xref: /linux/lib/maple_tree.c (revision e5d3a64e650c721f9e9b1f76e5df8c62f16b734d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 /* Functions */
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151 {
152 	return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
153 }
154 
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156 {
157 	return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
158 				     nodes);
159 }
160 
161 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162 {
163 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
164 }
165 
166 static void mt_free_rcu(struct rcu_head *head)
167 {
168 	struct maple_node *node = container_of(head, struct maple_node, rcu);
169 
170 	kmem_cache_free(maple_node_cache, node);
171 }
172 
173 /*
174  * ma_free_rcu() - Use rcu callback to free a maple node
175  * @node: The node to free
176  *
177  * The maple tree uses the parent pointer to indicate this node is no longer in
178  * use and will be freed.
179  */
180 static void ma_free_rcu(struct maple_node *node)
181 {
182 	node->parent = ma_parent_ptr(node);
183 	call_rcu(&node->rcu, mt_free_rcu);
184 }
185 
186 static unsigned int mt_height(const struct maple_tree *mt)
187 {
188 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
189 }
190 
191 static void mas_set_height(struct ma_state *mas)
192 {
193 	unsigned int new_flags = mas->tree->ma_flags;
194 
195 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
196 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
197 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
198 	mas->tree->ma_flags = new_flags;
199 }
200 
201 static unsigned int mas_mt_height(struct ma_state *mas)
202 {
203 	return mt_height(mas->tree);
204 }
205 
206 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
207 {
208 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
209 		MAPLE_NODE_TYPE_MASK;
210 }
211 
212 static inline bool ma_is_dense(const enum maple_type type)
213 {
214 	return type < maple_leaf_64;
215 }
216 
217 static inline bool ma_is_leaf(const enum maple_type type)
218 {
219 	return type < maple_range_64;
220 }
221 
222 static inline bool mte_is_leaf(const struct maple_enode *entry)
223 {
224 	return ma_is_leaf(mte_node_type(entry));
225 }
226 
227 /*
228  * We also reserve values with the bottom two bits set to '10' which are
229  * below 4096
230  */
231 static inline bool mt_is_reserved(const void *entry)
232 {
233 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
234 		xa_is_internal(entry);
235 }
236 
237 static inline void mas_set_err(struct ma_state *mas, long err)
238 {
239 	mas->node = MA_ERROR(err);
240 }
241 
242 static inline bool mas_is_ptr(struct ma_state *mas)
243 {
244 	return mas->node == MAS_ROOT;
245 }
246 
247 static inline bool mas_is_start(struct ma_state *mas)
248 {
249 	return mas->node == MAS_START;
250 }
251 
252 bool mas_is_err(struct ma_state *mas)
253 {
254 	return xa_is_err(mas->node);
255 }
256 
257 static inline bool mas_searchable(struct ma_state *mas)
258 {
259 	if (mas_is_none(mas))
260 		return false;
261 
262 	if (mas_is_ptr(mas))
263 		return false;
264 
265 	return true;
266 }
267 
268 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
269 {
270 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
271 }
272 
273 /*
274  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
275  * @entry: The maple encoded node
276  *
277  * Return: a maple topiary pointer
278  */
279 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
280 {
281 	return (struct maple_topiary *)
282 		((unsigned long)entry & ~MAPLE_NODE_MASK);
283 }
284 
285 /*
286  * mas_mn() - Get the maple state node.
287  * @mas: The maple state
288  *
289  * Return: the maple node (not encoded - bare pointer).
290  */
291 static inline struct maple_node *mas_mn(const struct ma_state *mas)
292 {
293 	return mte_to_node(mas->node);
294 }
295 
296 /*
297  * mte_set_node_dead() - Set a maple encoded node as dead.
298  * @mn: The maple encoded node.
299  */
300 static inline void mte_set_node_dead(struct maple_enode *mn)
301 {
302 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
303 	smp_wmb(); /* Needed for RCU */
304 }
305 
306 /* Bit 1 indicates the root is a node */
307 #define MAPLE_ROOT_NODE			0x02
308 /* maple_type stored bit 3-6 */
309 #define MAPLE_ENODE_TYPE_SHIFT		0x03
310 /* Bit 2 means a NULL somewhere below */
311 #define MAPLE_ENODE_NULL		0x04
312 
313 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
314 					     enum maple_type type)
315 {
316 	return (void *)((unsigned long)node |
317 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
318 }
319 
320 static inline void *mte_mk_root(const struct maple_enode *node)
321 {
322 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
323 }
324 
325 static inline void *mte_safe_root(const struct maple_enode *node)
326 {
327 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
328 }
329 
330 static inline void mte_set_full(const struct maple_enode *node)
331 {
332 	node = (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
333 }
334 
335 static inline void mte_clear_full(const struct maple_enode *node)
336 {
337 	node = (void *)((unsigned long)node | MAPLE_ENODE_NULL);
338 }
339 
340 static inline bool ma_is_root(struct maple_node *node)
341 {
342 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
343 }
344 
345 static inline bool mte_is_root(const struct maple_enode *node)
346 {
347 	return ma_is_root(mte_to_node(node));
348 }
349 
350 static inline bool mas_is_root_limits(const struct ma_state *mas)
351 {
352 	return !mas->min && mas->max == ULONG_MAX;
353 }
354 
355 static inline bool mt_is_alloc(struct maple_tree *mt)
356 {
357 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
358 }
359 
360 /*
361  * The Parent Pointer
362  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
363  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
364  * bit values need an extra bit to store the offset.  This extra bit comes from
365  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
366  * indicate if bit 2 is part of the type or the slot.
367  *
368  * Note types:
369  *  0x??1 = Root
370  *  0x?00 = 16 bit nodes
371  *  0x010 = 32 bit nodes
372  *  0x110 = 64 bit nodes
373  *
374  * Slot size and alignment
375  *  0b??1 : Root
376  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
377  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
378  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
379  */
380 
381 #define MAPLE_PARENT_ROOT		0x01
382 
383 #define MAPLE_PARENT_SLOT_SHIFT		0x03
384 #define MAPLE_PARENT_SLOT_MASK		0xF8
385 
386 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
387 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
388 
389 #define MAPLE_PARENT_RANGE64		0x06
390 #define MAPLE_PARENT_RANGE32		0x04
391 #define MAPLE_PARENT_NOT_RANGE16	0x02
392 
393 /*
394  * mte_parent_shift() - Get the parent shift for the slot storage.
395  * @parent: The parent pointer cast as an unsigned long
396  * Return: The shift into that pointer to the star to of the slot
397  */
398 static inline unsigned long mte_parent_shift(unsigned long parent)
399 {
400 	/* Note bit 1 == 0 means 16B */
401 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
402 		return MAPLE_PARENT_SLOT_SHIFT;
403 
404 	return MAPLE_PARENT_16B_SLOT_SHIFT;
405 }
406 
407 /*
408  * mte_parent_slot_mask() - Get the slot mask for the parent.
409  * @parent: The parent pointer cast as an unsigned long.
410  * Return: The slot mask for that parent.
411  */
412 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
413 {
414 	/* Note bit 1 == 0 means 16B */
415 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
416 		return MAPLE_PARENT_SLOT_MASK;
417 
418 	return MAPLE_PARENT_16B_SLOT_MASK;
419 }
420 
421 /*
422  * mas_parent_enum() - Return the maple_type of the parent from the stored
423  * parent type.
424  * @mas: The maple state
425  * @node: The maple_enode to extract the parent's enum
426  * Return: The node->parent maple_type
427  */
428 static inline
429 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
430 				struct maple_tree *mt)
431 {
432 	unsigned long p_type;
433 
434 	p_type = (unsigned long)p_enode;
435 	if (p_type & MAPLE_PARENT_ROOT)
436 		return 0; /* Validated in the caller. */
437 
438 	p_type &= MAPLE_NODE_MASK;
439 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
440 
441 	switch (p_type) {
442 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
443 		if (mt_is_alloc(mt))
444 			return maple_arange_64;
445 		return maple_range_64;
446 	}
447 
448 	return 0;
449 }
450 
451 static inline
452 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
453 {
454 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
455 }
456 
457 /*
458  * mte_set_parent() - Set the parent node and encode the slot
459  * @enode: The encoded maple node.
460  * @parent: The encoded maple node that is the parent of @enode.
461  * @slot: The slot that @enode resides in @parent.
462  *
463  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
464  * parent type.
465  */
466 static inline
467 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
468 		    unsigned char slot)
469 {
470 	unsigned long val = (unsigned long) parent;
471 	unsigned long shift;
472 	unsigned long type;
473 	enum maple_type p_type = mte_node_type(parent);
474 
475 	BUG_ON(p_type == maple_dense);
476 	BUG_ON(p_type == maple_leaf_64);
477 
478 	switch (p_type) {
479 	case maple_range_64:
480 	case maple_arange_64:
481 		shift = MAPLE_PARENT_SLOT_SHIFT;
482 		type = MAPLE_PARENT_RANGE64;
483 		break;
484 	default:
485 	case maple_dense:
486 	case maple_leaf_64:
487 		shift = type = 0;
488 		break;
489 	}
490 
491 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
492 	val |= (slot << shift) | type;
493 	mte_to_node(enode)->parent = ma_parent_ptr(val);
494 }
495 
496 /*
497  * mte_parent_slot() - get the parent slot of @enode.
498  * @enode: The encoded maple node.
499  *
500  * Return: The slot in the parent node where @enode resides.
501  */
502 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
503 {
504 	unsigned long val = (unsigned long) mte_to_node(enode)->parent;
505 
506 	/* Root. */
507 	if (val & 1)
508 		return 0;
509 
510 	/*
511 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
512 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
513 	 */
514 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
515 }
516 
517 /*
518  * mte_parent() - Get the parent of @node.
519  * @node: The encoded maple node.
520  *
521  * Return: The parent maple node.
522  */
523 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
524 {
525 	return (void *)((unsigned long)
526 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
527 }
528 
529 /*
530  * ma_dead_node() - check if the @enode is dead.
531  * @enode: The encoded maple node
532  *
533  * Return: true if dead, false otherwise.
534  */
535 static inline bool ma_dead_node(const struct maple_node *node)
536 {
537 	struct maple_node *parent = (void *)((unsigned long)
538 					     node->parent & ~MAPLE_NODE_MASK);
539 
540 	return (parent == node);
541 }
542 /*
543  * mte_dead_node() - check if the @enode is dead.
544  * @enode: The encoded maple node
545  *
546  * Return: true if dead, false otherwise.
547  */
548 static inline bool mte_dead_node(const struct maple_enode *enode)
549 {
550 	struct maple_node *parent, *node;
551 
552 	node = mte_to_node(enode);
553 	parent = mte_parent(enode);
554 	return (parent == node);
555 }
556 
557 /*
558  * mas_allocated() - Get the number of nodes allocated in a maple state.
559  * @mas: The maple state
560  *
561  * The ma_state alloc member is overloaded to hold a pointer to the first
562  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
563  * set, then the alloc contains the number of requested nodes.  If there is an
564  * allocated node, then the total allocated nodes is in that node.
565  *
566  * Return: The total number of nodes allocated
567  */
568 static inline unsigned long mas_allocated(const struct ma_state *mas)
569 {
570 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
571 		return 0;
572 
573 	return mas->alloc->total;
574 }
575 
576 /*
577  * mas_set_alloc_req() - Set the requested number of allocations.
578  * @mas: the maple state
579  * @count: the number of allocations.
580  *
581  * The requested number of allocations is either in the first allocated node,
582  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
583  * no allocated node.  Set the request either in the node or do the necessary
584  * encoding to store in @mas->alloc directly.
585  */
586 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
587 {
588 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
589 		if (!count)
590 			mas->alloc = NULL;
591 		else
592 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
593 		return;
594 	}
595 
596 	mas->alloc->request_count = count;
597 }
598 
599 /*
600  * mas_alloc_req() - get the requested number of allocations.
601  * @mas: The maple state
602  *
603  * The alloc count is either stored directly in @mas, or in
604  * @mas->alloc->request_count if there is at least one node allocated.  Decode
605  * the request count if it's stored directly in @mas->alloc.
606  *
607  * Return: The allocation request count.
608  */
609 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
610 {
611 	if ((unsigned long)mas->alloc & 0x1)
612 		return (unsigned long)(mas->alloc) >> 1;
613 	else if (mas->alloc)
614 		return mas->alloc->request_count;
615 	return 0;
616 }
617 
618 /*
619  * ma_pivots() - Get a pointer to the maple node pivots.
620  * @node - the maple node
621  * @type - the node type
622  *
623  * Return: A pointer to the maple node pivots
624  */
625 static inline unsigned long *ma_pivots(struct maple_node *node,
626 					   enum maple_type type)
627 {
628 	switch (type) {
629 	case maple_arange_64:
630 		return node->ma64.pivot;
631 	case maple_range_64:
632 	case maple_leaf_64:
633 		return node->mr64.pivot;
634 	case maple_dense:
635 		return NULL;
636 	}
637 	return NULL;
638 }
639 
640 /*
641  * ma_gaps() - Get a pointer to the maple node gaps.
642  * @node - the maple node
643  * @type - the node type
644  *
645  * Return: A pointer to the maple node gaps
646  */
647 static inline unsigned long *ma_gaps(struct maple_node *node,
648 				     enum maple_type type)
649 {
650 	switch (type) {
651 	case maple_arange_64:
652 		return node->ma64.gap;
653 	case maple_range_64:
654 	case maple_leaf_64:
655 	case maple_dense:
656 		return NULL;
657 	}
658 	return NULL;
659 }
660 
661 /*
662  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
663  * @mn: The maple encoded node.
664  * @piv: The pivot.
665  *
666  * Return: the pivot at @piv of @mn.
667  */
668 static inline unsigned long mte_pivot(const struct maple_enode *mn,
669 				 unsigned char piv)
670 {
671 	struct maple_node *node = mte_to_node(mn);
672 
673 	if (piv >= mt_pivots[piv]) {
674 		WARN_ON(1);
675 		return 0;
676 	}
677 	switch (mte_node_type(mn)) {
678 	case maple_arange_64:
679 		return node->ma64.pivot[piv];
680 	case maple_range_64:
681 	case maple_leaf_64:
682 		return node->mr64.pivot[piv];
683 	case maple_dense:
684 		return 0;
685 	}
686 	return 0;
687 }
688 
689 /*
690  * mas_safe_pivot() - get the pivot at @piv or mas->max.
691  * @mas: The maple state
692  * @pivots: The pointer to the maple node pivots
693  * @piv: The pivot to fetch
694  * @type: The maple node type
695  *
696  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
697  * otherwise.
698  */
699 static inline unsigned long
700 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
701 	       unsigned char piv, enum maple_type type)
702 {
703 	if (piv >= mt_pivots[type])
704 		return mas->max;
705 
706 	return pivots[piv];
707 }
708 
709 /*
710  * mas_safe_min() - Return the minimum for a given offset.
711  * @mas: The maple state
712  * @pivots: The pointer to the maple node pivots
713  * @offset: The offset into the pivot array
714  *
715  * Return: The minimum range value that is contained in @offset.
716  */
717 static inline unsigned long
718 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
719 {
720 	if (likely(offset))
721 		return pivots[offset - 1] + 1;
722 
723 	return mas->min;
724 }
725 
726 /*
727  * mas_logical_pivot() - Get the logical pivot of a given offset.
728  * @mas: The maple state
729  * @pivots: The pointer to the maple node pivots
730  * @offset: The offset into the pivot array
731  * @type: The maple node type
732  *
733  * When there is no value at a pivot (beyond the end of the data), then the
734  * pivot is actually @mas->max.
735  *
736  * Return: the logical pivot of a given @offset.
737  */
738 static inline unsigned long
739 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
740 		  unsigned char offset, enum maple_type type)
741 {
742 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
743 
744 	if (likely(lpiv))
745 		return lpiv;
746 
747 	if (likely(offset))
748 		return mas->max;
749 
750 	return lpiv;
751 }
752 
753 /*
754  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
755  * @mn: The encoded maple node
756  * @piv: The pivot offset
757  * @val: The value of the pivot
758  */
759 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
760 				unsigned long val)
761 {
762 	struct maple_node *node = mte_to_node(mn);
763 	enum maple_type type = mte_node_type(mn);
764 
765 	BUG_ON(piv >= mt_pivots[type]);
766 	switch (type) {
767 	default:
768 	case maple_range_64:
769 	case maple_leaf_64:
770 		node->mr64.pivot[piv] = val;
771 		break;
772 	case maple_arange_64:
773 		node->ma64.pivot[piv] = val;
774 		break;
775 	case maple_dense:
776 		break;
777 	}
778 
779 }
780 
781 /*
782  * ma_slots() - Get a pointer to the maple node slots.
783  * @mn: The maple node
784  * @mt: The maple node type
785  *
786  * Return: A pointer to the maple node slots
787  */
788 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
789 {
790 	switch (mt) {
791 	default:
792 	case maple_arange_64:
793 		return mn->ma64.slot;
794 	case maple_range_64:
795 	case maple_leaf_64:
796 		return mn->mr64.slot;
797 	case maple_dense:
798 		return mn->slot;
799 	}
800 }
801 
802 static inline bool mt_locked(const struct maple_tree *mt)
803 {
804 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
805 		lockdep_is_held(&mt->ma_lock);
806 }
807 
808 static inline void *mt_slot(const struct maple_tree *mt,
809 		void __rcu **slots, unsigned char offset)
810 {
811 	return rcu_dereference_check(slots[offset], mt_locked(mt));
812 }
813 
814 /*
815  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
816  * @mas: The maple state
817  * @slots: The pointer to the slots
818  * @offset: The offset into the slots array to fetch
819  *
820  * Return: The entry stored in @slots at the @offset.
821  */
822 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
823 				       unsigned char offset)
824 {
825 	return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
826 }
827 
828 /*
829  * mas_slot() - Get the slot value when not holding the maple tree lock.
830  * @mas: The maple state
831  * @slots: The pointer to the slots
832  * @offset: The offset into the slots array to fetch
833  *
834  * Return: The entry stored in @slots at the @offset
835  */
836 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
837 			     unsigned char offset)
838 {
839 	return mt_slot(mas->tree, slots, offset);
840 }
841 
842 /*
843  * mas_root() - Get the maple tree root.
844  * @mas: The maple state.
845  *
846  * Return: The pointer to the root of the tree
847  */
848 static inline void *mas_root(struct ma_state *mas)
849 {
850 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
851 }
852 
853 static inline void *mt_root_locked(struct maple_tree *mt)
854 {
855 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
856 }
857 
858 /*
859  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
860  * @mas: The maple state.
861  *
862  * Return: The pointer to the root of the tree
863  */
864 static inline void *mas_root_locked(struct ma_state *mas)
865 {
866 	return mt_root_locked(mas->tree);
867 }
868 
869 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
870 					     enum maple_type mt)
871 {
872 	switch (mt) {
873 	case maple_arange_64:
874 		return &mn->ma64.meta;
875 	default:
876 		return &mn->mr64.meta;
877 	}
878 }
879 
880 /*
881  * ma_set_meta() - Set the metadata information of a node.
882  * @mn: The maple node
883  * @mt: The maple node type
884  * @offset: The offset of the highest sub-gap in this node.
885  * @end: The end of the data in this node.
886  */
887 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
888 			       unsigned char offset, unsigned char end)
889 {
890 	struct maple_metadata *meta = ma_meta(mn, mt);
891 
892 	meta->gap = offset;
893 	meta->end = end;
894 }
895 
896 /*
897  * ma_meta_end() - Get the data end of a node from the metadata
898  * @mn: The maple node
899  * @mt: The maple node type
900  */
901 static inline unsigned char ma_meta_end(struct maple_node *mn,
902 					enum maple_type mt)
903 {
904 	struct maple_metadata *meta = ma_meta(mn, mt);
905 
906 	return meta->end;
907 }
908 
909 /*
910  * ma_meta_gap() - Get the largest gap location of a node from the metadata
911  * @mn: The maple node
912  * @mt: The maple node type
913  */
914 static inline unsigned char ma_meta_gap(struct maple_node *mn,
915 					enum maple_type mt)
916 {
917 	BUG_ON(mt != maple_arange_64);
918 
919 	return mn->ma64.meta.gap;
920 }
921 
922 /*
923  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
924  * @mn: The maple node
925  * @mn: The maple node type
926  * @offset: The location of the largest gap.
927  */
928 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
929 				   unsigned char offset)
930 {
931 
932 	struct maple_metadata *meta = ma_meta(mn, mt);
933 
934 	meta->gap = offset;
935 }
936 
937 /*
938  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
939  * @mat - the ma_topiary, a linked list of dead nodes.
940  * @dead_enode - the node to be marked as dead and added to the tail of the list
941  *
942  * Add the @dead_enode to the linked list in @mat.
943  */
944 static inline void mat_add(struct ma_topiary *mat,
945 			   struct maple_enode *dead_enode)
946 {
947 	mte_set_node_dead(dead_enode);
948 	mte_to_mat(dead_enode)->next = NULL;
949 	if (!mat->tail) {
950 		mat->tail = mat->head = dead_enode;
951 		return;
952 	}
953 
954 	mte_to_mat(mat->tail)->next = dead_enode;
955 	mat->tail = dead_enode;
956 }
957 
958 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
959 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
960 
961 /*
962  * mas_mat_free() - Free all nodes in a dead list.
963  * @mas - the maple state
964  * @mat - the ma_topiary linked list of dead nodes to free.
965  *
966  * Free walk a dead list.
967  */
968 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
969 {
970 	struct maple_enode *next;
971 
972 	while (mat->head) {
973 		next = mte_to_mat(mat->head)->next;
974 		mas_free(mas, mat->head);
975 		mat->head = next;
976 	}
977 }
978 
979 /*
980  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
981  * @mas - the maple state
982  * @mat - the ma_topiary linked list of dead nodes to free.
983  *
984  * Destroy walk a dead list.
985  */
986 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
987 {
988 	struct maple_enode *next;
989 
990 	while (mat->head) {
991 		next = mte_to_mat(mat->head)->next;
992 		mte_destroy_walk(mat->head, mat->mtree);
993 		mat->head = next;
994 	}
995 }
996 /*
997  * mas_descend() - Descend into the slot stored in the ma_state.
998  * @mas - the maple state.
999  *
1000  * Note: Not RCU safe, only use in write side or debug code.
1001  */
1002 static inline void mas_descend(struct ma_state *mas)
1003 {
1004 	enum maple_type type;
1005 	unsigned long *pivots;
1006 	struct maple_node *node;
1007 	void __rcu **slots;
1008 
1009 	node = mas_mn(mas);
1010 	type = mte_node_type(mas->node);
1011 	pivots = ma_pivots(node, type);
1012 	slots = ma_slots(node, type);
1013 
1014 	if (mas->offset)
1015 		mas->min = pivots[mas->offset - 1] + 1;
1016 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1017 	mas->node = mas_slot(mas, slots, mas->offset);
1018 }
1019 
1020 /*
1021  * mte_set_gap() - Set a maple node gap.
1022  * @mn: The encoded maple node
1023  * @gap: The offset of the gap to set
1024  * @val: The gap value
1025  */
1026 static inline void mte_set_gap(const struct maple_enode *mn,
1027 				 unsigned char gap, unsigned long val)
1028 {
1029 	switch (mte_node_type(mn)) {
1030 	default:
1031 		break;
1032 	case maple_arange_64:
1033 		mte_to_node(mn)->ma64.gap[gap] = val;
1034 		break;
1035 	}
1036 }
1037 
1038 /*
1039  * mas_ascend() - Walk up a level of the tree.
1040  * @mas: The maple state
1041  *
1042  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1043  * may cause several levels of walking up to find the correct min and max.
1044  * May find a dead node which will cause a premature return.
1045  * Return: 1 on dead node, 0 otherwise
1046  */
1047 static int mas_ascend(struct ma_state *mas)
1048 {
1049 	struct maple_enode *p_enode; /* parent enode. */
1050 	struct maple_enode *a_enode; /* ancestor enode. */
1051 	struct maple_node *a_node; /* ancestor node. */
1052 	struct maple_node *p_node; /* parent node. */
1053 	unsigned char a_slot;
1054 	enum maple_type a_type;
1055 	unsigned long min, max;
1056 	unsigned long *pivots;
1057 	unsigned char offset;
1058 	bool set_max = false, set_min = false;
1059 
1060 	a_node = mas_mn(mas);
1061 	if (ma_is_root(a_node)) {
1062 		mas->offset = 0;
1063 		return 0;
1064 	}
1065 
1066 	p_node = mte_parent(mas->node);
1067 	if (unlikely(a_node == p_node))
1068 		return 1;
1069 	a_type = mas_parent_enum(mas, mas->node);
1070 	offset = mte_parent_slot(mas->node);
1071 	a_enode = mt_mk_node(p_node, a_type);
1072 
1073 	/* Check to make sure all parent information is still accurate */
1074 	if (p_node != mte_parent(mas->node))
1075 		return 1;
1076 
1077 	mas->node = a_enode;
1078 	mas->offset = offset;
1079 
1080 	if (mte_is_root(a_enode)) {
1081 		mas->max = ULONG_MAX;
1082 		mas->min = 0;
1083 		return 0;
1084 	}
1085 
1086 	min = 0;
1087 	max = ULONG_MAX;
1088 	do {
1089 		p_enode = a_enode;
1090 		a_type = mas_parent_enum(mas, p_enode);
1091 		a_node = mte_parent(p_enode);
1092 		a_slot = mte_parent_slot(p_enode);
1093 		pivots = ma_pivots(a_node, a_type);
1094 		a_enode = mt_mk_node(a_node, a_type);
1095 
1096 		if (!set_min && a_slot) {
1097 			set_min = true;
1098 			min = pivots[a_slot - 1] + 1;
1099 		}
1100 
1101 		if (!set_max && a_slot < mt_pivots[a_type]) {
1102 			set_max = true;
1103 			max = pivots[a_slot];
1104 		}
1105 
1106 		if (unlikely(ma_dead_node(a_node)))
1107 			return 1;
1108 
1109 		if (unlikely(ma_is_root(a_node)))
1110 			break;
1111 
1112 	} while (!set_min || !set_max);
1113 
1114 	mas->max = max;
1115 	mas->min = min;
1116 	return 0;
1117 }
1118 
1119 /*
1120  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1121  * @mas: The maple state
1122  *
1123  * Return: A pointer to a maple node.
