1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(const struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(const struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_type() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @enode: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 436 { 437 unsigned long p_type; 438 439 p_type = (unsigned long)mte_to_node(enode)->parent; 440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 441 return 0; 442 443 p_type &= MAPLE_NODE_MASK; 444 p_type &= ~mte_parent_slot_mask(p_type); 445 switch (p_type) { 446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 447 if (mt_is_alloc(mas->tree)) 448 return maple_arange_64; 449 return maple_range_64; 450 } 451 452 return 0; 453 } 454 455 /* 456 * mas_set_parent() - Set the parent node and encode the slot 457 * @enode: The encoded maple node. 458 * @parent: The encoded maple node that is the parent of @enode. 459 * @slot: The slot that @enode resides in @parent. 460 * 461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 462 * parent type. 463 */ 464 static inline 465 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 466 const struct maple_enode *parent, unsigned char slot) 467 { 468 unsigned long val = (unsigned long)parent; 469 unsigned long shift; 470 unsigned long type; 471 enum maple_type p_type = mte_node_type(parent); 472 473 MAS_BUG_ON(mas, p_type == maple_dense); 474 MAS_BUG_ON(mas, p_type == maple_leaf_64); 475 476 switch (p_type) { 477 case maple_range_64: 478 case maple_arange_64: 479 shift = MAPLE_PARENT_SLOT_SHIFT; 480 type = MAPLE_PARENT_RANGE64; 481 break; 482 default: 483 case maple_dense: 484 case maple_leaf_64: 485 shift = type = 0; 486 break; 487 } 488 489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 490 val |= (slot << shift) | type; 491 mte_to_node(enode)->parent = ma_parent_ptr(val); 492 } 493 494 /* 495 * mte_parent_slot() - get the parent slot of @enode. 496 * @enode: The encoded maple node. 497 * 498 * Return: The slot in the parent node where @enode resides. 499 */ 500 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 501 { 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 503 504 if (val & MA_ROOT_PARENT) 505 return 0; 506 507 /* 508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 510 */ 511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 512 } 513 514 /* 515 * mte_parent() - Get the parent of @node. 516 * @node: The encoded maple node. 517 * 518 * Return: The parent maple node. 519 */ 520 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 521 { 522 return (void *)((unsigned long) 523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 524 } 525 526 /* 527 * ma_dead_node() - check if the @enode is dead. 528 * @enode: The encoded maple node 529 * 530 * Return: true if dead, false otherwise. 531 */ 532 static inline bool ma_dead_node(const struct maple_node *node) 533 { 534 struct maple_node *parent; 535 536 /* Do not reorder reads from the node prior to the parent check */ 537 smp_rmb(); 538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 539 return (parent == node); 540 } 541 542 /* 543 * mte_dead_node() - check if the @enode is dead. 544 * @enode: The encoded maple node 545 * 546 * Return: true if dead, false otherwise. 547 */ 548 static inline bool mte_dead_node(const struct maple_enode *enode) 549 { 550 struct maple_node *parent, *node; 551 552 node = mte_to_node(enode); 553 /* Do not reorder reads from the node prior to the parent check */ 554 smp_rmb(); 555 parent = mte_parent(enode); 556 return (parent == node); 557 } 558 559 /* 560 * mas_allocated() - Get the number of nodes allocated in a maple state. 561 * @mas: The maple state 562 * 563 * The ma_state alloc member is overloaded to hold a pointer to the first 564 * allocated node or to the number of requested nodes to allocate. If bit 0 is 565 * set, then the alloc contains the number of requested nodes. If there is an 566 * allocated node, then the total allocated nodes is in that node. 567 * 568 * Return: The total number of nodes allocated 569 */ 570 static inline unsigned long mas_allocated(const struct ma_state *mas) 571 { 572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 573 return 0; 574 575 return mas->alloc->total; 576 } 577 578 /* 579 * mas_set_alloc_req() - Set the requested number of allocations. 580 * @mas: the maple state 581 * @count: the number of allocations. 582 * 583 * The requested number of allocations is either in the first allocated node, 584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 585 * no allocated node. Set the request either in the node or do the necessary 586 * encoding to store in @mas->alloc directly. 587 */ 588 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 589 { 590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 591 if (!count) 592 mas->alloc = NULL; 593 else 594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 595 return; 596 } 597 598 mas->alloc->request_count = count; 599 } 600 601 /* 602 * mas_alloc_req() - get the requested number of allocations. 603 * @mas: The maple state 604 * 605 * The alloc count is either stored directly in @mas, or in 606 * @mas->alloc->request_count if there is at least one node allocated. Decode 607 * the request count if it's stored directly in @mas->alloc. 608 * 609 * Return: The allocation request count. 610 */ 611 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 612 { 613 if ((unsigned long)mas->alloc & 0x1) 614 return (unsigned long)(mas->alloc) >> 1; 615 else if (mas->alloc) 616 return mas->alloc->request_count; 617 return 0; 618 } 619 620 /* 621 * ma_pivots() - Get a pointer to the maple node pivots. 622 * @node - the maple node 623 * @type - the node type 624 * 625 * In the event of a dead node, this array may be %NULL 626 * 627 * Return: A pointer to the maple node pivots 628 */ 629 static inline unsigned long *ma_pivots(struct maple_node *node, 630 enum maple_type type) 631 { 632 switch (type) { 633 case maple_arange_64: 634 return node->ma64.pivot; 635 case maple_range_64: 636 case maple_leaf_64: 637 return node->mr64.pivot; 638 case maple_dense: 639 return NULL; 640 } 641 return NULL; 642 } 643 644 /* 645 * ma_gaps() - Get a pointer to the maple node gaps. 646 * @node - the maple node 647 * @type - the node type 648 * 649 * Return: A pointer to the maple node gaps 650 */ 651 static inline unsigned long *ma_gaps(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.gap; 657 case maple_range_64: 658 case maple_leaf_64: 659 case maple_dense: 660 return NULL; 661 } 662 return NULL; 663 } 664 665 /* 666 * mas_pivot() - Get the pivot at @piv of the maple encoded node. 667 * @mas: The maple state. 668 * @piv: The pivot. 669 * 670 * Return: the pivot at @piv of @mn. 671 */ 672 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv) 673 { 674 struct maple_node *node = mas_mn(mas); 675 enum maple_type type = mte_node_type(mas->node); 676 677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) { 678 mas_set_err(mas, -EIO); 679 return 0; 680 } 681 682 switch (type) { 683 case maple_arange_64: 684 return node->ma64.pivot[piv]; 685 case maple_range_64: 686 case maple_leaf_64: 687 return node->mr64.pivot[piv]; 688 case maple_dense: 689 return 0; 690 } 691 return 0; 692 } 693 694 /* 695 * mas_safe_pivot() - get the pivot at @piv or mas->max. 696 * @mas: The maple state 697 * @pivots: The pointer to the maple node pivots 698 * @piv: The pivot to fetch 699 * @type: The maple node type 700 * 701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 702 * otherwise. 703 */ 704 static inline unsigned long 705 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 706 unsigned char piv, enum maple_type type) 707 { 708 if (piv >= mt_pivots[type]) 709 return mas->max; 710 711 return pivots[piv]; 712 } 713 714 /* 715 * mas_safe_min() - Return the minimum for a given offset. 716 * @mas: The maple state 717 * @pivots: The pointer to the maple node pivots 718 * @offset: The offset into the pivot array 719 * 720 * Return: The minimum range value that is contained in @offset. 721 */ 722 static inline unsigned long 723 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 724 { 725 if (likely(offset)) 726 return pivots[offset - 1] + 1; 727 728 return mas->min; 729 } 730 731 /* 732 * mas_logical_pivot() - Get the logical pivot of a given offset. 733 * @mas: The maple state 734 * @pivots: The pointer to the maple node pivots 735 * @offset: The offset into the pivot array 736 * @type: The maple node type 737 * 738 * When there is no value at a pivot (beyond the end of the data), then the 739 * pivot is actually @mas->max. 740 * 741 * Return: the logical pivot of a given @offset. 742 */ 743 static inline unsigned long 744 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 745 unsigned char offset, enum maple_type type) 746 { 747 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 748 749 if (likely(lpiv)) 750 return lpiv; 751 752 if (likely(offset)) 753 return mas->max; 754 755 return lpiv; 756 } 757 758 /* 759 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 760 * @mn: The encoded maple node 761 * @piv: The pivot offset 762 * @val: The value of the pivot 763 */ 764 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 765 unsigned long val) 766 { 767 struct maple_node *node = mte_to_node(mn); 768 enum maple_type type = mte_node_type(mn); 769 770 BUG_ON(piv >= mt_pivots[type]); 771 switch (type) { 772 default: 773 case maple_range_64: 774 case maple_leaf_64: 775 node->mr64.pivot[piv] = val; 776 break; 777 case maple_arange_64: 778 node->ma64.pivot[piv] = val; 779 break; 780 case maple_dense: 781 break; 782 } 783 784 } 785 786 /* 787 * ma_slots() - Get a pointer to the maple node slots. 