nodes(mas, gfp); 6243 mtree_lock(mas->tree); 6244 } else { 6245 mas_alloc_nodes(mas, gfp); 6246 } 6247 6248 if (!mas_allocated(mas)) 6249 return false; 6250 6251 mas->status = ma_start; 6252 return true; 6253 } 6254 6255 void __init maple_tree_init(void) 6256 { 6257 maple_node_cache = kmem_cache_create("maple_node", 6258 sizeof(struct maple_node), sizeof(struct maple_node), 6259 SLAB_PANIC, NULL); 6260 } 6261 6262 /** 6263 * mtree_load() - Load a value stored in a maple tree 6264 * @mt: The maple tree 6265 * @index: The index to load 6266 * 6267 * Return: the entry or %NULL 6268 */ 6269 void *mtree_load(struct maple_tree *mt, unsigned long index) 6270 { 6271 MA_STATE(mas, mt, index, index); 6272 void *entry; 6273 6274 trace_ma_read(__func__, &mas); 6275 rcu_read_lock(); 6276 retry: 6277 entry = mas_start(&mas); 6278 if (unlikely(mas_is_none(&mas))) 6279 goto unlock; 6280 6281 if (unlikely(mas_is_ptr(&mas))) { 6282 if (index) 6283 entry = NULL; 6284 6285 goto unlock; 6286 } 6287 6288 entry = mtree_lookup_walk(&mas); 6289 if (!entry && unlikely(mas_is_start(&mas))) 6290 goto retry; 6291 unlock: 6292 rcu_read_unlock(); 6293 if (xa_is_zero(entry)) 6294 return NULL; 6295 6296 return entry; 6297 } 6298 EXPORT_SYMBOL(mtree_load); 6299 6300 /** 6301 * mtree_store_range() - Store an entry at a given range. 6302 * @mt: The maple tree 6303 * @index: The start of the range 6304 * @last: The end of the range 6305 * @entry: The entry to store 6306 * @gfp: The GFP_FLAGS to use for allocations 6307 * 6308 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6309 * be allocated. 6310 */ 6311 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6312 unsigned long last, void *entry, gfp_t gfp) 6313 { 6314 MA_STATE(mas, mt, index, last); 6315 MA_WR_STATE(wr_mas, &mas, entry); 6316 6317 trace_ma_write(__func__, &mas, 0, entry); 6318 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6319 return -EINVAL; 6320 6321 if (index > last) 6322 return -EINVAL; 6323 6324 mtree_lock(mt); 6325 retry: 6326 mas_wr_store_entry(&wr_mas); 6327 if (mas_nomem(&mas, gfp)) 6328 goto retry; 6329 6330 mtree_unlock(mt); 6331 if (mas_is_err(&mas)) 6332 return xa_err(mas.node); 6333 6334 return 0; 6335 } 6336 EXPORT_SYMBOL(mtree_store_range); 6337 6338 /** 6339 * mtree_store() - Store an entry at a given index. 6340 * @mt: The maple tree 6341 * @index: The index to store the value 6342 * @entry: The entry to store 6343 * @gfp: The GFP_FLAGS to use for allocations 6344 * 6345 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6346 * be allocated. 6347 */ 6348 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6349 gfp_t gfp) 6350 { 6351 return mtree_store_range(mt, index, index, entry, gfp); 6352 } 6353 EXPORT_SYMBOL(mtree_store); 6354 6355 /** 6356 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6357 * @mt: The maple tree 6358 * @first: The start of the range 6359 * @last: The end of the range 6360 * @entry: The entry to store 6361 * @gfp: The GFP_FLAGS to use for allocations. 6362 * 6363 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6364 * request, -ENOMEM if memory could not be allocated. 6365 */ 6366 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6367 unsigned long last, void *entry, gfp_t gfp) 6368 { 6369 MA_STATE(ms, mt, first, last); 6370 6371 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6372 return -EINVAL; 6373 6374 if (first > last) 6375 return -EINVAL; 6376 6377 mtree_lock(mt); 6378 retry: 6379 mas_insert(&ms, entry); 6380 if (mas_nomem(&ms, gfp)) 6381 goto retry; 6382 6383 mtree_unlock(mt); 6384 if (mas_is_err(&ms)) 6385 return xa_err(ms.node); 6386 6387 return 0; 6388 } 6389 EXPORT_SYMBOL(mtree_insert_range); 6390 6391 /** 6392 * mtree_insert() - Insert an entry at a given index if there is no value. 6393 * @mt: The maple tree 6394 * @index : The index to store the value 6395 * @entry: The entry to store 6396 * @gfp: The GFP_FLAGS to use for allocations. 6397 * 6398 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6399 * request, -ENOMEM if memory could not be allocated. 6400 */ 6401 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6402 gfp_t gfp) 6403 { 6404 return mtree_insert_range(mt, index, index, entry, gfp); 6405 } 6406 EXPORT_SYMBOL(mtree_insert); 6407 6408 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6409 void *entry, unsigned long size, unsigned long min, 6410 unsigned long max, gfp_t gfp) 6411 { 6412 int ret = 0; 6413 6414 MA_STATE(mas, mt, 0, 0); 6415 if (!mt_is_alloc(mt)) 6416 return -EINVAL; 6417 6418 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6419 return -EINVAL; 6420 6421 mtree_lock(mt); 6422 retry: 6423 ret = mas_empty_area(&mas, min, max, size); 6424 if (ret) 6425 goto unlock; 6426 6427 mas_insert(&mas, entry); 6428 /* 6429 * mas_nomem() may release the lock, causing the allocated area 6430 * to be unavailable, so try to allocate a free area again. 