1124  */
1125 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1126 {
1127 	struct maple_alloc *ret, *node = mas->alloc;
1128 	unsigned long total = mas_allocated(mas);
1129 
1130 	/* nothing or a request pending. */
1131 	if (unlikely(!total))
1132 		return NULL;
1133 
1134 	if (total == 1) {
1135 		/* single allocation in this ma_state */
1136 		mas->alloc = NULL;
1137 		ret = node;
1138 		goto single_node;
1139 	}
1140 
1141 	if (!node->node_count) {
1142 		/* Single allocation in this node. */
1143 		mas->alloc = node->slot[0];
1144 		node->slot[0] = NULL;
1145 		mas->alloc->total = node->total - 1;
1146 		ret = node;
1147 		goto new_head;
1148 	}
1149 
1150 	node->total--;
1151 	ret = node->slot[node->node_count];
1152 	node->slot[node->node_count--] = NULL;
1153 
1154 single_node:
1155 new_head:
1156 	ret->total = 0;
1157 	ret->node_count = 0;
1158 	if (ret->request_count) {
1159 		mas_set_alloc_req(mas, ret->request_count + 1);
1160 		ret->request_count = 0;
1161 	}
1162 	return (struct maple_node *)ret;
1163 }
1164 
1165 /*
1166  * mas_push_node() - Push a node back on the maple state allocation.
1167  * @mas: The maple state
1168  * @used: The used maple node
1169  *
1170  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1171  * requested node count as necessary.
1172  */
1173 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1174 {
1175 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1176 	struct maple_alloc *head = mas->alloc;
1177 	unsigned long count;
1178 	unsigned int requested = mas_alloc_req(mas);
1179 
1180 	memset(reuse, 0, sizeof(*reuse));
1181 	count = mas_allocated(mas);
1182 
1183 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1184 		if (head->slot[0])
1185 			head->node_count++;
1186 		head->slot[head->node_count] = reuse;
1187 		head->total++;
1188 		goto done;
1189 	}
1190 
1191 	reuse->total = 1;
1192 	if ((head) && !((unsigned long)head & 0x1)) {
1193 		head->request_count = 0;
1194 		reuse->slot[0] = head;
1195 		reuse->total += head->total;
1196 	}
1197 
1198 	mas->alloc = reuse;
1199 done:
1200 	if (requested > 1)
1201 		mas_set_alloc_req(mas, requested - 1);
1202 }
1203 
1204 /*
1205  * mas_alloc_nodes() - Allocate nodes into a maple state
1206  * @mas: The maple state
1207  * @gfp: The GFP Flags
1208  */
1209 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1210 {
1211 	struct maple_alloc *node;
1212 	struct maple_alloc **nodep = &mas->alloc;
1213 	unsigned long allocated = mas_allocated(mas);
1214 	unsigned long success = allocated;
1215 	unsigned int requested = mas_alloc_req(mas);
1216 	unsigned int count;
1217 	void **slots = NULL;
1218 	unsigned int max_req = 0;
1219 
1220 	if (!requested)
1221 		return;
1222 
1223 	mas_set_alloc_req(mas, 0);
1224 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1225 		if (allocated)
1226 			return;
1227 		WARN_ON(!allocated);
1228 	}
1229 
1230 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1231 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1232 		if (!node)
1233 			goto nomem_one;
1234 
1235 		if (allocated)
1236 			node->slot[0] = mas->alloc;
1237 
1238 		success++;
1239 		mas->alloc = node;
1240 		requested--;
1241 	}
1242 
1243 	node = mas->alloc;
1244 	while (requested) {
1245 		max_req = MAPLE_ALLOC_SLOTS;
1246 		if (node->slot[0]) {
1247 			unsigned int offset = node->node_count + 1;
1248 
1249 			slots = (void **)&node->slot[offset];
1250 			max_req -= offset;
1251 		} else {
1252 			slots = (void **)&node->slot;
1253 		}
1254 
1255 		max_req = min(requested, max_req);
1256 		count = mt_alloc_bulk(gfp, max_req, slots);
1257 		if (!count)
1258 			goto nomem_bulk;
1259 
1260 		node->node_count += count;
1261 		/* zero indexed. */
1262 		if (slots == (void **)&node->slot)
1263 			node->node_count--;
1264 
1265 		success += count;
1266 		nodep = &node->slot[0];
1267 		node = *nodep;
1268 		requested -= count;
1269 	}
1270 	mas->alloc->total = success;
1271 	return;
1272 
1273 nomem_bulk:
1274 	/* Clean up potential freed allocations on bulk failure */
1275 	memset(slots, 0, max_req * sizeof(unsigned long));
1276 nomem_one:
1277 	mas_set_alloc_req(mas, requested);
1278 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1279 		mas->alloc->total = success;
1280 	mas_set_err(mas, -ENOMEM);
1281 	return;
1282 
1283 }
1284 
1285 /*
1286  * mas_free() - Free an encoded maple node
1287  * @mas: The maple state
1288  * @used: The encoded maple node to free.
1289  *
1290  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1291  * otherwise.
1292  */
1293 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1294 {
1295 	struct maple_node *tmp = mte_to_node(used);
1296 
1297 	if (mt_in_rcu(mas->tree))
1298 		ma_free_rcu(tmp);
1299 	else
1300 		mas_push_node(mas, tmp);
1301 }
1302 
1303 /*
1304  * mas_node_count() - Check if enough nodes are allocated and request more if
1305  * there is not enough nodes.
1306  * @mas: The maple state
1307  * @count: The number of nodes needed
1308  * @gfp: the gfp flags
1309  */
1310 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1311 {
1312 	unsigned long allocated = mas_allocated(mas);
1313 
1314 	if (allocated < count) {
1315 		mas_set_alloc_req(mas, count - allocated);
1316 		mas_alloc_nodes(mas, gfp);
1317 	}
1318 }
1319 
1320 /*
1321  * mas_node_count() - Check if enough nodes are allocated and request more if
1322  * there is not enough nodes.
1323  * @mas: The maple state
1324  * @count: The number of nodes needed
1325  *
1326  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1327  */
1328 static void mas_node_count(struct ma_state *mas, int count)
1329 {
1330 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1331 }
1332 
1333 /*
1334  * mas_start() - Sets up maple state for operations.
1335  * @mas: The maple state.
1336  *
1337  * If mas->node == MAS_START, then set the min, max, depth, and offset to
1338  * defaults.
1339  *
1340  * Return:
1341  * - If mas->node is an error or not MAS_START, return NULL.
1342  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1343  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1344  * - If it's a tree:            NULL & mas->node == safe root node.
1345  */
1346 static inline struct maple_enode *mas_start(struct ma_state *mas)
1347 {
1348 	if (likely(mas_is_start(mas))) {
1349 		struct maple_enode *root;
1350 
1351 		mas->node = MAS_NONE;
1352 		mas->min = 0;
1353 		mas->max = ULONG_MAX;
1354 		mas->depth = 0;
1355 		mas->offset = 0;
1356 
1357 		root = mas_root(mas);
1358 		/* Tree with nodes */
1359 		if (likely(xa_is_node(root))) {
1360 			mas->node = mte_safe_root(root);
1361 			return NULL;
1362 		}
1363 
1364 		/* empty tree */
1365 		if (unlikely(!root)) {
1366 			mas->offset = MAPLE_NODE_SLOTS;
1367 			return NULL;
1368 		}
1369 
1370 		/* Single entry tree */
1371 		mas->node = MAS_ROOT;
1372 		mas->offset = MAPLE_NODE_SLOTS;
1373 
1374 		/* Single entry tree. */
1375 		if (mas->index > 0)
1376 			return NULL;
1377 
1378 		return root;
1379 	}
1380 
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * ma_data_end() - Find the end of the data in a node.
1386  * @node: The maple node
1387  * @type: The maple node type
1388  * @pivots: The array of pivots in the node
1389  * @max: The maximum value in the node
1390  *
1391  * Uses metadata to find the end of the data when possible.
1392  * Return: The zero indexed last slot with data (may be null).
1393  */
1394 static inline unsigned char ma_data_end(struct maple_node *node,
1395 					enum maple_type type,
1396 					unsigned long *pivots,
1397 					unsigned long max)
1398 {
1399 	unsigned char offset;
1400 
1401 	if (type == maple_arange_64)
1402 		return ma_meta_end(node, type);
1403 
1404 	offset = mt_pivots[type] - 1;
1405 	if (likely(!pivots[offset]))
1406 		return ma_meta_end(node, type);
1407 
1408 	if (likely(pivots[offset] == max))
1409 		return offset;
1410 
1411 	return mt_pivots[type];
1412 }
1413 
1414 /*
1415  * mas_data_end() - Find the end of the data (slot).
1416  * @mas: the maple state
1417  *
1418  * This method is optimized to check the metadata of a node if the node type
1419  * supports data end metadata.
1420  *
1421  * Return: The zero indexed last slot with data (may be null).
1422  */
1423 static inline unsigned char mas_data_end(struct ma_state *mas)
1424 {
1425 	enum maple_type type;
1426 	struct maple_node *node;
1427 	unsigned char offset;
1428 	unsigned long *pivots;
1429 
1430 	type = mte_node_type(mas->node);
1431 	node = mas_mn(mas);
1432 	if (type == maple_arange_64)
1433 		return ma_meta_end(node, type);
1434 
1435 	pivots = ma_pivots(node, type);
1436 	offset = mt_pivots[type] - 1;
1437 	if (likely(!pivots[offset]))
1438 		return ma_meta_end(node, type);
1439 
1440 	if (likely(pivots[offset] == mas->max))
1441 		return offset;
1442 
1443 	return mt_pivots[type];
1444 }
1445 
1446 /*
1447  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1448  * @mas - the maple state
1449  *
1450  * Return: The maximum gap in the leaf.
1451  */
1452 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1453 {
1454 	enum maple_type mt;
1455 	unsigned long pstart, gap, max_gap;
1456 	struct maple_node *mn;
1457 	unsigned long *pivots;
1458 	void __rcu **slots;
1459 	unsigned char i;
1460 	unsigned char max_piv;
1461 
1462 	mt = mte_node_type(mas->node);
1463 	mn = mas_mn(mas);
1464 	slots = ma_slots(mn, mt);
1465 	max_gap = 0;
1466 	if (unlikely(ma_is_dense(mt))) {
1467 		gap = 0;
1468 		for (i = 0; i < mt_slots[mt]; i++) {
1469 			if (slots[i]) {
1470 				if (gap > max_gap)
1471 					max_gap = gap;
1472 				gap = 0;
1473 			} else {
1474 				gap++;
1475 			}
1476 		}
1477 		if (gap > max_gap)
1478 			max_gap = gap;
1479 		return max_gap;
1480 	}
1481 
1482 	/*
1483 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1484 	 * be skipped if there is a gap in slot 0.
1485 	 */
1486 	pivots = ma_pivots(mn, mt);
1487 	if (likely(!slots[0])) {
1488 		max_gap = pivots[0] - mas->min + 1;
1489 		i = 2;
1490 	} else {
1491 		i = 1;
1492 	}
1493 
1494 	/* reduce max_piv as the special case is checked before the loop */
1495 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1496 	/*
1497 	 * Check end implied pivot which can only be a gap on the right most
1498 	 * node.
1499 	 */
1500 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1501 		gap = ULONG_MAX - pivots[max_piv];
1502 		if (gap > max_gap)
1503 			max_gap = gap;
1504 	}
1505 
1506 	for (; i <= max_piv; i++) {
1507 		/* data == no gap. */
1508 		if (likely(slots[i]))
1509 			continue;
1510 
1511 		pstart = pivots[i - 1];
1512 		gap = pivots[i] - pstart;
1513 		if (gap > max_gap)
1514 			max_gap = gap;
1515 
1516 		/* There cannot be two gaps in a row. */
1517 		i++;
1518 	}
1519 	return max_gap;
1520 }
1521 
1522 /*
1523  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1524  * @node: The maple node
1525  * @gaps: The pointer to the gaps
1526  * @mt: The maple node type
1527  * @*off: Pointer to store the offset location of the gap.
1528  *
1529  * Uses the metadata data end to scan backwards across set gaps.
1530  *
1531  * Return: The maximum gap value
1532  */
1533 static inline unsigned long
1534 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1535 	    unsigned char *off)
1536 {
1537 	unsigned char offset, i;
1538 	unsigned long max_gap = 0;
1539 
1540 	i = offset = ma_meta_end(node, mt);
1541 	do {
1542 		if (gaps[i] > max_gap) {
1543 			max_gap = gaps[i];
1544 			offset = i;
1545 		}
1546 	} while (i--);
1547 
1548 	*off = offset;
1549 	return max_gap;
1550 }
1551 
1552 /*
1553  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1554  * @mas: The maple state.
1555  *
1556  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1557  *
1558  * Return: The gap value.
1559  */
1560 static inline unsigned long mas_max_gap(struct ma_state *mas)
1561 {
1562 	unsigned long *gaps;
1563 	unsigned char offset;
1564 	enum maple_type mt;
1565 	struct maple_node *node;
1566 
1567 	mt = mte_node_type(mas->node);
1568 	if (ma_is_leaf(mt))
1569 		return mas_leaf_max_gap(mas);
1570 
1571 	node = mas_mn(mas);
1572 	offset = ma_meta_gap(node, mt);
1573 	if (offset == MAPLE_ARANGE64_META_MAX)
1574 		return 0;
1575 
1576 	gaps = ma_gaps(node, mt);
1577 	return gaps[offset];
1578 }
1579 
1580 /*
1581  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1582  * @mas: The maple state
1583  * @offset: The gap offset in the parent to set
1584  * @new: The new gap value.
1585  *
1586  * Set the parent gap then continue to set the gap upwards, using the metadata
1587  * of the parent to see if it is necessary to check the node above.
1588  */
1589 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1590 		unsigned long new)
1591 {
1592 	unsigned long meta_gap = 0;
1593 	struct maple_node *pnode;
1594 	struct maple_enode *penode;
1595 	unsigned long *pgaps;
1596 	unsigned char meta_offset;
1597 	enum maple_type pmt;
1598 
1599 	pnode = mte_parent(mas->node);
1600 	pmt = mas_parent_enum(mas, mas->node);
1601 	penode = mt_mk_node(pnode, pmt);
1602 	pgaps = ma_gaps(pnode, pmt);
1603 
1604 ascend:
1605 	meta_offset = ma_meta_gap(pnode, pmt);
1606 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1607 		meta_gap = 0;
1608 	else
1609 		meta_gap = pgaps[meta_offset];
1610 
1611 	pgaps[offset] = new;
1612 
1613 	if (meta_gap == new)
1614 		return;
1615 
1616 	if (offset != meta_offset) {
1617 		if (meta_gap > new)
1618 			return;
1619 
1620 		ma_set_meta_gap(pnode, pmt, offset);
1621 	} else if (new < meta_gap) {
1622 		meta_offset = 15;
1623 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1624 		ma_set_meta_gap(pnode, pmt, meta_offset);
1625 	}
1626 
1627 	if (ma_is_root(pnode))
1628 		return;
1629 
1630 	/* Go to the parent node. */
1631 	pnode = mte_parent(penode);
1632 	pmt = mas_parent_enum(mas, penode);
1633 	pgaps = ma_gaps(pnode, pmt);
1634 	offset = mte_parent_slot(penode);
1635 	penode = mt_mk_node(pnode, pmt);
1636 	goto ascend;
1637 }
1638 
1639 /*
1640  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1641  * @mas - the maple state.
1642  */
1643 static inline void mas_update_gap(struct ma_state *mas)
1644 {
1645 	unsigned char pslot;
1646 	unsigned long p_gap;
1647 	unsigned long max_gap;
1648 
1649 	if (!mt_is_alloc(mas->tree))
1650 		return;
1651 
1652 	if (mte_is_root(mas->node))
1653 		return;
1654 
1655 	max_gap = mas_max_gap(mas);
1656 
1657 	pslot = mte_parent_slot(mas->node);
1658 	p_gap = ma_gaps(mte_parent(mas->node),
1659 			mas_parent_enum(mas, mas->node))[pslot];
1660 
1661 	if (p_gap != max_gap)
1662 		mas_parent_gap(mas, pslot, max_gap);
1663 }
1664 
1665 /*
1666  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1667  * @parent with the slot encoded.
1668  * @mas - the maple state (for the tree)
1669  * @parent - the maple encoded node containing the children.
1670  */
1671 static inline void mas_adopt_children(struct ma_state *mas,
1672 		struct maple_enode *parent)
1673 {
1674 	enum maple_type type = mte_node_type(parent);
1675 	struct maple_node *node = mas_mn(mas);
1676 	void __rcu **slots = ma_slots(node, type);
1677 	unsigned long *pivots = ma_pivots(node, type);
1678 	struct maple_enode *child;
1679 	unsigned char offset;
1680 
1681 	offset = ma_data_end(node, type, pivots, mas->max);
1682 	do {
1683 		child = mas_slot_locked(mas, slots, offset);
1684 		mte_set_parent(child, parent, offset);
1685 	} while (offset--);
1686 }
1687 
1688 /*
1689  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1690  * parent encoding to locate the maple node in the tree.
1691  * @mas - the ma_state to use for operations.
1692  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1693  * leave the node (true) and handle the adoption and free elsewhere.
1694  */
1695 static inline void mas_replace(struct ma_state *mas, bool advanced)
1696 	__must_hold(mas->tree->lock)
1697 {
1698 	struct maple_node *mn = mas_mn(mas);
1699 	struct maple_enode *old_enode;
1700 	unsigned char offset = 0;
1701 	void __rcu **slots = NULL;
1702 
1703 	if (ma_is_root(mn)) {
1704 		old_enode = mas_root_locked(mas);
1705 	} else {
1706 		offset = mte_parent_slot(mas->node);
1707 		slots = ma_slots(mte_parent(mas->node),
1708 				 mas_parent_enum(mas, mas->node));
1709 		old_enode = mas_slot_locked(mas, slots, offset);
1710 	}
1711 
1712 	if (!advanced && !mte_is_leaf(mas->node))
1713 		mas_adopt_children(mas, mas->node);
1714 
1715 	if (mte_is_root(mas->node)) {
1716 		mn->parent = ma_parent_ptr(
1717 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1718 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1719 		mas_set_height(mas);
1720 	} else {
1721 		rcu_assign_pointer(slots[offset], mas->node);
1722 	}
1723 
1724 	if (!advanced)
1725 		mas_free(mas, old_enode);
1726 }
1727 
1728 /*
1729  * mas_new_child() - Find the new child of a node.
1730  * @mas: the maple state
1731  * @child: the maple state to store the child.
1732  */
1733 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1734 	__must_hold(mas->tree->lock)
1735 {
1736 	enum maple_type mt;
1737 	unsigned char offset;
1738 	unsigned char end;
1739 	unsigned long *pivots;
1740 	struct maple_enode *entry;
1741 	struct maple_node *node;
1742 	void __rcu **slots;
1743 
1744 	mt = mte_node_type(mas->node);
1745 	node = mas_mn(mas);
1746 	slots = ma_slots(node, mt);
1747 	pivots = ma_pivots(node, mt);
1748 	end = ma_data_end(node, mt, pivots, mas->max);
1749 	for (offset = mas->offset; offset <= end; offset++) {
1750 		entry = mas_slot_locked(mas, slots, offset);
1751 		if (mte_parent(entry) == node) {
1752 			*child = *mas;
1753 			mas->offset = offset + 1;
1754 			child->offset = offset;
1755 			mas_descend(child);
1756 			child->offset = 0;
1757 			return true;
1758 		}
1759 	}
1760 	return false;
1761 }
1762 
1763 /*
1764  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1765  * old data or set b_node->b_end.
1766  * @b_node: the maple_big_node
1767  * @shift: the shift count
1768  */
1769 static inline void mab_shift_right(struct maple_big_node *b_node,
1770 				 unsigned char shift)
1771 {
1772 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1773 
1774 	memmove(b_node->pivot + shift, b_node->pivot, size);
1775 	memmove(b_node->slot + shift, b_node->slot, size);
1776 	if (b_node->type == maple_arange_64)
1777 		memmove(b_node->gap + shift, b_node->gap, size);
1778 }
1779 
1780 /*
1781  * mab_middle_node() - Check if a middle node is needed (unlikely)
1782  * @b_node: the maple_big_node that contains the data.
1783  * @size: the amount of data in the b_node
1784  * @split: the potential split location
1785  * @slot_count: the size that can be stored in a single node being considered.
1786  *
1787  * Return: true if a middle node is required.
1788  */
1789 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1790 				   unsigned char slot_count)
1791 {
1792 	unsigned char size = b_node->b_end;
1793 
1794 	if (size >= 2 * slot_count)
1795 		return true;
1796 
1797 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1805  * @b_node: the maple_big_node with the data
1806  * @split: the suggested split location
1807  * @slot_count: the number of slots in the node being considered.
1808  *
1809  * Return: the split location.
1810  */
1811 static inline int mab_no_null_split(struct maple_big_node *b_node,
1812 				    unsigned char split, unsigned char slot_count)
1813 {
1814 	if (!b_node->slot[split]) {
1815 		/*
1816 		 * If the split is less than the max slot && the right side will
1817 		 * still be sufficient, then increment the split on NULL.
1818 		 */
1819 		if ((split < slot_count - 1) &&
1820 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1821 			split++;
1822 		else
1823 			split--;
1824 	}
1825 	return split;
1826 }
1827 
1828 /*
1829  * mab_calc_split() - Calculate the split location and if there needs to be two
1830  * splits.
1831  * @bn: The maple_big_node with the data
1832  * @mid_split: The second split, if required.  0 otherwise.
1833  *
1834  * Return: The first split location.  The middle split is set in @mid_split.
1835  */
1836 static inline int mab_calc_split(struct ma_state *mas,
1837 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1838 {
1839 	unsigned char b_end = bn->b_end;
1840 	int split = b_end / 2; /* Assume equal split. */
1841 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1842 
1843 	/*
1844 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1845 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1846 	 * limitation means that the split of a node must be checked for this condition
1847 	 * and be able to put more data in one direction or the other.
1848 	 */
1849 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1850 		*mid_split = 0;
1851 		split = b_end - mt_min_slots[bn->type];
1852 
1853 		if (!ma_is_leaf(bn->type))
1854 			return split;
1855 
1856 		mas->mas_flags |= MA_STATE_REBALANCE;
1857 		if (!bn->slot[split])
1858 			split--;
1859 		return split;
1860 	}
1861 
1862 	/*
1863 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1864 	 * split scenario.  The 3-way split comes about by means of a store of a range
1865 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1866 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1867 	 * also be located in different parent nodes which are also full.  This can
1868 	 * carry upwards all the way to the root in the worst case.
1869 	 */
1870 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1871 		split = b_end / 3;
1872 		*mid_split = split * 2;
1873 	} else {
1874 		slot_min = mt_min_slots[bn->type];
1875 
1876 		*mid_split = 0;
1877 		/*
1878 		 * Avoid having a range less than the slot count unless it
1879 		 * causes one node to be deficient.
1880 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1881 		 */
1882 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1883 		       (split < slot_count - 1) && (b_end - split > slot_min))
1884 			split++;
1885 	}
1886 
1887 	/* Avoid ending a node on a NULL entry */
1888 	split = mab_no_null_split(bn, split, slot_count);
1889 	if (!(*mid_split))
1890 		return split;
1891 
1892 	*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1893 
1894 	return split;
1895 }
1896 
1897 /*
1898  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1899  * and set @b_node->b_end to the next free slot.
1900  * @mas: The maple state
1901  * @mas_start: The starting slot to copy
1902  * @mas_end: The end slot to copy (inclusively)
1903  * @b_node: The maple_big_node to place the data
1904  * @mab_start: The starting location in maple_big_node to store the data.
1905  */
1906 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1907 			unsigned char mas_end, struct maple_big_node *b_node,
1908 			unsigned char mab_start)
1909 {
1910 	enum maple_type mt;
1911 	struct maple_node *node;
1912 	void __rcu **slots;
1913 	unsigned long *pivots, *gaps;
1914 	int i = mas_start, j = mab_start;
1915 	unsigned char piv_end;
1916 
1917 	node = mas_mn(mas);
1918 	mt = mte_node_type(mas->node);
1919 	pivots = ma_pivots(node, mt);
1920 	if (!i) {
1921 		b_node->pivot[j] = pivots[i++];
1922 		if (unlikely(i > mas_end))
1923 			goto complete;
1924 		j++;
1925 	}
1926 
1927 	piv_end = min(mas_end, mt_pivots[mt]);
1928 	for (; i < piv_end; i++, j++) {
1929 		b_node->pivot[j] = pivots[i];
1930 		if (unlikely(!b_node->pivot[j]))
1931 			break;
1932 
1933 		if (unlikely(mas->max == b_node->pivot[j]))
1934 			goto complete;
1935 	}
1936 
1937 	if (likely(i <= mas_end))
1938 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1939 
1940 complete:
1941 	b_node->b_end = ++j;
1942 	j -= mab_start;
1943 	slots = ma_slots(node, mt);
1944 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1945 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1946 		gaps = ma_gaps(node, mt);
1947 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1948 		       sizeof(unsigned long) * j);
1949 	}
1950 }
1951 
1952 /*
1953  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1954  * @mas: The maple state
1955  * @node: The maple node
1956  * @pivots: pointer to the maple node pivots
1957  * @mt: The maple type
1958  * @end: The assumed end
1959  *
1960  * Note, end may be incremented within this function but not modified at the
1961  * source.  This is fine since the metadata is the last thing to be stored in a
1962  * node during a write.
1963  */
1964 static inline void mas_leaf_set_meta(struct ma_state *mas,
1965 		struct maple_node *node, unsigned long *pivots,
1966 		enum maple_type mt, unsigned char end)
1967 {
1968 	/* There is no room for metadata already */
1969 	if (mt_pivots[mt] <= end)
1970 		return;
1971 
1972 	if (pivots[end] && pivots[end] < mas->max)
1973 		end++;
1974 
1975 	if (end < mt_slots[mt] - 1)
1976 		ma_set_meta(node, mt, 0, end);
1977 }
1978 
1979 /*
1980  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1981  * @b_node: the maple_big_node that has the data
1982  * @mab_start: the start location in @b_node.
1983  * @mab_end: The end location in @b_node (inclusively)
1984  * @mas: The maple state with the maple encoded node.