788 * @mn: The maple node 789 * @mt: The maple node type 790 * 791 * Return: A pointer to the maple node slots 792 */ 793 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 794 { 795 switch (mt) { 796 default: 797 case maple_arange_64: 798 return mn->ma64.slot; 799 case maple_range_64: 800 case maple_leaf_64: 801 return mn->mr64.slot; 802 case maple_dense: 803 return mn->slot; 804 } 805 } 806 807 static inline bool mt_locked(const struct maple_tree *mt) 808 { 809 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 810 lockdep_is_held(&mt->ma_lock); 811 } 812 813 static inline void *mt_slot(const struct maple_tree *mt, 814 void __rcu **slots, unsigned char offset) 815 { 816 return rcu_dereference_check(slots[offset], mt_locked(mt)); 817 } 818 819 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 820 unsigned char offset) 821 { 822 return rcu_dereference_protected(slots[offset], mt_locked(mt)); 823 } 824 /* 825 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 826 * @mas: The maple state 827 * @slots: The pointer to the slots 828 * @offset: The offset into the slots array to fetch 829 * 830 * Return: The entry stored in @slots at the @offset. 831 */ 832 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 833 unsigned char offset) 834 { 835 return mt_slot_locked(mas->tree, slots, offset); 836 } 837 838 /* 839 * mas_slot() - Get the slot value when not holding the maple tree lock. 840 * @mas: The maple state 841 * @slots: The pointer to the slots 842 * @offset: The offset into the slots array to fetch 843 * 844 * Return: The entry stored in @slots at the @offset 845 */ 846 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 847 unsigned char offset) 848 { 849 return mt_slot(mas->tree, slots, offset); 850 } 851 852 /* 853 * mas_root() - Get the maple tree root. 854 * @mas: The maple state. 855 * 856 * Return: The pointer to the root of the tree 857 */ 858 static inline void *mas_root(struct ma_state *mas) 859 { 860 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 861 } 862 863 static inline void *mt_root_locked(struct maple_tree *mt) 864 { 865 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 866 } 867 868 /* 869 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 870 * @mas: The maple state. 871 * 872 * Return: The pointer to the root of the tree 873 */ 874 static inline void *mas_root_locked(struct ma_state *mas) 875 { 876 return mt_root_locked(mas->tree); 877 } 878 879 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 880 enum maple_type mt) 881 { 882 switch (mt) { 883 case maple_arange_64: 884 return &mn->ma64.meta; 885 default: 886 return &mn->mr64.meta; 887 } 888 } 889 890 /* 891 * ma_set_meta() - Set the metadata information of a node. 892 * @mn: The maple node 893 * @mt: The maple node type 894 * @offset: The offset of the highest sub-gap in this node. 895 * @end: The end of the data in this node. 896 */ 897 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 898 unsigned char offset, unsigned char end) 899 { 900 struct maple_metadata *meta = ma_meta(mn, mt); 901 902 meta->gap = offset; 903 meta->end = end; 904 } 905 906 /* 907 * mt_clear_meta() - clear the metadata information of a node, if it exists 908 * @mt: The maple tree 909 * @mn: The maple node 910 * @type: The maple node type 911 * @offset: The offset of the highest sub-gap in this node. 912 * @end: The end of the data in this node. 913 */ 914 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 915 enum maple_type type) 916 { 917 struct maple_metadata *meta; 918 unsigned long *pivots; 919 void __rcu **slots; 920 void *next; 921 922 switch (type) { 923 case maple_range_64: 924 pivots = mn->mr64.pivot; 925 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 926 slots = mn->mr64.slot; 927 next = mt_slot_locked(mt, slots, 928 MAPLE_RANGE64_SLOTS - 1); 929 if (unlikely((mte_to_node(next) && 930 mte_node_type(next)))) 931 return; /* no metadata, could be node */ 932 } 933 fallthrough; 934 case maple_arange_64: 935 meta = ma_meta(mn, type); 936 break; 937 default: 938 return; 939 } 940 941 meta->gap = 0; 942 meta->end = 0; 943 } 944 945 /* 946 * ma_meta_end() - Get the data end of a node from the metadata 947 * @mn: The maple node 948 * @mt: The maple node type 949 */ 950 static inline unsigned char ma_meta_end(struct maple_node *mn, 951 enum maple_type mt) 952 { 953 struct maple_metadata *meta = ma_meta(mn, mt); 954 955 return meta->end; 956 } 957 958 /* 959 * ma_meta_gap() - Get the largest gap location of a node from the metadata 960 * @mn: The maple node 961 * @mt: The maple node type 962 */ 963 static inline unsigned char ma_meta_gap(struct maple_node *mn, 964 enum maple_type mt) 965 { 966 return mn->ma64.meta.gap; 967 } 968 969 /* 970 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 971 * @mn: The maple node 972 * @mn: The maple node type 973 * @offset: The location of the largest gap. 974 */ 975 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 976 unsigned char offset) 977 { 978 979 struct maple_metadata *meta = ma_meta(mn, mt); 980 981 meta->gap = offset; 982 } 983 984 /* 985 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 986 * @mat - the ma_topiary, a linked list of dead nodes. 987 * @dead_enode - the node to be marked as dead and added to the tail of the list 988 * 989 * Add the @dead_enode to the linked list in @mat. 990 */ 991 static inline void mat_add(struct ma_topiary *mat, 992 struct maple_enode *dead_enode) 993 { 994 mte_set_node_dead(dead_enode); 995 mte_to_mat(dead_enode)->next = NULL; 996 if (!mat->tail) { 997 mat->tail = mat->head = dead_enode; 998 return; 999 } 1000 1001 mte_to_mat(mat->tail)->next = dead_enode; 1002 mat->tail = dead_enode; 1003 } 1004 1005 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 1006 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 1007 1008 /* 1009 * mas_mat_free() - Free all nodes in a dead list. 1010 * @mas - the maple state 1011 * @mat - the ma_topiary linked list of dead nodes to free. 1012 * 1013 * Free walk a dead list. 1014 */ 1015 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 1016 { 1017 struct maple_enode *next; 1018 1019 while (mat->head) { 1020 next = mte_to_mat(mat->head)->next; 1021 mas_free(mas, mat->head); 1022 mat->head = next; 1023 } 1024 } 1025 1026 /* 1027 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1028 * @mas - the maple state 1029 * @mat - the ma_topiary linked list of dead nodes to free. 1030 * 1031 * Destroy walk a dead list. 1032 */ 1033 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1034 { 1035 struct maple_enode *next; 1036 1037 while (mat->head) { 1038 next = mte_to_mat(mat->head)->next; 1039 mte_destroy_walk(mat->head, mat->mtree); 1040 mat->head = next; 1041 } 1042 } 1043 /* 1044 * mas_descend() - Descend into the slot stored in the ma_state. 1045 * @mas - the maple state. 1046 * 1047 * Note: Not RCU safe, only use in write side or debug code. 1048 */ 1049 static inline void mas_descend(struct ma_state *mas) 1050 { 1051 enum maple_type type; 1052 unsigned long *pivots; 1053 struct maple_node *node; 1054 void __rcu **slots; 1055 1056 node = mas_mn(mas); 1057 type = mte_node_type(mas->node); 1058 pivots = ma_pivots(node, type); 1059 slots = ma_slots(node, type); 1060 1061 if (mas->offset) 1062 mas->min = pivots[mas->offset - 1] + 1; 1063 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1064 mas->node = mas_slot(mas, slots, mas->offset); 1065 } 1066 1067 /* 1068 * mte_set_gap() - Set a maple node gap. 1069 * @mn: The encoded maple node 1070 * @gap: The offset of the gap to set 1071 * @val: The gap value 1072 */ 1073 static inline void mte_set_gap(const struct maple_enode *mn, 1074 unsigned char gap, unsigned long val) 1075 { 1076 switch (mte_node_type(mn)) { 1077 default: 1078 break; 1079 case maple_arange_64: 1080 mte_to_node(mn)->ma64.gap[gap] = val; 1081 break; 1082 } 1083 } 1084 1085 /* 1086 * mas_ascend() - Walk up a level of the tree. 1087 * @mas: The maple state 1088 * 1089 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1090 * may cause several levels of walking up to find the correct min and max. 1091 * May find a dead node which will cause a premature return. 1092 * Return: 1 on dead node, 0 otherwise 1093 */ 1094 static int mas_ascend(struct ma_state *mas) 1095 { 1096 struct maple_enode *p_enode; /* parent enode. */ 1097 struct maple_enode *a_enode; /* ancestor enode. */ 1098 struct maple_node *a_node; /* ancestor node. */ 1099 struct maple_node *p_node; /* parent node. */ 1100 unsigned char a_slot; 1101 enum maple_type a_type; 1102 unsigned long min, max; 1103 unsigned long *pivots; 1104 bool set_max = false, set_min = false; 1105 1106 a_node = mas_mn(mas); 1107 if (ma_is_root(a_node)) { 1108 mas->offset = 0; 1109 return 0; 1110 } 1111 1112 p_node = mte_parent(mas->node); 1113 if (unlikely(a_node == p_node)) 1114 return 1; 1115 1116 a_type = mas_parent_type(mas, mas->node); 1117 mas->offset = mte_parent_slot(mas->node); 1118 a_enode = mt_mk_node(p_node, a_type); 1119 1120 /* Check to make sure all parent information is still accurate */ 1121 if (p_node != mte_parent(mas->node)) 1122 return 1; 1123 1124 mas->node = a_enode; 1125 1126 if (mte_is_root(a_enode)) { 1127 mas->max = ULONG_MAX; 1128 mas->min = 0; 1129 return 0; 1130 } 1131 1132 if (!mas->min) 1133 set_min = true; 1134 1135 if (mas->max == ULONG_MAX) 1136 set_max = true; 1137 1138 min = 0; 1139 max = ULONG_MAX; 1140 do { 1141 p_enode = a_enode; 1142 a_type = mas_parent_type(mas, p_enode); 1143 a_node = mte_parent(p_enode); 1144 a_slot = mte_parent_slot(p_enode); 1145 a_enode = mt_mk_node(a_node, a_type); 1146 pivots = ma_pivots(a_node, a_type); 1147 1148 if (unlikely(ma_dead_node(a_node))) 1149 return 1; 1150 1151 if (!set_min && a_slot) { 1152 set_min = true; 1153 min = pivots[a_slot - 1] + 