6431 */ 6432 if (mas_nomem(&mas, gfp)) 6433 goto retry; 6434 6435 if (mas_is_err(&mas)) 6436 ret = xa_err(mas.node); 6437 else 6438 *startp = mas.index; 6439 6440 unlock: 6441 mtree_unlock(mt); 6442 return ret; 6443 } 6444 EXPORT_SYMBOL(mtree_alloc_range); 6445 6446 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6447 void *entry, unsigned long size, unsigned long min, 6448 unsigned long max, gfp_t gfp) 6449 { 6450 int ret = 0; 6451 6452 MA_STATE(mas, mt, 0, 0); 6453 if (!mt_is_alloc(mt)) 6454 return -EINVAL; 6455 6456 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6457 return -EINVAL; 6458 6459 mtree_lock(mt); 6460 retry: 6461 ret = mas_empty_area_rev(&mas, min, max, size); 6462 if (ret) 6463 goto unlock; 6464 6465 mas_insert(&mas, entry); 6466 /* 6467 * mas_nomem() may release the lock, causing the allocated area 6468 * to be unavailable, so try to allocate a free area again. 6469 */ 6470 if (mas_nomem(&mas, gfp)) 6471 goto retry; 6472 6473 if (mas_is_err(&mas)) 6474 ret = xa_err(mas.node); 6475 else 6476 *startp = mas.index; 6477 6478 unlock: 6479 mtree_unlock(mt); 6480 return ret; 6481 } 6482 EXPORT_SYMBOL(mtree_alloc_rrange); 6483 6484 /** 6485 * mtree_erase() - Find an index and erase the entire range. 6486 * @mt: The maple tree 6487 * @index: The index to erase 6488 * 6489 * Erasing is the same as a walk to an entry then a store of a NULL to that 6490 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6491 * 6492 * Return: The entry stored at the @index or %NULL 6493 */ 6494 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6495 { 6496 void *entry = NULL; 6497 6498 MA_STATE(mas, mt, index, index); 6499 trace_ma_op(__func__, &mas); 6500 6501 mtree_lock(mt); 6502 entry = mas_erase(&mas); 6503 mtree_unlock(mt); 6504 6505 return entry; 6506 } 6507 EXPORT_SYMBOL(mtree_erase); 6508 6509 /* 6510 * mas_dup_free() - Free an incomplete duplication of a tree. 6511 * @mas: The maple state of a incomplete tree. 6512 * 6513 * The parameter @mas->node passed in indicates that the allocation failed on 6514 * this node. This function frees all nodes starting from @mas->node in the 6515 * reverse order of mas_dup_build(). There is no need to hold the source tree 6516 * lock at this time. 6517 */ 6518 static void mas_dup_free(struct ma_state *mas) 6519 { 6520 struct maple_node *node; 6521 enum maple_type type; 6522 void __rcu **slots; 6523 unsigned char count, i; 6524 6525 /* Maybe the first node allocation failed. */ 6526 if (mas_is_none(mas)) 6527 return; 6528 6529 while (!mte_is_root(mas->node)) { 6530 mas_ascend(mas); 6531 if (mas->offset) { 6532 mas->offset--; 6533 do { 6534 mas_descend(mas); 6535 mas->offset = mas_data_end(mas); 6536 } while (!mte_is_leaf(mas->node)); 6537 6538 mas_ascend(mas); 6539 } 6540 6541 node = mte_to_node(mas->node); 6542 type = mte_node_type(mas->node); 6543 slots = ma_slots(node, type); 6544 count = mas_data_end(mas) + 1; 6545 for (i = 0; i < count; i++) 6546 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6547 mt_free_bulk(count, slots); 6548 } 6549 6550 node = mte_to_node(mas->node); 6551 mt_free_one(node); 6552 } 6553 6554 /* 6555 * mas_copy_node() - Copy a maple node and replace the parent. 6556 * @mas: The maple state of source tree. 6557 * @new_mas: The maple state of new tree. 6558 * @parent: The parent of the new node. 6559 * 6560 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6561 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6562 */ 6563 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6564 struct maple_pnode *parent) 6565 { 6566 struct maple_node *node = mte_to_node(mas->node); 6567 struct maple_node *new_node = mte_to_node(new_mas->node); 6568 unsigned long val; 6569 6570 /* Copy the node completely. */ 6571 memcpy(new_node, node, sizeof(struct maple_node)); 6572 /* Update the parent node pointer. */ 6573 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6574 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6575 } 6576 6577 /* 6578 * mas_dup_alloc() - Allocate child nodes for a maple node. 6579 * @mas: The maple state of source tree. 6580 * @new_mas: The maple state of new tree. 6581 * @gfp: The GFP_FLAGS to use for allocations. 6582 * 6583 * This function allocates child nodes for @new_mas->node during the duplication 6584 * process. If memory allocation fails, @mas is set to -ENOMEM. 