1985  */
1986 static inline void mab_mas_cp(struct maple_big_node *b_node,
1987 			      unsigned char mab_start, unsigned char mab_end,
1988 			      struct ma_state *mas, bool new_max)
1989 {
1990 	int i, j = 0;
1991 	enum maple_type mt = mte_node_type(mas->node);
1992 	struct maple_node *node = mte_to_node(mas->node);
1993 	void __rcu **slots = ma_slots(node, mt);
1994 	unsigned long *pivots = ma_pivots(node, mt);
1995 	unsigned long *gaps = NULL;
1996 	unsigned char end;
1997 
1998 	if (mab_end - mab_start > mt_pivots[mt])
1999 		mab_end--;
2000 
2001 	if (!pivots[mt_pivots[mt] - 1])
2002 		slots[mt_pivots[mt]] = NULL;
2003 
2004 	i = mab_start;
2005 	do {
2006 		pivots[j++] = b_node->pivot[i++];
2007 	} while (i <= mab_end && likely(b_node->pivot[i]));
2008 
2009 	memcpy(slots, b_node->slot + mab_start,
2010 	       sizeof(void *) * (i - mab_start));
2011 
2012 	if (new_max)
2013 		mas->max = b_node->pivot[i - 1];
2014 
2015 	end = j - 1;
2016 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2017 		unsigned long max_gap = 0;
2018 		unsigned char offset = 15;
2019 
2020 		gaps = ma_gaps(node, mt);
2021 		do {
2022 			gaps[--j] = b_node->gap[--i];
2023 			if (gaps[j] > max_gap) {
2024 				offset = j;
2025 				max_gap = gaps[j];
2026 			}
2027 		} while (j);
2028 
2029 		ma_set_meta(node, mt, offset, end);
2030 	} else {
2031 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2032 	}
2033 }
2034 
2035 /*
2036  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2037  * @mas: the maple state with the maple encoded node of the sub-tree.
2038  *
2039  * Descend through a sub-tree and adopt children who do not have the correct
2040  * parents set.  Follow the parents which have the correct parents as they are
2041  * the new entries which need to be followed to find other incorrectly set
2042  * parents.
2043  */
2044 static inline void mas_descend_adopt(struct ma_state *mas)
2045 {
2046 	struct ma_state list[3], next[3];
2047 	int i, n;
2048 
2049 	/*
2050 	 * At each level there may be up to 3 correct parent pointers which indicates
2051 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2052 	 */
2053 
2054 	for (i = 0; i < 3; i++) {
2055 		list[i] = *mas;
2056 		list[i].offset = 0;
2057 		next[i].offset = 0;
2058 	}
2059 	next[0] = *mas;
2060 
2061 	while (!mte_is_leaf(list[0].node)) {
2062 		n = 0;
2063 		for (i = 0; i < 3; i++) {
2064 			if (mas_is_none(&list[i]))
2065 				continue;
2066 
2067 			if (i && list[i-1].node == list[i].node)
2068 				continue;
2069 
2070 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2071 				n++;
2072 
2073 			mas_adopt_children(&list[i], list[i].node);
2074 		}
2075 
2076 		while (n < 3)
2077 			next[n++].node = MAS_NONE;
2078 
2079 		/* descend by setting the list to the children */
2080 		for (i = 0; i < 3; i++)
2081 			list[i] = next[i];
2082 	}
2083 }
2084 
2085 /*
2086  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2087  * @mas: The maple state
2088  * @end: The maple node end
2089  * @mt: The maple node type
2090  */
2091 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2092 				      enum maple_type mt)
2093 {
2094 	if (!(mas->mas_flags & MA_STATE_BULK))
2095 		return;
2096 
2097 	if (mte_is_root(mas->node))
2098 		return;
2099 
2100 	if (end > mt_min_slots[mt]) {
2101 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2102 		return;
2103 	}
2104 }
2105 
2106 /*
2107  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2108  * data from a maple encoded node.
2109  * @wr_mas: the maple write state
2110  * @b_node: the maple_big_node to fill with data
2111  * @offset_end: the offset to end copying
2112  *
2113  * Return: The actual end of the data stored in @b_node
2114  */
2115 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2116 		struct maple_big_node *b_node, unsigned char offset_end)
2117 {
2118 	unsigned char slot;
2119 	unsigned char b_end;
2120 	/* Possible underflow of piv will wrap back to 0 before use. */
2121 	unsigned long piv;
2122 	struct ma_state *mas = wr_mas->mas;
2123 
2124 	b_node->type = wr_mas->type;
2125 	b_end = 0;
2126 	slot = mas->offset;
2127 	if (slot) {
2128 		/* Copy start data up to insert. */
2129 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2130 		b_end = b_node->b_end;
2131 		piv = b_node->pivot[b_end - 1];
2132 	} else
2133 		piv = mas->min - 1;
2134 
2135 	if (piv + 1 < mas->index) {
2136 		/* Handle range starting after old range */
2137 		b_node->slot[b_end] = wr_mas->content;
2138 		if (!wr_mas->content)
2139 			b_node->gap[b_end] = mas->index - 1 - piv;
2140 		b_node->pivot[b_end++] = mas->index - 1;
2141 	}
2142 
2143 	/* Store the new entry. */
2144 	mas->offset = b_end;
2145 	b_node->slot[b_end] = wr_mas->entry;
2146 	b_node->pivot[b_end] = mas->last;
2147 
2148 	/* Appended. */
2149 	if (mas->last >= mas->max)
2150 		goto b_end;
2151 
2152 	/* Handle new range ending before old range ends */
2153 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2154 	if (piv > mas->last) {
2155 		if (piv == ULONG_MAX)
2156 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2157 
2158 		if (offset_end != slot)
2159 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2160 							  offset_end);
2161 
2162 		b_node->slot[++b_end] = wr_mas->content;
2163 		if (!wr_mas->content)
2164 			b_node->gap[b_end] = piv - mas->last + 1;
2165 		b_node->pivot[b_end] = piv;
2166 	}
2167 
2168 	slot = offset_end + 1;
2169 	if (slot > wr_mas->node_end)
2170 		goto b_end;
2171 
2172 	/* Copy end data to the end of the node. */
2173 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2174 	b_node->b_end--;
2175 	return;
2176 
2177 b_end:
2178 	b_node->b_end = b_end;
2179 }
2180 
2181 /*
2182  * mas_prev_sibling() - Find the previous node with the same parent.
2183  * @mas: the maple state
2184  *
2185  * Return: True if there is a previous sibling, false otherwise.
2186  */
2187 static inline bool mas_prev_sibling(struct ma_state *mas)
2188 {
2189 	unsigned int p_slot = mte_parent_slot(mas->node);
2190 
2191 	if (mte_is_root(mas->node))
2192 		return false;
2193 
2194 	if (!p_slot)
2195 		return false;
2196 
2197 	mas_ascend(mas);
2198 	mas->offset = p_slot - 1;
2199 	mas_descend(mas);
2200 	return true;
2201 }
2202 
2203 /*
2204  * mas_next_sibling() - Find the next node with the same parent.
2205  * @mas: the maple state
2206  *
2207  * Return: true if there is a next sibling, false otherwise.
2208  */
2209 static inline bool mas_next_sibling(struct ma_state *mas)
2210 {
2211 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2212 
2213 	if (mte_is_root(mas->node))
2214 		return false;
2215 
2216 	parent = *mas;
2217 	mas_ascend(&parent);
2218 	parent.offset = mte_parent_slot(mas->node) + 1;
2219 	if (parent.offset > mas_data_end(&parent))
2220 		return false;
2221 
2222 	*mas = parent;
2223 	mas_descend(mas);
2224 	return true;
2225 }
2226 
2227 /*
2228  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2229  * @enode: The encoded maple node.
2230  *
2231  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2232  *
2233  * Return: @enode or MAS_NONE
2234  */
2235 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2236 {
2237 	if (enode)
2238 		return enode;
2239 
2240 	return ma_enode_ptr(MAS_NONE);
2241 }
2242 
2243 /*
2244  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2245  * @wr_mas: The maple write state
2246  *
2247  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2248  */
2249 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2250 {
2251 	struct ma_state *mas = wr_mas->mas;
2252 	unsigned char count;
2253 	unsigned char offset;
2254 	unsigned long index, min, max;
2255 
2256 	if (unlikely(ma_is_dense(wr_mas->type))) {
2257 		wr_mas->r_max = wr_mas->r_min = mas->index;
2258 		mas->offset = mas->index = mas->min;
2259 		return;
2260 	}
2261 
2262 	wr_mas->node = mas_mn(wr_mas->mas);
2263 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2264 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2265 					       wr_mas->pivots, mas->max);
2266 	offset = mas->offset;
2267 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2268 	if (unlikely(offset == count))
2269 		goto max;
2270 
2271 	max = wr_mas->pivots[offset];
2272 	index = mas->index;
2273 	if (unlikely(index <= max))
2274 		goto done;
2275 
2276 	if (unlikely(!max && offset))
2277 		goto max;
2278 
2279 	min = max + 1;
2280 	while (++offset < count) {
2281 		max = wr_mas->pivots[offset];
2282 		if (index <= max)
2283 			goto done;
2284 		else if (unlikely(!max))
2285 			break;
2286 
2287 		min = max + 1;
2288 	}
2289 
2290 max:
2291 	max = mas->max;
2292 done:
2293 	wr_mas->r_max = max;
2294 	wr_mas->r_min = min;
2295 	wr_mas->offset_end = mas->offset = offset;
2296 }
2297 
2298 /*
2299  * mas_topiary_range() - Add a range of slots to the topiary.
2300  * @mas: The maple state
2301  * @destroy: The topiary to add the slots (usually destroy)
2302  * @start: The starting slot inclusively
2303  * @end: The end slot inclusively
2304  */
2305 static inline void mas_topiary_range(struct ma_state *mas,
2306 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2307 {
2308 	void __rcu **slots;
2309 	unsigned char offset;
2310 
2311 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2312 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2313 	for (offset = start; offset <= end; offset++) {
2314 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2315 
2316 		if (mte_dead_node(enode))
2317 			continue;
2318 
2319 		mat_add(destroy, enode);
2320 	}
2321 }
2322 
2323 /*
2324  * mast_topiary() - Add the portions of the tree to the removal list; either to
2325  * be freed or discarded (destroy walk).
2326  * @mast: The maple_subtree_state.
2327  */
2328 static inline void mast_topiary(struct maple_subtree_state *mast)
2329 {
2330 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2331 	unsigned char r_start, r_end;
2332 	unsigned char l_start, l_end;
2333 	void __rcu **l_slots, **r_slots;
2334 
2335 	wr_mas.type = mte_node_type(mast->orig_l->node);
2336 	mast->orig_l->index = mast->orig_l->last;
2337 	mas_wr_node_walk(&wr_mas);
2338 	l_start = mast->orig_l->offset + 1;
2339 	l_end = mas_data_end(mast->orig_l);
2340 	r_start = 0;
2341 	r_end = mast->orig_r->offset;
2342 
2343 	if (r_end)
2344 		r_end--;
2345 
2346 	l_slots = ma_slots(mas_mn(mast->orig_l),
2347 			   mte_node_type(mast->orig_l->node));
2348 
2349 	r_slots = ma_slots(mas_mn(mast->orig_r),
2350 			   mte_node_type(mast->orig_r->node));
2351 
2352 	if ((l_start < l_end) &&
2353 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2354 		l_start++;
2355 	}
2356 
2357 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2358 		if (r_end)
2359 			r_end--;
2360 	}
2361 
2362 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2363 		return;
2364 
2365 	/* At the node where left and right sides meet, add the parts between */
2366 	if (mast->orig_l->node == mast->orig_r->node) {
2367 		return mas_topiary_range(mast->orig_l, mast->destroy,
2368 					     l_start, r_end);
2369 	}
2370 
2371 	/* mast->orig_r is different and consumed. */
2372 	if (mte_is_leaf(mast->orig_r->node))
2373 		return;
2374 
2375 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2376 		l_end--;
2377 
2378 
2379 	if (l_start <= l_end)
2380 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2381 
2382 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2383 		r_start++;
2384 
2385 	if (r_start <= r_end)
2386 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2387 }
2388 
2389 /*
2390  * mast_rebalance_next() - Rebalance against the next node
2391  * @mast: The maple subtree state
2392  * @old_r: The encoded maple node to the right (next node).
2393  */
2394 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2395 {
2396 	unsigned char b_end = mast->bn->b_end;
2397 
2398 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2399 		   mast->bn, b_end);
2400 	mast->orig_r->last = mast->orig_r->max;
2401 }
2402 
2403 /*
2404  * mast_rebalance_prev() - Rebalance against the previous node
2405  * @mast: The maple subtree state
2406  * @old_l: The encoded maple node to the left (previous node)
2407  */
2408 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2409 {
2410 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2411 	unsigned char b_end = mast->bn->b_end;
2412 
2413 	mab_shift_right(mast->bn, end);
2414 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2415 	mast->l->min = mast->orig_l->min;
2416 	mast->orig_l->index = mast->orig_l->min;
2417 	mast->bn->b_end = end + b_end;
2418 	mast->l->offset += end;
2419 }
2420 
2421 /*
2422  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2423  * the node to the right.  Checking the nodes to the right then the left at each
2424  * level upwards until root is reached.  Free and destroy as needed.
2425  * Data is copied into the @mast->bn.
2426  * @mast: The maple_subtree_state.
2427  */
2428 static inline
2429 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2430 {
2431 	struct ma_state r_tmp = *mast->orig_r;
2432 	struct ma_state l_tmp = *mast->orig_l;
2433 	struct maple_enode *ancestor = NULL;
2434 	unsigned char start, end;
2435 	unsigned char depth = 0;
2436 
2437 	r_tmp = *mast->orig_r;
2438 	l_tmp = *mast->orig_l;
2439 	do {
2440 		mas_ascend(mast->orig_r);
2441 		mas_ascend(mast->orig_l);
2442 		depth++;
2443 		if (!ancestor &&
2444 		    (mast->orig_r->node == mast->orig_l->node)) {
2445 			ancestor = mast->orig_r->node;
2446 			end = mast->orig_r->offset - 1;
2447 			start = mast->orig_l->offset + 1;
2448 		}
2449 
2450 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2451 			if (!ancestor) {
2452 				ancestor = mast->orig_r->node;
2453 				start = 0;
2454 			}
2455 
2456 			mast->orig_r->offset++;
2457 			do {
2458 				mas_descend(mast->orig_r);
2459 				mast->orig_r->offset = 0;
2460 				depth--;
2461 			} while (depth);
2462 
2463 			mast_rebalance_next(mast);
2464 			do {
2465 				unsigned char l_off = 0;
2466 				struct maple_enode *child = r_tmp.node;
2467 
2468 				mas_ascend(&r_tmp);
2469 				if (ancestor == r_tmp.node)
2470 					l_off = start;
2471 
2472 				if (r_tmp.offset)
2473 					r_tmp.offset--;
2474 
2475 				if (l_off < r_tmp.offset)
2476 					mas_topiary_range(&r_tmp, mast->destroy,
2477 							  l_off, r_tmp.offset);
2478 
2479 				if (l_tmp.node != child)
2480 					mat_add(mast->free, child);
2481 
2482 			} while (r_tmp.node != ancestor);
2483 
2484 			*mast->orig_l = l_tmp;
2485 			return true;
2486 
2487 		} else if (mast->orig_l->offset != 0) {
2488 			if (!ancestor) {
2489 				ancestor = mast->orig_l->node;
2490 				end = mas_data_end(mast->orig_l);
2491 			}
2492 
2493 			mast->orig_l->offset--;
2494 			do {
2495 				mas_descend(mast->orig_l);
2496 				mast->orig_l->offset =
2497 					mas_data_end(mast->orig_l);
2498 				depth--;
2499 			} while (depth);
2500 
2501 			mast_rebalance_prev(mast);
2502 			do {
2503 				unsigned char r_off;
2504 				struct maple_enode *child = l_tmp.node;
2505 
2506 				mas_ascend(&l_tmp);
2507 				if (ancestor == l_tmp.node)
2508 					r_off = end;
2509 				else
2510 					r_off = mas_data_end(&l_tmp);
2511 
2512 				if (l_tmp.offset < r_off)
2513 					l_tmp.offset++;
2514 
2515 				if (l_tmp.offset < r_off)
2516 					mas_topiary_range(&l_tmp, mast->destroy,
2517 							  l_tmp.offset, r_off);
2518 
2519 				if (r_tmp.node != child)
2520 					mat_add(mast->free, child);
2521 
2522 			} while (l_tmp.node != ancestor);
2523 
2524 			*mast->orig_r = r_tmp;
2525 			return true;
2526 		}
2527 	} while (!mte_is_root(mast->orig_r->node));
2528 
2529 	*mast->orig_r = r_tmp;
2530 	*mast->orig_l = l_tmp;
2531 	return false;
2532 }
2533 
2534 /*
2535  * mast_ascend_free() - Add current original maple state nodes to the free list
2536  * and ascend.
2537  * @mast: the maple subtree state.
2538  *
2539  * Ascend the original left and right sides and add the previous nodes to the
2540  * free list.  Set the slots to point to the correct location in the new nodes.
2541  */
2542 static inline void
2543 mast_ascend_free(struct maple_subtree_state *mast)
2544 {
2545 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2546 	struct maple_enode *left = mast->orig_l->node;
2547 	struct maple_enode *right = mast->orig_r->node;
2548 
2549 	mas_ascend(mast->orig_l);
2550 	mas_ascend(mast->orig_r);
2551 	mat_add(mast->free, left);
2552 
2553 	if (left != right)
2554 		mat_add(mast->free, right);
2555 
2556 	mast->orig_r->offset = 0;
2557 	mast->orig_r->index = mast->r->max;
2558 	/* last should be larger than or equal to index */
2559 	if (mast->orig_r->last < mast->orig_r->index)
2560 		mast->orig_r->last = mast->orig_r->index;
2561 	/*
2562 	 * The node may not contain the value so set slot to ensure all
2563 	 * of the nodes contents are freed or destroyed.
2564 	 */
2565 	wr_mas.type = mte_node_type(mast->orig_r->node);
2566 	mas_wr_node_walk(&wr_mas);
2567 	/* Set up the left side of things */
2568 	mast->orig_l->offset = 0;
2569 	mast->orig_l->index = mast->l->min;
2570 	wr_mas.mas = mast->orig_l;
2571 	wr_mas.type = mte_node_type(mast->orig_l->node);
2572 	mas_wr_node_walk(&wr_mas);
2573 
2574 	mast->bn->type = wr_mas.type;
2575 }
2576 
2577 /*
2578  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2579  * @mas: the maple state with the allocations.
2580  * @b_node: the maple_big_node with the type encoding.
2581  *
2582  * Use the node type from the maple_big_node to allocate a new node from the
2583  * ma_state.  This function exists mainly for code readability.
2584  *
2585  * Return: A new maple encoded node
2586  */
2587 static inline struct maple_enode
2588 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2589 {
2590 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2591 }
2592 
2593 /*
2594  * mas_mab_to_node() - Set up right and middle nodes
2595  *
2596  * @mas: the maple state that contains the allocations.
2597  * @b_node: the node which contains the data.
2598  * @left: The pointer which will have the left node
2599  * @right: The pointer which may have the right node
2600  * @middle: the pointer which may have the middle node (rare)
2601  * @mid_split: the split location for the middle node
2602  *
2603  * Return: the split of left.
2604  */
2605 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2606 	struct maple_big_node *b_node, struct maple_enode **left,
2607 	struct maple_enode **right, struct maple_enode **middle,
2608 	unsigned char *mid_split, unsigned long min)
2609 {
2610 	unsigned char split = 0;
2611 	unsigned char slot_count = mt_slots[b_node->type];
2612 
2613 	*left = mas_new_ma_node(mas, b_node);
2614 	*right = NULL;
2615 	*middle = NULL;
2616 	*mid_split = 0;
2617 
2618 	if (b_node->b_end < slot_count) {
2619 		split = b_node->b_end;
2620 	} else {
2621 		split = mab_calc_split(mas, b_node, mid_split, min);
2622 		*right = mas_new_ma_node(mas, b_node);
2623 	}
2624 
2625 	if (*mid_split)
2626 		*middle = mas_new_ma_node(mas, b_node);
2627 
2628 	return split;
2629 
2630 }
2631 
2632 /*
2633  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2634  * pointer.
2635  * @b_node - the big node to add the entry
2636  * @mas - the maple state to get the pivot (mas->max)
2637  * @entry - the entry to add, if NULL nothing happens.
2638  */
2639 static inline void mab_set_b_end(struct maple_big_node *b_node,
2640 				 struct ma_state *mas,
2641 				 void *entry)
2642 {
2643 	if (!entry)
2644 		return;
2645 
2646 	b_node->slot[b_node->b_end] = entry;
2647 	if (mt_is_alloc(mas->tree))
2648 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2649 	b_node->pivot[b_node->b_end++] = mas->max;
2650 }
2651 
2652 /*
2653  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2654  * of @mas->node to either @left or @right, depending on @slot and @split
2655  *
2656  * @mas - the maple state with the node that needs a parent
2657  * @left - possible parent 1
2658  * @right - possible parent 2
2659  * @slot - the slot the mas->node was placed
2660  * @split - the split location between @left and @right
2661  */
2662 static inline void mas_set_split_parent(struct ma_state *mas,
2663 					struct maple_enode *left,
2664 					struct maple_enode *right,
2665 					unsigned char *slot, unsigned char split)
2666 {
2667 	if (mas_is_none(mas))
2668 		return;
2669 
2670 	if ((*slot) <= split)
2671 		mte_set_parent(mas->node, left, *slot);
2672 	else if (right)
2673 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2674 
2675 	(*slot)++;
2676 }
2677 
2678 /*
2679  * mte_mid_split_check() - Check if the next node passes the mid-split
2680  * @**l: Pointer to left encoded maple node.
2681  * @**m: Pointer to middle encoded maple node.
2682  * @**r: Pointer to right encoded maple node.
2683  * @slot: The offset
2684  * @*split: The split location.
2685  * @mid_split: The middle split.
2686  */
2687 static inline void mte_mid_split_check(struct maple_enode **l,
2688 				       struct maple_enode **r,
2689 				       struct maple_enode *right,
2690 				       unsigned char slot,
2691 				       unsigned char *split,
2692 				       unsigned char mid_split)
2693 {
2694 	if (*r == right)
2695 		return;
2696 
2697 	if (slot < mid_split)
2698 		return;
2699 
2700 	*l = *r;
2701 	*r = right;
2702 	*split = mid_split;
2703 }
2704 
2705 /*
2706  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2707  * is taken from @mast->l.
2708  * @mast - the maple subtree state
2709  * @left - the left node
2710  * @right - the right node
2711  * @split - the split location.
2712  */
2713 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2714 					  struct maple_enode *left,
2715 					  struct maple_enode *middle,
2716 					  struct maple_enode *right,
2717 					  unsigned char split,
2718 					  unsigned char mid_split)
2719 {
2720 	unsigned char slot;
2721 	struct maple_enode *l = left;
2722 	struct maple_enode *r = right;
2723 
2724 	if (mas_is_none(mast->l))
2725 		return;
2726 
2727 	if (middle)
2728 		r = middle;
2729 
2730 	slot = mast->l->offset;
2731 
2732 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2733 	mas_set_split_parent(mast->l, l, r, &slot, split);
2734 
2735 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2736 	mas_set_split_parent(mast->m, l, r, &slot, split);
2737 
2738 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2739 	mas_set_split_parent(mast->r, l, r, &slot, split);
2740 }
2741 
2742 /*
2743  * mas_wmb_replace() - Write memory barrier and replace
2744  * @mas: The maple state
2745  * @free: the maple topiary list of nodes to free
2746  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2747  *
2748  * Updates gap as necessary.
2749  */
2750 static inline void mas_wmb_replace(struct ma_state *mas,
2751 				   struct ma_topiary *free,
2752 				   struct ma_topiary *destroy)
2753 {
2754 	/* All nodes must see old data as dead prior to replacing that data */
2755 	smp_wmb(); /* Needed for RCU */
2756 
2757 	/* Insert the new data in the tree */
2758 	mas_replace(mas, true);
2759 
2760 	if (!mte_is_leaf(mas->node))
2761 		mas_descend_adopt(mas);
2762 
2763 	mas_mat_free(mas, free);
2764 
2765 	if (destroy)
2766 		mas_mat_destroy(mas, destroy);
2767 
2768 	if (mte_is_leaf(mas->node))
2769 		return;
2770 
2771 	mas_update_gap(mas);
2772 }
2773 
2774 /*
2775  * mast_new_root() - Set a new tree root during subtree creation
2776  * @mast: The maple subtree state
2777  * @mas: The maple state
2778  */
2779 static inline void mast_new_root(struct maple_subtree_state *mast,
2780 				 struct ma_state *mas)
2781 {
2782 	mas_mn(mast->l)->parent =
2783 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2784 	if (!mte_dead_node(mast->orig_l->node) &&
2785 	    !mte_is_root(mast->orig_l->node)) {
2786 		do {
2787 			mast_ascend_free(mast);
2788 			mast_topiary(mast);
2789 		} while (!mte_is_root(mast->orig_l->node));
2790 	}
2791 	if ((mast->orig_l->node != mas->node) &&
2792 		   (mast->l->depth > mas_mt_height(mas))) {
2793 		mat_add(mast->free, mas->node);
2794 	}
2795 }
2796 
2797 /*
2798  * mast_cp_to_nodes() - Copy data out to nodes.
2799  * @mast: The maple subtree state
2800  * @left: The left encoded maple node
2801  * @middle: The middle encoded maple node
2802  * @right: The right encoded maple node
2803  * @split: The location to split between left and (middle ? middle : right)
2804  * @mid_split: The location to split between middle and right.
2805  */
2806 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2807 	struct maple_enode *left, struct maple_enode *middle,
2808 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2809 {
2810 	bool new_lmax = true;
2811 
2812 	mast->l->node = mte_node_or_none(left);
2813 	mast->m->node = mte_node_or_none(middle);
2814 	mast->r->node = mte_node_or_none(right);
2815 
2816 	mast->l->min = mast->orig_l->min;
2817 	if (split == mast->bn->b_end) {
2818 		mast->l->max = mast->orig_r->max;
2819 		new_lmax = false;
2820 	}
2821 
2822 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2823 
2824 	if (middle) {
2825 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2826 		mast->m->min = mast->bn->pivot[split] + 1;
2827 		split = mid_split;
2828 	}
2829 
2830 	mast->r->max = mast->orig_r->max;
2831 	if (right) {
2832 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2833 		mast->r->min = mast->bn->pivot[split] + 1;
2834 	}
2835 }
2836 
2837 /*
2838  * mast_combine_cp_left - Copy in the original left side of the tree into the
2839  * combined data set in the maple subtree state big node.