1; 1154 } 1155 1156 if (!set_max && a_slot < mt_pivots[a_type]) { 1157 set_max = true; 1158 max = pivots[a_slot]; 1159 } 1160 1161 if (unlikely(ma_dead_node(a_node))) 1162 return 1; 1163 1164 if (unlikely(ma_is_root(a_node))) 1165 break; 1166 1167 } while (!set_min || !set_max); 1168 1169 mas->max = max; 1170 mas->min = min; 1171 return 0; 1172 } 1173 1174 /* 1175 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1176 * @mas: The maple state 1177 * 1178 * Return: A pointer to a maple node. 1179 */ 1180 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1181 { 1182 struct maple_alloc *ret, *node = mas->alloc; 1183 unsigned long total = mas_allocated(mas); 1184 unsigned int req = mas_alloc_req(mas); 1185 1186 /* nothing or a request pending. */ 1187 if (WARN_ON(!total)) 1188 return NULL; 1189 1190 if (total == 1) { 1191 /* single allocation in this ma_state */ 1192 mas->alloc = NULL; 1193 ret = node; 1194 goto single_node; 1195 } 1196 1197 if (node->node_count == 1) { 1198 /* Single allocation in this node. */ 1199 mas->alloc = node->slot[0]; 1200 mas->alloc->total = node->total - 1; 1201 ret = node; 1202 goto new_head; 1203 } 1204 node->total--; 1205 ret = node->slot[--node->node_count]; 1206 node->slot[node->node_count] = NULL; 1207 1208 single_node: 1209 new_head: 1210 if (req) { 1211 req++; 1212 mas_set_alloc_req(mas, req); 1213 } 1214 1215 memset(ret, 0, sizeof(*ret)); 1216 return (struct maple_node *)ret; 1217 } 1218 1219 /* 1220 * mas_push_node() - Push a node back on the maple state allocation. 1221 * @mas: The maple state 1222 * @used: The used maple node 1223 * 1224 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1225 * requested node count as necessary. 1226 */ 1227 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1228 { 1229 struct maple_alloc *reuse = (struct maple_alloc *)used; 1230 struct maple_alloc *head = mas->alloc; 1231 unsigned long count; 1232 unsigned int requested = mas_alloc_req(mas); 1233 1234 count = mas_allocated(mas); 1235 1236 reuse->request_count = 0; 1237 reuse->node_count = 0; 1238 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1239 head->slot[head->node_count++] = reuse; 1240 head->total++; 1241 goto done; 1242 } 1243 1244 reuse->total = 1; 1245 if ((head) && !((unsigned long)head & 0x1)) { 1246 reuse->slot[0] = head; 1247 reuse->node_count = 1; 1248 reuse->total += head->total; 1249 } 1250 1251 mas->alloc = reuse; 1252 done: 1253 if (requested > 1) 1254 mas_set_alloc_req(mas, requested - 1); 1255 } 1256 1257 /* 1258 * mas_alloc_nodes() - Allocate nodes into a maple state 1259 * @mas: The maple state 1260 * @gfp: The GFP Flags 1261 */ 1262 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1263 { 1264 struct maple_alloc *node; 1265 unsigned long allocated = mas_allocated(mas); 1266 unsigned int requested = mas_alloc_req(mas); 1267 unsigned int count; 1268 void **slots = NULL; 1269 unsigned int max_req = 0; 1270 1271 if (!requested) 1272 return; 1273 1274 mas_set_alloc_req(mas, 0); 1275 if (mas->mas_flags & MA_STATE_PREALLOC) { 1276 if (allocated) 1277 return; 1278 WARN_ON(!allocated); 1279 } 1280 1281 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1282 node = (struct maple_alloc *)mt_alloc_one(gfp); 1283 if (!node) 1284 goto nomem_one; 1285 1286 if (allocated) { 1287 node->slot[0] = mas->alloc; 1288 node->node_count = 1; 1289 } else { 1290 node->node_count = 0; 1291 } 1292 1293 mas->alloc = node; 1294 node->total = ++allocated; 1295 requested--; 1296 } 1297 1298 node = mas->alloc; 1299 node->request_count = 0; 1300 while (requested) { 1301 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1302 slots = (void **)&node->slot[node->node_count]; 1303 max_req = min(requested, max_req); 1304 count = mt_alloc_bulk(gfp, max_req, slots); 1305 if (!count) 1306 goto nomem_bulk; 1307 1308 if (node->node_count == 0) { 1309 node->slot[0]->node_count = 0; 1310 node->slot[0]->request_count = 0; 1311 } 1312 1313 node->node_count += count; 1314 allocated += count; 1315 node = node->slot[0]; 1316 requested -= count; 1317 } 1318 mas->alloc->total = allocated; 1319 return; 1320 1321 nomem_bulk: 1322 /* Clean up potential freed allocations on bulk failure */ 1323 memset(slots, 0, max_req * sizeof(unsigned long)); 1324 nomem_one: 1325 mas_set_alloc_req(mas, requested); 1326 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1327 mas->alloc->total = allocated; 1328 mas_set_err(mas, -ENOMEM); 1329 } 1330 1331 /* 1332 * mas_free() - Free an encoded maple node 1333 * @mas: The maple state 1334 * @used: The encoded maple node to free. 1335 * 1336 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1337 * otherwise. 1338 */ 1339 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1340 { 1341 struct maple_node *tmp = mte_to_node(used); 1342 1343 if (mt_in_rcu(mas->tree)) 1344 ma_free_rcu(tmp); 1345 else 1346 mas_push_node(mas, tmp); 1347 } 1348 1349 /* 1350 * mas_node_count() - Check if enough nodes are allocated and request more if 1351 * there is not enough nodes. 1352 * @mas: The maple state 1353 * @count: The number of nodes needed 1354 * @gfp: the gfp flags 1355 */ 1356 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1357 { 1358 unsigned long allocated = mas_allocated(mas); 1359 1360 if (allocated < count) { 1361 mas_set_alloc_req(mas, count - allocated); 1362 mas_alloc_nodes(mas, gfp); 1363 } 1364 } 1365 1366 /* 1367 * mas_node_count() - Check if enough nodes are allocated and request more if 1368 * there is not enough nodes. 1369 * @mas: The maple state 1370 * @count: The number of nodes needed 1371 * 1372 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1373 */ 1374 static void mas_node_count(struct ma_state *mas, int count) 1375 { 1376 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1377 } 1378 1379 /* 1380 * mas_start() - Sets up maple state for operations. 1381 * @mas: The maple state. 1382 * 1383 * If mas->node == MAS_START, then set the min, max and depth to 1384 * defaults. 1385 * 1386 * Return: 1387 * - If mas->node is an error or not MAS_START, return NULL. 1388 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1389 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1390 * - If it's a tree: NULL & mas->node == safe root node. 1391 */ 1392 static inline struct maple_enode *mas_start(struct ma_state *mas) 1393 { 1394 if (likely(mas_is_start(mas))) { 1395 struct maple_enode *root; 1396 1397 mas->min = 0; 1398 mas->max = ULONG_MAX; 1399 1400 retry: 1401 mas->depth = 0; 1402 root = mas_root(mas); 1403 /* Tree with nodes */ 1404 if (likely(xa_is_node(root))) { 1405 mas->depth = 1; 1406 mas->node = mte_safe_root(root); 1407 mas->offset = 0; 1408 if (mte_dead_node(mas->node)) 1409 goto retry; 1410 1411 return NULL; 1412 } 1413 1414 /* empty tree */ 1415 if (unlikely(!root)) { 1416 mas->node = MAS_NONE; 1417 mas->offset = MAPLE_NODE_SLOTS; 1418 return NULL; 1419 } 1420 1421 /* Single entry tree */ 1422 mas->node = MAS_ROOT; 1423 mas->offset = MAPLE_NODE_SLOTS; 1424 1425 /* Single entry tree. */ 1426 if (mas->index > 0) 1427 return NULL; 1428 1429 return root; 1430 } 1431 1432 return NULL; 1433 } 1434 1435 /* 1436 * ma_data_end() - Find the end of the data in a node. 1437 * @node: The maple node 1438 * @type: The maple node type 1439 * @pivots: The array of pivots in the node 1440 * @max: The maximum value in the node 1441 * 1442 * Uses metadata to find the end of the data when possible. 1443 * Return: The zero indexed last slot with data (may be null). 1444 */ 1445 static inline unsigned char ma_data_end(struct maple_node *node, 1446 enum maple_type type, 1447 unsigned long *pivots, 1448 unsigned long max) 1449 { 1450 unsigned char offset; 1451 1452 if (!pivots) 1453 return 0; 1454 1455 if (type == maple_arange_64) 1456 return ma_meta_end(node, type); 1457 1458 offset = mt_pivots[type] - 1; 1459 if (likely(!pivots[offset])) 1460 return ma_meta_end(node, type); 1461 1462 if (likely(pivots[offset] == max)) 1463 return offset; 1464 1465 return mt_pivots[type]; 1466 } 1467 1468 /* 1469 * mas_data_end() - Find the end of the data (slot). 1470 * @mas: the maple state 1471 * 1472 * This method is optimized to check the metadata of a node if the node type 1473 * supports data end metadata. 1474 * 1475 * Return: The zero indexed last slot with data (may be null). 1476 */ 1477 static inline unsigned char mas_data_end(struct ma_state *mas) 1478 { 1479 enum maple_type type; 1480 struct maple_node *node; 1481 unsigned char offset; 1482 unsigned long *pivots; 1483 1484 type = mte_node_type(mas->node); 1485 node = mas_mn(mas); 1486 if (type == maple_arange_64) 1487 return ma_meta_end(node, type); 1488 1489 pivots = ma_pivots(node, type); 1490 if (unlikely(ma_dead_node(node))) 1491 return 0; 1492 1493 offset = mt_pivots[type] - 1; 1494 if (likely(!pivots[offset])) 1495 return ma_meta_end(node, type); 1496 1497 if (likely(pivots[offset] == mas->max)) 1498 return offset; 1499 1500 return mt_pivots[type]; 1501 } 1502 1503 /* 1504 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1505 * @mas - the maple state 1506 * 1507 * Return: The maximum gap in the leaf. 1508 */ 1509 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1510 { 1511 enum maple_type mt; 1512 unsigned long pstart, gap, max_gap; 1513 struct maple_node *mn; 1514 unsigned long *pivots; 1515 void __rcu **slots; 1516 unsigned char i; 1517 unsigned char max_piv; 1518 1519 mt = mte_node_type(mas->node); 1520 mn = mas_mn(mas); 1521 slots = ma_slots(mn, mt); 1522 max_gap = 0; 1523 if (unlikely(ma_is_dense(mt))) { 1524 gap = 0; 1525 for (i = 0; i < mt_slots[mt]; i++) { 1526 if (slots[i]) { 1527 if (gap > max_gap) 1528 max_gap = gap; 1529 gap = 0; 1530 } else { 1531 gap++; 1532 } 1533 } 1534 if (gap > max_gap) 1535 max_gap = gap; 1536 return max_gap; 1537 } 1538 1539 /* 1540 * Check the first implied pivot optimizes the loop below and slot 1 may 1541 * be skipped if there is a gap in slot 0. 