6585 */ 6586 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6587 gfp_t gfp) 6588 { 6589 struct maple_node *node = mte_to_node(mas->node); 6590 struct maple_node *new_node = mte_to_node(new_mas->node); 6591 enum maple_type type; 6592 unsigned char request, count, i; 6593 void __rcu **slots; 6594 void __rcu **new_slots; 6595 unsigned long val; 6596 6597 /* Allocate memory for child nodes. */ 6598 type = mte_node_type(mas->node); 6599 new_slots = ma_slots(new_node, type); 6600 request = mas_data_end(mas) + 1; 6601 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6602 if (unlikely(count < request)) { 6603 memset(new_slots, 0, request * sizeof(void *)); 6604 mas_set_err(mas, -ENOMEM); 6605 return; 6606 } 6607 6608 /* Restore node type information in slots. */ 6609 slots = ma_slots(node, type); 6610 for (i = 0; i < count; i++) { 6611 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6612 val &= MAPLE_NODE_MASK; 6613 ((unsigned long *)new_slots)[i] |= val; 6614 } 6615 } 6616 6617 /* 6618 * mas_dup_build() - Build a new maple tree from a source tree 6619 * @mas: The maple state of source tree, need to be in MAS_START state. 6620 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6621 * @gfp: The GFP_FLAGS to use for allocations. 6622 * 6623 * This function builds a new tree in DFS preorder. If the memory allocation 6624 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6625 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6626 * 6627 * Note that the attributes of the two trees need to be exactly the same, and the 6628 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6629 */ 6630 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6631 gfp_t gfp) 6632 { 6633 struct maple_node *node; 6634 struct maple_pnode *parent = NULL; 6635 struct maple_enode *root; 6636 enum maple_type type; 6637 6638 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6639 unlikely(!mtree_empty(new_mas->tree))) { 6640 mas_set_err(mas, -EINVAL); 6641 return; 6642 } 6643 6644 root = mas_start(mas); 6645 if (mas_is_ptr(mas) || mas_is_none(mas)) 6646 goto set_new_tree; 6647 6648 node = mt_alloc_one(gfp); 6649 if (!node) { 6650 new_mas->status = ma_none; 6651 mas_set_err(mas, -ENOMEM); 6652 return; 6653 } 6654 6655 type = mte_node_type(mas->node); 6656 root = mt_mk_node(node, type); 6657 new_mas->node = root; 6658 new_mas->min = 0; 6659 new_mas->max = ULONG_MAX; 6660 root = mte_mk_root(root); 6661 while (1) { 6662 mas_copy_node(mas, new_mas, parent); 6663 if (!mte_is_leaf(mas->node)) { 6664 /* Only allocate child nodes for non-leaf nodes. */ 6665 mas_dup_alloc(mas, new_mas, gfp); 6666 if (unlikely(mas_is_err(mas))) 6667 return; 6668 } else { 6669 /* 6670 * This is the last leaf node and duplication is 6671 * completed. 6672 */ 6673 if (mas->max == ULONG_MAX) 6674 goto done; 6675 6676 /* This is not the last leaf node and needs to go up. */ 6677 do { 6678 mas_ascend(mas); 6679 mas_ascend(new_mas); 6680 } while (mas->offset == mas_data_end(mas)); 6681 6682 /* Move to the next subtree. */ 6683 mas->offset++; 6684 new_mas->offset++; 6685 } 6686 6687 mas_descend(mas); 6688 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6689 mas_descend(new_mas); 6690 mas->offset = 0; 6691 new_mas->offset = 0; 6692 } 6693 done: 6694 /* Specially handle the parent of the root node. */ 6695 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6696 set_new_tree: 6697 /* Make them the same height */ 6698 new_mas->tree->ma_flags = mas->tree->ma_flags; 6699 rcu_assign_pointer(new_mas->tree->ma_root, root); 6700 } 6701 6702 /** 6703 * __mt_dup(): Duplicate an entire maple tree 6704 * @mt: The source maple tree 6705 * @new: The new maple tree 6706 * @gfp: The GFP_FLAGS to use for allocations 6707 * 6708 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6709 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6710 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6711 * source node except for all the addresses stored in it. It will be faster than 6712 * traversing all elements in the source tree and inserting them one by one into 6713 * the new tree. 6714 * The user needs to ensure that the attributes of the source tree and the new 6715 * tree are the same, and the new tree needs to be an empty tree, otherwise 6716 * -EINVAL will be returned. 