2840  * @mast: The maple subtree state
2841  */
2842 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2843 {
2844 	unsigned char l_slot = mast->orig_l->offset;
2845 
2846 	if (!l_slot)
2847 		return;
2848 
2849 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2850 }
2851 
2852 /*
2853  * mast_combine_cp_right: Copy in the original right side of the tree into the
2854  * combined data set in the maple subtree state big node.
2855  * @mast: The maple subtree state
2856  */
2857 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2858 {
2859 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2860 		return;
2861 
2862 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2863 		   mt_slot_count(mast->orig_r->node), mast->bn,
2864 		   mast->bn->b_end);
2865 	mast->orig_r->last = mast->orig_r->max;
2866 }
2867 
2868 /*
2869  * mast_sufficient: Check if the maple subtree state has enough data in the big
2870  * node to create at least one sufficient node
2871  * @mast: the maple subtree state
2872  */
2873 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2874 {
2875 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2876 		return true;
2877 
2878 	return false;
2879 }
2880 
2881 /*
2882  * mast_overflow: Check if there is too much data in the subtree state for a
2883  * single node.
2884  * @mast: The maple subtree state
2885  */
2886 static inline bool mast_overflow(struct maple_subtree_state *mast)
2887 {
2888 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2889 		return true;
2890 
2891 	return false;
2892 }
2893 
2894 static inline void *mtree_range_walk(struct ma_state *mas)
2895 {
2896 	unsigned long *pivots;
2897 	unsigned char offset;
2898 	struct maple_node *node;
2899 	struct maple_enode *next, *last;
2900 	enum maple_type type;
2901 	void __rcu **slots;
2902 	unsigned char end;
2903 	unsigned long max, min;
2904 	unsigned long prev_max, prev_min;
2905 
2906 	last = next = mas->node;
2907 	prev_min = min = mas->min;
2908 	max = mas->max;
2909 	do {
2910 		offset = 0;
2911 		last = next;
2912 		node = mte_to_node(next);
2913 		type = mte_node_type(next);
2914 		pivots = ma_pivots(node, type);
2915 		end = ma_data_end(node, type, pivots, max);
2916 		if (unlikely(ma_dead_node(node)))
2917 			goto dead_node;
2918 
2919 		if (pivots[offset] >= mas->index) {
2920 			prev_max = max;
2921 			prev_min = min;
2922 			max = pivots[offset];
2923 			goto next;
2924 		}
2925 
2926 		do {
2927 			offset++;
2928 		} while ((offset < end) && (pivots[offset] < mas->index));
2929 
2930 		prev_min = min;
2931 		min = pivots[offset - 1] + 1;
2932 		prev_max = max;
2933 		if (likely(offset < end && pivots[offset]))
2934 			max = pivots[offset];
2935 
2936 next:
2937 		slots = ma_slots(node, type);
2938 		next = mt_slot(mas->tree, slots, offset);
2939 		if (unlikely(ma_dead_node(node)))
2940 			goto dead_node;
2941 	} while (!ma_is_leaf(type));
2942 
2943 	mas->offset = offset;
2944 	mas->index = min;
2945 	mas->last = max;
2946 	mas->min = prev_min;
2947 	mas->max = prev_max;
2948 	mas->node = last;
2949 	return (void *) next;
2950 
2951 dead_node:
2952 	mas_reset(mas);
2953 	return NULL;
2954 }
2955 
2956 /*
2957  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2958  * @mas: The starting maple state
2959  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2960  * @count: The estimated count of iterations needed.
2961  *
2962  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2963  * is hit.  First @b_node is split into two entries which are inserted into the
2964  * next iteration of the loop.  @b_node is returned populated with the final
2965  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2966  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2967  * to account of what has been copied into the new sub-tree.  The update of
2968  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2969  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2970  * the new sub-tree in case the sub-tree becomes the full tree.
2971  *
2972  * Return: the number of elements in b_node during the last loop.
2973  */
2974 static int mas_spanning_rebalance(struct ma_state *mas,
2975 		struct maple_subtree_state *mast, unsigned char count)
2976 {
2977 	unsigned char split, mid_split;
2978 	unsigned char slot = 0;
2979 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2980 
2981 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2982 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2983 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2984 	MA_TOPIARY(free, mas->tree);
2985 	MA_TOPIARY(destroy, mas->tree);
2986 
2987 	/*
2988 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2989 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2990 	 */
2991 	mast->l = &l_mas;
2992 	mast->m = &m_mas;
2993 	mast->r = &r_mas;
2994 	mast->free = &free;
2995 	mast->destroy = &destroy;
2996 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2997 	if (!(mast->orig_l->min && mast->orig_r->max == ULONG_MAX) &&
2998 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2999 		mast_spanning_rebalance(mast);
3000 
3001 	mast->orig_l->depth = 0;
3002 
3003 	/*
3004 	 * Each level of the tree is examined and balanced, pushing data to the left or
3005 	 * right, or rebalancing against left or right nodes is employed to avoid
3006 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3007 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3008 	 * will have the incorrect parent pointers and currently be in two trees: the
3009 	 * original tree and the partially new tree.  To remedy the parent pointers in
3010 	 * the old tree, the new data is swapped into the active tree and a walk down
3011 	 * the tree is performed and the parent pointers are updated.
3012 	 * See mas_descend_adopt() for more information..
3013 	 */
3014 	while (count--) {
3015 		mast->bn->b_end--;
3016 		mast->bn->type = mte_node_type(mast->orig_l->node);
3017 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3018 					&mid_split, mast->orig_l->min);
3019 		mast_set_split_parents(mast, left, middle, right, split,
3020 				       mid_split);
3021 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3022 
3023 		/*
3024 		 * Copy data from next level in the tree to mast->bn from next
3025 		 * iteration
3026 		 */
3027 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3028 		mast->bn->type = mte_node_type(left);
3029 		mast->orig_l->depth++;
3030 
3031 		/* Root already stored in l->node. */
3032 		if (mas_is_root_limits(mast->l))
3033 			goto new_root;
3034 
3035 		mast_ascend_free(mast);
3036 		mast_combine_cp_left(mast);
3037 		l_mas.offset = mast->bn->b_end;
3038 		mab_set_b_end(mast->bn, &l_mas, left);
3039 		mab_set_b_end(mast->bn, &m_mas, middle);
3040 		mab_set_b_end(mast->bn, &r_mas, right);
3041 
3042 		/* Copy anything necessary out of the right node. */
3043 		mast_combine_cp_right(mast);
3044 		mast_topiary(mast);
3045 		mast->orig_l->last = mast->orig_l->max;
3046 
3047 		if (mast_sufficient(mast))
3048 			continue;
3049 
3050 		if (mast_overflow(mast))
3051 			continue;
3052 
3053 		/* May be a new root stored in mast->bn */
3054 		if (mas_is_root_limits(mast->orig_l))
3055 			break;
3056 
3057 		mast_spanning_rebalance(mast);
3058 
3059 		/* rebalancing from other nodes may require another loop. */
3060 		if (!count)
3061 			count++;
3062 	}
3063 
3064 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3065 				mte_node_type(mast->orig_l->node));
3066 	mast->orig_l->depth++;
3067 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3068 	mte_set_parent(left, l_mas.node, slot);
3069 	if (middle)
3070 		mte_set_parent(middle, l_mas.node, ++slot);
3071 
3072 	if (right)
3073 		mte_set_parent(right, l_mas.node, ++slot);
3074 
3075 	if (mas_is_root_limits(mast->l)) {
3076 new_root:
3077 		mast_new_root(mast, mas);
3078 	} else {
3079 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3080 	}
3081 
3082 	if (!mte_dead_node(mast->orig_l->node))
3083 		mat_add(&free, mast->orig_l->node);
3084 
3085 	mas->depth = mast->orig_l->depth;
3086 	*mast->orig_l = l_mas;
3087 	mte_set_node_dead(mas->node);
3088 
3089 	/* Set up mas for insertion. */
3090 	mast->orig_l->depth = mas->depth;
3091 	mast->orig_l->alloc = mas->alloc;
3092 	*mas = *mast->orig_l;
3093 	mas_wmb_replace(mas, &free, &destroy);
3094 	mtree_range_walk(mas);
3095 	return mast->bn->b_end;
3096 }
3097 
3098 /*
3099  * mas_rebalance() - Rebalance a given node.
3100  * @mas: The maple state
3101  * @b_node: The big maple node.
3102  *
3103  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3104  * Continue upwards until tree is sufficient.
3105  *
3106  * Return: the number of elements in b_node during the last loop.
3107  */
3108 static inline int mas_rebalance(struct ma_state *mas,
3109 				struct maple_big_node *b_node)
3110 {
3111 	char empty_count = mas_mt_height(mas);
3112 	struct maple_subtree_state mast;
3113 	unsigned char shift, b_end = ++b_node->b_end;
3114 
3115 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3116 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3117 
3118 	trace_ma_op(__func__, mas);
3119 
3120 	/*
3121 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3122 	 * against the node to the right if it exists, otherwise the node to the
3123 	 * left of this node is rebalanced against this node.  If rebalancing
3124 	 * causes just one node to be produced instead of two, then the parent
3125 	 * is also examined and rebalanced if it is insufficient.  Every level
3126 	 * tries to combine the data in the same way.  If one node contains the
3127 	 * entire range of the tree, then that node is used as a new root node.
3128 	 */
3129 	mas_node_count(mas, 1 + empty_count * 3);
3130 	if (mas_is_err(mas))
3131 		return 0;
3132 
3133 	mast.orig_l = &l_mas;
3134 	mast.orig_r = &r_mas;
3135 	mast.bn = b_node;
3136 	mast.bn->type = mte_node_type(mas->node);
3137 
3138 	l_mas = r_mas = *mas;
3139 
3140 	if (mas_next_sibling(&r_mas)) {
3141 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3142 		r_mas.last = r_mas.index = r_mas.max;
3143 	} else {
3144 		mas_prev_sibling(&l_mas);
3145 		shift = mas_data_end(&l_mas) + 1;
3146 		mab_shift_right(b_node, shift);
3147 		mas->offset += shift;
3148 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3149 		b_node->b_end = shift + b_end;
3150 		l_mas.index = l_mas.last = l_mas.min;
3151 	}
3152 
3153 	return mas_spanning_rebalance(mas, &mast, empty_count);
3154 }
3155 
3156 /*
3157  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3158  * state.
3159  * @mas: The maple state
3160  * @end: The end of the left-most node.
3161  *
3162  * During a mass-insert event (such as forking), it may be necessary to
3163  * rebalance the left-most node when it is not sufficient.
3164  */
3165 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3166 {
3167 	enum maple_type mt = mte_node_type(mas->node);
3168 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3169 	struct maple_enode *eparent;
3170 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3171 	void __rcu **l_slots, **slots;
3172 	unsigned long *l_pivs, *pivs, gap;
3173 	bool in_rcu = mt_in_rcu(mas->tree);
3174 
3175 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3176 
3177 	l_mas = *mas;
3178 	mas_prev_sibling(&l_mas);
3179 
3180 	/* set up node. */
3181 	if (in_rcu) {
3182 		/* Allocate for both left and right as well as parent. */
3183 		mas_node_count(mas, 3);
3184 		if (mas_is_err(mas))
3185 			return;
3186 
3187 		newnode = mas_pop_node(mas);
3188 	} else {
3189 		newnode = &reuse;
3190 	}
3191 
3192 	node = mas_mn(mas);
3193 	newnode->parent = node->parent;
3194 	slots = ma_slots(newnode, mt);
3195 	pivs = ma_pivots(newnode, mt);
3196 	left = mas_mn(&l_mas);
3197 	l_slots = ma_slots(left, mt);
3198 	l_pivs = ma_pivots(left, mt);
3199 	if (!l_slots[split])
3200 		split++;
3201 	tmp = mas_data_end(&l_mas) - split;
3202 
3203 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3204 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3205 	pivs[tmp] = l_mas.max;
3206 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3207 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3208 
3209 	l_mas.max = l_pivs[split];
3210 	mas->min = l_mas.max + 1;
3211 	eparent = mt_mk_node(mte_parent(l_mas.node),
3212 			     mas_parent_enum(&l_mas, l_mas.node));
3213 	tmp += end;
3214 	if (!in_rcu) {
3215 		unsigned char max_p = mt_pivots[mt];
3216 		unsigned char max_s = mt_slots[mt];
3217 
3218 		if (tmp < max_p)
3219 			memset(pivs + tmp, 0,
3220 			       sizeof(unsigned long *) * (max_p - tmp));
3221 
3222 		if (tmp < mt_slots[mt])
3223 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3224 
3225 		memcpy(node, newnode, sizeof(struct maple_node));
3226 		ma_set_meta(node, mt, 0, tmp - 1);
3227 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3228 			      l_pivs[split]);
3229 
3230 		/* Remove data from l_pivs. */
3231 		tmp = split + 1;
3232 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3233 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3234 		ma_set_meta(left, mt, 0, split);
3235 
3236 		goto done;
3237 	}
3238 
3239 	/* RCU requires replacing both l_mas, mas, and parent. */
3240 	mas->node = mt_mk_node(newnode, mt);
3241 	ma_set_meta(newnode, mt, 0, tmp);
3242 
3243 	new_left = mas_pop_node(mas);
3244 	new_left->parent = left->parent;
3245 	mt = mte_node_type(l_mas.node);
3246 	slots = ma_slots(new_left, mt);
3247 	pivs = ma_pivots(new_left, mt);
3248 	memcpy(slots, l_slots, sizeof(void *) * split);
3249 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3250 	ma_set_meta(new_left, mt, 0, split);
3251 	l_mas.node = mt_mk_node(new_left, mt);
3252 
3253 	/* replace parent. */
3254 	offset = mte_parent_slot(mas->node);
3255 	mt = mas_parent_enum(&l_mas, l_mas.node);
3256 	parent = mas_pop_node(mas);
3257 	slots = ma_slots(parent, mt);
3258 	pivs = ma_pivots(parent, mt);
3259 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3260 	rcu_assign_pointer(slots[offset], mas->node);
3261 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3262 	pivs[offset - 1] = l_mas.max;
3263 	eparent = mt_mk_node(parent, mt);
3264 done:
3265 	gap = mas_leaf_max_gap(mas);
3266 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3267 	gap = mas_leaf_max_gap(&l_mas);
3268 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3269 	mas_ascend(mas);
3270 
3271 	if (in_rcu)
3272 		mas_replace(mas, false);
3273 
3274 	mas_update_gap(mas);
3275 }
3276 
3277 /*
3278  * mas_split_final_node() - Split the final node in a subtree operation.
3279  * @mast: the maple subtree state
3280  * @mas: The maple state
3281  * @height: The height of the tree in case it's a new root.
3282  */
3283 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3284 					struct ma_state *mas, int height)
3285 {
3286 	struct maple_enode *ancestor;
3287 
3288 	if (mte_is_root(mas->node)) {
3289 		if (mt_is_alloc(mas->tree))
3290 			mast->bn->type = maple_arange_64;
3291 		else
3292 			mast->bn->type = maple_range_64;
3293 		mas->depth = height;
3294 	}
3295 	/*
3296 	 * Only a single node is used here, could be root.
3297 	 * The Big_node data should just fit in a single node.
3298 	 */
3299 	ancestor = mas_new_ma_node(mas, mast->bn);
3300 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3301 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3302 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3303 
3304 	mast->l->node = ancestor;
3305 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3306 	mas->offset = mast->bn->b_end - 1;
3307 	return true;
3308 }
3309 
3310 /*
3311  * mast_fill_bnode() - Copy data into the big node in the subtree state
3312  * @mast: The maple subtree state
3313  * @mas: the maple state
3314  * @skip: The number of entries to skip for new nodes insertion.
3315  */
3316 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3317 					 struct ma_state *mas,
3318 					 unsigned char skip)
3319 {
3320 	bool cp = true;
3321 	struct maple_enode *old = mas->node;
3322 	unsigned char split;
3323 
3324 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3325 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3326 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3327 	mast->bn->b_end = 0;
3328 
3329 	if (mte_is_root(mas->node)) {
3330 		cp = false;
3331 	} else {
3332 		mas_ascend(mas);
3333 		mat_add(mast->free, old);
3334 		mas->offset = mte_parent_slot(mas->node);
3335 	}
3336 
3337 	if (cp && mast->l->offset)
3338 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3339 
3340 	split = mast->bn->b_end;
3341 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3342 	mast->r->offset = mast->bn->b_end;
3343 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3344 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3345 		cp = false;
3346 
3347 	if (cp)
3348 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3349 			   mast->bn, mast->bn->b_end);
3350 
3351 	mast->bn->b_end--;
3352 	mast->bn->type = mte_node_type(mas->node);
3353 }
3354 
3355 /*
3356  * mast_split_data() - Split the data in the subtree state big node into regular
3357  * nodes.
3358  * @mast: The maple subtree state
3359  * @mas: The maple state
3360  * @split: The location to split the big node
3361  */
3362 static inline void mast_split_data(struct maple_subtree_state *mast,
3363 	   struct ma_state *mas, unsigned char split)
3364 {
3365 	unsigned char p_slot;
3366 
3367 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3368 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3369 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3370 	mast->l->offset = mte_parent_slot(mas->node);
3371 	mast->l->max = mast->bn->pivot[split];
3372 	mast->r->min = mast->l->max + 1;
3373 	if (mte_is_leaf(mas->node))
3374 		return;
3375 
3376 	p_slot = mast->orig_l->offset;
3377 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3378 			     &p_slot, split);
3379 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3380 			     &p_slot, split);
3381 }
3382 
3383 /*
3384  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3385  * data to the right or left node if there is room.
3386  * @mas: The maple state
3387  * @height: The current height of the maple state
3388  * @mast: The maple subtree state
3389  * @left: Push left or not.
3390  *
3391  * Keeping the height of the tree low means faster lookups.
3392  *
3393  * Return: True if pushed, false otherwise.
3394  */
3395 static inline bool mas_push_data(struct ma_state *mas, int height,
3396 				 struct maple_subtree_state *mast, bool left)
3397 {
3398 	unsigned char slot_total = mast->bn->b_end;
3399 	unsigned char end, space, split;
3400 
3401 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3402 	tmp_mas = *mas;
3403 	tmp_mas.depth = mast->l->depth;
3404 
3405 	if (left && !mas_prev_sibling(&tmp_mas))
3406 		return false;
3407 	else if (!left && !mas_next_sibling(&tmp_mas))
3408 		return false;
3409 
3410 	end = mas_data_end(&tmp_mas);
3411 	slot_total += end;
3412 	space = 2 * mt_slot_count(mas->node) - 2;
3413 	/* -2 instead of -1 to ensure there isn't a triple split */
3414 	if (ma_is_leaf(mast->bn->type))
3415 		space--;
3416 
3417 	if (mas->max == ULONG_MAX)
3418 		space--;
3419 
3420 	if (slot_total >= space)
3421 		return false;
3422 
3423 	/* Get the data; Fill mast->bn */
3424 	mast->bn->b_end++;
3425 	if (left) {
3426 		mab_shift_right(mast->bn, end + 1);
3427 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3428 		mast->bn->b_end = slot_total + 1;
3429 	} else {
3430 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3431 	}
3432 
3433 	/* Configure mast for splitting of mast->bn */
3434 	split = mt_slots[mast->bn->type] - 2;
3435 	if (left) {
3436 		/*  Switch mas to prev node  */
3437 		mat_add(mast->free, mas->node);
3438 		*mas = tmp_mas;
3439 		/* Start using mast->l for the left side. */
3440 		tmp_mas.node = mast->l->node;
3441 		*mast->l = tmp_mas;
3442 	} else {
3443 		mat_add(mast->free, tmp_mas.node);
3444 		tmp_mas.node = mast->r->node;
3445 		*mast->r = tmp_mas;
3446 		split = slot_total - split;
3447 	}
3448 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3449 	/* Update parent slot for split calculation. */
3450 	if (left)
3451 		mast->orig_l->offset += end + 1;
3452 
3453 	mast_split_data(mast, mas, split);
3454 	mast_fill_bnode(mast, mas, 2);
3455 	mas_split_final_node(mast, mas, height + 1);
3456 	return true;
3457 }
3458 
3459 /*
3460  * mas_split() - Split data that is too big for one node into two.
3461  * @mas: The maple state
3462  * @b_node: The maple big node
3463  * Return: 1 on success, 0 on failure.
3464  */
3465 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3466 {
3467 
3468 	struct maple_subtree_state mast;
3469 	int height = 0;
3470 	unsigned char mid_split, split = 0;
3471 
3472 	/*
3473 	 * Splitting is handled differently from any other B-tree; the Maple
3474 	 * Tree splits upwards.  Splitting up means that the split operation
3475 	 * occurs when the walk of the tree hits the leaves and not on the way
3476 	 * down.  The reason for splitting up is that it is impossible to know
3477 	 * how much space will be needed until the leaf is (or leaves are)
3478 	 * reached.  Since overwriting data is allowed and a range could
3479 	 * overwrite more than one range or result in changing one entry into 3
3480 	 * entries, it is impossible to know if a split is required until the
3481 	 * data is examined.
3482 	 *
3483 	 * Splitting is a balancing act between keeping allocations to a minimum
3484 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3485 	 * for an entry followed by a contraction when the entry is removed.  To
3486 	 * accomplish the balance, there are empty slots remaining in both left
3487 	 * and right nodes after a split.
3488 	 */
3489 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3490 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3491 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3492 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3493 	MA_TOPIARY(mat, mas->tree);
3494 
3495 	trace_ma_op(__func__, mas);
3496 	mas->depth = mas_mt_height(mas);
3497 	/* Allocation failures will happen early. */
3498 	mas_node_count(mas, 1 + mas->depth * 2);
3499 	if (mas_is_err(mas))
3500 		return 0;
3501 
3502 	mast.l = &l_mas;
3503 	mast.r = &r_mas;
3504 	mast.orig_l = &prev_l_mas;
3505 	mast.orig_r = &prev_r_mas;
3506 	mast.free = &mat;
3507 	mast.bn = b_node;
3508 
3509 	while (height++ <= mas->depth) {
3510 		if (mt_slots[b_node->type] > b_node->b_end) {
3511 			mas_split_final_node(&mast, mas, height);
3512 			break;
3513 		}
3514 
3515 		l_mas = r_mas = *mas;
3516 		l_mas.node = mas_new_ma_node(mas, b_node);
3517 		r_mas.node = mas_new_ma_node(mas, b_node);
3518 		/*
3519 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3520 		 * left or right node has space to spare.  This is referred to as "pushing left"
3521 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3522 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3523 		 * is a significant savings.
3524 		 */
3525 		/* Try to push left. */
3526 		if (mas_push_data(mas, height, &mast, true))
3527 			break;
3528 
3529 		/* Try to push right. */
3530 		if (mas_push_data(mas, height, &mast, false))
3531 			break;
3532 
3533 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3534 		mast_split_data(&mast, mas, split);
3535 		/*
3536 		 * Usually correct, mab_mas_cp in the above call overwrites
3537 		 * r->max.
3538 		 */
3539 		mast.r->max = mas->max;
3540 		mast_fill_bnode(&mast, mas, 1);
3541 		prev_l_mas = *mast.l;
3542 		prev_r_mas = *mast.r;
3543 	}
3544 
3545 	/* Set the original node as dead */
3546 	mat_add(mast.free, mas->node);
3547 	mas->node = l_mas.node;
3548 	mas_wmb_replace(mas, mast.free, NULL);
3549 	mtree_range_walk(mas);
3550 	return 1;
3551 }
3552 
3553 /*
3554  * mas_reuse_node() - Reuse the node to store the data.
3555  * @wr_mas: The maple write state
3556  * @bn: The maple big node
3557  * @end: The end of the data.
3558  *
3559  * Will always return false in RCU mode.
3560  *
3561  * Return: True if node was reused, false otherwise.
3562  */
3563 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3564 			  struct maple_big_node *bn, unsigned char end)
3565 {
3566 	/* Need to be rcu safe. */
3567 	if (mt_in_rcu(wr_mas->mas->tree))
3568 		return false;
3569 
3570 	if (end > bn->b_end) {
3571 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3572 
3573 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3574 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3575 	}
3576 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3577 	return true;
3578 }
3579 
3580 /*
3581  * mas_commit_b_node() - Commit the big node into the tree.
3582  * @wr_mas: The maple write state
3583  * @b_node: The maple big node
3584  * @end: The end of the data.
3585  */
3586 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3587 			    struct maple_big_node *b_node, unsigned char end)
3588 {
3589 	struct maple_node *node;
3590 	unsigned char b_end = b_node->b_end;
3591 	enum maple_type b_type = b_node->type;
3592 
3593 	if ((b_end < mt_min_slots[b_type]) &&
3594 	    (!mte_is_root(wr_mas->mas->node)) &&
3595 	    (mas_mt_height(wr_mas->mas) > 1))
3596 		return mas_rebalance(wr_mas->mas, b_node);
3597 
3598 	if (b_end >= mt_slots[b_type])
3599 		return mas_split(wr_mas->mas, b_node);
3600 
3601 	if (mas_reuse_node(wr_mas, b_node, end))
3602 		goto reuse_node;
3603 
3604 	mas_node_count(wr_mas->mas, 1);
3605 	if (mas_is_err(wr_mas->mas))
3606 		return 0;
3607 
3608 	node = mas_pop_node(wr_mas->mas);
3609 	node->parent = mas_mn(wr_mas->mas)->parent;
3610 	wr_mas->mas->node = mt_mk_node(node, b_type);
3611 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, true);
3612 
3613 	mas_replace(wr_mas->mas, false);
3614 reuse_node:
3615 	mas_update_gap(wr_mas->mas);
3616 	return 1;
3617 }
3618 
3619 /*
3620  * mas_root_expand() - Expand a root to a node
3621  * @mas: The maple state
3622  * @entry: The entry to store into the tree
3623  */
3624 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3625 {
3626 	void *contents = mas_root_locked(mas);
3627 	enum maple_type type = maple_leaf_64;
3628 	struct maple_node *node;
3629 	void __rcu **slots;
3630 	unsigned long *pivots;
3631 	int slot = 0;
3632 
3633 	mas_node_count(mas, 1);
3634 	if (unlikely(mas_is_err(mas)))
3635 		return 0;
3636 
3637 	node = mas_pop_node(mas);
3638 	pivots = ma_pivots(node, type);
3639 	slots = ma_slots(node, type);
3640 	node->parent = ma_parent_ptr(
3641 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3642 	mas->node = mt_mk_node(node, type);
3643 
3644 	if (mas->index) {
3645 		if (contents) {
3646 			rcu_assign_pointer(slots[slot], contents);
3647 			if (likely(mas->index > 1))
3648 				slot++;
3649 		}
3650 		pivots[slot++] = mas->index - 1;
3651 	}
3652 
3653 	rcu_assign_pointer(slots[slot], entry);
3654 	mas->offset = slot;
3655 	pivots[slot] = mas->last;
3656 	if (mas->last != ULONG_MAX)
3657 		slot++;
3658 	mas->depth = 1;
3659 	mas_set_height(mas);
3660 
3661 	/* swap the new root into the tree */
3662 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3663 	ma_set_meta(node, maple_leaf_64, 0, slot);
3664 	return slot;
3665 }
3666 
3667 static inline void mas_store_root(struct ma_state *mas, void *entry)
3668 {
3669 	if (likely((mas->last != 0) || (mas->index != 0)))
3670 		mas_root_expand(mas, entry);
3671 	else if (((unsigned long) (entry) & 3) == 2)
3672 		mas_root_expand(mas, entry);
3673 	else {
3674 		rcu_assign_pointer(mas->tree->ma_root, entry);
3675 		mas->node = MAS_START;
3676 	}
3677 }
3678 
3679 /*
3680  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3681  * spans the node.