1542 */ 1543 pivots = ma_pivots(mn, mt); 1544 if (likely(!slots[0])) { 1545 max_gap = pivots[0] - mas->min + 1; 1546 i = 2; 1547 } else { 1548 i = 1; 1549 } 1550 1551 /* reduce max_piv as the special case is checked before the loop */ 1552 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1553 /* 1554 * Check end implied pivot which can only be a gap on the right most 1555 * node. 1556 */ 1557 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1558 gap = ULONG_MAX - pivots[max_piv]; 1559 if (gap > max_gap) 1560 max_gap = gap; 1561 } 1562 1563 for (; i <= max_piv; i++) { 1564 /* data == no gap. */ 1565 if (likely(slots[i])) 1566 continue; 1567 1568 pstart = pivots[i - 1]; 1569 gap = pivots[i] - pstart; 1570 if (gap > max_gap) 1571 max_gap = gap; 1572 1573 /* There cannot be two gaps in a row. */ 1574 i++; 1575 } 1576 return max_gap; 1577 } 1578 1579 /* 1580 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1581 * @node: The maple node 1582 * @gaps: The pointer to the gaps 1583 * @mt: The maple node type 1584 * @*off: Pointer to store the offset location of the gap. 1585 * 1586 * Uses the metadata data end to scan backwards across set gaps. 1587 * 1588 * Return: The maximum gap value 1589 */ 1590 static inline unsigned long 1591 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1592 unsigned char *off) 1593 { 1594 unsigned char offset, i; 1595 unsigned long max_gap = 0; 1596 1597 i = offset = ma_meta_end(node, mt); 1598 do { 1599 if (gaps[i] > max_gap) { 1600 max_gap = gaps[i]; 1601 offset = i; 1602 } 1603 } while (i--); 1604 1605 *off = offset; 1606 return max_gap; 1607 } 1608 1609 /* 1610 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1611 * @mas: The maple state. 1612 * 1613 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1614 * 1615 * Return: The gap value. 1616 */ 1617 static inline unsigned long mas_max_gap(struct ma_state *mas) 1618 { 1619 unsigned long *gaps; 1620 unsigned char offset; 1621 enum maple_type mt; 1622 struct maple_node *node; 1623 1624 mt = mte_node_type(mas->node); 1625 if (ma_is_leaf(mt)) 1626 return mas_leaf_max_gap(mas); 1627 1628 node = mas_mn(mas); 1629 MAS_BUG_ON(mas, mt != maple_arange_64); 1630 offset = ma_meta_gap(node, mt); 1631 if (offset == MAPLE_ARANGE64_META_MAX) 1632 return 0; 1633 1634 gaps = ma_gaps(node, mt); 1635 return gaps[offset]; 1636 } 1637 1638 /* 1639 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1640 * @mas: The maple state 1641 * @offset: The gap offset in the parent to set 1642 * @new: The new gap value. 1643 * 1644 * Set the parent gap then continue to set the gap upwards, using the metadata 1645 * of the parent to see if it is necessary to check the node above. 1646 */ 1647 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1648 unsigned long new) 1649 { 1650 unsigned long meta_gap = 0; 1651 struct maple_node *pnode; 1652 struct maple_enode *penode; 1653 unsigned long *pgaps; 1654 unsigned char meta_offset; 1655 enum maple_type pmt; 1656 1657 pnode = mte_parent(mas->node); 1658 pmt = mas_parent_type(mas, mas->node); 1659 penode = mt_mk_node(pnode, pmt); 1660 pgaps = ma_gaps(pnode, pmt); 1661 1662 ascend: 1663 MAS_BUG_ON(mas, pmt != maple_arange_64); 1664 meta_offset = ma_meta_gap(pnode, pmt); 1665 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1666 meta_gap = 0; 1667 else 1668 meta_gap = pgaps[meta_offset]; 1669 1670 pgaps[offset] = new; 1671 1672 if (meta_gap == new) 1673 return; 1674 1675 if (offset != meta_offset) { 1676 if (meta_gap > new) 1677 return; 1678 1679 ma_set_meta_gap(pnode, pmt, offset); 1680 } else if (new < meta_gap) { 1681 meta_offset = 15; 1682 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1683 ma_set_meta_gap(pnode, pmt, meta_offset); 1684 } 1685 1686 if (ma_is_root(pnode)) 1687 return; 1688 1689 /* Go to the parent node. */ 1690 pnode = mte_parent(penode); 1691 pmt = mas_parent_type(mas, penode); 1692 pgaps = ma_gaps(pnode, pmt); 1693 offset = mte_parent_slot(penode); 1694 penode = mt_mk_node(pnode, pmt); 1695 goto ascend; 1696 } 1697 1698 /* 1699 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1700 * @mas - the maple state. 1701 */ 1702 static inline void mas_update_gap(struct ma_state *mas) 1703 { 1704 unsigned char pslot; 1705 unsigned long p_gap; 1706 unsigned long max_gap; 1707 1708 if (!mt_is_alloc(mas->tree)) 1709 return; 1710 1711 if (mte_is_root(mas->node)) 1712 return; 1713 1714 max_gap = mas_max_gap(mas); 1715 1716 pslot = mte_parent_slot(mas->node); 1717 p_gap = ma_gaps(mte_parent(mas->node), 1718 mas_parent_type(mas, mas->node))[pslot]; 1719 1720 if (p_gap != max_gap) 1721 mas_parent_gap(mas, pslot, max_gap); 1722 } 1723 1724 /* 1725 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1726 * @parent with the slot encoded. 1727 * @mas - the maple state (for the tree) 1728 * @parent - the maple encoded node containing the children. 1729 */ 1730 static inline void mas_adopt_children(struct ma_state *mas, 1731 struct maple_enode *parent) 1732 { 1733 enum maple_type type = mte_node_type(parent); 1734 struct maple_node *node = mas_mn(mas); 1735 void __rcu **slots = ma_slots(node, type); 1736 unsigned long *pivots = ma_pivots(node, type); 1737 struct maple_enode *child; 1738 unsigned char offset; 1739 1740 offset = ma_data_end(node, type, pivots, mas->max); 1741 do { 1742 child = mas_slot_locked(mas, slots, offset); 1743 mas_set_parent(mas, child, parent, offset); 1744 } while (offset--); 1745 } 1746 1747 /* 1748 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1749 * parent encoding to locate the maple node in the tree. 1750 * @mas - the ma_state to use for operations. 1751 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1752 * leave the node (true) and handle the adoption and free elsewhere. 1753 */ 1754 static inline void mas_replace(struct ma_state *mas, bool advanced) 1755 __must_hold(mas->tree->lock) 1756 { 1757 struct maple_node *mn = mas_mn(mas); 1758 struct maple_enode *old_enode; 1759 unsigned char offset = 0; 1760 void __rcu **slots = NULL; 1761 1762 if (ma_is_root(mn)) { 1763 old_enode = mas_root_locked(mas); 1764 } else { 1765 offset = mte_parent_slot(mas->node); 1766 slots = ma_slots(mte_parent(mas->node), 1767 mas_parent_type(mas, mas->node)); 1768 old_enode = mas_slot_locked(mas, slots, offset); 1769 } 1770 1771 if (!advanced && !mte_is_leaf(mas->node)) 1772 mas_adopt_children(mas, mas->node); 1773 1774 if (mte_is_root(mas->node)) { 1775 mn->parent = ma_parent_ptr( 1776 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1777 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1778 mas_set_height(mas); 1779 } else { 1780 rcu_assign_pointer(slots[offset], mas->node); 1781 } 1782 1783 if (!advanced) { 1784 mte_set_node_dead(old_enode); 1785 mas_free(mas, old_enode); 1786 } 1787 } 1788 1789 /* 1790 * mas_new_child() - Find the new child of a node. 1791 * @mas: the maple state 1792 * @child: the maple state to store the child. 1793 */ 1794 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1795 __must_hold(mas->tree->lock) 1796 { 1797 enum maple_type mt; 1798 unsigned char offset; 1799 unsigned char end; 1800 unsigned long *pivots; 1801 struct maple_enode *entry; 1802 struct maple_node *node; 1803 void __rcu **slots; 1804 1805 mt = mte_node_type(mas->node); 1806 node = mas_mn(mas); 1807 slots = ma_slots(node, mt); 1808 pivots = ma_pivots(node, mt); 1809 end = ma_data_end(node, mt, pivots, mas->max); 1810 for (offset = mas->offset; offset <= end; offset++) { 1811 entry = mas_slot_locked(mas, slots, offset); 1812 if (mte_parent(entry) == node) { 1813 *child = *mas; 1814 mas->offset = offset + 1; 1815 child->offset = offset; 1816 mas_descend(child); 1817 child->offset = 0; 1818 return true; 1819 } 1820 } 1821 return false; 1822 } 1823 1824 /* 1825 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1826 * old data or set b_node->b_end. 1827 * @b_node: the maple_big_node 1828 * @shift: the shift count 1829 */ 1830 static inline void mab_shift_right(struct maple_big_node *b_node, 1831 unsigned char shift) 1832 { 1833 unsigned long size = b_node->b_end * sizeof(unsigned long); 1834 1835 memmove(b_node->pivot + shift, b_node->pivot, size); 1836 memmove(b_node->slot + shift, b_node->slot, size); 1837 if (b_node->type == maple_arange_64) 1838 memmove(b_node->gap + shift, b_node->gap, size); 1839 } 1840 1841 /* 1842 * mab_middle_node() - Check if a middle node is needed (unlikely) 1843 * @b_node: the maple_big_node that contains the data. 1844 * @size: the amount of data in the b_node 1845 * @split: the potential split location 1846 * @slot_count: the size that can be stored in a single node being considered. 1847 * 1848 * Return: true if a middle node is required. 1849 */ 1850 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1851 unsigned char slot_count) 1852 { 1853 unsigned char size = b_node->b_end; 1854 1855 if (size >= 2 * slot_count) 1856 return true; 1857 1858 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1859 return true; 1860 1861 return false; 1862 } 1863 1864 /* 1865 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1866 * @b_node: the maple_big_node with the data 1867 * @split: the suggested split location 1868 * @slot_count: the number of slots in the node being considered. 1869 * 1870 * Return: the split location. 1871 */ 1872 static inline int mab_no_null_split(struct maple_big_node *b_node, 1873 unsigned char split, unsigned char slot_count) 1874 { 1875 if (!b_node->slot[split]) { 1876 /* 1877 * If the split is less than the max slot && the right side will 1878 * still be sufficient, then increment the split on NULL. 1879 */ 1880 if ((split < slot_count - 1) && 1881 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1882 split++; 1883 else 1884 split--; 1885 } 1886 return split; 1887 } 1888 1889 /* 1890 * mab_calc_split() - Calculate the split location and if there needs to be two 1891 * splits. 