6717 * Note that the user needs to manually lock the source tree and the new tree. 6718 * 6719 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6720 * the attributes of the two trees are different or the new tree is not an empty 6721 * tree. 6722 */ 6723 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6724 { 6725 int ret = 0; 6726 MA_STATE(mas, mt, 0, 0); 6727 MA_STATE(new_mas, new, 0, 0); 6728 6729 mas_dup_build(&mas, &new_mas, gfp); 6730 if (unlikely(mas_is_err(&mas))) { 6731 ret = xa_err(mas.node); 6732 if (ret == -ENOMEM) 6733 mas_dup_free(&new_mas); 6734 } 6735 6736 return ret; 6737 } 6738 EXPORT_SYMBOL(__mt_dup); 6739 6740 /** 6741 * mtree_dup(): Duplicate an entire maple tree 6742 * @mt: The source maple tree 6743 * @new: The new maple tree 6744 * @gfp: The GFP_FLAGS to use for allocations 6745 * 6746 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6747 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6748 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6749 * source node except for all the addresses stored in it. It will be faster than 6750 * traversing all elements in the source tree and inserting them one by one into 6751 * the new tree. 6752 * The user needs to ensure that the attributes of the source tree and the new 6753 * tree are the same, and the new tree needs to be an empty tree, otherwise 6754 * -EINVAL will be returned. 6755 * 6756 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6757 * the attributes of the two trees are different or the new tree is not an empty 6758 * tree. 6759 */ 6760 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6761 { 6762 int ret = 0; 6763 MA_STATE(mas, mt, 0, 0); 6764 MA_STATE(new_mas, new, 0, 0); 6765 6766 mas_lock(&new_mas); 6767 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6768 mas_dup_build(&mas, &new_mas, gfp); 6769 mas_unlock(&mas); 6770 if (unlikely(mas_is_err(&mas))) { 6771 ret = xa_err(mas.node); 6772 if (ret == -ENOMEM) 6773 mas_dup_free(&new_mas); 6774 } 6775 6776 mas_unlock(&new_mas); 6777 return ret; 6778 } 6779 EXPORT_SYMBOL(mtree_dup); 6780 6781 /** 6782 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6783 * @mt: The maple tree 6784 * 6785 * Note: Does not handle locking. 6786 */ 6787 void __mt_destroy(struct maple_tree *mt) 6788 { 6789 void *root = mt_root_locked(mt); 6790 6791 rcu_assign_pointer(mt->ma_root, NULL); 6792 if (xa_is_node(root)) 6793 mte_destroy_walk(root, mt); 6794 6795 mt->ma_flags = mt_attr(mt); 6796 } 6797 EXPORT_SYMBOL_GPL(__mt_destroy); 6798 6799 /** 6800 * mtree_destroy() - Destroy a maple tree 6801 * @mt: The maple tree 6802 * 6803 * Frees all resources used by the tree. Handles locking. 6804 */ 6805 void mtree_destroy(struct maple_tree *mt) 6806 { 6807 mtree_lock(mt); 6808 __mt_destroy(mt); 6809 mtree_unlock(mt); 6810 } 6811 EXPORT_SYMBOL(mtree_destroy); 6812 6813 /** 6814 * mt_find() - Search from the start up until an entry is found. 6815 * @mt: The maple tree 6816 * @index: Pointer which contains the start location of the search 6817 * @max: The maximum value of the search range 6818 * 6819 * Takes RCU read lock internally to protect the search, which does not 6820 * protect the returned pointer after dropping RCU read lock. 6821 * See also: Documentation/core-api/maple_tree.rst 6822 * 6823 * In case that an entry is found @index is updated to point to the next 6824 * possible entry independent whether the found entry is occupying a 6825 * single index or a range if indices. 6826 * 6827 * Return: The entry at or after the @index or %NULL 6828 */ 6829 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6830 { 6831 MA_STATE(mas, mt, *index, *index); 6832 void *entry; 6833 #ifdef CONFIG_DEBUG_MAPLE_TREE 6834 unsigned long copy = *index; 6835 #endif 6836 6837 trace_ma_read(__func__, &mas); 6838 6839 if ((*index) > max) 6840 return NULL; 6841 6842 rcu_read_lock(); 6843 retry: 6844 entry = mas_state_walk(&mas); 6845 if (mas_is_start(&mas)) 6846 goto retry; 6847 6848 if (unlikely(xa_is_zero(entry))) 6849 entry = NULL; 6850 6851 if (entry) 6852 goto unlock; 6853 6854 while (mas_is_active(&mas) && (mas.last < max)) { 6855 entry = mas_next_entry(&mas, max); 6856 if (likely(entry && !xa_is_zero(entry))) 6857 break; 6858 } 6859 6860 if (unlikely(xa_is_zero(entry))) 6861 entry = NULL; 6862 unlock: 6863 rcu_read_unlock(); 6864 if (likely(entry)) { 6865 *index = mas.last + 1; 6866 #ifdef CONFIG_DEBUG_MAPLE_TREE 6867 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6868 pr_err("index not increased! %lx <= %lx\n", 6869 *index, copy); 6870 #endif 6871 } 6872 6873 return entry; 6874 } 6875 EXPORT_SYMBOL(mt_find); 6876 6877 /** 6878 * mt_find_after() - Search from the start up until an entry is found. 6879 * @mt: The maple tree 6880 * @index: Pointer which contains the start location of the search 6881 * @max: The maximum value to check 6882 * 6883 * Same as mt_find() except that it checks @index for 0 before 6884 * searching. If @index == 0, the search is aborted. This covers a wrap 6885 * around of @index to 0 in an iterator loop. 6886 * 6887 * Return: The entry at or after the @index or %NULL 6888 */ 6889 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6890 unsigned long max) 6891 { 6892 if (!