3682  * @mas: The maple state
3683  * @piv: The pivot value being written
3684  * @type: The maple node type
3685  * @entry: The data to write
3686  *
3687  * Spanning writes are writes that start in one node and end in another OR if
3688  * the write of a %NULL will cause the node to end with a %NULL.
3689  *
3690  * Return: True if this is a spanning write, false otherwise.
3691  */
3692 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3693 {
3694 	unsigned long max;
3695 	unsigned long last = wr_mas->mas->last;
3696 	unsigned long piv = wr_mas->r_max;
3697 	enum maple_type type = wr_mas->type;
3698 	void *entry = wr_mas->entry;
3699 
3700 	/* Contained in this pivot */
3701 	if (piv > last)
3702 		return false;
3703 
3704 	max = wr_mas->mas->max;
3705 	if (unlikely(ma_is_leaf(type))) {
3706 		/* Fits in the node, but may span slots. */
3707 		if (last < max)
3708 			return false;
3709 
3710 		/* Writes to the end of the node but not null. */
3711 		if ((last == max) && entry)
3712 			return false;
3713 
3714 		/*
3715 		 * Writing ULONG_MAX is not a spanning write regardless of the
3716 		 * value being written as long as the range fits in the node.
3717 		 */
3718 		if ((last == ULONG_MAX) && (last == max))
3719 			return false;
3720 	} else if (piv == last) {
3721 		if (entry)
3722 			return false;
3723 
3724 		/* Detect spanning store wr walk */
3725 		if (last == ULONG_MAX)
3726 			return false;
3727 	}
3728 
3729 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3730 
3731 	return true;
3732 }
3733 
3734 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3735 {
3736 	wr_mas->mas->depth++;
3737 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3738 	mas_wr_node_walk(wr_mas);
3739 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3740 }
3741 
3742 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3743 {
3744 	wr_mas->mas->max = wr_mas->r_max;
3745 	wr_mas->mas->min = wr_mas->r_min;
3746 	wr_mas->mas->node = wr_mas->content;
3747 	wr_mas->mas->offset = 0;
3748 }
3749 /*
3750  * mas_wr_walk() - Walk the tree for a write.
3751  * @wr_mas: The maple write state
3752  *
3753  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3754  *
3755  * Return: True if it's contained in a node, false on spanning write.
3756  */
3757 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3758 {
3759 	struct ma_state *mas = wr_mas->mas;
3760 
3761 	while (true) {
3762 		mas_wr_walk_descend(wr_mas);
3763 		if (unlikely(mas_is_span_wr(wr_mas)))
3764 			return false;
3765 
3766 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3767 						  mas->offset);
3768 		if (ma_is_leaf(wr_mas->type))
3769 			return true;
3770 
3771 		mas_wr_walk_traverse(wr_mas);
3772 	}
3773 
3774 	return true;
3775 }
3776 
3777 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3778 {
3779 	struct ma_state *mas = wr_mas->mas;
3780 
3781 	while (true) {
3782 		mas_wr_walk_descend(wr_mas);
3783 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3784 						  mas->offset);
3785 		if (ma_is_leaf(wr_mas->type))
3786 			return true;
3787 		mas_wr_walk_traverse(wr_mas);
3788 
3789 	}
3790 	return true;
3791 }
3792 /*
3793  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3794  * @l_wr_mas: The left maple write state
3795  * @r_wr_mas: The right maple write state
3796  */
3797 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3798 					    struct ma_wr_state *r_wr_mas)
3799 {
3800 	struct ma_state *r_mas = r_wr_mas->mas;
3801 	struct ma_state *l_mas = l_wr_mas->mas;
3802 	unsigned char l_slot;
3803 
3804 	l_slot = l_mas->offset;
3805 	if (!l_wr_mas->content)
3806 		l_mas->index = l_wr_mas->r_min;
3807 
3808 	if ((l_mas->index == l_wr_mas->r_min) &&
3809 		 (l_slot &&
3810 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3811 		if (l_slot > 1)
3812 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3813 		else
3814 			l_mas->index = l_mas->min;
3815 
3816 		l_mas->offset = l_slot - 1;
3817 	}
3818 
3819 	if (!r_wr_mas->content) {
3820 		if (r_mas->last < r_wr_mas->r_max)
3821 			r_mas->last = r_wr_mas->r_max;
3822 		r_mas->offset++;
3823 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3824 	    (r_mas->last < r_mas->max) &&
3825 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3826 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3827 					     r_wr_mas->type, r_mas->offset + 1);
3828 		r_mas->offset++;
3829 	}
3830 }
3831 
3832 static inline void *mas_state_walk(struct ma_state *mas)
3833 {
3834 	void *entry;
3835 
3836 	entry = mas_start(mas);
3837 	if (mas_is_none(mas))
3838 		return NULL;
3839 
3840 	if (mas_is_ptr(mas))
3841 		return entry;
3842 
3843 	return mtree_range_walk(mas);
3844 }
3845 
3846 /*
3847  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3848  * to date.
3849  *
3850  * @mas: The maple state.
3851  *
3852  * Note: Leaves mas in undesirable state.
3853  * Return: The entry for @mas->index or %NULL on dead node.
3854  */
3855 static inline void *mtree_lookup_walk(struct ma_state *mas)
3856 {
3857 	unsigned long *pivots;
3858 	unsigned char offset;
3859 	struct maple_node *node;
3860 	struct maple_enode *next;
3861 	enum maple_type type;
3862 	void __rcu **slots;
3863 	unsigned char end;
3864 	unsigned long max;
3865 
3866 	next = mas->node;
3867 	max = ULONG_MAX;
3868 	do {
3869 		offset = 0;
3870 		node = mte_to_node(next);
3871 		type = mte_node_type(next);
3872 		pivots = ma_pivots(node, type);
3873 		end = ma_data_end(node, type, pivots, max);
3874 		if (unlikely(ma_dead_node(node)))
3875 			goto dead_node;
3876 
3877 		if (pivots[offset] >= mas->index)
3878 			goto next;
3879 
3880 		do {
3881 			offset++;
3882 		} while ((offset < end) && (pivots[offset] < mas->index));
3883 
3884 		if (likely(offset > end))
3885 			max = pivots[offset];
3886 
3887 next:
3888 		slots = ma_slots(node, type);
3889 		next = mt_slot(mas->tree, slots, offset);
3890 		if (unlikely(ma_dead_node(node)))
3891 			goto dead_node;
3892 	} while (!ma_is_leaf(type));
3893 
3894 	return (void *) next;
3895 
3896 dead_node:
3897 	mas_reset(mas);
3898 	return NULL;
3899 }
3900 
3901 /*
3902  * mas_new_root() - Create a new root node that only contains the entry passed
3903  * in.
3904  * @mas: The maple state
3905  * @entry: The entry to store.
3906  *
3907  * Only valid when the index == 0 and the last == ULONG_MAX
3908  *
3909  * Return 0 on error, 1 on success.
3910  */
3911 static inline int mas_new_root(struct ma_state *mas, void *entry)
3912 {
3913 	struct maple_enode *root = mas_root_locked(mas);
3914 	enum maple_type type = maple_leaf_64;
3915 	struct maple_node *node;
3916 	void __rcu **slots;
3917 	unsigned long *pivots;
3918 
3919 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3920 		mas->depth = 0;
3921 		mas_set_height(mas);
3922 		rcu_assign_pointer(mas->tree->ma_root, entry);
3923 		mas->node = MAS_START;
3924 		goto done;
3925 	}
3926 
3927 	mas_node_count(mas, 1);
3928 	if (mas_is_err(mas))
3929 		return 0;
3930 
3931 	node = mas_pop_node(mas);
3932 	pivots = ma_pivots(node, type);
3933 	slots = ma_slots(node, type);
3934 	node->parent = ma_parent_ptr(
3935 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3936 	mas->node = mt_mk_node(node, type);
3937 	rcu_assign_pointer(slots[0], entry);
3938 	pivots[0] = mas->last;
3939 	mas->depth = 1;
3940 	mas_set_height(mas);
3941 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3942 
3943 done:
3944 	if (xa_is_node(root))
3945 		mte_destroy_walk(root, mas->tree);
3946 
3947 	return 1;
3948 }
3949 /*
3950  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3951  * and new nodes where necessary, then place the sub-tree in the actual tree.
3952  * Note that mas is expected to point to the node which caused the store to
3953  * span.
3954  * @wr_mas: The maple write state
3955  *
3956  * Return: 0 on error, positive on success.
3957  */
3958 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3959 {
3960 	struct maple_subtree_state mast;
3961 	struct maple_big_node b_node;
3962 	struct ma_state *mas;
3963 	unsigned char height;
3964 
3965 	/* Left and Right side of spanning store */
3966 	MA_STATE(l_mas, NULL, 0, 0);
3967 	MA_STATE(r_mas, NULL, 0, 0);
3968 
3969 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3970 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3971 
3972 	/*
3973 	 * A store operation that spans multiple nodes is called a spanning
3974 	 * store and is handled early in the store call stack by the function
3975 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3976 	 * state is duplicated.  The first maple state walks the left tree path
3977 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3978 	 * The data in the two nodes are combined into a single node, two nodes,
3979 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3980 	 * written to the last entry of a node is considered a spanning store as
3981 	 * a rebalance is required for the operation to complete and an overflow
3982 	 * of data may happen.
3983 	 */
3984 	mas = wr_mas->mas;
3985 	trace_ma_op(__func__, mas);
3986 
3987 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3988 		return mas_new_root(mas, wr_mas->entry);
3989 	/*
3990 	 * Node rebalancing may occur due to this store, so there may be three new
3991 	 * entries per level plus a new root.
3992 	 */
3993 	height = mas_mt_height(mas);
3994 	mas_node_count(mas, 1 + height * 3);
3995 	if (mas_is_err(mas))
3996 		return 0;
3997 
3998 	/*
3999 	 * Set up right side.  Need to get to the next offset after the spanning
4000 	 * store to ensure it's not NULL and to combine both the next node and
4001 	 * the node with the start together.
4002 	 */
4003 	r_mas = *mas;
4004 	/* Avoid overflow, walk to next slot in the tree. */
4005 	if (r_mas.last + 1)
4006 		r_mas.last++;
4007 
4008 	r_mas.index = r_mas.last;
4009 	mas_wr_walk_index(&r_wr_mas);
4010 	r_mas.last = r_mas.index = mas->last;
4011 
4012 	/* Set up left side. */
4013 	l_mas = *mas;
4014 	mas_wr_walk_index(&l_wr_mas);
4015 
4016 	if (!wr_mas->entry) {
4017 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4018 		mas->offset = l_mas.offset;
4019 		mas->index = l_mas.index;
4020 		mas->last = l_mas.last = r_mas.last;
4021 	}
4022 
4023 	/* expanding NULLs may make this cover the entire range */
4024 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4025 		mas_set_range(mas, 0, ULONG_MAX);
4026 		return mas_new_root(mas, wr_mas->entry);
4027 	}
4028 
4029 	memset(&b_node, 0, sizeof(struct maple_big_node));
4030 	/* Copy l_mas and store the value in b_node. */
4031 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4032 	/* Copy r_mas into b_node. */
4033 	if (r_mas.offset <= r_wr_mas.node_end)
4034 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4035 			   &b_node, b_node.b_end + 1);
4036 	else
4037 		b_node.b_end++;
4038 
4039 	/* Stop spanning searches by searching for just index. */
4040 	l_mas.index = l_mas.last = mas->index;
4041 
4042 	mast.bn = &b_node;
4043 	mast.orig_l = &l_mas;
4044 	mast.orig_r = &r_mas;
4045 	/* Combine l_mas and r_mas and split them up evenly again. */
4046 	return mas_spanning_rebalance(mas, &mast, height + 1);
4047 }
4048 
4049 /*
4050  * mas_wr_node_store() - Attempt to store the value in a node
4051  * @wr_mas: The maple write state
4052  *
4053  * Attempts to reuse the node, but may allocate.
4054  *
4055  * Return: True if stored, false otherwise
4056  */
4057 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4058 {
4059 	struct ma_state *mas = wr_mas->mas;
4060 	void __rcu **dst_slots;
4061 	unsigned long *dst_pivots;
4062 	unsigned char dst_offset;
4063 	unsigned char new_end = wr_mas->node_end;
4064 	unsigned char offset;
4065 	unsigned char node_slots = mt_slots[wr_mas->type];
4066 	struct maple_node reuse, *newnode;
4067 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4068 	bool in_rcu = mt_in_rcu(mas->tree);
4069 
4070 	offset = mas->offset;
4071 	if (mas->last == wr_mas->r_max) {
4072 		/* runs right to the end of the node */
4073 		if (mas->last == mas->max)
4074 			new_end = offset;
4075 		/* don't copy this offset */
4076 		wr_mas->offset_end++;
4077 	} else if (mas->last < wr_mas->r_max) {
4078 		/* new range ends in this range */
4079 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4080 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4081 
4082 		new_end++;
4083 	} else {
4084 		if (wr_mas->end_piv == mas->last)
4085 			wr_mas->offset_end++;
4086 
4087 		new_end -= wr_mas->offset_end - offset - 1;
4088 	}
4089 
4090 	/* new range starts within a range */
4091 	if (wr_mas->r_min < mas->index)
4092 		new_end++;
4093 
4094 	/* Not enough room */
4095 	if (new_end >= node_slots)
4096 		return false;
4097 
4098 	/* Not enough data. */
4099 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4100 	    !(mas->mas_flags & MA_STATE_BULK))
4101 		return false;
4102 
4103 	/* set up node. */
4104 	if (in_rcu) {
4105 		mas_node_count(mas, 1);
4106 		if (mas_is_err(mas))
4107 			return false;
4108 
4109 		newnode = mas_pop_node(mas);
4110 	} else {
4111 		memset(&reuse, 0, sizeof(struct maple_node));
4112 		newnode = &reuse;
4113 	}
4114 
4115 	newnode->parent = mas_mn(mas)->parent;
4116 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4117 	dst_slots = ma_slots(newnode, wr_mas->type);
4118 	/* Copy from start to insert point */
4119 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4120 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4121 	dst_offset = offset;
4122 
4123 	/* Handle insert of new range starting after old range */
4124 	if (wr_mas->r_min < mas->index) {
4125 		mas->offset++;
4126 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4127 		dst_pivots[dst_offset++] = mas->index - 1;
4128 	}
4129 
4130 	/* Store the new entry and range end. */
4131 	if (dst_offset < max_piv)
4132 		dst_pivots[dst_offset] = mas->last;
4133 	mas->offset = dst_offset;
4134 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4135 
4136 	/*
4137 	 * this range wrote to the end of the node or it overwrote the rest of
4138 	 * the data
4139 	 */
4140 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4141 		new_end = dst_offset;
4142 		goto done;
4143 	}
4144 
4145 	dst_offset++;
4146 	/* Copy to the end of node if necessary. */
4147 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4148 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4149 	       sizeof(void *) * copy_size);
4150 	if (dst_offset < max_piv) {
4151 		if (copy_size > max_piv - dst_offset)
4152 			copy_size = max_piv - dst_offset;
4153 
4154 		memcpy(dst_pivots + dst_offset,
4155 		       wr_mas->pivots + wr_mas->offset_end,
4156 		       sizeof(unsigned long) * copy_size);
4157 	}
4158 
4159 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4160 		dst_pivots[new_end] = mas->max;
4161 
4162 done:
4163 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4164 	if (in_rcu) {
4165 		mas->node = mt_mk_node(newnode, wr_mas->type);
4166 		mas_replace(mas, false);
4167 	} else {
4168 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4169 	}
4170 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4171 	mas_update_gap(mas);
4172 	return true;
4173 }
4174 
4175 /*
4176  * mas_wr_slot_store: Attempt to store a value in a slot.
4177  * @wr_mas: the maple write state
4178  *
4179  * Return: True if stored, false otherwise
4180  */
4181 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4182 {
4183 	struct ma_state *mas = wr_mas->mas;
4184 	unsigned long lmax; /* Logical max. */
4185 	unsigned char offset = mas->offset;
4186 
4187 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4188 				  (offset != wr_mas->node_end)))
4189 		return false;
4190 
4191 	if (offset == wr_mas->node_end - 1)
4192 		lmax = mas->max;
4193 	else
4194 		lmax = wr_mas->pivots[offset + 1];
4195 
4196 	/* going to overwrite too many slots. */
4197 	if (lmax < mas->last)
4198 		return false;
4199 
4200 	if (wr_mas->r_min == mas->index) {
4201 		/* overwriting two or more ranges with one. */
4202 		if (lmax == mas->last)
4203 			return false;
4204 
4205 		/* Overwriting all of offset and a portion of offset + 1. */
4206 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4207 		wr_mas->pivots[offset] = mas->last;
4208 		goto done;
4209 	}
4210 
4211 	/* Doesn't end on the next range end. */
4212 	if (lmax != mas->last)
4213 		return false;
4214 
4215 	/* Overwriting a portion of offset and all of offset + 1 */
4216 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4217 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4218 		wr_mas->pivots[offset + 1] = mas->last;
4219 
4220 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4221 	wr_mas->pivots[offset] = mas->index - 1;
4222 	mas->offset++; /* Keep mas accurate. */
4223 
4224 done:
4225 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4226 	mas_update_gap(mas);
4227 	return true;
4228 }
4229 
4230 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4231 {
4232 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4233 	       (wr_mas->offset_end < wr_mas->node_end))
4234 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4235 
4236 	if (wr_mas->mas->last > wr_mas->end_piv)
4237 		wr_mas->end_piv = wr_mas->mas->max;
4238 }
4239 
4240 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4241 {
4242 	struct ma_state *mas = wr_mas->mas;
4243 
4244 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4245 		mas->last = wr_mas->end_piv;
4246 
4247 	/* Check next slot(s) if we are overwriting the end */
4248 	if ((mas->last == wr_mas->end_piv) &&
4249 	    (wr_mas->node_end != wr_mas->offset_end) &&
4250 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4251 		wr_mas->offset_end++;
4252 		if (wr_mas->offset_end == wr_mas->node_end)
4253 			mas->last = mas->max;
4254 		else
4255 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4256 		wr_mas->end_piv = mas->last;
4257 	}
4258 
4259 	if (!wr_mas->content) {
4260 		/* If this one is null, the next and prev are not */
4261 		mas->index = wr_mas->r_min;
4262 	} else {
4263 		/* Check prev slot if we are overwriting the start */
4264 		if (mas->index == wr_mas->r_min && mas->offset &&
4265 		    !wr_mas->slots[mas->offset - 1]) {
4266 			mas->offset--;
4267 			wr_mas->r_min = mas->index =
4268 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4269 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4270 		}
4271 	}
4272 }
4273 
4274 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4275 {
4276 	unsigned char end = wr_mas->node_end;
4277 	unsigned char new_end = end + 1;
4278 	struct ma_state *mas = wr_mas->mas;
4279 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4280 
4281 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4282 		if (new_end < node_pivots)
4283 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4284 
4285 		if (new_end < node_pivots)
4286 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4287 
4288 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4289 		mas->offset = new_end;
4290 		wr_mas->pivots[end] = mas->index - 1;
4291 
4292 		return true;
4293 	}
4294 
4295 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4296 		if (new_end < node_pivots)
4297 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4298 
4299 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4300 		if (new_end < node_pivots)
4301 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4302 
4303 		wr_mas->pivots[end] = mas->last;
4304 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4305 		return true;
4306 	}
4307 
4308 	return false;
4309 }
4310 
4311 /*
4312  * mas_wr_bnode() - Slow path for a modification.
4313  * @wr_mas: The write maple state
4314  *
4315  * This is where split, rebalance end up.
4316  */
4317 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4318 {
4319 	struct maple_big_node b_node;
4320 
4321 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4322 	memset(&b_node, 0, sizeof(struct maple_big_node));
4323 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4324 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4325 }
4326 
4327 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4328 {
4329 	unsigned char node_slots;
4330 	unsigned char node_size;
4331 	struct ma_state *mas = wr_mas->mas;
4332 
4333 	/* Direct replacement */
4334 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4335 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4336 		if (!!wr_mas->entry ^ !!wr_mas->content)
4337 			mas_update_gap(mas);
4338 		return;
4339 	}
4340 
4341 	/* Attempt to append */
4342 	node_slots = mt_slots[wr_mas->type];
4343 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4344 	if (mas->max == ULONG_MAX)
4345 		node_size++;
4346 
4347 	/* slot and node store will not fit, go to the slow path */
4348 	if (unlikely(node_size >= node_slots))
4349 		goto slow_path;
4350 
4351 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4352 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4353 		if (!wr_mas->content || !wr_mas->entry)
4354 			mas_update_gap(mas);
4355 		return;
4356 	}
4357 
4358 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4359 		return;
4360 	else if (mas_wr_node_store(wr_mas))
4361 		return;
4362 
4363 	if (mas_is_err(mas))
4364 		return;
4365 
4366 slow_path:
4367 	mas_wr_bnode(wr_mas);
4368 }
4369 
4370 /*
4371  * mas_wr_store_entry() - Internal call to store a value
4372  * @mas: The maple state
4373  * @entry: The entry to store.
4374  *
4375  * Return: The contents that was stored at the index.
4376  */
4377 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4378 {
4379 	struct ma_state *mas = wr_mas->mas;
4380 
4381 	wr_mas->content = mas_start(mas);
4382 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4383 		mas_store_root(mas, wr_mas->entry);
4384 		return wr_mas->content;
4385 	}
4386 
4387 	if (unlikely(!mas_wr_walk(wr_mas))) {
4388 		mas_wr_spanning_store(wr_mas);
4389 		return wr_mas->content;
4390 	}
4391 
4392 	/* At this point, we are at the leaf node that needs to be altered. */
4393 	wr_mas->end_piv = wr_mas->r_max;
4394 	mas_wr_end_piv(wr_mas);
4395 
4396 	if (!wr_mas->entry)
4397 		mas_wr_extend_null(wr_mas);
4398 
4399 	/* New root for a single pointer */
4400 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4401 		mas_new_root(mas, wr_mas->entry);
4402 		return wr_mas->content;
4403 	}
4404 
4405 	mas_wr_modify(wr_mas);
4406 	return wr_mas->content;
4407 }
4408 
4409 /**
4410  * mas_insert() - Internal call to insert a value
4411  * @mas: The maple state
4412  * @entry: The entry to store
4413  *
4414  * Return: %NULL or the contents that already exists at the requested index
4415  * otherwise.  The maple state needs to be checked for error conditions.
4416  */
4417 static inline void *mas_insert(struct ma_state *mas, void *entry)
4418 {
4419 	MA_WR_STATE(wr_mas, mas, entry);
4420 
4421 	/*
4422 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4423 	 * tree.  If the insert fits exactly into an existing gap with a value
4424 	 * of NULL, then the slot only needs to be written with the new value.
4425 	 * If the range being inserted is adjacent to another range, then only a
4426 	 * single pivot needs to be inserted (as well as writing the entry).  If
4427 	 * the new range is within a gap but does not touch any other ranges,
4428 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4429 	 * usual, the entry must be written.  Most operations require a new node
4430 	 * to be allocated and replace an existing node to ensure RCU safety,
4431 	 * when in RCU mode.  The exception to requiring a newly allocated node
4432 	 * is when inserting at the end of a node (appending).  When done
4433 	 * carefully, appending can reuse the node in place.
4434 	 */
4435 	wr_mas.content = mas_start(mas);
4436 	if (wr_mas.content)
4437 		goto exists;
4438 
4439 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4440 		mas_store_root(mas, entry);
4441 		return NULL;
4442 	}
4443 
4444 	/* spanning writes always overwrite something */
4445 	if (!mas_wr_walk(&wr_mas))
4446 		goto exists;
4447 
4448 	/* At this point, we are at the leaf node that needs to be altered. */
4449 	wr_mas.offset_end = mas->offset;
4450 	wr_mas.end_piv = wr_mas.r_max;
4451 
4452 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4453 		goto exists;
4454 
4455 	if (!entry)
4456 		return NULL;
4457 
4458 	mas_wr_modify(&wr_mas);
4459 	return wr_mas.content;
4460 
4461 exists:
4462 	mas_set_err(mas, -EEXIST);
4463 	return wr_mas.content;
4464 
4465 }
4466 
4467 /*
4468  * mas_prev_node() - Find the prev non-null entry at the same level in the
4469  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4470  * @mas: The maple state
4471  * @min: The lower limit to search
4472  *
4473  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4474  * Return: 1 if the node is dead, 0 otherwise.