1892 * @bn: The maple_big_node with the data 1893 * @mid_split: The second split, if required. 0 otherwise. 1894 * 1895 * Return: The first split location. The middle split is set in @mid_split. 1896 */ 1897 static inline int mab_calc_split(struct ma_state *mas, 1898 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1899 { 1900 unsigned char b_end = bn->b_end; 1901 int split = b_end / 2; /* Assume equal split. */ 1902 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1903 1904 /* 1905 * To support gap tracking, all NULL entries are kept together and a node cannot 1906 * end on a NULL entry, with the exception of the left-most leaf. The 1907 * limitation means that the split of a node must be checked for this condition 1908 * and be able to put more data in one direction or the other. 1909 */ 1910 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1911 *mid_split = 0; 1912 split = b_end - mt_min_slots[bn->type]; 1913 1914 if (!ma_is_leaf(bn->type)) 1915 return split; 1916 1917 mas->mas_flags |= MA_STATE_REBALANCE; 1918 if (!bn->slot[split]) 1919 split--; 1920 return split; 1921 } 1922 1923 /* 1924 * Although extremely rare, it is possible to enter what is known as the 3-way 1925 * split scenario. The 3-way split comes about by means of a store of a range 1926 * that overwrites the end and beginning of two full nodes. The result is a set 1927 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1928 * also be located in different parent nodes which are also full. This can 1929 * carry upwards all the way to the root in the worst case. 1930 */ 1931 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1932 split = b_end / 3; 1933 *mid_split = split * 2; 1934 } else { 1935 slot_min = mt_min_slots[bn->type]; 1936 1937 *mid_split = 0; 1938 /* 1939 * Avoid having a range less than the slot count unless it 1940 * causes one node to be deficient. 1941 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1942 */ 1943 while ((split < slot_count - 1) && 1944 ((bn->pivot[split] - min) < slot_count - 1) && 1945 (b_end - split > slot_min)) 1946 split++; 1947 } 1948 1949 /* Avoid ending a node on a NULL entry */ 1950 split = mab_no_null_split(bn, split, slot_count); 1951 1952 if (unlikely(*mid_split)) 1953 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1954 1955 return split; 1956 } 1957 1958 /* 1959 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1960 * and set @b_node->b_end to the next free slot. 1961 * @mas: The maple state 1962 * @mas_start: The starting slot to copy 1963 * @mas_end: The end slot to copy (inclusively) 1964 * @b_node: The maple_big_node to place the data 1965 * @mab_start: The starting location in maple_big_node to store the data. 1966 */ 1967 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1968 unsigned char mas_end, struct maple_big_node *b_node, 1969 unsigned char mab_start) 1970 { 1971 enum maple_type mt; 1972 struct maple_node *node; 1973 void __rcu **slots; 1974 unsigned long *pivots, *gaps; 1975 int i = mas_start, j = mab_start; 1976 unsigned char piv_end; 1977 1978 node = mas_mn(mas); 1979 mt = mte_node_type(mas->node); 1980 pivots = ma_pivots(node, mt); 1981 if (!i) { 1982 b_node->pivot[j] = pivots[i++]; 1983 if (unlikely(i > mas_end)) 1984 goto complete; 1985 j++; 1986 } 1987 1988 piv_end = min(mas_end, mt_pivots[mt]); 1989 for (; i < piv_end; i++, j++) { 1990 b_node->pivot[j] = pivots[i]; 1991 if (unlikely(!b_node->pivot[j])) 1992 break; 1993 1994 if (unlikely(mas->max == b_node->pivot[j])) 1995 goto complete; 1996 } 1997 1998 if (likely(i <= mas_end)) 1999 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 2000 2001 complete: 2002 b_node->b_end = ++j; 2003 j -= mab_start; 2004 slots = ma_slots(node, mt); 2005 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 2006 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 2007 gaps = ma_gaps(node, mt); 2008 memcpy(b_node->gap + mab_start, gaps + mas_start, 2009 sizeof(unsigned long) * j); 2010 } 2011 } 2012 2013 /* 2014 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 2015 * @mas: The maple state 2016 * @node: The maple node 2017 * @pivots: pointer to the maple node pivots 2018 * @mt: The maple type 2019 * @end: The assumed end 2020 * 2021 * Note, end may be incremented within this function but not modified at the 2022 * source. This is fine since the metadata is the last thing to be stored in a 2023 * node during a write. 2024 */ 2025 static inline void mas_leaf_set_meta(struct ma_state *mas, 2026 struct maple_node *node, unsigned long *pivots, 2027 enum maple_type mt, unsigned char end) 2028 { 2029 /* There is no room for metadata already */ 2030 if (mt_pivots[mt] <= end) 2031 return; 2032 2033 if (pivots[end] && pivots[end] < mas->max) 2034 end++; 2035 2036 if (end < mt_slots[mt] - 1) 2037 ma_set_meta(node, mt, 0, end); 2038 } 2039 2040 /* 2041 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2042 * @b_node: the maple_big_node that has the data 2043 * @mab_start: the start location in @b_node. 2044 * @mab_end: The end location in @b_node (inclusively) 2045 * @mas: The maple state with the maple encoded node. 2046 */ 2047 static inline void mab_mas_cp(struct maple_big_node *b_node, 2048 unsigned char mab_start, unsigned char mab_end, 2049 struct ma_state *mas, bool new_max) 2050 { 2051 int i, j = 0; 2052 enum maple_type mt = mte_node_type(mas->node); 2053 struct maple_node *node = mte_to_node(mas->node); 2054 void __rcu **slots = ma_slots(node, mt); 2055 unsigned long *pivots = ma_pivots(node, mt); 2056 unsigned long *gaps = NULL; 2057 unsigned char end; 2058 2059 if (mab_end - mab_start > mt_pivots[mt]) 2060 mab_end--; 2061 2062 if (!pivots[mt_pivots[mt] - 1]) 2063 slots[mt_pivots[mt]] = NULL; 2064 2065 i = mab_start; 2066 do { 2067 pivots[j++] = b_node->pivot[i++]; 2068 } while (i <= mab_end && likely(b_node->pivot[i])); 2069 2070 memcpy(slots, b_node->slot + mab_start, 2071 sizeof(void *) * (i - mab_start)); 2072 2073 if (new_max) 2074 mas->max = b_node->pivot[i - 1]; 2075 2076 end = j - 1; 2077 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2078 unsigned long max_gap = 0; 2079 unsigned char offset = 15; 2080 2081 gaps = ma_gaps(node, mt); 2082 do { 2083 gaps[--j] = b_node->gap[--i]; 2084 if (gaps[j] > max_gap) { 2085 offset = j; 2086 max_gap = gaps[j]; 2087 } 2088 } while (j); 2089 2090 ma_set_meta(node, mt, offset, end); 2091 } else { 2092 mas_leaf_set_meta(mas, node, pivots, mt, end); 2093 } 2094 } 2095 2096 /* 2097 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2098 * @mas: the maple state with the maple encoded node of the sub-tree. 2099 * 2100 * Descend through a sub-tree and adopt children who do not have the correct 2101 * parents set. Follow the parents which have the correct parents as they are 2102 * the new entries which need to be followed to find other incorrectly set 2103 * parents. 2104 */ 2105 static inline void mas_descend_adopt(struct ma_state *mas) 2106 { 2107 struct ma_state list[3], next[3]; 2108 int i, n; 2109 2110 /* 2111 * At each level there may be up to 3 correct parent pointers which indicates 2112 * the new nodes which need to be walked to find any new nodes at a lower level. 2113 */ 2114 2115 for (i = 0; i < 3; i++) { 2116 list[i] = *mas; 2117 list[i].offset = 0; 2118 next[i].offset = 0; 2119 } 2120 next[0] = *mas; 2121 2122 while (!mte_is_leaf(list[0].node)) { 2123 n = 0; 2124 for (i = 0; i < 3; i++) { 2125 if (mas_is_none(&list[i])) 2126 continue; 2127 2128 if (i && list[i-1].node == list[i].node) 2129 continue; 2130 2131 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2132 n++; 2133 2134 mas_adopt_children(&list[i], list[i].node); 2135 } 2136 2137 while (n < 3) 2138 next[n++].node = MAS_NONE; 2139 2140 /* descend by setting the list to the children */ 2141 for (i = 0; i < 3; i++) 2142 list[i] = next[i]; 2143 } 2144 } 2145 2146 /* 2147 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2148 * @mas: The maple state 2149 * @end: The maple node end 2150 * @mt: The maple node type 2151 */ 2152 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2153 enum maple_type mt) 2154 { 2155 if (!(mas->mas_flags & MA_STATE_BULK)) 2156 return; 2157 2158 if (mte_is_root(mas->node)) 2159 return; 2160 2161 if (end > mt_min_slots[mt]) { 2162 mas->mas_flags &= ~MA_STATE_REBALANCE; 2163 return; 2164 } 2165 } 2166 2167 /* 2168 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2169 * data from a maple encoded node. 2170 * @wr_mas: the maple write state 2171 * @b_node: the maple_big_node to fill with data 2172 * @offset_end: the offset to end copying 2173 * 2174 * Return: The actual end of the data stored in @b_node 2175 */ 2176 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2177 struct maple_big_node *b_node, unsigned char offset_end) 2178 { 2179 unsigned char slot; 2180 unsigned char b_end; 2181 /* Possible underflow of piv will wrap back to 0 before use. */ 2182 unsigned long piv; 2183 struct ma_state *mas = wr_mas->mas; 2184 2185 b_node->type = wr_mas->type; 2186 b_end = 0; 2187 slot = mas->offset; 2188 if (slot) { 2189 /* Copy start data up to insert. */ 2190 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2191 b_end = b_node->b_end; 2192 piv = b_node->pivot[b_end - 1]; 2193 } else 2194 piv = mas->min - 1; 2195 2196 if (piv + 1 < mas->index) { 2197 /* Handle range starting after old range */ 2198 b_node->slot[b_end] = wr_mas->content; 2199 if (!wr_mas->content) 2200 b_node->gap[b_end] = mas->index - 1 - piv; 2201 b_node->pivot[b_end++] = mas->index - 1; 2202 } 2203 2204 /* Store the new entry. */ 2205 mas->offset = b_end; 2206 b_node->slot[b_end] = wr_mas->entry; 2207 b_node->pivot[b_end] = mas->last; 2208 2209 /* Appended. */ 2210 if (mas->last >= mas->max) 2211 goto b_end; 2212 2213 /* Handle new range ending before old range ends */ 2214 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2215 if (piv > mas->last) { 2216 if (piv == ULONG_MAX) 2217 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2218 2219 if (offset_end != slot) 2220 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2221 offset_end); 2222 2223 b_node->slot[++b_end] = wr_mas->content; 2224 if (!wr_mas->content) 2225 b_node->gap[b_end] = piv - mas->last + 1; 2226 b_node->pivot[b_end] = piv; 2227 } 2228 2229 slot = offset_end + 1; 2230 if (slot > wr_mas->node_end) 2231 goto b_end; 2232 2233 /* Copy end data to the end of the node. */ 2234 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2235 b_node->b_end--; 2236 return; 2237 2238 b_end: 2239 b_node->b_end = b_end; 2240 } 2241 2242 /* 2243 * mas_prev_sibling() - Find the previous node with the same parent. 