(*index)) 6893 return NULL; 6894 6895 return mt_find(mt, index, max); 6896 } 6897 EXPORT_SYMBOL(mt_find_after); 6898 6899 #ifdef CONFIG_DEBUG_MAPLE_TREE 6900 atomic_t maple_tree_tests_run; 6901 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6902 atomic_t maple_tree_tests_passed; 6903 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6904 6905 #ifndef __KERNEL__ 6906 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6907 void mt_set_non_kernel(unsigned int val) 6908 { 6909 kmem_cache_set_non_kernel(maple_node_cache, val); 6910 } 6911 6912 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6913 unsigned long mt_get_alloc_size(void) 6914 { 6915 return kmem_cache_get_alloc(maple_node_cache); 6916 } 6917 6918 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6919 void mt_zero_nr_tallocated(void) 6920 { 6921 kmem_cache_zero_nr_tallocated(maple_node_cache); 6922 } 6923 6924 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6925 unsigned int mt_nr_tallocated(void) 6926 { 6927 return kmem_cache_nr_tallocated(maple_node_cache); 6928 } 6929 6930 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6931 unsigned int mt_nr_allocated(void) 6932 { 6933 return kmem_cache_nr_allocated(maple_node_cache); 6934 } 6935 6936 void mt_cache_shrink(void) 6937 { 6938 } 6939 #else 6940 /* 6941 * mt_cache_shrink() - For testing, don't use this. 6942 * 6943 * Certain testcases can trigger an OOM when combined with other memory 6944 * debugging configuration options. This function is used to reduce the 6945 * possibility of an out of memory even due to kmem_cache objects remaining 6946 * around for longer than usual. 6947 */ 6948 void mt_cache_shrink(void) 6949 { 6950 kmem_cache_shrink(maple_node_cache); 6951 6952 } 6953 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6954 6955 #endif /* not defined __KERNEL__ */ 6956 /* 6957 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6958 * @mas: The maple state 6959 * @offset: The offset into the slot array to fetch. 6960 * 6961 * Return: The entry stored at @offset. 6962 */ 6963 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6964 unsigned char offset) 6965 { 6966 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6967 offset); 6968 } 6969 6970 /* Depth first search, post-order */ 6971 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6972 { 6973 6974 struct maple_enode *p, *mn = mas->node; 6975 unsigned long p_min, p_max; 6976 6977 mas_next_node(mas, mas_mn(mas), max); 6978 if (!mas_is_overflow(mas)) 6979 return; 6980 6981 if (mte_is_root(mn)) 6982 return; 6983 6984 mas->node = mn; 6985 mas_ascend(mas); 6986 do { 6987 p = mas->node; 6988 p_min = mas->min; 6989 p_max = mas->max; 6990 mas_prev_node(mas, 0); 6991 } while (!mas_is_underflow(mas)); 6992 6993 mas->node = p; 6994 mas->max = p_max; 6995 mas->min = p_min; 6996 } 6997 6998 /* Tree validations */ 6999 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7000 unsigned long min, unsigned long max, unsigned int depth, 7001 enum mt_dump_format format); 7002 static void mt_dump_range(unsigned long min, unsigned long max, 7003 unsigned int depth, enum mt_dump_format format) 7004 { 7005 static const char spaces[] = " "; 7006 7007 switch(format) { 7008 case mt_dump_hex: 7009 if (min == max) 7010 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7011 else 7012 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7013 break; 7014 case mt_dump_dec: 7015 if (min == max) 7016 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7017 else 7018 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7019 } 7020 } 7021 7022 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7023 unsigned int depth, enum mt_dump_format format) 7024 { 7025 mt_dump_range(min, max, depth, format); 7026 7027 if (xa_is_value(entry)) 7028 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7029 xa_to_value(entry), entry); 7030 else if (xa_is_zero(entry)) 7031 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7032 else if (mt_is_reserved(entry)) 7033 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7034 else 7035 pr_cont("%p\n", entry); 7036 } 7037 7038 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7039 unsigned long min, unsigned long max, unsigned int depth, 7040 enum mt_dump_format format) 7041 { 7042 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7043 bool leaf = mte_is_leaf(entry); 7044 unsigned long first = min; 7045 int i; 7046 7047 pr_cont(" contents: "); 7048 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7049 switch(format) { 7050 case mt_dump_hex: 7051 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7052 break; 7053 case mt_dump_dec: 7054 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7055 } 7056 } 7057 pr_cont("%p\n", node->slot[i]); 7058 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7059 unsigned long last = max; 7060 7061 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7062 last = node->pivot[i]; 7063 else if (!node->slot[i] && max != mt_node_max(entry)) 7064 break; 7065 if (last == 0 && i > 0) 7066 break; 7067 if (leaf) 7068 mt_dump_entry(mt_slot(mt, node->slot, i), 7069 first, last, depth + 1, format); 7070 else if (node->slot[i]) 7071 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7072 first, last, depth + 1, format); 7073 7074 if (last == max) 7075 break; 7076 if (last > max) { 7077 switch(format) { 7078 case mt_dump_hex: 7079 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7080 node, last, max, i); 7081 break; 7082 case mt_dump_dec: 7083 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7084 node, last, max, i); 7085 } 7086 } 7087 first = last + 1; 7088 } 7089 } 7090 7091 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7092 unsigned long min, unsigned long max, unsigned int depth, 7093 enum mt_dump_format format) 7094 { 7095 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7096 bool leaf = mte_is_leaf(entry); 7097 unsigned long first = min; 7098 int i; 7099 7100 pr_cont(" contents: "); 7101 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7102 switch (format) { 7103 case mt_dump_hex: 7104 pr_cont("%lx ", node->gap[i]); 7105 break; 7106 case mt_dump_dec: 7107 pr_cont("%lu ", node->gap[i]); 7108 } 7109 } 7110 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7111 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7112 switch (format) { 7113 case mt_dump_hex: 7114 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7115 break; 7116 case mt_dump_dec: 7117 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7118 } 7119 } 7120 pr_cont("%p\n", node->slot[i]); 7121 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7122 unsigned long last = max; 7123 7124 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7125 last = node->pivot[i]; 7126 else if (!node->slot[i]) 7127 break; 7128 if (last == 0 && i > 0) 7129 break; 7130 if (leaf) 7131 mt_dump_entry(mt_slot(mt, node->slot, i), 7132 first, last, depth + 1, format); 7133 else if (node->slot[i]) 7134 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7135 first, last, depth + 1, format); 7136 7137 if (last == max) 7138 break; 7139 if (last > max) { 7140 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7141 node, last, max, i); 7142 break; 7143 } 7144 first = last + 1; 7145 } 7146 } 7147 7148 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7149 unsigned long min, unsigned long max, unsigned int depth, 7150 enum mt_dump_format format) 7151 { 7152 struct maple_node *node = mte_to_node(entry); 7153 unsigned int type = mte_node_type(entry); 7154 unsigned int i; 7155 7156 mt_dump_range(min, max, depth, format); 7157 7158 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7159 node ? node->parent : NULL); 7160 switch (type) { 7161 case maple_dense: 7162 pr_cont("\n"); 7163 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7164 if (min + i > max) 7165 pr_cont("OUT OF RANGE: "); 7166 mt_dump_entry(mt_slot(mt, node->slot, i), 7167 min + i, min + i, depth, format); 7168 } 7169 break; 7170 case maple_leaf_64: 7171 case maple_range_64: 7172 mt_dump_range64(mt, entry, min, max, depth, format); 7173 break; 7174 case maple_arange_64: 7175 mt_dump_arange64(mt, entry, min, max, depth, format); 7176 break; 7177 7178 default: 7179 pr_cont(" UNKNOWN TYPE\n"); 7180 } 7181 } 7182 7183 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7184 { 7185 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7186 7187 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7188 mt, mt->ma_flags, mt_height(mt), entry); 7189 if (!xa_is_node(entry)) 7190 mt_dump_entry(entry, 0, 0, 0, format); 7191 else if (entry) 7192 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7193 } 7194 EXPORT_SYMBOL_GPL(mt_dump); 7195 7196 /* 7197 * Calculate the maximum gap in a node and check if that's what is reported in 7198 * the parent (unless root). 