4475  */
4476 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4477 {
4478 	enum maple_type mt;
4479 	int offset, level;
4480 	void __rcu **slots;
4481 	struct maple_node *node;
4482 	struct maple_enode *enode;
4483 	unsigned long *pivots;
4484 
4485 	if (mas_is_none(mas))
4486 		return 0;
4487 
4488 	level = 0;
4489 	do {
4490 		node = mas_mn(mas);
4491 		if (ma_is_root(node))
4492 			goto no_entry;
4493 
4494 		/* Walk up. */
4495 		if (unlikely(mas_ascend(mas)))
4496 			return 1;
4497 		offset = mas->offset;
4498 		level++;
4499 	} while (!offset);
4500 
4501 	offset--;
4502 	mt = mte_node_type(mas->node);
4503 	node = mas_mn(mas);
4504 	slots = ma_slots(node, mt);
4505 	pivots = ma_pivots(node, mt);
4506 	mas->max = pivots[offset];
4507 	if (offset)
4508 		mas->min = pivots[offset - 1] + 1;
4509 	if (unlikely(ma_dead_node(node)))
4510 		return 1;
4511 
4512 	if (mas->max < min)
4513 		goto no_entry_min;
4514 
4515 	while (level > 1) {
4516 		level--;
4517 		enode = mas_slot(mas, slots, offset);
4518 		if (unlikely(ma_dead_node(node)))
4519 			return 1;
4520 
4521 		mas->node = enode;
4522 		mt = mte_node_type(mas->node);
4523 		node = mas_mn(mas);
4524 		slots = ma_slots(node, mt);
4525 		pivots = ma_pivots(node, mt);
4526 		offset = ma_data_end(node, mt, pivots, mas->max);
4527 		if (offset)
4528 			mas->min = pivots[offset - 1] + 1;
4529 
4530 		if (offset < mt_pivots[mt])
4531 			mas->max = pivots[offset];
4532 
4533 		if (mas->max < min)
4534 			goto no_entry;
4535 	}
4536 
4537 	mas->node = mas_slot(mas, slots, offset);
4538 	if (unlikely(ma_dead_node(node)))
4539 		return 1;
4540 
4541 	mas->offset = mas_data_end(mas);
4542 	if (unlikely(mte_dead_node(mas->node)))
4543 		return 1;
4544 
4545 	return 0;
4546 
4547 no_entry_min:
4548 	mas->offset = offset;
4549 	if (offset)
4550 		mas->min = pivots[offset - 1] + 1;
4551 no_entry:
4552 	if (unlikely(ma_dead_node(node)))
4553 		return 1;
4554 
4555 	mas->node = MAS_NONE;
4556 	return 0;
4557 }
4558 
4559 /*
4560  * mas_next_node() - Get the next node at the same level in the tree.
4561  * @mas: The maple state
4562  * @max: The maximum pivot value to check.
4563  *
4564  * The next value will be mas->node[mas->offset] or MAS_NONE.
4565  * Return: 1 on dead node, 0 otherwise.
4566  */
4567 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4568 				unsigned long max)
4569 {
4570 	unsigned long min, pivot;
4571 	unsigned long *pivots;
4572 	struct maple_enode *enode;
4573 	int level = 0;
4574 	unsigned char offset;
4575 	enum maple_type mt;
4576 	void __rcu **slots;
4577 
4578 	if (mas->max >= max)
4579 		goto no_entry;
4580 
4581 	level = 0;
4582 	do {
4583 		if (ma_is_root(node))
4584 			goto no_entry;
4585 
4586 		min = mas->max + 1;
4587 		if (min > max)
4588 			goto no_entry;
4589 
4590 		if (unlikely(mas_ascend(mas)))
4591 			return 1;
4592 
4593 		offset = mas->offset;
4594 		level++;
4595 		node = mas_mn(mas);
4596 		mt = mte_node_type(mas->node);
4597 		pivots = ma_pivots(node, mt);
4598 	} while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4599 
4600 	slots = ma_slots(node, mt);
4601 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4602 	while (unlikely(level > 1)) {
4603 		/* Descend, if necessary */
4604 		enode = mas_slot(mas, slots, offset);
4605 		if (unlikely(ma_dead_node(node)))
4606 			return 1;
4607 
4608 		mas->node = enode;
4609 		level--;
4610 		node = mas_mn(mas);
4611 		mt = mte_node_type(mas->node);
4612 		slots = ma_slots(node, mt);
4613 		pivots = ma_pivots(node, mt);
4614 		offset = 0;
4615 		pivot = pivots[0];
4616 	}
4617 
4618 	enode = mas_slot(mas, slots, offset);
4619 	if (unlikely(ma_dead_node(node)))
4620 		return 1;
4621 
4622 	mas->node = enode;
4623 	mas->min = min;
4624 	mas->max = pivot;
4625 	return 0;
4626 
4627 no_entry:
4628 	if (unlikely(ma_dead_node(node)))
4629 		return 1;
4630 
4631 	mas->node = MAS_NONE;
4632 	return 0;
4633 }
4634 
4635 /*
4636  * mas_next_nentry() - Get the next node entry
4637  * @mas: The maple state
4638  * @max: The maximum value to check
4639  * @*range_start: Pointer to store the start of the range.
4640  *
4641  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4642  * pivot of the entry.
4643  *
4644  * Return: The next entry, %NULL otherwise
4645  */
4646 static inline void *mas_next_nentry(struct ma_state *mas,
4647 	    struct maple_node *node, unsigned long max, enum maple_type type)
4648 {
4649 	unsigned char count;
4650 	unsigned long pivot;
4651 	unsigned long *pivots;
4652 	void __rcu **slots;
4653 	void *entry;
4654 
4655 	if (mas->last == mas->max) {
4656 		mas->index = mas->max;
4657 		return NULL;
4658 	}
4659 
4660 	pivots = ma_pivots(node, type);
4661 	slots = ma_slots(node, type);
4662 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4663 	if (ma_dead_node(node))
4664 		return NULL;
4665 
4666 	if (mas->index > max)
4667 		return NULL;
4668 
4669 	count = ma_data_end(node, type, pivots, mas->max);
4670 	if (mas->offset > count)
4671 		return NULL;
4672 
4673 	while (mas->offset < count) {
4674 		pivot = pivots[mas->offset];
4675 		entry = mas_slot(mas, slots, mas->offset);
4676 		if (ma_dead_node(node))
4677 			return NULL;
4678 
4679 		if (entry)
4680 			goto found;
4681 
4682 		if (pivot >= max)
4683 			return NULL;
4684 
4685 		mas->index = pivot + 1;
4686 		mas->offset++;
4687 	}
4688 
4689 	if (mas->index > mas->max) {
4690 		mas->index = mas->last;
4691 		return NULL;
4692 	}
4693 
4694 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4695 	entry = mas_slot(mas, slots, mas->offset);
4696 	if (ma_dead_node(node))
4697 		return NULL;
4698 
4699 	if (!pivot)
4700 		return NULL;
4701 
4702 	if (!entry)
4703 		return NULL;
4704 
4705 found:
4706 	mas->last = pivot;
4707 	return entry;
4708 }
4709 
4710 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4711 {
4712 
4713 retry:
4714 	mas_set(mas, index);
4715 	mas_state_walk(mas);
4716 	if (mas_is_start(mas))
4717 		goto retry;
4718 
4719 	return;
4720 
4721 }
4722 
4723 /*
4724  * mas_next_entry() - Internal function to get the next entry.
4725  * @mas: The maple state
4726  * @limit: The maximum range start.
4727  *
4728  * Set the @mas->node to the next entry and the range_start to
4729  * the beginning value for the entry.  Does not check beyond @limit.
4730  * Sets @mas->index and @mas->last to the limit if it is hit.
4731  * Restarts on dead nodes.
4732  *
4733  * Return: the next entry or %NULL.
4734  */
4735 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4736 {
4737 	void *entry = NULL;
4738 	struct maple_enode *prev_node;
4739 	struct maple_node *node;
4740 	unsigned char offset;
4741 	unsigned long last;
4742 	enum maple_type mt;
4743 
4744 	last = mas->last;
4745 retry:
4746 	offset = mas->offset;
4747 	prev_node = mas->node;
4748 	node = mas_mn(mas);
4749 	mt = mte_node_type(mas->node);
4750 	mas->offset++;
4751 	if (unlikely(mas->offset >= mt_slots[mt])) {
4752 		mas->offset = mt_slots[mt] - 1;
4753 		goto next_node;
4754 	}
4755 
4756 	while (!mas_is_none(mas)) {
4757 		entry = mas_next_nentry(mas, node, limit, mt);
4758 		if (unlikely(ma_dead_node(node))) {
4759 			mas_rewalk(mas, last);
4760 			goto retry;
4761 		}
4762 
4763 		if (likely(entry))
4764 			return entry;
4765 
4766 		if (unlikely((mas->index > limit)))
4767 			break;
4768 
4769 next_node:
4770 		prev_node = mas->node;
4771 		offset = mas->offset;
4772 		if (unlikely(mas_next_node(mas, node, limit))) {
4773 			mas_rewalk(mas, last);
4774 			goto retry;
4775 		}
4776 		mas->offset = 0;
4777 		node = mas_mn(mas);
4778 		mt = mte_node_type(mas->node);
4779 	}
4780 
4781 	mas->index = mas->last = limit;
4782 	mas->offset = offset;
4783 	mas->node = prev_node;
4784 	return NULL;
4785 }
4786 
4787 /*
4788  * mas_prev_nentry() - Get the previous node entry.
4789  * @mas: The maple state.
4790  * @limit: The lower limit to check for a value.
4791  *
4792  * Return: the entry, %NULL otherwise.
4793  */
4794 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4795 				    unsigned long index)
4796 {
4797 	unsigned long pivot, min;
4798 	unsigned char offset;
4799 	struct maple_node *mn;
4800 	enum maple_type mt;
4801 	unsigned long *pivots;
4802 	void __rcu **slots;
4803 	void *entry;
4804 
4805 retry:
4806 	if (!mas->offset)
4807 		return NULL;
4808 
4809 	mn = mas_mn(mas);
4810 	mt = mte_node_type(mas->node);
4811 	offset = mas->offset - 1;
4812 	if (offset >= mt_slots[mt])
4813 		offset = mt_slots[mt] - 1;
4814 
4815 	slots = ma_slots(mn, mt);
4816 	pivots = ma_pivots(mn, mt);
4817 	if (offset == mt_pivots[mt])
4818 		pivot = mas->max;
4819 	else
4820 		pivot = pivots[offset];
4821 
4822 	if (unlikely(ma_dead_node(mn))) {
4823 		mas_rewalk(mas, index);
4824 		goto retry;
4825 	}
4826 
4827 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4828 	       !pivot))
4829 		pivot = pivots[--offset];
4830 
4831 	min = mas_safe_min(mas, pivots, offset);
4832 	entry = mas_slot(mas, slots, offset);
4833 	if (unlikely(ma_dead_node(mn))) {
4834 		mas_rewalk(mas, index);
4835 		goto retry;
4836 	}
4837 
4838 	if (likely(entry)) {
4839 		mas->offset = offset;
4840 		mas->last = pivot;
4841 		mas->index = min;
4842 	}
4843 	return entry;
4844 }
4845 
4846 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4847 {
4848 	void *entry;
4849 
4850 retry:
4851 	while (likely(!mas_is_none(mas))) {
4852 		entry = mas_prev_nentry(mas, min, mas->index);
4853 		if (unlikely(mas->last < min))
4854 			goto not_found;
4855 
4856 		if (likely(entry))
4857 			return entry;
4858 
4859 		if (unlikely(mas_prev_node(mas, min))) {
4860 			mas_rewalk(mas, mas->index);
4861 			goto retry;
4862 		}
4863 
4864 		mas->offset++;
4865 	}
4866 
4867 	mas->offset--;
4868 not_found:
4869 	mas->index = mas->last = min;
4870 	return NULL;
4871 }
4872 
4873 /*
4874  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4875  * highest gap address of a given size in a given node and descend.
4876  * @mas: The maple state
4877  * @size: The needed size.
4878  *
4879  * Return: True if found in a leaf, false otherwise.
4880  *
4881  */
4882 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4883 {
4884 	enum maple_type type = mte_node_type(mas->node);
4885 	struct maple_node *node = mas_mn(mas);
4886 	unsigned long *pivots, *gaps;
4887 	void __rcu **slots;
4888 	unsigned long gap = 0;
4889 	unsigned long max, min, index;
4890 	unsigned char offset;
4891 
4892 	if (unlikely(mas_is_err(mas)))
4893 		return true;
4894 
4895 	if (ma_is_dense(type)) {
4896 		/* dense nodes. */
4897 		mas->offset = (unsigned char)(mas->index - mas->min);
4898 		return true;
4899 	}
4900 
4901 	pivots = ma_pivots(node, type);
4902 	slots = ma_slots(node, type);
4903 	gaps = ma_gaps(node, type);
4904 	offset = mas->offset;
4905 	min = mas_safe_min(mas, pivots, offset);
4906 	/* Skip out of bounds. */
4907 	while (mas->last < min)
4908 		min = mas_safe_min(mas, pivots, --offset);
4909 
4910 	max = mas_safe_pivot(mas, pivots, offset, type);
4911 	index = mas->index;
4912 	while (index <= max) {
4913 		gap = 0;
4914 		if (gaps)
4915 			gap = gaps[offset];
4916 		else if (!mas_slot(mas, slots, offset))
4917 			gap = max - min + 1;
4918 
4919 		if (gap) {
4920 			if ((size <= gap) && (size <= mas->last - min + 1))
4921 				break;
4922 
4923 			if (!gaps) {
4924 				/* Skip the next slot, it cannot be a gap. */
4925 				if (offset < 2)
4926 					goto ascend;
4927 
4928 				offset -= 2;
4929 				max = pivots[offset];
4930 				min = mas_safe_min(mas, pivots, offset);
4931 				continue;
4932 			}
4933 		}
4934 
4935 		if (!offset)
4936 			goto ascend;
4937 
4938 		offset--;
4939 		max = min - 1;
4940 		min = mas_safe_min(mas, pivots, offset);
4941 	}
4942 
4943 	if (unlikely(index > max)) {
4944 		mas_set_err(mas, -EBUSY);
4945 		return false;
4946 	}
4947 
4948 	if (unlikely(ma_is_leaf(type))) {
4949 		mas->offset = offset;
4950 		mas->min = min;
4951 		mas->max = min + gap - 1;
4952 		return true;
4953 	}
4954 
4955 	/* descend, only happens under lock. */
4956 	mas->node = mas_slot(mas, slots, offset);
4957 	mas->min = min;
4958 	mas->max = max;
4959 	mas->offset = mas_data_end(mas);
4960 	return false;
4961 
4962 ascend:
4963 	if (mte_is_root(mas->node))
4964 		mas_set_err(mas, -EBUSY);
4965 
4966 	return false;
4967 }
4968 
4969 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4970 {
4971 	enum maple_type type = mte_node_type(mas->node);
4972 	unsigned long pivot, min, gap = 0;
4973 	unsigned char count, offset;
4974 	unsigned long *gaps = NULL, *pivots = ma_pivots(mas_mn(mas), type);
4975 	void __rcu **slots = ma_slots(mas_mn(mas), type);
4976 	bool found = false;
4977 
4978 	if (ma_is_dense(type)) {
4979 		mas->offset = (unsigned char)(mas->index - mas->min);
4980 		return true;
4981 	}
4982 
4983 	gaps = ma_gaps(mte_to_node(mas->node), type);
4984 	offset = mas->offset;
4985 	count = mt_slots[type];
4986 	min = mas_safe_min(mas, pivots, offset);
4987 	for (; offset < count; offset++) {
4988 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4989 		if (offset && !pivot)
4990 			break;
4991 
4992 		/* Not within lower bounds */
4993 		if (mas->index > pivot)
4994 			goto next_slot;
4995 
4996 		if (gaps)
4997 			gap = gaps[offset];
4998 		else if (!mas_slot(mas, slots, offset))
4999 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5000 		else
5001 			goto next_slot;
5002 
5003 		if (gap >= size) {
5004 			if (ma_is_leaf(type)) {
5005 				found = true;
5006 				goto done;
5007 			}
5008 			if (mas->index <= pivot) {
5009 				mas->node = mas_slot(mas, slots, offset);
5010 				mas->min = min;
5011 				mas->max = pivot;
5012 				offset = 0;
5013 				type = mte_node_type(mas->node);
5014 				count = mt_slots[type];
5015 				break;
5016 			}
5017 		}
5018 next_slot:
5019 		min = pivot + 1;
5020 		if (mas->last <= pivot) {
5021 			mas_set_err(mas, -EBUSY);
5022 			return true;
5023 		}
5024 	}
5025 
5026 	if (mte_is_root(mas->node))
5027 		found = true;
5028 done:
5029 	mas->offset = offset;
5030 	return found;
5031 }
5032 
5033 /**
5034  * mas_walk() - Search for @mas->index in the tree.
5035  * @mas: The maple state.
5036  *
5037  * mas->index and mas->last will be set to the range if there is a value.  If
5038  * mas->node is MAS_NONE, reset to MAS_START.
5039  *
5040  * Return: the entry at the location or %NULL.
5041  */
5042 void *mas_walk(struct ma_state *mas)
5043 {
5044 	void *entry;
5045 
5046 retry:
5047 	entry = mas_state_walk(mas);
5048 	if (mas_is_start(mas))
5049 		goto retry;
5050 
5051 	if (mas_is_ptr(mas)) {
5052 		if (!mas->index) {
5053 			mas->last = 0;
5054 		} else {
5055 			mas->index = 1;
5056 			mas->last = ULONG_MAX;
5057 		}
5058 		return entry;
5059 	}
5060 
5061 	if (mas_is_none(mas)) {
5062 		mas->index = 0;
5063 		mas->last = ULONG_MAX;
5064 	}
5065 
5066 	return entry;
5067 }
5068 
5069 static inline bool mas_rewind_node(struct ma_state *mas)
5070 {
5071 	unsigned char slot;
5072 
5073 	do {
5074 		if (mte_is_root(mas->node)) {
5075 			slot = mas->offset;
5076 			if (!slot)
5077 				return false;
5078 		} else {
5079 			mas_ascend(mas);
5080 			slot = mas->offset;
5081 		}
5082 	} while (!slot);
5083 
5084 	mas->offset = --slot;
5085 	return true;
5086 }
5087 
5088 /*
5089  * mas_skip_node() - Internal function.  Skip over a node.
5090  * @mas: The maple state.
5091  *
5092  * Return: true if there is another node, false otherwise.
5093  */
5094 static inline bool mas_skip_node(struct ma_state *mas)
5095 {
5096 	unsigned char slot, slot_count;
5097 	unsigned long *pivots;
5098 	enum maple_type mt;
5099 
5100 	mt = mte_node_type(mas->node);
5101 	slot_count = mt_slots[mt] - 1;
5102 	do {
5103 		if (mte_is_root(mas->node)) {
5104 			slot = mas->offset;
5105 			if (slot > slot_count) {
5106 				mas_set_err(mas, -EBUSY);
5107 				return false;
5108 			}
5109 		} else {
5110 			mas_ascend(mas);
5111 			slot = mas->offset;
5112 			mt = mte_node_type(mas->node);
5113 			slot_count = mt_slots[mt] - 1;
5114 		}
5115 	} while (slot > slot_count);
5116 
5117 	mas->offset = ++slot;
5118 	pivots = ma_pivots(mas_mn(mas), mt);
5119 	if (slot > 0)
5120 		mas->min = pivots[slot - 1] + 1;
5121 
5122 	if (slot <= slot_count)
5123 		mas->max = pivots[slot];
5124 
5125 	return true;
5126 }
5127 
5128 /*
5129  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5130  * @size
5131  * @mas: The maple state
5132  * @size: The size of the gap required
5133  *
5134  * Search between @mas->index and @mas->last for a gap of @size.
5135  */
5136 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5137 {
5138 	struct maple_enode *last = NULL;
5139 
5140 	/*
5141 	 * There are 4 options:
5142 	 * go to child (descend)
5143 	 * go back to parent (ascend)
5144 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5145 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5146 	 */
5147 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5148 		if (last == mas->node)
5149 			mas_skip_node(mas);
5150 		else
5151 			last = mas->node;
5152 	}
5153 }
5154 
5155 /*
5156  * mas_fill_gap() - Fill a located gap with @entry.
5157  * @mas: The maple state
5158  * @entry: The value to store
5159  * @slot: The offset into the node to store the @entry
5160  * @size: The size of the entry
5161  * @index: The start location
5162  */
5163 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5164 		unsigned char slot, unsigned long size, unsigned long *index)
5165 {
5166 	MA_WR_STATE(wr_mas, mas, entry);
5167 	unsigned char pslot = mte_parent_slot(mas->node);
5168 	struct maple_enode *mn = mas->node;
5169 	unsigned long *pivots;
5170 	enum maple_type ptype;
5171 	/*
5172 	 * mas->index is the start address for the search
5173 	 *  which may no longer be needed.
5174 	 * mas->last is the end address for the search
5175 	 */
5176 
5177 	*index = mas->index;
5178 	mas->last = mas->index + size - 1;
5179 
5180 	/*
5181 	 * It is possible that using mas->max and mas->min to correctly
5182 	 * calculate the index and last will cause an issue in the gap
5183 	 * calculation, so fix the ma_state here
5184 	 */
5185 	mas_ascend(mas);
5186 	ptype = mte_node_type(mas->node);
5187 	pivots = ma_pivots(mas_mn(mas), ptype);
5188 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5189 	mas->min = mas_safe_min(mas, pivots, pslot);
5190 	mas->node = mn;
5191 	mas->offset = slot;
5192 	mas_wr_store_entry(&wr_mas);
5193 }
5194 
5195 /*
5196  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5197  * searching for a gap in an empty tree.
5198  * @mas: The maple state
5199  * @min: the minimum range
5200  * @max: The maximum range
5201  * @size: The size of the gap
5202  * @fwd: Searching forward or back
5203  */
5204 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5205 				unsigned long max, unsigned long size, bool fwd)
5206 {
5207 	unsigned long start = 0;
5208 
5209 	if (!unlikely(mas_is_none(mas)))
5210 		start++;
5211 	/* mas_is_ptr */
5212 
5213 	if (start < min)
5214 		start = min;
5215 
5216 	if (fwd) {
5217 		mas->index = start;
5218 		mas->last = start + size - 1;
5219 		return;
5220 	}
5221 
5222 	mas->index = max;
5223 }
5224 
5225 /*
5226  * mas_empty_area() - Get the lowest address within the range that is
5227  * sufficient for the size requested.
5228  * @mas: The maple state
5229  * @min: The lowest value of the range
5230  * @max: The highest value of the range
5231  * @size: The size needed
5232  */
5233 int mas_empty_area(struct ma_state *mas, unsigned long min,
5234 		unsigned long max, unsigned long size)
5235 {
5236 	unsigned char offset;
5237 	unsigned long *pivots;
5238 	enum maple_type mt;
5239 
5240 	if (mas_is_start(mas))
5241 		mas_start(mas);
5242 	else if (mas->offset >= 2)
5243 		mas->offset -= 2;
5244 	else if (!mas_skip_node(mas))
5245 		return -EBUSY;
5246 
5247 	/* Empty set */
5248 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5249 		mas_sparse_area(mas, min, max, size, true);
5250 		return 0;
5251 	}
5252 
5253 	/* The start of the window can only be within these values */
5254 	mas->index = min;
5255 	mas->last = max;
5256 	mas_awalk(mas, size);
5257 
5258 	if (unlikely(mas_is_err(mas)))
5259 		return xa_err(mas->node);
5260 
5261 	offset = mas->offset;
5262 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5263 		return -EBUSY;
5264 
5265 	mt = mte_node_type(mas->node);
5266 	pivots = ma_pivots(mas_mn(mas), mt);
5267 	if (offset)
5268 		mas->min = pivots[offset - 1] + 1;
5269 
5270 	if (offset < mt_pivots[mt])
5271 		mas->max = pivots[offset];
5272 
5273 	if (mas->index < mas->min)
5274 		mas->index = mas->min;
5275 
5276 	mas->last = mas->index + size - 1;
5277 	return 0;
5278 }
5279 
5280 /*
5281  * mas_empty_area_rev() - Get the highest address within the range that is
5282  * sufficient for the size requested.
5283  * @mas: The maple state
5284  * @min: The lowest value of the range
5285  * @max: The highest value of the range
5286  * @size: The size needed
5287  */
5288 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5289 		unsigned long max, unsigned long size)
5290 {
5291 	struct maple_enode *last = mas->node;
5292 
5293 	if (mas_is_start(mas)) {
5294 		mas_start(mas);
5295 		mas->offset = mas_data_end(mas);
5296 	} else if (mas->offset >= 2) {
5297 		mas->offset -= 2;
5298 	} else if (!mas_rewind_node(mas)) {
5299 		return -EBUSY;
5300 	}
5301 
5302 	/* Empty set. */
5303 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5304 		mas_sparse_area(mas, min, max, size, false);
5305 		return 0;
5306 	}
5307 
5308 	/* The start of the window can only be within these values. */
5309 	mas->index = min;
5310 	mas->last = max;
5311 
5312 	while (!mas_rev_awalk(mas, size)) {
5313 		if (last == mas->node) {
5314 			if (!mas_rewind_node(mas))
5315 				return -EBUSY;
5316 		} else {
5317 			last = mas->node;
5318 		}
5319 	}
5320 
5321 	if (mas_is_err(mas))
5322 		return xa_err(mas->node);
5323 
5324 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5325 		return -EBUSY;
5326 
5327 	/*
5328 	 * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
5329 	 * the maximum is outside the window we are searching, then use the last
5330 	 * location in the search.
5331 	 * mas->max and mas->min is the range of the gap.
5332 	 * mas->index and mas->last are currently set to the search range.
5333 	 */
5334 
5335 	/* Trim the upper limit to the max. */
5336 	if (mas->max <= mas->last)
5337 		mas->last = mas->max;
5338 
5339 	mas->index = mas->last - size + 1;
5340 	return 0;
5341 }
5342 
5343 static inline int mas_alloc(struct ma_state *mas, void *entry,
5344 		unsigned long size, unsigned long *index)
5345 {
5346 	unsigned long min;
5347 
5348 	mas_start(mas);
5349 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5350 		mas_root_expand(mas, entry);
5351 		if (mas_is_err(mas))
5352 			return xa_err(mas->node);
5353 
5354 		if (!mas->index)
5355 			return mte_pivot(mas->node, 0);
5356 		return mte_pivot(mas->node, 1);
5357 	}
5358 
5359 	/* Must be walking a tree. */
5360 	mas_awalk(mas, size);
5361 	if (mas_is_err(mas))
5362 		return xa_err(mas->node);
5363 
5364 	if (mas->offset == MAPLE_NODE_SLOTS)
5365 		goto no_gap;
5366 
5367 	/*
5368 	 * At this point, mas->node points to the right node and we have an
5369 	 * offset that has a sufficient gap.
5370 	 */
5371 	min = mas->min;
5372 	if (mas->offset)
5373 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5374 
5375 	if (mas->index < min)
5376 		mas->index = min;
5377 
5378 	mas_fill_gap(mas, entry, mas->offset, size, index);
5379 	return 0;
5380 
5381 no_gap:
5382 	return -EBUSY;
5383 }
5384 
5385 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5386 				unsigned long max, void *entry,
5387 				unsigned long size, unsigned long *index)
5388 {
5389 	int ret = 0;
5390 
5391 	ret = mas_empty_area_rev(mas, min, max, size);
5392 	if (ret)
5393 		return ret;
5394 
5395 	if (mas_is_err(mas))
5396 		return xa_err(mas->node);
5397 
5398 	if (mas->offset == MAPLE_NODE_SLOTS)
5399 		goto no_gap;
5400 
5401 	mas_fill_gap(mas, entry, mas->offset, size, index);
5402 	return 0;
5403 
5404 no_gap:
5405 	return -EBUSY;
5406 }
5407 
5408 /*
5409  * mas_dead_leaves() - Mark all leaves of a node as dead.