2244 * @mas: the maple state 2245 * 2246 * Return: True if there is a previous sibling, false otherwise. 2247 */ 2248 static inline bool mas_prev_sibling(struct ma_state *mas) 2249 { 2250 unsigned int p_slot = mte_parent_slot(mas->node); 2251 2252 if (mte_is_root(mas->node)) 2253 return false; 2254 2255 if (!p_slot) 2256 return false; 2257 2258 mas_ascend(mas); 2259 mas->offset = p_slot - 1; 2260 mas_descend(mas); 2261 return true; 2262 } 2263 2264 /* 2265 * mas_next_sibling() - Find the next node with the same parent. 2266 * @mas: the maple state 2267 * 2268 * Return: true if there is a next sibling, false otherwise. 2269 */ 2270 static inline bool mas_next_sibling(struct ma_state *mas) 2271 { 2272 MA_STATE(parent, mas->tree, mas->index, mas->last); 2273 2274 if (mte_is_root(mas->node)) 2275 return false; 2276 2277 parent = *mas; 2278 mas_ascend(&parent); 2279 parent.offset = mte_parent_slot(mas->node) + 1; 2280 if (parent.offset > mas_data_end(&parent)) 2281 return false; 2282 2283 *mas = parent; 2284 mas_descend(mas); 2285 return true; 2286 } 2287 2288 /* 2289 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2290 * @enode: The encoded maple node. 2291 * 2292 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2293 * 2294 * Return: @enode or MAS_NONE 2295 */ 2296 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2297 { 2298 if (enode) 2299 return enode; 2300 2301 return ma_enode_ptr(MAS_NONE); 2302 } 2303 2304 /* 2305 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2306 * @wr_mas: The maple write state 2307 * 2308 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2309 */ 2310 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2311 { 2312 struct ma_state *mas = wr_mas->mas; 2313 unsigned char count, offset; 2314 2315 if (unlikely(ma_is_dense(wr_mas->type))) { 2316 wr_mas->r_max = wr_mas->r_min = mas->index; 2317 mas->offset = mas->index = mas->min; 2318 return; 2319 } 2320 2321 wr_mas->node = mas_mn(wr_mas->mas); 2322 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2323 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2324 wr_mas->pivots, mas->max); 2325 offset = mas->offset; 2326 2327 while (offset < count && mas->index > wr_mas->pivots[offset]) 2328 offset++; 2329 2330 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2331 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2332 wr_mas->offset_end = mas->offset = offset; 2333 } 2334 2335 /* 2336 * mas_topiary_range() - Add a range of slots to the topiary. 2337 * @mas: The maple state 2338 * @destroy: The topiary to add the slots (usually destroy) 2339 * @start: The starting slot inclusively 2340 * @end: The end slot inclusively 2341 */ 2342 static inline void mas_topiary_range(struct ma_state *mas, 2343 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2344 { 2345 void __rcu **slots; 2346 unsigned char offset; 2347 2348 MAS_BUG_ON(mas, mte_is_leaf(mas->node)); 2349 2350 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2351 for (offset = start; offset <= end; offset++) { 2352 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2353 2354 if (mte_dead_node(enode)) 2355 continue; 2356 2357 mat_add(destroy, enode); 2358 } 2359 } 2360 2361 /* 2362 * mast_topiary() - Add the portions of the tree to the removal list; either to 2363 * be freed or discarded (destroy walk). 2364 * @mast: The maple_subtree_state. 2365 */ 2366 static inline void mast_topiary(struct maple_subtree_state *mast) 2367 { 2368 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2369 unsigned char r_start, r_end; 2370 unsigned char l_start, l_end; 2371 void __rcu **l_slots, **r_slots; 2372 2373 wr_mas.type = mte_node_type(mast->orig_l->node); 2374 mast->orig_l->index = mast->orig_l->last; 2375 mas_wr_node_walk(&wr_mas); 2376 l_start = mast->orig_l->offset + 1; 2377 l_end = mas_data_end(mast->orig_l); 2378 r_start = 0; 2379 r_end = mast->orig_r->offset; 2380 2381 if (r_end) 2382 r_end--; 2383 2384 l_slots = ma_slots(mas_mn(mast->orig_l), 2385 mte_node_type(mast->orig_l->node)); 2386 2387 r_slots = ma_slots(mas_mn(mast->orig_r), 2388 mte_node_type(mast->orig_r->node)); 2389 2390 if ((l_start < l_end) && 2391 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2392 l_start++; 2393 } 2394 2395 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2396 if (r_end) 2397 r_end--; 2398 } 2399 2400 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2401 return; 2402 2403 /* At the node where left and right sides meet, add the parts between */ 2404 if (mast->orig_l->node == mast->orig_r->node) { 2405 return mas_topiary_range(mast->orig_l, mast->destroy, 2406 l_start, r_end); 2407 } 2408 2409 /* mast->orig_r is different and consumed. */ 2410 if (mte_is_leaf(mast->orig_r->node)) 2411 return; 2412 2413 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2414 l_end--; 2415 2416 2417 if (l_start <= l_end) 2418 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2419 2420 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2421 r_start++; 2422 2423 if (r_start <= r_end) 2424 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2425 } 2426 2427 /* 2428 * mast_rebalance_next() - Rebalance against the next node 2429 * @mast: The maple subtree state 2430 * @old_r: The encoded maple node to the right (next node). 2431 */ 2432 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2433 { 2434 unsigned char b_end = mast->bn->b_end; 2435 2436 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2437 mast->bn, b_end); 2438 mast->orig_r->last = mast->orig_r->max; 2439 } 2440 2441 /* 2442 * mast_rebalance_prev() - Rebalance against the previous node 2443 * @mast: The maple subtree state 2444 * @old_l: The encoded maple node to the left (previous node) 2445 */ 2446 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2447 { 2448 unsigned char end = mas_data_end(mast->orig_l) + 1; 2449 unsigned char b_end = mast->bn->b_end; 2450 2451 mab_shift_right(mast->bn, end); 2452 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2453 mast->l->min = mast->orig_l->min; 2454 mast->orig_l->index = mast->orig_l->min; 2455 mast->bn->b_end = end + b_end; 2456 mast->l->offset += end; 2457 } 2458 2459 /* 2460 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2461 * the node to the right. Checking the nodes to the right then the left at each 2462 * level upwards until root is reached. Free and destroy as needed. 2463 * Data is copied into the @mast->bn. 2464 * @mast: The maple_subtree_state. 2465 */ 2466 static inline 2467 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2468 { 2469 struct ma_state r_tmp = *mast->orig_r; 2470 struct ma_state l_tmp = *mast->orig_l; 2471 struct maple_enode *ancestor = NULL; 2472 unsigned char start, end; 2473 unsigned char depth = 0; 2474 2475 r_tmp = *mast->orig_r; 2476 l_tmp = *mast->orig_l; 2477 do { 2478 mas_ascend(mast->orig_r); 2479 mas_ascend(mast->orig_l); 2480 depth++; 2481 if (!ancestor && 2482 (mast->orig_r->node == mast->orig_l->node)) { 2483 ancestor = mast->orig_r->node; 2484 end = mast->orig_r->offset - 1; 2485 start = mast->orig_l->offset + 1; 2486 } 2487 2488 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2489 if (!ancestor) { 2490 ancestor = mast->orig_r->node; 2491 start = 0; 2492 } 2493 2494 mast->orig_r->offset++; 2495 do { 2496 mas_descend(mast->orig_r); 2497 mast->orig_r->offset = 0; 2498 depth--; 2499 } while (depth); 2500 2501 mast_rebalance_next(mast); 2502 do { 2503 unsigned char l_off = 0; 2504 struct maple_enode *child = r_tmp.node; 2505 2506 mas_ascend(&r_tmp); 2507 if (ancestor == r_tmp.node) 2508 l_off = start; 2509 2510 if (r_tmp.offset) 2511 r_tmp.offset--; 2512 2513 if (l_off < r_tmp.offset) 2514 mas_topiary_range(&r_tmp, mast->destroy, 2515 l_off, r_tmp.offset); 2516 2517 if (l_tmp.node != child) 2518 mat_add(mast->free, child); 2519 2520 } while (r_tmp.node != ancestor); 2521 2522 *mast->orig_l = l_tmp; 2523 return true; 2524 2525 } else if (mast->orig_l->offset != 0) { 2526 if (!ancestor) { 2527 ancestor = mast->orig_l->node; 2528 end = mas_data_end(mast->orig_l); 2529 } 2530 2531 mast->orig_l->offset--; 2532 do { 2533 mas_descend(mast->orig_l); 2534 mast->orig_l->offset = 2535 mas_data_end(mast->orig_l); 2536 depth--; 2537 } while (depth); 2538 2539 mast_rebalance_prev(mast); 2540 do { 2541 unsigned char r_off; 2542 struct maple_enode *child = l_tmp.node; 2543 2544 mas_ascend(&l_tmp); 2545 if (ancestor == l_tmp.node) 2546 r_off = end; 2547 else 2548 r_off = mas_data_end(&l_tmp); 2549 2550 if (l_tmp.offset < r_off) 2551 l_tmp.offset++; 2552 2553 if (l_tmp.offset < r_off) 2554 mas_topiary_range(&l_tmp, mast->destroy, 2555 l_tmp.offset, r_off); 2556 2557 if (r_tmp.node != child) 2558 mat_add(mast->free, child); 2559 2560 } while (l_tmp.node != ancestor); 2561 2562 *mast->orig_r = r_tmp; 2563 return true; 2564 } 2565 } while (!mte_is_root(mast->orig_r->node)); 2566 2567 *mast->orig_r = r_tmp; 2568 *mast->orig_l = l_tmp; 2569 return false; 2570 } 2571 2572 /* 2573 * mast_ascend_free() - Add current original maple state nodes to the free list 2574 * and ascend. 