7199 */ 7200 static void mas_validate_gaps(struct ma_state *mas) 7201 { 7202 struct maple_enode *mte = mas->node; 7203 struct maple_node *p_mn, *node = mte_to_node(mte); 7204 enum maple_type mt = mte_node_type(mas->node); 7205 unsigned long gap = 0, max_gap = 0; 7206 unsigned long p_end, p_start = mas->min; 7207 unsigned char p_slot, offset; 7208 unsigned long *gaps = NULL; 7209 unsigned long *pivots = ma_pivots(node, mt); 7210 unsigned int i; 7211 7212 if (ma_is_dense(mt)) { 7213 for (i = 0; i < mt_slot_count(mte); i++) { 7214 if (mas_get_slot(mas, i)) { 7215 if (gap > max_gap) 7216 max_gap = gap; 7217 gap = 0; 7218 continue; 7219 } 7220 gap++; 7221 } 7222 goto counted; 7223 } 7224 7225 gaps = ma_gaps(node, mt); 7226 for (i = 0; i < mt_slot_count(mte); i++) { 7227 p_end = mas_safe_pivot(mas, pivots, i, mt); 7228 7229 if (!gaps) { 7230 if (!mas_get_slot(mas, i)) 7231 gap = p_end - p_start + 1; 7232 } else { 7233 void *entry = mas_get_slot(mas, i); 7234 7235 gap = gaps[i]; 7236 MT_BUG_ON(mas->tree, !entry); 7237 7238 if (gap > p_end - p_start + 1) { 7239 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7240 mas_mn(mas), i, gap, p_end, p_start, 7241 p_end - p_start + 1); 7242 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7243 } 7244 } 7245 7246 if (gap > max_gap) 7247 max_gap = gap; 7248 7249 p_start = p_end + 1; 7250 if (p_end >= mas->max) 7251 break; 7252 } 7253 7254 counted: 7255 if (mt == maple_arange_64) { 7256 MT_BUG_ON(mas->tree, !gaps); 7257 offset = ma_meta_gap(node); 7258 if (offset > i) { 7259 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7260 MT_BUG_ON(mas->tree, 1); 7261 } 7262 7263 if (gaps[offset] != max_gap) { 7264 pr_err("gap %p[%u] is not the largest gap %lu\n", 7265 node, offset, max_gap); 7266 MT_BUG_ON(mas->tree, 1); 7267 } 7268 7269 for (i++ ; i < mt_slot_count(mte); i++) { 7270 if (gaps[i] != 0) { 7271 pr_err("gap %p[%u] beyond node limit != 0\n", 7272 node, i); 7273 MT_BUG_ON(mas->tree, 1); 7274 } 7275 } 7276 } 7277 7278 if (mte_is_root(mte)) 7279 return; 7280 7281 p_slot = mte_parent_slot(mas->node); 7282 p_mn = mte_parent(mte); 7283 MT_BUG_ON(mas->tree, max_gap > mas->max); 7284 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7285 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7286 mt_dump(mas->tree, mt_dump_hex); 7287 MT_BUG_ON(mas->tree, 1); 7288 } 7289 } 7290 7291 static void mas_validate_parent_slot(struct ma_state *mas) 7292 { 7293 struct maple_node *parent; 7294 struct maple_enode *node; 7295 enum maple_type p_type; 7296 unsigned char p_slot; 7297 void __rcu **slots; 7298 int i; 7299 7300 if (mte_is_root(mas->node)) 7301 return; 7302 7303 p_slot = mte_parent_slot(mas->node); 7304 p_type = mas_parent_type(mas, mas->node); 7305 parent = mte_parent(mas->node); 7306 slots = ma_slots(parent, p_type); 7307 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7308 7309 /* Check prev/next parent slot for duplicate node entry */ 7310 7311 for (i = 0; i < mt_slots[p_type]; i++) { 7312 node = mas_slot(mas, slots, i); 7313 if (i == p_slot) { 7314 if (node != mas->node) 7315 pr_err("parent %p[%u] does not have %p\n", 7316 parent, i, mas_mn(mas)); 7317 MT_BUG_ON(mas->tree, node != mas->node); 7318 } else if (node == mas->node) { 7319 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7320 mas_mn(mas), parent, i, p_slot); 7321 MT_BUG_ON(mas->tree, node == mas->node); 7322 } 7323 } 7324 } 7325 7326 static void mas_validate_child_slot(struct ma_state *mas) 7327 { 7328 enum maple_type type = mte_node_type(mas->node); 7329 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7330 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7331 struct maple_enode *child; 7332 unsigned char i; 7333 7334 if (mte_is_leaf(mas->node)) 7335 return; 7336 7337 for (i = 0; i < mt_slots[type]; i++) { 7338 child = mas_slot(mas, slots, i); 7339 7340 if (!child) { 7341 pr_err("Non-leaf node lacks child at %p[%u]\n", 7342 mas_mn(mas), i); 7343 MT_BUG_ON(mas->tree, 1); 7344 } 7345 7346 if (mte_parent_slot(child) != i) { 7347 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7348 mas_mn(mas), i, mte_to_node(child), 7349 mte_parent_slot(child)); 7350 MT_BUG_ON(mas->tree, 1); 7351 } 7352 7353 if (mte_parent(child) != mte_to_node(mas->node)) { 7354 pr_err("child %p has parent %p not %p\n", 7355 mte_to_node(child), mte_parent(child), 7356 mte_to_node(mas->node)); 7357 MT_BUG_ON(mas->tree, 1); 7358 } 7359 7360 if (i < mt_pivots[type] && pivots[i] == mas->max) 7361 break; 7362 } 7363 } 7364 7365 /* 7366 * Validate all pivots are within mas->min and mas->max, check metadata ends 7367 * where the maximum ends and ensure there is no slots or pivots set outside of 7368 * the end of the data. 7369 */ 7370 static void mas_validate_limits(struct ma_state *mas) 7371 { 7372 int i; 7373 unsigned long prev_piv = 0; 7374 enum maple_type type = mte_node_type(mas->node); 7375 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7376 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7377 7378 for (i = 0; i < mt_slots[type]; i++) { 7379 unsigned long piv; 7380 7381 piv = mas_safe_pivot(mas, pivots, i, type); 7382 7383 if (!piv && (i != 0)) { 7384 pr_err("Missing node limit pivot at %p[%u]", 7385 mas_mn(mas), i); 7386 MAS_WARN_ON(mas, 1); 7387 } 