5410  * @mas: The maple state
5411  * @slots: Pointer to the slot array
5412  *
5413  * Must hold the write lock.
5414  *
5415  * Return: The number of leaves marked as dead.
5416  */
5417 static inline
5418 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5419 {
5420 	struct maple_node *node;
5421 	enum maple_type type;
5422 	void *entry;
5423 	int offset;
5424 
5425 	for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5426 		entry = mas_slot_locked(mas, slots, offset);
5427 		type = mte_node_type(entry);
5428 		node = mte_to_node(entry);
5429 		/* Use both node and type to catch LE & BE metadata */
5430 		if (!node || !type)
5431 			break;
5432 
5433 		mte_set_node_dead(entry);
5434 		smp_wmb(); /* Needed for RCU */
5435 		node->type = type;
5436 		rcu_assign_pointer(slots[offset], node);
5437 	}
5438 
5439 	return offset;
5440 }
5441 
5442 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5443 {
5444 	struct maple_node *node, *next;
5445 	void __rcu **slots = NULL;
5446 
5447 	next = mas_mn(mas);
5448 	do {
5449 		mas->node = ma_enode_ptr(next);
5450 		node = mas_mn(mas);
5451 		slots = ma_slots(node, node->type);
5452 		next = mas_slot_locked(mas, slots, offset);
5453 		offset = 0;
5454 	} while (!ma_is_leaf(next->type));
5455 
5456 	return slots;
5457 }
5458 
5459 static void mt_free_walk(struct rcu_head *head)
5460 {
5461 	void __rcu **slots;
5462 	struct maple_node *node, *start;
5463 	struct maple_tree mt;
5464 	unsigned char offset;
5465 	enum maple_type type;
5466 	MA_STATE(mas, &mt, 0, 0);
5467 
5468 	node = container_of(head, struct maple_node, rcu);
5469 
5470 	if (ma_is_leaf(node->type))
5471 		goto free_leaf;
5472 
5473 	mt_init_flags(&mt, node->ma_flags);
5474 	mas_lock(&mas);
5475 	start = node;
5476 	mas.node = mt_mk_node(node, node->type);
5477 	slots = mas_dead_walk(&mas, 0);
5478 	node = mas_mn(&mas);
5479 	do {
5480 		mt_free_bulk(node->slot_len, slots);
5481 		offset = node->parent_slot + 1;
5482 		mas.node = node->piv_parent;
5483 		if (mas_mn(&mas) == node)
5484 			goto start_slots_free;
5485 
5486 		type = mte_node_type(mas.node);
5487 		slots = ma_slots(mte_to_node(mas.node), type);
5488 		if ((offset < mt_slots[type]) && (slots[offset]))
5489 			slots = mas_dead_walk(&mas, offset);
5490 
5491 		node = mas_mn(&mas);
5492 	} while ((node != start) || (node->slot_len < offset));
5493 
5494 	slots = ma_slots(node, node->type);
5495 	mt_free_bulk(node->slot_len, slots);
5496 
5497 start_slots_free:
5498 	mas_unlock(&mas);
5499 free_leaf:
5500 	mt_free_rcu(&node->rcu);
5501 }
5502 
5503 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5504 			struct maple_enode *prev, unsigned char offset)
5505 {
5506 	struct maple_node *node;
5507 	struct maple_enode *next = mas->node;
5508 	void __rcu **slots = NULL;
5509 
5510 	do {
5511 		mas->node = next;
5512 		node = mas_mn(mas);
5513 		slots = ma_slots(node, mte_node_type(mas->node));
5514 		next = mas_slot_locked(mas, slots, 0);
5515 		if ((mte_dead_node(next)))
5516 			next = mas_slot_locked(mas, slots, 1);
5517 
5518 		mte_set_node_dead(mas->node);
5519 		node->type = mte_node_type(mas->node);
5520 		node->piv_parent = prev;
5521 		node->parent_slot = offset;
5522 		offset = 0;
5523 		prev = mas->node;
5524 	} while (!mte_is_leaf(next));
5525 
5526 	return slots;
5527 }
5528 
5529 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5530 			    bool free)
5531 {
5532 	void __rcu **slots;
5533 	struct maple_node *node = mte_to_node(enode);
5534 	struct maple_enode *start;
5535 	struct maple_tree mt;
5536 
5537 	MA_STATE(mas, &mt, 0, 0);
5538 
5539 	if (mte_is_leaf(enode))
5540 		goto free_leaf;
5541 
5542 	mt_init_flags(&mt, ma_flags);
5543 	mas_lock(&mas);
5544 
5545 	mas.node = start = enode;
5546 	slots = mas_destroy_descend(&mas, start, 0);
5547 	node = mas_mn(&mas);
5548 	do {
5549 		enum maple_type type;
5550 		unsigned char offset;
5551 		struct maple_enode *parent, *tmp;
5552 
5553 		node->slot_len = mas_dead_leaves(&mas, slots);
5554 		if (free)
5555 			mt_free_bulk(node->slot_len, slots);
5556 		offset = node->parent_slot + 1;
5557 		mas.node = node->piv_parent;
5558 		if (mas_mn(&mas) == node)
5559 			goto start_slots_free;
5560 
5561 		type = mte_node_type(mas.node);
5562 		slots = ma_slots(mte_to_node(mas.node), type);
5563 		if (offset >= mt_slots[type])
5564 			goto next;
5565 
5566 		tmp = mas_slot_locked(&mas, slots, offset);
5567 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5568 			parent = mas.node;
5569 			mas.node = tmp;
5570 			slots = mas_destroy_descend(&mas, parent, offset);
5571 		}
5572 next:
5573 		node = mas_mn(&mas);
5574 	} while (start != mas.node);
5575 
5576 	node = mas_mn(&mas);
5577 	node->slot_len = mas_dead_leaves(&mas, slots);
5578 	if (free)
5579 		mt_free_bulk(node->slot_len, slots);
5580 
5581 start_slots_free:
5582 	mas_unlock(&mas);
5583 
5584 free_leaf:
5585 	if (free)
5586 		mt_free_rcu(&node->rcu);
5587 }
5588 
5589 /*
5590  * mte_destroy_walk() - Free a tree or sub-tree.
5591  * @enode - the encoded maple node (maple_enode) to start
5592  * @mn - the tree to free - needed for node types.
5593  *
5594  * Must hold the write lock.
5595  */
5596 static inline void mte_destroy_walk(struct maple_enode *enode,
5597 				    struct maple_tree *mt)
5598 {
5599 	struct maple_node *node = mte_to_node(enode);
5600 
5601 	if (mt_in_rcu(mt)) {
5602 		mt_destroy_walk(enode, mt->ma_flags, false);
5603 		call_rcu(&node->rcu, mt_free_walk);
5604 	} else {
5605 		mt_destroy_walk(enode, mt->ma_flags, true);
5606 	}
5607 }
5608 
5609 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5610 {
5611 	if (!mas_is_start(wr_mas->mas)) {
5612 		if (mas_is_none(wr_mas->mas)) {
5613 			mas_reset(wr_mas->mas);
5614 		} else {
5615 			wr_mas->r_max = wr_mas->mas->max;
5616 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5617 			if (mas_is_span_wr(wr_mas))
5618 				mas_reset(wr_mas->mas);
5619 		}
5620 	}
5621 
5622 }
5623 
5624 /* Interface */
5625 
5626 /**
5627  * mas_store() - Store an @entry.
5628  * @mas: The maple state.
5629  * @entry: The entry to store.
5630  *
5631  * The @mas->index and @mas->last is used to set the range for the @entry.
5632  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5633  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5634  *
5635  * Return: the first entry between mas->index and mas->last or %NULL.
5636  */
5637 void *mas_store(struct ma_state *mas, void *entry)
5638 {
5639 	MA_WR_STATE(wr_mas, mas, entry);
5640 
5641 	trace_ma_write(__func__, mas, 0, entry);
5642 #ifdef CONFIG_DEBUG_MAPLE_TREE
5643 	if (mas->index > mas->last)
5644 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5645 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5646 	if (mas->index > mas->last) {
5647 		mas_set_err(mas, -EINVAL);
5648 		return NULL;
5649 	}
5650 
5651 #endif
5652 
5653 	/*
5654 	 * Storing is the same operation as insert with the added caveat that it
5655 	 * can overwrite entries.  Although this seems simple enough, one may
5656 	 * want to examine what happens if a single store operation was to
5657 	 * overwrite multiple entries within a self-balancing B-Tree.
5658 	 */
5659 	mas_wr_store_setup(&wr_mas);
5660 	mas_wr_store_entry(&wr_mas);
5661 	return wr_mas.content;
5662 }
5663 
5664 /**
5665  * mas_store_gfp() - Store a value into the tree.
5666  * @mas: The maple state
5667  * @entry: The entry to store
5668  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5669  *
5670  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5671  * be allocated.
5672  */
5673 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5674 {
5675 	MA_WR_STATE(wr_mas, mas, entry);
5676 
5677 	mas_wr_store_setup(&wr_mas);
5678 	trace_ma_write(__func__, mas, 0, entry);
5679 retry:
5680 	mas_wr_store_entry(&wr_mas);
5681 	if (unlikely(mas_nomem(mas, gfp)))
5682 		goto retry;
5683 
5684 	if (unlikely(mas_is_err(mas)))
5685 		return xa_err(mas->node);
5686 
5687 	return 0;
5688 }
5689 
5690 /**
5691  * mas_store_prealloc() - Store a value into the tree using memory
5692  * preallocated in the maple state.
5693  * @mas: The maple state
5694  * @entry: The entry to store.
5695  */
5696 void mas_store_prealloc(struct ma_state *mas, void *entry)
5697 {
5698 	MA_WR_STATE(wr_mas, mas, entry);
5699 
5700 	mas_wr_store_setup(&wr_mas);
5701 	trace_ma_write(__func__, mas, 0, entry);
5702 	mas_wr_store_entry(&wr_mas);
5703 	BUG_ON(mas_is_err(mas));
5704 	mas_destroy(mas);
5705 }
5706 
5707 /**
5708  * mas_preallocate() - Preallocate enough nodes for a store operation
5709  * @mas: The maple state
5710  * @entry: The entry that will be stored
5711  * @gfp: The GFP_FLAGS to use for allocations.
5712  *
5713  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5714  */
5715 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5716 {
5717 	int ret;
5718 
5719 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5720 	mas->mas_flags |= MA_STATE_PREALLOC;
5721 	if (likely(!mas_is_err(mas)))
5722 		return 0;
5723 
5724 	mas_set_alloc_req(mas, 0);
5725 	ret = xa_err(mas->node);
5726 	mas_reset(mas);
5727 	mas_destroy(mas);
5728 	mas_reset(mas);
5729 	return ret;
5730 }
5731 
5732 /*
5733  * mas_destroy() - destroy a maple state.
5734  * @mas: The maple state
5735  *
5736  * Upon completion, check the left-most node and rebalance against the node to
5737  * the right if necessary.  Frees any allocated nodes associated with this maple
5738  * state.
5739  */
5740 void mas_destroy(struct ma_state *mas)
5741 {
5742 	struct maple_alloc *node;
5743 
5744 	/*
5745 	 * When using mas_for_each() to insert an expected number of elements,
5746 	 * it is possible that the number inserted is less than the expected
5747 	 * number.  To fix an invalid final node, a check is performed here to
5748 	 * rebalance the previous node with the final node.
5749 	 */
5750 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5751 		unsigned char end;
5752 
5753 		if (mas_is_start(mas))
5754 			mas_start(mas);
5755 
5756 		mtree_range_walk(mas);
5757 		end = mas_data_end(mas) + 1;
5758 		if (end < mt_min_slot_count(mas->node) - 1)
5759 			mas_destroy_rebalance(mas, end);
5760 
5761 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5762 	}
5763 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5764 
5765 	while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5766 		node = mas->alloc;
5767 		mas->alloc = node->slot[0];
5768 		if (node->node_count > 0)
5769 			mt_free_bulk(node->node_count,
5770 				     (void __rcu **)&node->slot[1]);
5771 		kmem_cache_free(maple_node_cache, node);
5772 	}
5773 	mas->alloc = NULL;
5774 }
5775 
5776 /*
5777  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5778  * @mas: The maple state
5779  * @nr_entries: The number of expected entries.
5780  *
5781  * This will attempt to pre-allocate enough nodes to store the expected number
5782  * of entries.  The allocations will occur using the bulk allocator interface
5783  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5784  * to ensure any unused nodes are freed.
5785  *
5786  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5787  */
5788 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5789 {
5790 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5791 	struct maple_enode *enode = mas->node;
5792 	int nr_nodes;
5793 	int ret;
5794 
5795 	/*
5796 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5797 	 * forking a process and duplicating the VMAs from one tree to a new
5798 	 * tree.  When such a situation arises, it is known that the new tree is
5799 	 * not going to be used until the entire tree is populated.  For
5800 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5801 	 * This allows for optimistic splitting that favours the left and reuse
5802 	 * of nodes during the operation.
5803 	 */
5804 
5805 	/* Optimize splitting for bulk insert in-order */
5806 	mas->mas_flags |= MA_STATE_BULK;
5807 
5808 	/*
5809 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5810 	 * If this is wrong, it just means allocation can happen during
5811 	 * insertion of entries.
5812 	 */
5813 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5814 	if (!mt_is_alloc(mas->tree))
5815 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5816 
5817 	/* Leaves; reduce slots to keep space for expansion */
5818 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5819 	/* Internal nodes */
5820 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5821 	/* Add working room for split (2 nodes) + new parents */
5822 	mas_node_count(mas, nr_nodes + 3);
5823 
5824 	/* Detect if allocations run out */
5825 	mas->mas_flags |= MA_STATE_PREALLOC;
5826 
5827 	if (!mas_is_err(mas))
5828 		return 0;
5829 
5830 	ret = xa_err(mas->node);
5831 	mas->node = enode;
5832 	mas_destroy(mas);
5833 	return ret;
5834 
5835 }
5836 
5837 /**
5838  * mas_next() - Get the next entry.
5839  * @mas: The maple state
5840  * @max: The maximum index to check.
5841  *
5842  * Returns the next entry after @mas->index.
5843  * Must hold rcu_read_lock or the write lock.
5844  * Can return the zero entry.
5845  *
5846  * Return: The next entry or %NULL
5847  */
5848 void *mas_next(struct ma_state *mas, unsigned long max)
5849 {
5850 	if (mas_is_none(mas) || mas_is_paused(mas))
5851 		mas->node = MAS_START;
5852 
5853 	if (mas_is_start(mas))
5854 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5855 
5856 	if (mas_is_ptr(mas)) {
5857 		if (!mas->index) {
5858 			mas->index = 1;
5859 			mas->last = ULONG_MAX;
5860 		}
5861 		return NULL;
5862 	}
5863 
5864 	if (mas->last == ULONG_MAX)
5865 		return NULL;
5866 
5867 	/* Retries on dead nodes handled by mas_next_entry */
5868 	return mas_next_entry(mas, max);
5869 }
5870 EXPORT_SYMBOL_GPL(mas_next);
5871 
5872 /**
5873  * mt_next() - get the next value in the maple tree
5874  * @mt: The maple tree
5875  * @index: The start index
5876  * @max: The maximum index to check
5877  *
5878  * Return: The entry at @index or higher, or %NULL if nothing is found.
5879  */
5880 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5881 {
5882 	void *entry = NULL;
5883 	MA_STATE(mas, mt, index, index);
5884 
5885 	rcu_read_lock();
5886 	entry = mas_next(&mas, max);
5887 	rcu_read_unlock();
5888 	return entry;
5889 }
5890 EXPORT_SYMBOL_GPL(mt_next);
5891 
5892 /**
5893  * mas_prev() - Get the previous entry
5894  * @mas: The maple state
5895  * @min: The minimum value to check.
5896  *
5897  * Must hold rcu_read_lock or the write lock.
5898  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5899  * searchable nodes.
5900  *
5901  * Return: the previous value or %NULL.
5902  */
5903 void *mas_prev(struct ma_state *mas, unsigned long min)
5904 {
5905 	if (!mas->index) {
5906 		/* Nothing comes before 0 */
5907 		mas->last = 0;
5908 		return NULL;
5909 	}
5910 
5911 	if (unlikely(mas_is_ptr(mas)))
5912 		return NULL;
5913 
5914 	if (mas_is_none(mas) || mas_is_paused(mas))
5915 		mas->node = MAS_START;
5916 
5917 	if (mas_is_start(mas)) {
5918 		mas_walk(mas);
5919 		if (!mas->index)
5920 			return NULL;
5921 	}
5922 
5923 	if (mas_is_ptr(mas)) {
5924 		if (!mas->index) {
5925 			mas->last = 0;
5926 			return NULL;
5927 		}
5928 
5929 		mas->index = mas->last = 0;
5930 		return mas_root_locked(mas);
5931 	}
5932 	return mas_prev_entry(mas, min);
5933 }
5934 EXPORT_SYMBOL_GPL(mas_prev);
5935 
5936 /**
5937  * mt_prev() - get the previous value in the maple tree
5938  * @mt: The maple tree
5939  * @index: The start index
5940  * @min: The minimum index to check
5941  *
5942  * Return: The entry at @index or lower, or %NULL if nothing is found.
5943  */
5944 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5945 {
5946 	void *entry = NULL;
5947 	MA_STATE(mas, mt, index, index);
5948 
5949 	rcu_read_lock();
5950 	entry = mas_prev(&mas, min);
5951 	rcu_read_unlock();
5952 	return entry;
5953 }
5954 EXPORT_SYMBOL_GPL(mt_prev);
5955 
5956 /**
5957  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5958  * @mas: The maple state to pause
5959  *
5960  * Some users need to pause a walk and drop the lock they're holding in
5961  * order to yield to a higher priority thread or carry out an operation
5962  * on an entry.  Those users should call this function before they drop
5963  * the lock.  It resets the @mas to be suitable for the next iteration
5964  * of the loop after the user has reacquired the lock.  If most entries
5965  * found during a walk require you to call mas_pause(), the mt_for_each()
5966  * iterator may be more appropriate.
5967  *
5968  */
5969 void mas_pause(struct ma_state *mas)
5970 {
5971 	mas->node = MAS_PAUSE;
5972 }
5973 EXPORT_SYMBOL_GPL(mas_pause);
5974 
5975 /**
5976  * mas_find() - On the first call, find the entry at or after mas->index up to
5977  * %max.  Otherwise, find the entry after mas->index.
5978  * @mas: The maple state
5979  * @max: The maximum value to check.
5980  *
5981  * Must hold rcu_read_lock or the write lock.
5982  * If an entry exists, last and index are updated accordingly.
5983  * May set @mas->node to MAS_NONE.
5984  *
5985  * Return: The entry or %NULL.
5986  */
5987 void *mas_find(struct ma_state *mas, unsigned long max)
5988 {
5989 	if (unlikely(mas_is_paused(mas))) {
5990 		if (unlikely(mas->last == ULONG_MAX)) {
5991 			mas->node = MAS_NONE;
5992 			return NULL;
5993 		}
5994 		mas->node = MAS_START;
5995 		mas->index = ++mas->last;
5996 	}
5997 
5998 	if (unlikely(mas_is_start(mas))) {
5999 		/* First run or continue */
6000 		void *entry;
6001 
6002 		if (mas->index > max)
6003 			return NULL;
6004 
6005 		entry = mas_walk(mas);
6006 		if (entry)
6007 			return entry;
6008 	}
6009 
6010 	if (unlikely(!mas_searchable(mas)))
6011 		return NULL;
6012 
6013 	/* Retries on dead nodes handled by mas_next_entry */
6014 	return mas_next_entry(mas, max);
6015 }
6016 
6017 /**
6018  * mas_find_rev: On the first call, find the first non-null entry at or below
6019  * mas->index down to %min.  Otherwise find the first non-null entry below
6020  * mas->index down to %min.
6021  * @mas: The maple state
6022  * @min: The minimum value to check.
6023  *
6024  * Must hold rcu_read_lock or the write lock.
6025  * If an entry exists, last and index are updated accordingly.
6026  * May set @mas->node to MAS_NONE.
6027  *
6028  * Return: The entry or %NULL.
6029  */
6030 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6031 {
6032 	if (unlikely(mas_is_paused(mas))) {
6033 		if (unlikely(mas->last == ULONG_MAX)) {
6034 			mas->node = MAS_NONE;
6035 			return NULL;
6036 		}
6037 		mas->node = MAS_START;
6038 		mas->last = --mas->index;
6039 	}
6040 
6041 	if (unlikely(mas_is_start(mas))) {
6042 		/* First run or continue */
6043 		void *entry;
6044 
6045 		if (mas->index < min)
6046 			return NULL;
6047 
6048 		entry = mas_walk(mas);
6049 		if (entry)
6050 			return entry;
6051 	}
6052 
6053 	if (unlikely(!mas_searchable(mas)))
6054 		return NULL;
6055 
6056 	if (mas->index < min)
6057 		return NULL;
6058 
6059 	/* Retries on dead nodes handled by mas_next_entry */
6060 	return mas_prev_entry(mas, min);
6061 }
6062 EXPORT_SYMBOL_GPL(mas_find);
6063 
6064 /**
6065  * mas_erase() - Find the range in which index resides and erase the entire
6066  * range.
6067  * @mas: The maple state
6068  *
6069  * Must hold the write lock.
6070  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6071  * erases that range.
6072  *
6073  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6074  */
6075 void *mas_erase(struct ma_state *mas)
6076 {
6077 	void *entry;
6078 	MA_WR_STATE(wr_mas, mas, NULL);
6079 
6080 	if (mas_is_none(mas) || mas_is_paused(mas))
6081 		mas->node = MAS_START;
6082 
6083 	/* Retry unnecessary when holding the write lock. */
6084 	entry = mas_state_walk(mas);
6085 	if (!entry)
6086 		return NULL;
6087 
6088 write_retry:
6089 	/* Must reset to ensure spanning writes of last slot are detected */
6090 	mas_reset(mas);
6091 	mas_wr_store_setup(&wr_mas);
6092 	mas_wr_store_entry(&wr_mas);
6093 	if (mas_nomem(mas, GFP_KERNEL))
6094 		goto write_retry;
6095 
6096 	return entry;
6097 }
6098 EXPORT_SYMBOL_GPL(mas_erase);
6099 
6100 /**
6101  * mas_nomem() - Check if there was an error allocating and do the allocation
6102  * if necessary If there are allocations, then free them.
6103  * @mas: The maple state
6104  * @gfp: The GFP_FLAGS to use for allocations
6105  * Return: true on allocation, false otherwise.
6106  */
6107 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6108 	__must_hold(mas->tree->lock)
6109 {
6110 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6111 		mas_destroy(mas);
6112 		return false;
6113 	}
6114 
6115 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6116 		mtree_unlock(mas->tree);
6117 		mas_alloc_nodes(mas, gfp);
6118 		mtree_lock(mas->tree);
6119 	} else {
6120 		mas_alloc_nodes(mas, gfp);
6121 	}
6122 
6123 	if (!mas_allocated(mas))
6124 		return false;
6125 
6126 	mas->node = MAS_START;
6127 	return true;
6128 }
6129 
6130 void __init maple_tree_init(void)
6131 {
6132 	maple_node_cache = kmem_cache_create("maple_node",
6133 			sizeof(struct maple_node), sizeof(struct maple_node),
6134 			SLAB_PANIC, NULL);
6135 }
6136 
6137 /**
6138  * mtree_load() - Load a value stored in a maple tree
6139  * @mt: The maple tree
6140  * @index: The index to load
6141  *
6142  * Return: the entry or %NULL
6143  */
6144 void *mtree_load(struct maple_tree *mt, unsigned long index)
6145 {
6146 	MA_STATE(mas, mt, index, index);
6147 	void *entry;
6148 
6149 	trace_ma_read(__func__, &mas);
6150 	rcu_read_lock();
6151 retry:
6152 	entry = mas_start(&mas);
6153 	if (unlikely(mas_is_none(&mas)))
6154 		goto unlock;
6155 
6156 	if (unlikely(mas_is_ptr(&mas))) {
6157 		if (index)
6158 			entry = NULL;
6159 
6160 		goto unlock;
6161 	}
6162 
6163 	entry = mtree_lookup_walk(&mas);
6164 	if (!entry && unlikely(mas_is_start(&mas)))
6165 		goto retry;
6166 unlock:
6167 	rcu_read_unlock();
6168 	if (xa_is_zero(entry))
6169 		return NULL;
6170 
6171 	return entry;
6172 }
6173 EXPORT_SYMBOL(mtree_load);
6174 
6175 /**
6176  * mtree_store_range() - Store an entry at a given range.
6177  * @mt: The maple tree
6178  * @index: The start of the range
6179  * @last: The end of the range
6180  * @entry: The entry to store
6181  * @gfp: The GFP_FLAGS to use for allocations
6182  *
6183  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6184  * be allocated.
6185  */
6186 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6187 		unsigned long last, void *entry, gfp_t gfp)
6188 {
6189 	MA_STATE(mas, mt, index, last);
6190 	MA_WR_STATE(wr_mas, &mas, entry);
6191 
6192 	trace_ma_write(__func__, &mas, 0, entry);
6193 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6194 		return -EINVAL;
6195 
6196 	if (index > last)
6197 		return -EINVAL;
6198 
6199 	mtree_lock(mt);
6200 retry:
6201 	mas_wr_store_entry(&wr_mas);
6202 	if (mas_nomem(&mas, gfp))
6203 		goto retry;
6204 
6205 	mtree_unlock(mt);
6206 	if (mas_is_err(&mas))
6207 		return xa_err(mas.node);
6208 
6209 	return 0;
6210 }
6211 EXPORT_SYMBOL(mtree_store_range);
6212 
6213 /**
6214  * mtree_store() - Store an entry at a given index.
6215  * @mt: The maple tree
6216  * @index: The index to store the value
6217  * @entry: The entry to store
6218  * @gfp: The GFP_FLAGS to use for allocations
6219  *
6220  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6221  * be allocated.