2575 * @mast: the maple subtree state. 2576 * 2577 * Ascend the original left and right sides and add the previous nodes to the 2578 * free list. Set the slots to point to the correct location in the new nodes. 2579 */ 2580 static inline void 2581 mast_ascend_free(struct maple_subtree_state *mast) 2582 { 2583 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2584 struct maple_enode *left = mast->orig_l->node; 2585 struct maple_enode *right = mast->orig_r->node; 2586 2587 mas_ascend(mast->orig_l); 2588 mas_ascend(mast->orig_r); 2589 mat_add(mast->free, left); 2590 2591 if (left != right) 2592 mat_add(mast->free, right); 2593 2594 mast->orig_r->offset = 0; 2595 mast->orig_r->index = mast->r->max; 2596 /* last should be larger than or equal to index */ 2597 if (mast->orig_r->last < mast->orig_r->index) 2598 mast->orig_r->last = mast->orig_r->index; 2599 /* 2600 * The node may not contain the value so set slot to ensure all 2601 * of the nodes contents are freed or destroyed. 2602 */ 2603 wr_mas.type = mte_node_type(mast->orig_r->node); 2604 mas_wr_node_walk(&wr_mas); 2605 /* Set up the left side of things */ 2606 mast->orig_l->offset = 0; 2607 mast->orig_l->index = mast->l->min; 2608 wr_mas.mas = mast->orig_l; 2609 wr_mas.type = mte_node_type(mast->orig_l->node); 2610 mas_wr_node_walk(&wr_mas); 2611 2612 mast->bn->type = wr_mas.type; 2613 } 2614 2615 /* 2616 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2617 * @mas: the maple state with the allocations. 2618 * @b_node: the maple_big_node with the type encoding. 2619 * 2620 * Use the node type from the maple_big_node to allocate a new node from the 2621 * ma_state. This function exists mainly for code readability. 2622 * 2623 * Return: A new maple encoded node 2624 */ 2625 static inline struct maple_enode 2626 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2627 { 2628 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2629 } 2630 2631 /* 2632 * mas_mab_to_node() - Set up right and middle nodes 2633 * 2634 * @mas: the maple state that contains the allocations. 2635 * @b_node: the node which contains the data. 2636 * @left: The pointer which will have the left node 2637 * @right: The pointer which may have the right node 2638 * @middle: the pointer which may have the middle node (rare) 2639 * @mid_split: the split location for the middle node 2640 * 2641 * Return: the split of left. 2642 */ 2643 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2644 struct maple_big_node *b_node, struct maple_enode **left, 2645 struct maple_enode **right, struct maple_enode **middle, 2646 unsigned char *mid_split, unsigned long min) 2647 { 2648 unsigned char split = 0; 2649 unsigned char slot_count = mt_slots[b_node->type]; 2650 2651 *left = mas_new_ma_node(mas, b_node); 2652 *right = NULL; 2653 *middle = NULL; 2654 *mid_split = 0; 2655 2656 if (b_node->b_end < slot_count) { 2657 split = b_node->b_end; 2658 } else { 2659 split = mab_calc_split(mas, b_node, mid_split, min); 2660 *right = mas_new_ma_node(mas, b_node); 2661 } 2662 2663 if (*mid_split) 2664 *middle = mas_new_ma_node(mas, b_node); 2665 2666 return split; 2667 2668 } 2669 2670 /* 2671 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2672 * pointer. 2673 * @b_node - the big node to add the entry 2674 * @mas - the maple state to get the pivot (mas->max) 2675 * @entry - the entry to add, if NULL nothing happens. 2676 */ 2677 static inline void mab_set_b_end(struct maple_big_node *b_node, 2678 struct ma_state *mas, 2679 void *entry) 2680 { 2681 if (!entry) 2682 return; 2683 2684 b_node->slot[b_node->b_end] = entry; 2685 if (mt_is_alloc(mas->tree)) 2686 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2687 b_node->pivot[b_node->b_end++] = mas->max; 2688 } 2689 2690 /* 2691 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2692 * of @mas->node to either @left or @right, depending on @slot and @split 2693 * 2694 * @mas - the maple state with the node that needs a parent 2695 * @left - possible parent 1 2696 * @right - possible parent 2 2697 * @slot - the slot the mas->node was placed 2698 * @split - the split location between @left and @right 2699 */ 2700 static inline void mas_set_split_parent(struct ma_state *mas, 2701 struct maple_enode *left, 2702 struct maple_enode *right, 2703 unsigned char *slot, unsigned char split) 2704 { 2705 if (mas_is_none(mas)) 2706 return; 2707 2708 if ((*slot) <= split) 2709 mas_set_parent(mas, mas->node, left, *slot); 2710 else if (right) 2711 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2712 2713 (*slot)++; 2714 } 2715 2716 /* 2717 * mte_mid_split_check() - Check if the next node passes the mid-split 2718 * @**l: Pointer to left encoded maple node. 2719 * @**m: Pointer to middle encoded maple node. 2720 * @**r: Pointer to right encoded maple node. 2721 * @slot: The offset 2722 * @*split: The split location. 2723 * @mid_split: The middle split. 2724 */ 2725 static inline void mte_mid_split_check(struct maple_enode **l, 2726 struct maple_enode **r, 2727 struct maple_enode *right, 2728 unsigned char slot, 2729 unsigned char *split, 2730 unsigned char mid_split) 2731 { 2732 if (*r == right) 2733 return; 2734 2735 if (slot < mid_split) 2736 return; 2737 2738 *l = *r; 2739 *r = right; 2740 *split = mid_split; 2741 } 2742 2743 /* 2744 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2745 * is taken from @mast->l. 2746 * @mast - the maple subtree state 2747 * @left - the left node 2748 * @right - the right node 2749 * @split - the split location. 2750 */ 2751 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2752 struct maple_enode *left, 2753 struct maple_enode *middle, 2754 struct maple_enode *right, 2755 unsigned char split, 2756 unsigned char mid_split) 2757 { 2758 unsigned char slot; 2759 struct maple_enode *l = left; 2760 struct maple_enode *r = right; 2761 2762 if (mas_is_none(mast->l)) 2763 return; 2764 2765 if (middle) 2766 r = middle; 2767 2768 slot = mast->l->offset; 2769 2770 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2771 mas_set_split_parent(mast->l, l, r, &slot, split); 2772 2773 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2774 mas_set_split_parent(mast->m, l, r, &slot, split); 2775 2776 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2777 mas_set_split_parent(mast->r, l, r, &slot, split); 2778 } 2779 2780 /* 2781 * mas_wmb_replace() - Write memory barrier and replace 2782 * @mas: The maple state 2783 * @free: the maple topiary list of nodes to free 2784 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2785 * 2786 * Updates gap as necessary. 2787 */ 2788 static inline void mas_wmb_replace(struct ma_state *mas, 2789 struct ma_topiary *free, 2790 struct ma_topiary *destroy) 2791 { 2792 /* All nodes must see old data as dead prior to replacing that data */ 2793 smp_wmb(); /* Needed for RCU */ 2794 2795 /* Insert the new data in the tree */ 2796 mas_replace(mas, true); 2797 2798 if (!mte_is_leaf(mas->node)) 2799 mas_descend_adopt(mas); 2800 2801 mas_mat_free(mas, free); 2802 2803 if (destroy) 2804 mas_mat_destroy(mas, destroy); 2805 2806 if (mte_is_leaf(mas->node)) 2807 return; 2808 2809 mas_update_gap(mas); 2810 } 2811 2812 /* 2813 * mast_new_root() - Set a new tree root during subtree creation 2814 * @mast: The maple subtree state 2815 * @mas: The maple state 2816 */ 2817 static inline void mast_new_root(struct maple_subtree_state *mast, 2818 struct ma_state *mas) 2819 { 2820 mas_mn(mast->l)->parent = 2821 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2822 if (!mte_dead_node(mast->orig_l->node) && 2823 !mte_is_root(mast->orig_l->node)) { 2824 do { 2825 mast_ascend_free(mast); 2826 mast_topiary(mast); 2827 } while (!mte_is_root(mast->orig_l->node)); 2828 } 2829 if ((mast->orig_l->node != mas->node) && 2830 (mast->l->depth > mas_mt_height(mas))) { 2831 mat_add(mast->free, mas->node); 2832 } 2833 } 2834 2835 /* 2836 * mast_cp_to_nodes() - Copy data out to nodes. 2837 * @mast: The maple subtree state 2838 * @left: The left encoded maple node 2839 * @middle: The middle encoded maple node 2840 * @right: The right encoded maple node 2841 * @split: The location to split between left and (middle ? middle : right) 2842 * @mid_split: The location to split between middle and right. 