7388 7389 if (prev_piv > piv) { 7390 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7391 mas_mn(mas), i, piv, prev_piv); 7392 MAS_WARN_ON(mas, piv < prev_piv); 7393 } 7394 7395 if (piv < mas->min) { 7396 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7397 piv, mas->min); 7398 MAS_WARN_ON(mas, piv < mas->min); 7399 } 7400 if (piv > mas->max) { 7401 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7402 piv, mas->max); 7403 MAS_WARN_ON(mas, piv > mas->max); 7404 } 7405 prev_piv = piv; 7406 if (piv == mas->max) 7407 break; 7408 } 7409 7410 if (mas_data_end(mas) != i) { 7411 pr_err("node%p: data_end %u != the last slot offset %u\n", 7412 mas_mn(mas), mas_data_end(mas), i); 7413 MT_BUG_ON(mas->tree, 1); 7414 } 7415 7416 for (i += 1; i < mt_slots[type]; i++) { 7417 void *entry = mas_slot(mas, slots, i); 7418 7419 if (entry && (i != mt_slots[type] - 1)) { 7420 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7421 i, entry); 7422 MT_BUG_ON(mas->tree, entry != NULL); 7423 } 7424 7425 if (i < mt_pivots[type]) { 7426 unsigned long piv = pivots[i]; 7427 7428 if (!piv) 7429 continue; 7430 7431 pr_err("%p[%u] should not have piv %lu\n", 7432 mas_mn(mas), i, piv); 7433 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7434 } 7435 } 7436 } 7437 7438 static void mt_validate_nulls(struct maple_tree *mt) 7439 { 7440 void *entry, *last = (void *)1; 7441 unsigned char offset = 0; 7442 void __rcu **slots; 7443 MA_STATE(mas, mt, 0, 0); 7444 7445 mas_start(&mas); 7446 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7447 return; 7448 7449 while (!mte_is_leaf(mas.node)) 7450 mas_descend(&mas); 7451 7452 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7453 do { 7454 entry = mas_slot(&mas, slots, offset); 7455 if (!last && !entry) { 7456 pr_err("Sequential nulls end at %p[%u]\n", 7457 mas_mn(&mas), offset); 7458 } 7459 MT_BUG_ON(mt, !last && !entry); 7460 last = entry; 7461 if (offset == mas_data_end(&mas)) { 7462 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7463 if (mas_is_overflow(&mas)) 7464 return; 7465 offset = 0; 7466 slots = ma_slots(mte_to_node(mas.node), 7467 mte_node_type(mas.node)); 7468 } else { 7469 offset++; 7470 } 7471 7472 } while (!mas_is_overflow(&mas)); 7473 } 7474 7475 /* 7476 * validate a maple tree by checking: 7477 * 1. The limits (pivots are within mas->min to mas->max) 7478 * 2. The gap is correctly set in the parents 7479 */ 7480 void mt_validate(struct maple_tree *mt) 7481 { 7482 unsigned char end; 7483 7484 MA_STATE(mas, mt, 0, 0); 7485 rcu_read_lock(); 7486 mas_start(&mas); 7487 if (!mas_is_active(&mas)) 7488 goto done; 7489 7490 while (!mte_is_leaf(mas.node)) 7491 mas_descend(&mas); 7492 7493 while (!mas_is_overflow(&mas)) { 7494 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7495 end = mas_data_end(&mas); 7496 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7497 (mas.max != ULONG_MAX))) { 7498 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7499 } 7500 7501 mas_validate_parent_slot(&mas); 7502 mas_validate_limits(&mas); 7503 mas_validate_child_slot(&mas); 7504 if (mt_is_alloc(mt)) 7505 mas_validate_gaps(&mas); 7506 mas_dfs_postorder(&mas, ULONG_MAX); 7507 } 7508 mt_validate_nulls(mt); 7509 done: 7510 rcu_read_unlock(); 7511 7512 } 7513 EXPORT_SYMBOL_GPL(mt_validate); 7514 7515 void mas_dump(const struct ma_state *mas) 7516 { 7517 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7518 switch (mas->status) { 7519 case ma_active: 7520 pr_err("(ma_active)"); 7521 break; 7522 case ma_none: 7523 pr_err("(ma_none)"); 7524 break; 7525 case ma_root: 7526 pr_err("(ma_root)"); 7527 break; 7528 case ma_start: 7529 pr_err("(ma_start) "); 7530 break; 7531 case ma_pause: 7532 pr_err("(ma_pause) "); 7533 break; 7534 case ma_overflow: 7535 pr_err("(ma_overflow) "); 7536 break; 7537 case ma_underflow: 7538 pr_err("(ma_underflow) "); 7539 break; 7540 case ma_error: 7541 pr_err("(ma_error) "); 7542 break; 7543 } 7544 7545 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7546 mas->index, mas->last); 7547 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7548 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7549 if (mas->index > mas->last) 7550 pr_err("Check index & last\n"); 7551 } 7552 EXPORT_SYMBOL_GPL(mas_dump); 7553 7554 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7555 { 7556 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7557 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7558 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7559 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7560 wr_mas->end_piv); 7561 } 7562 EXPORT_SYMBOL_GPL(mas_wr_dump); 7563 7564 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7565