6222  */
6223 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6224 		 gfp_t gfp)
6225 {
6226 	return mtree_store_range(mt, index, index, entry, gfp);
6227 }
6228 EXPORT_SYMBOL(mtree_store);
6229 
6230 /**
6231  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6232  * @mt: The maple tree
6233  * @first: The start of the range
6234  * @last: The end of the range
6235  * @entry: The entry to store
6236  * @gfp: The GFP_FLAGS to use for allocations.
6237  *
6238  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6239  * request, -ENOMEM if memory could not be allocated.
6240  */
6241 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6242 		unsigned long last, void *entry, gfp_t gfp)
6243 {
6244 	MA_STATE(ms, mt, first, last);
6245 
6246 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6247 		return -EINVAL;
6248 
6249 	if (first > last)
6250 		return -EINVAL;
6251 
6252 	mtree_lock(mt);
6253 retry:
6254 	mas_insert(&ms, entry);
6255 	if (mas_nomem(&ms, gfp))
6256 		goto retry;
6257 
6258 	mtree_unlock(mt);
6259 	if (mas_is_err(&ms))
6260 		return xa_err(ms.node);
6261 
6262 	return 0;
6263 }
6264 EXPORT_SYMBOL(mtree_insert_range);
6265 
6266 /**
6267  * mtree_insert() - Insert an entry at a give index if there is no value.
6268  * @mt: The maple tree
6269  * @index : The index to store the value
6270  * @entry: The entry to store
6271  * @gfp: The FGP_FLAGS to use for allocations.
6272  *
6273  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6274  * request, -ENOMEM if memory could not be allocated.
6275  */
6276 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6277 		 gfp_t gfp)
6278 {
6279 	return mtree_insert_range(mt, index, index, entry, gfp);
6280 }
6281 EXPORT_SYMBOL(mtree_insert);
6282 
6283 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6284 		void *entry, unsigned long size, unsigned long min,
6285 		unsigned long max, gfp_t gfp)
6286 {
6287 	int ret = 0;
6288 
6289 	MA_STATE(mas, mt, min, max - size);
6290 	if (!mt_is_alloc(mt))
6291 		return -EINVAL;
6292 
6293 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6294 		return -EINVAL;
6295 
6296 	if (min > max)
6297 		return -EINVAL;
6298 
6299 	if (max < size)
6300 		return -EINVAL;
6301 
6302 	if (!size)
6303 		return -EINVAL;
6304 
6305 	mtree_lock(mt);
6306 retry:
6307 	mas.offset = 0;
6308 	mas.index = min;
6309 	mas.last = max - size;
6310 	ret = mas_alloc(&mas, entry, size, startp);
6311 	if (mas_nomem(&mas, gfp))
6312 		goto retry;
6313 
6314 	mtree_unlock(mt);
6315 	return ret;
6316 }
6317 EXPORT_SYMBOL(mtree_alloc_range);
6318 
6319 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6320 		void *entry, unsigned long size, unsigned long min,
6321 		unsigned long max, gfp_t gfp)
6322 {
6323 	int ret = 0;
6324 
6325 	MA_STATE(mas, mt, min, max - size);
6326 	if (!mt_is_alloc(mt))
6327 		return -EINVAL;
6328 
6329 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6330 		return -EINVAL;
6331 
6332 	if (min >= max)
6333 		return -EINVAL;
6334 
6335 	if (max < size - 1)
6336 		return -EINVAL;
6337 
6338 	if (!size)
6339 		return -EINVAL;
6340 
6341 	mtree_lock(mt);
6342 retry:
6343 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6344 	if (mas_nomem(&mas, gfp))
6345 		goto retry;
6346 
6347 	mtree_unlock(mt);
6348 	return ret;
6349 }
6350 EXPORT_SYMBOL(mtree_alloc_rrange);
6351 
6352 /**
6353  * mtree_erase() - Find an index and erase the entire range.
6354  * @mt: The maple tree
6355  * @index: The index to erase
6356  *
6357  * Erasing is the same as a walk to an entry then a store of a NULL to that
6358  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6359  *
6360  * Return: The entry stored at the @index or %NULL
6361  */
6362 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6363 {
6364 	void *entry = NULL;
6365 
6366 	MA_STATE(mas, mt, index, index);
6367 	trace_ma_op(__func__, &mas);
6368 
6369 	mtree_lock(mt);
6370 	entry = mas_erase(&mas);
6371 	mtree_unlock(mt);
6372 
6373 	return entry;
6374 }
6375 EXPORT_SYMBOL(mtree_erase);
6376 
6377 /**
6378  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6379  * @mt: The maple tree
6380  *
6381  * Note: Does not handle locking.
6382  */
6383 void __mt_destroy(struct maple_tree *mt)
6384 {
6385 	void *root = mt_root_locked(mt);
6386 
6387 	rcu_assign_pointer(mt->ma_root, NULL);
6388 	if (xa_is_node(root))
6389 		mte_destroy_walk(root, mt);
6390 
6391 	mt->ma_flags = 0;
6392 }
6393 EXPORT_SYMBOL_GPL(__mt_destroy);
6394 
6395 /**
6396  * mtree_destroy() - Destroy a maple tree
6397  * @mt: The maple tree
6398  *
6399  * Frees all resources used by the tree.  Handles locking.
6400  */
6401 void mtree_destroy(struct maple_tree *mt)
6402 {
6403 	mtree_lock(mt);
6404 	__mt_destroy(mt);
6405 	mtree_unlock(mt);
6406 }
6407 EXPORT_SYMBOL(mtree_destroy);
6408 
6409 /**
6410  * mt_find() - Search from the start up until an entry is found.
6411  * @mt: The maple tree
6412  * @index: Pointer which contains the start location of the search
6413  * @max: The maximum value to check
6414  *
6415  * Handles locking.  @index will be incremented to one beyond the range.
6416  *
6417  * Return: The entry at or after the @index or %NULL
6418  */
6419 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6420 {
6421 	MA_STATE(mas, mt, *index, *index);
6422 	void *entry;
6423 #ifdef CONFIG_DEBUG_MAPLE_TREE
6424 	unsigned long copy = *index;
6425 #endif
6426 
6427 	trace_ma_read(__func__, &mas);
6428 
6429 	if ((*index) > max)
6430 		return NULL;
6431 
6432 	rcu_read_lock();
6433 retry:
6434 	entry = mas_state_walk(&mas);
6435 	if (mas_is_start(&mas))
6436 		goto retry;
6437 
6438 	if (unlikely(xa_is_zero(entry)))
6439 		entry = NULL;
6440 
6441 	if (entry)
6442 		goto unlock;
6443 
6444 	while (mas_searchable(&mas) && (mas.index < max)) {
6445 		entry = mas_next_entry(&mas, max);
6446 		if (likely(entry && !xa_is_zero(entry)))
6447 			break;
6448 	}
6449 
6450 	if (unlikely(xa_is_zero(entry)))
6451 		entry = NULL;
6452 unlock:
6453 	rcu_read_unlock();
6454 	if (likely(entry)) {
6455 		*index = mas.last + 1;
6456 #ifdef CONFIG_DEBUG_MAPLE_TREE
6457 		if ((*index) && (*index) <= copy)
6458 			pr_err("index not increased! %lx <= %lx\n",
6459 			       *index, copy);
6460 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6461 #endif
6462 	}
6463 
6464 	return entry;
6465 }
6466 EXPORT_SYMBOL(mt_find);
6467 
6468 /**
6469  * mt_find_after() - Search from the start up until an entry is found.
6470  * @mt: The maple tree
6471  * @index: Pointer which contains the start location of the search
6472  * @max: The maximum value to check
6473  *
6474  * Handles locking, detects wrapping on index == 0
6475  *
6476  * Return: The entry at or after the @index or %NULL
6477  */
6478 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6479 		    unsigned long max)
6480 {
6481 	if (!(*index))
6482 		return NULL;
6483 
6484 	return mt_find(mt, index, max);
6485 }
6486 EXPORT_SYMBOL(mt_find_after);
6487 
6488 #ifdef CONFIG_DEBUG_MAPLE_TREE
6489 atomic_t maple_tree_tests_run;
6490 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6491 atomic_t maple_tree_tests_passed;
6492 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6493 
6494 #ifndef __KERNEL__
6495 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6496 void mt_set_non_kernel(unsigned int val)
6497 {
6498 	kmem_cache_set_non_kernel(maple_node_cache, val);
6499 }
6500 
6501 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6502 unsigned long mt_get_alloc_size(void)
6503 {
6504 	return kmem_cache_get_alloc(maple_node_cache);
6505 }
6506 
6507 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6508 void mt_zero_nr_tallocated(void)
6509 {
6510 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6511 }
6512 
6513 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6514 unsigned int mt_nr_tallocated(void)
6515 {
6516 	return kmem_cache_nr_tallocated(maple_node_cache);
6517 }
6518 
6519 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6520 unsigned int mt_nr_allocated(void)
6521 {
6522 	return kmem_cache_nr_allocated(maple_node_cache);
6523 }
6524 
6525 /*
6526  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6527  * @mas: The maple state
6528  * @index: The index to restore in @mas.
6529  *
6530  * Used in test code.
6531  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6532  */
6533 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6534 {
6535 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6536 		return 0;
6537 
6538 	if (likely(!mte_dead_node(mas->node)))
6539 		return 0;
6540 
6541 	mas_rewalk(mas, index);
6542 	return 1;
6543 }
6544 #endif /* not defined __KERNEL__ */
6545 
6546 /*
6547  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6548  * @mas: The maple state
6549  * @offset: The offset into the slot array to fetch.
6550  *
6551  * Return: The entry stored at @offset.
6552  */
6553 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6554 		unsigned char offset)
6555 {
6556 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6557 			offset);
6558 }
6559 
6560 
6561 /*
6562  * mas_first_entry() - Go the first leaf and find the first entry.
6563  * @mas: the maple state.
6564  * @limit: the maximum index to check.
6565  * @*r_start: Pointer to set to the range start.
6566  *
6567  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6568  *
6569  * Return: The first entry or MAS_NONE.
6570  */
6571 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6572 		unsigned long limit, enum maple_type mt)
6573 
6574 {
6575 	unsigned long max;
6576 	unsigned long *pivots;
6577 	void __rcu **slots;
6578 	void *entry = NULL;
6579 
6580 	mas->index = mas->min;
6581 	if (mas->index > limit)
6582 		goto none;
6583 
6584 	max = mas->max;
6585 	mas->offset = 0;
6586 	while (likely(!ma_is_leaf(mt))) {
6587 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6588 		slots = ma_slots(mn, mt);
6589 		pivots = ma_pivots(mn, mt);
6590 		max = pivots[0];
6591 		entry = mas_slot(mas, slots, 0);
6592 		if (unlikely(ma_dead_node(mn)))
6593 			return NULL;
6594 		mas->node = entry;
6595 		mn = mas_mn(mas);
6596 		mt = mte_node_type(mas->node);
6597 	}
6598 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6599 
6600 	mas->max = max;
6601 	slots = ma_slots(mn, mt);
6602 	entry = mas_slot(mas, slots, 0);
6603 	if (unlikely(ma_dead_node(mn)))
6604 		return NULL;
6605 
6606 	/* Slot 0 or 1 must be set */
6607 	if (mas->index > limit)
6608 		goto none;
6609 
6610 	if (likely(entry))
6611 		return entry;
6612 
6613 	pivots = ma_pivots(mn, mt);
6614 	mas->index = pivots[0] + 1;
6615 	mas->offset = 1;
6616 	entry = mas_slot(mas, slots, 1);
6617 	if (unlikely(ma_dead_node(mn)))
6618 		return NULL;
6619 
6620 	if (mas->index > limit)
6621 		goto none;
6622 
6623 	if (likely(entry))
6624 		return entry;
6625 
6626 none:
6627 	if (likely(!ma_dead_node(mn)))
6628 		mas->node = MAS_NONE;
6629 	return NULL;
6630 }
6631 
6632 /* Depth first search, post-order */
6633 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6634 {
6635 
6636 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6637 	unsigned long p_min, p_max;
6638 
6639 	mas_next_node(mas, mas_mn(mas), max);
6640 	if (!mas_is_none(mas))
6641 		return;
6642 
6643 	if (mte_is_root(mn))
6644 		return;
6645 
6646 	mas->node = mn;
6647 	mas_ascend(mas);
6648 	while (mas->node != MAS_NONE) {
6649 		p = mas->node;
6650 		p_min = mas->min;
6651 		p_max = mas->max;
6652 		mas_prev_node(mas, 0);
6653 	}
6654 
6655 	if (p == MAS_NONE)
6656 		return;
6657 
6658 	mas->node = p;
6659 	mas->max = p_max;
6660 	mas->min = p_min;
6661 }
6662 
6663 /* Tree validations */
6664 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6665 		unsigned long min, unsigned long max, unsigned int depth);
6666 static void mt_dump_range(unsigned long min, unsigned long max,
6667 			  unsigned int depth)
6668 {
6669 	static const char spaces[] = "                                ";
6670 
6671 	if (min == max)
6672 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6673 	else
6674 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6675 }
6676 
6677 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6678 			  unsigned int depth)
6679 {
6680 	mt_dump_range(min, max, depth);
6681 
6682 	if (xa_is_value(entry))
6683 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6684 				xa_to_value(entry), entry);
6685 	else if (xa_is_zero(entry))
6686 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6687 	else if (mt_is_reserved(entry))
6688 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6689 	else
6690 		pr_cont("%p\n", entry);
6691 }
6692 
6693 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6694 			unsigned long min, unsigned long max, unsigned int depth)
6695 {
6696 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6697 	bool leaf = mte_is_leaf(entry);
6698 	unsigned long first = min;
6699 	int i;
6700 
6701 	pr_cont(" contents: ");
6702 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6703 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6704 	pr_cont("%p\n", node->slot[i]);
6705 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6706 		unsigned long last = max;
6707 
6708 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6709 			last = node->pivot[i];
6710 		else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6711 			break;
6712 		if (last == 0 && i > 0)
6713 			break;
6714 		if (leaf)
6715 			mt_dump_entry(mt_slot(mt, node->slot, i),
6716 					first, last, depth + 1);
6717 		else if (node->slot[i])
6718 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6719 					first, last, depth + 1);
6720 
6721 		if (last == max)
6722 			break;
6723 		if (last > max) {
6724 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6725 					node, last, max, i);
6726 			break;
6727 		}
6728 		first = last + 1;
6729 	}
6730 }
6731 
6732 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6733 			unsigned long min, unsigned long max, unsigned int depth)
6734 {
6735 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6736 	bool leaf = mte_is_leaf(entry);
6737 	unsigned long first = min;
6738 	int i;
6739 
6740 	pr_cont(" contents: ");
6741 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6742 		pr_cont("%lu ", node->gap[i]);
6743 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6744 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6745 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6746 	pr_cont("%p\n", node->slot[i]);
6747 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6748 		unsigned long last = max;
6749 
6750 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6751 			last = node->pivot[i];
6752 		else if (!node->slot[i])
6753 			break;
6754 		if (last == 0 && i > 0)
6755 			break;
6756 		if (leaf)
6757 			mt_dump_entry(mt_slot(mt, node->slot, i),
6758 					first, last, depth + 1);
6759 		else if (node->slot[i])
6760 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6761 					first, last, depth + 1);
6762 
6763 		if (last == max)
6764 			break;
6765 		if (last > max) {
6766 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6767 					node, last, max, i);
6768 			break;
6769 		}
6770 		first = last + 1;
6771 	}
6772 }
6773 
6774 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6775 		unsigned long min, unsigned long max, unsigned int depth)
6776 {
6777 	struct maple_node *node = mte_to_node(entry);
6778 	unsigned int type = mte_node_type(entry);
6779 	unsigned int i;
6780 
6781 	mt_dump_range(min, max, depth);
6782 
6783 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6784 			node ? node->parent : NULL);
6785 	switch (type) {
6786 	case maple_dense:
6787 		pr_cont("\n");
6788 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6789 			if (min + i > max)
6790 				pr_cont("OUT OF RANGE: ");
6791 			mt_dump_entry(mt_slot(mt, node->slot, i),
6792 					min + i, min + i, depth);
6793 		}
6794 		break;
6795 	case maple_leaf_64:
6796 	case maple_range_64:
6797 		mt_dump_range64(mt, entry, min, max, depth);
6798 		break;
6799 	case maple_arange_64:
6800 		mt_dump_arange64(mt, entry, min, max, depth);
6801 		break;
6802 
6803 	default:
6804 		pr_cont(" UNKNOWN TYPE\n");
6805 	}
6806 }
6807 
6808 void mt_dump(const struct maple_tree *mt)
6809 {
6810 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6811 
6812 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6813 		 mt, mt->ma_flags, mt_height(mt), entry);
6814 	if (!xa_is_node(entry))
6815 		mt_dump_entry(entry, 0, 0, 0);
6816 	else if (entry)
6817 		mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6818 }
6819 
6820 /*
6821  * Calculate the maximum gap in a node and check if that's what is reported in
6822  * the parent (unless root).
6823  */
6824 static void mas_validate_gaps(struct ma_state *mas)
6825 {
6826 	struct maple_enode *mte = mas->node;
6827 	struct maple_node *p_mn;
6828 	unsigned long gap = 0, max_gap = 0;
6829 	unsigned long p_end, p_start = mas->min;
6830 	unsigned char p_slot;
6831 	unsigned long *gaps = NULL;
6832 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6833 	int i;
6834 
6835 	if (ma_is_dense(mte_node_type(mte))) {
6836 		for (i = 0; i < mt_slot_count(mte); i++) {
6837 			if (mas_get_slot(mas, i)) {
6838 				if (gap > max_gap)
6839 					max_gap = gap;
6840 				gap = 0;
6841 				continue;
6842 			}
6843 			gap++;
6844 		}
6845 		goto counted;
6846 	}
6847 
6848 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6849 	for (i = 0; i < mt_slot_count(mte); i++) {
6850 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6851 
6852 		if (!gaps) {
6853 			if (mas_get_slot(mas, i)) {
6854 				gap = 0;
6855 				goto not_empty;
6856 			}
6857 
6858 			gap += p_end - p_start + 1;
6859 		} else {
6860 			void *entry = mas_get_slot(mas, i);
6861 
6862 			gap = gaps[i];
6863 			if (!entry) {
6864 				if (gap != p_end - p_start + 1) {
6865 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6866 						mas_mn(mas), i,
6867 						mas_get_slot(mas, i), gap,
6868 						p_end, p_start);
6869 					mt_dump(mas->tree);
6870 
6871 					MT_BUG_ON(mas->tree,
6872 						gap != p_end - p_start + 1);
6873 				}
6874 			} else {
6875 				if (gap > p_end - p_start + 1) {
6876 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6877 					mas_mn(mas), i, gap, p_end, p_start,
6878 					p_end - p_start + 1);
6879 					MT_BUG_ON(mas->tree,
6880 						gap > p_end - p_start + 1);
6881 				}
6882 			}
6883 		}
6884 
6885 		if (gap > max_gap)
6886 			max_gap = gap;
6887 not_empty:
6888 		p_start = p_end + 1;
6889 		if (p_end >= mas->max)
6890 			break;
6891 	}
6892 
6893 counted:
6894 	if (mte_is_root(mte))
6895 		return;
6896 
6897 	p_slot = mte_parent_slot(mas->node);
6898 	p_mn = mte_parent(mte);
6899 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6900 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6901 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6902 		mt_dump(mas->tree);
6903 	}
6904 
6905 	MT_BUG_ON(mas->tree,
6906 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6907 }
6908 
6909 static void mas_validate_parent_slot(struct ma_state *mas)
6910 {
6911 	struct maple_node *parent;
6912 	struct maple_enode *node;
6913 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
6914 	unsigned char p_slot = mte_parent_slot(mas->node);
6915 	void __rcu **slots;
6916 	int i;
6917 
6918 	if (mte_is_root(mas->node))
6919 		return;
6920 
6921 	parent = mte_parent(mas->node);
6922 	slots = ma_slots(parent, p_type);
6923 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6924 
6925 	/* Check prev/next parent slot for duplicate node entry */
6926 
6927 	for (i = 0; i < mt_slots[p_type]; i++) {
6928 		node = mas_slot(mas, slots, i);
6929 		if (i == p_slot) {
6930 			if (node != mas->node)
6931 				pr_err("parent %p[%u] does not have %p\n",
6932 					parent, i, mas_mn(mas));
6933 			MT_BUG_ON(mas->tree, node != mas->node);
6934 		} else if (node == mas->node) {
6935 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6936 			       mas_mn(mas), parent, i, p_slot);
6937 			MT_BUG_ON(mas->tree, node == mas->node);
6938 		}
6939 	}
6940 }
6941 
6942 static void mas_validate_child_slot(struct ma_state *mas)
6943 {
6944 	enum maple_type type = mte_node_type(mas->node);
6945 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6946 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6947 	struct maple_enode *child;
6948 	unsigned char i;
6949 
6950 	if (mte_is_leaf(mas->node))
6951 		return;
6952 
6953 	for (i = 0; i < mt_slots[type]; i++) {
6954 		child = mas_slot(mas, slots, i);
6955 		if (!pivots[i] || pivots[i] == mas->max)
6956 			break;
6957 
6958 		if (!child)
6959 			break;
6960 
6961 		if (mte_parent_slot(child) != i) {
6962 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6963 			       mas_mn(mas), i, mte_to_node(child),
6964 			       mte_parent_slot(child));
6965 			MT_BUG_ON(mas->tree, 1);
6966 		}
6967 
6968 		if (mte_parent(child) != mte_to_node(mas->node)) {
6969 			pr_err("child %p has parent %p not %p\n",
6970 			       mte_to_node(child), mte_parent(child),
6971 			       mte_to_node(mas->node));
6972 			MT_BUG_ON(mas->tree, 1);
6973 		}
6974 	}
6975 }
6976 
6977 /*
6978  * Validate all pivots are within mas->min and mas->max.
6979  */
6980 static void mas_validate_limits(struct ma_state *mas)
6981 {
6982 	int i;
6983 	unsigned long prev_piv = 0;
6984 	enum maple_type type = mte_node_type(mas->node);
6985 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6986 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
6987 
6988 	/* all limits are fine here. */
6989 	if (mte_is_root(mas->node))
6990 		return;
6991 
6992 	for (i = 0; i < mt_slots[type]; i++) {
6993 		unsigned long piv;
6994 
6995 		piv = mas_safe_pivot(mas, pivots, i, type);
6996 
6997 		if (!piv && (i != 0))
6998 			break;
6999 
7000 		if (!mte_is_leaf(mas->node)) {
7001 			void *entry = mas_slot(mas, slots, i);
7002 
7003 			if (!entry)
7004 				pr_err("%p[%u] cannot be null\n",
7005 				       mas_mn(mas), i);
7006 
7007 			MT_BUG_ON(mas->tree, !entry);
7008 		}
7009 
7010 		if (prev_piv > piv) {
7011 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7012 				mas_mn(mas), i, piv, prev_piv);
7013 			MT_BUG_ON(mas->tree, piv < prev_piv);
7014 		}
7015 
7016 		if (piv < mas->min) {
7017 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7018 				piv, mas->min);
7019 			MT_BUG_ON(mas->tree, piv < mas->min);
7020 		}
7021 		if (piv > mas->max) {
7022 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7023 				piv, mas->max);
7024 			MT_BUG_ON(mas->tree, piv > mas->max);
7025 		}
7026 		prev_piv = piv;
7027 		if (piv == mas->max)
7028 			break;
7029 	}
7030 	for (i += 1; i < mt_slots[type]; i++) {
7031 		void *entry = mas_slot(mas, slots, i);
7032 
7033 		if (entry && (i != mt_slots[type] - 1)) {
7034 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7035 			       i, entry);
7036 			MT_BUG_ON(mas->tree, entry != NULL);
7037 		}
7038 
7039 		if (i < mt_pivots[type]) {
7040 			unsigned long piv = pivots[i];
7041 
7042 			if (!piv)
7043 				continue;
7044 
7045 			pr_err("%p[%u] should not have piv %lu\n",
7046 			       mas_mn(mas), i, piv);
7047 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7048 		}
7049 	}
7050 }
7051 
7052 static void mt_validate_nulls(struct maple_tree *mt)
7053 {
7054 	void *entry, *last = (void *)1;
7055 	unsigned char offset = 0;
7056 	void __rcu **slots;
7057 	MA_STATE(mas, mt, 0, 0);
7058 
7059 	mas_start(&mas);
7060 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7061 		return;
7062 
7063 	while (!mte_is_leaf(mas.node))
7064 		mas_descend(&mas);
7065 
7066 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7067 	do {
7068 		entry = mas_slot(&mas, slots, offset);
7069 		if (!last && !entry) {
7070 			pr_err("Sequential nulls end at %p[%u]\n",
7071 				mas_mn(&mas), offset);
7072 		}
7073 		MT_BUG_ON(mt, !last && !entry);
7074 		last = entry;
7075 		if (offset == mas_data_end(&mas)) {
7076 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7077 			if (mas_is_none(&mas))
7078 				return;
7079 			offset = 0;
7080 			slots = ma_slots(mte_to_node(mas.node),
7081 					 mte_node_type(mas.node));
7082 		} else {
7083 			offset++;
7084 		}
7085 
7086 	} while (!mas_is_none(&mas));
7087 }
7088 
7089 /*
7090  * validate a maple tree by checking:
7091  * 1. The limits (pivots are within mas->min to mas->max)
7092  * 2. The gap is correctly set in the parents
7093  */
7094 void mt_validate(struct maple_tree *mt)
7095 {
7096 	unsigned char end;
7097 
7098 	MA_STATE(mas, mt, 0, 0);
7099 	rcu_read_lock();
7100 	mas_start(&mas);
7101 	if (!mas_searchable(&mas))
7102 		goto done;
7103 
7104 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7105 	while (!mas_is_none(&mas)) {
7106 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7107 		if (!mte_is_root(mas.node)) {
7108 			end = mas_data_end(&mas);
7109 			if ((end < mt_min_slot_count(mas.node)) &&
7110 			    (mas.max != ULONG_MAX)) {
7111 				pr_err("Invalid size %u of %p\n", end,
7112 				mas_mn(&mas));
7113 				MT_BUG_ON(mas.tree, 1);
7114 			}
7115 
7116 		}
7117 		mas_validate_parent_slot(&mas);
7118 		mas_validate_child_slot(&mas);
7119 		mas_validate_limits(&mas);
7120 		if (mt_is_alloc(mt))
7121 			mas_validate_gaps(&mas);
7122 		mas_dfs_postorder(&mas, ULONG_MAX);
7123 	}
7124 	mt_validate_nulls(mt);
7125 done:
7126 	rcu_read_unlock();
7127 
7128 }
7129 
7130 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7131