2843 */ 2844 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2845 struct maple_enode *left, struct maple_enode *middle, 2846 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2847 { 2848 bool new_lmax = true; 2849 2850 mast->l->node = mte_node_or_none(left); 2851 mast->m->node = mte_node_or_none(middle); 2852 mast->r->node = mte_node_or_none(right); 2853 2854 mast->l->min = mast->orig_l->min; 2855 if (split == mast->bn->b_end) { 2856 mast->l->max = mast->orig_r->max; 2857 new_lmax = false; 2858 } 2859 2860 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2861 2862 if (middle) { 2863 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2864 mast->m->min = mast->bn->pivot[split] + 1; 2865 split = mid_split; 2866 } 2867 2868 mast->r->max = mast->orig_r->max; 2869 if (right) { 2870 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2871 mast->r->min = mast->bn->pivot[split] + 1; 2872 } 2873 } 2874 2875 /* 2876 * mast_combine_cp_left - Copy in the original left side of the tree into the 2877 * combined data set in the maple subtree state big node. 2878 * @mast: The maple subtree state 2879 */ 2880 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2881 { 2882 unsigned char l_slot = mast->orig_l->offset; 2883 2884 if (!l_slot) 2885 return; 2886 2887 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2888 } 2889 2890 /* 2891 * mast_combine_cp_right: Copy in the original right side of the tree into the 2892 * combined data set in the maple subtree state big node. 2893 * @mast: The maple subtree state 2894 */ 2895 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2896 { 2897 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2898 return; 2899 2900 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2901 mt_slot_count(mast->orig_r->node), mast->bn, 2902 mast->bn->b_end); 2903 mast->orig_r->last = mast->orig_r->max; 2904 } 2905 2906 /* 2907 * mast_sufficient: Check if the maple subtree state has enough data in the big 2908 * node to create at least one sufficient node 2909 * @mast: the maple subtree state 2910 */ 2911 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2912 { 2913 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2914 return true; 2915 2916 return false; 2917 } 2918 2919 /* 2920 * mast_overflow: Check if there is too much data in the subtree state for a 2921 * single node. 2922 * @mast: The maple subtree state 2923 */ 2924 static inline bool mast_overflow(struct maple_subtree_state *mast) 2925 { 2926 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2927 return true; 2928 2929 return false; 2930 } 2931 2932 static inline void *mtree_range_walk(struct ma_state *mas) 2933 { 2934 unsigned long *pivots; 2935 unsigned char offset; 2936 struct maple_node *node; 2937 struct maple_enode *next, *last; 2938 enum maple_type type; 2939 void __rcu **slots; 2940 unsigned char end; 2941 unsigned long max, min; 2942 unsigned long prev_max, prev_min; 2943 2944 next = mas->node; 2945 min = mas->min; 2946 max = mas->max; 2947 do { 2948 offset = 0; 2949 last = next; 2950 node = mte_to_node(next); 2951 type = mte_node_type(next); 2952 pivots = ma_pivots(node, type); 2953 end = ma_data_end(node, type, pivots, max); 2954 if (unlikely(ma_dead_node(node))) 2955 goto dead_node; 2956 2957 if (pivots[offset] >= mas->index) { 2958 prev_max = max; 2959 prev_min = min; 2960 max = pivots[offset]; 2961 goto next; 2962 } 2963 2964 do { 2965 offset++; 2966 } while ((offset < end) && (pivots[offset] < mas->index)); 2967 2968 prev_min = min; 2969 min = pivots[offset - 1] + 1; 2970 prev_max = max; 2971 if (likely(offset < end && pivots[offset])) 2972 max = pivots[offset]; 2973 2974 next: 2975 slots = ma_slots(node, type); 2976 next = mt_slot(mas->tree, slots, offset); 2977 if (unlikely(ma_dead_node(node))) 2978 goto dead_node; 2979 } while (!ma_is_leaf(type)); 2980 2981 mas->offset = offset; 2982 mas->index = min; 2983 mas->last = max; 2984 mas->min = prev_min; 2985 mas->max = prev_max; 2986 mas->node = last; 2987 return (void *)next; 2988 2989 dead_node: 2990 mas_reset(mas); 2991 return NULL; 2992 } 2993 2994 /* 2995 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2996 * @mas: The starting maple state 2997 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2998 * @count: The estimated count of iterations needed. 2999 * 3000 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 3001 * is hit. First @b_node is split into two entries which are inserted into the 3002 * next iteration of the loop. @b_node is returned populated with the final 3003 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 3004 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 3005 * to account of what has been copied into the new sub-tree. The update of 3006 * orig_l_mas->last is used in mas_consume to find the slots that will need to 3007 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 3008 * the new sub-tree in case the sub-tree becomes the full tree. 3009 * 3010 * Return: the number of elements in b_node during the last loop. 3011 */ 3012 static int mas_spanning_rebalance(struct ma_state *mas, 3013 struct maple_subtree_state *mast, unsigned char count) 3014 { 3015 unsigned char split, mid_split; 3016 unsigned char slot = 0; 3017 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 3018 3019 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 3020 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3021 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 3022 MA_TOPIARY(free, mas->tree); 3023 MA_TOPIARY(destroy, mas->tree); 3024 3025 /* 3026 * The tree needs to be rebalanced and leaves need to be kept at the same level. 3027 * Rebalancing is done by use of the ``struct maple_topiary``. 3028 */ 3029 mast->l = &l_mas; 3030 mast->m = &m_mas; 3031 mast->r = &r_mas; 3032 mast->free = &free; 3033 mast->destroy = &destroy; 3034 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 3035 3036 /* Check if this is not root and has sufficient data. */ 3037 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3038 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3039 mast_spanning_rebalance(mast); 3040 3041 mast->orig_l->depth = 0; 3042 3043 /* 3044 * Each level of the tree is examined and balanced, pushing data to the left or 3045 * right, or rebalancing against left or right nodes is employed to avoid 3046 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3047 * the tree is created, there may be a mix of new and old nodes. The old nodes 3048 * will have the incorrect parent pointers and currently be in two trees: the 3049 * original tree and the partially new tree. To remedy the parent pointers in 3050 * the old tree, the new data is swapped into the active tree and a walk down 3051 * the tree is performed and the parent pointers are updated. 3052 * See mas_descend_adopt() for more information.. 3053 */ 3054 while (count--) { 3055 mast->bn->b_end--; 3056 mast->bn->type = mte_node_type(mast->orig_l->node); 3057 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3058 &mid_split, mast->orig_l->min); 3059 mast_set_split_parents(mast, left, middle, right, split, 3060 mid_split); 3061 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3062 3063 /* 3064 * Copy data from next level in the tree to mast->bn from next 3065 * iteration 3066 */ 3067 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3068 mast->bn->type = mte_node_type(left); 3069 mast->orig_l->depth++; 3070 3071 /* Root already stored in l->node. */ 3072 if (mas_is_root_limits(mast->l)) 3073 goto new_root; 3074 3075 mast_ascend_free(mast); 3076 mast_combine_cp_left(mast); 3077 l_mas.offset = mast->bn->b_end; 3078 mab_set_b_end(mast->bn, &l_mas, left); 3079 mab_set_b_end(mast->bn, &m_mas, middle); 3080 mab_set_b_end(mast->bn, &r_mas, right); 3081 3082 /* Copy anything necessary out of the right node. */ 3083 mast_combine_cp_right(mast); 3084 mast_topiary(mast); 3085 mast->orig_l->last = mast->orig_l->max; 3086 3087 if (mast_sufficient(mast)) 3088 continue; 3089 3090 if (mast_overflow(mast)) 3091 continue; 3092 3093 /* May be a new root stored in mast->bn */ 3094 if (mas_is_root_limits(mast->orig_l)) 3095 break; 3096 3097 mast_spanning_rebalance(mast); 3098 3099 /* rebalancing from other nodes may require another loop. */ 3100 if (!count) 3101 count++; 3102 } 3103 3104 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3105 mte_node_type(mast->orig_l->node)); 3106 mast->orig_l->depth++; 3107 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3108 mas_set_parent(mas, left, l_mas.node, slot); 3109 if (middle) 3110 mas_set_parent(mas, middle, l_mas.node, ++slot); 3111 3112 if (right) 3113 mas_set_parent(mas, right, l_mas.node, ++slot); 3114 3115 if (mas_is_root_limits(mast->l)) { 3116 new_root: 3117 mast_new_root(mast, mas); 3118 } else { 3119 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3120 } 3121 3122 if (!mte_dead_node(mast->orig_l->node)) 3123 mat_add(&free, mast->orig_l->node); 3124 3125 mas->depth = mast->orig_l->depth; 3126 *mast->orig_l = l_mas; 3127 mte_set_node_dead(mas->node); 3128 3129 /* Set up mas for insertion. */ 3130 mast->orig_l->depth = mas->depth; 3131 mast->orig_l->alloc = mas->alloc; 3132 *mas = *mast->orig_l; 3133 mas_wmb_replace(mas, &free, &destroy); 3134 mtree_range_walk(mas); 3135 return mast->bn->b_end; 3136 } 3137 3138 /* 3139 * mas_rebalance() - Rebalance a given node. 3140 * @mas: The maple state 3141 * @b_node: The big maple node. 3142 * 3143 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3144 * Continue upwards until tree is sufficient. 3145 * 3146 * Return: the number of elements in b_node during the last loop. 3147 */ 3148 static inline int mas_rebalance(struct ma_state *mas, 3149 struct maple_big_node *b_node) 3150 { 3151 char empty_count = mas_mt_height(mas); 3152 struct maple_subtree_state mast; 3153 unsigned char shift, b_end = ++b_node->b_end; 3154 3155 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3156 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3157 3158 trace_ma_op(__func__, mas); 3159 3160 /* 3161 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3162 * against the node to the right if it exists, otherwise the node to the 3163 * left of this node is rebalanced against this node. If rebalancing 3164 * causes just one node to be produced instead of two, then the parent 3165 * is also examined and rebalanced if it is insufficient. Every level 3166 * tries to combine the data in the same way. If one node contains the 3167 * entire range of the tree, then that node is used as a new root node. 3168 */ 3169 mas_node_count(mas, 1 + empty_count * 3); 3170 if (mas_is_err(mas)) 3171 return 0; 3172 3173 mast.orig_l = &l_mas; 3174 mast.orig_r = &r_mas; 3175 mast.bn = b_node; 3176 mast.bn->type = mte_node_type(mas->node); 3177 3178 l_mas = r_mas = *mas; 3179 3180 if (mas_next_sibling(&r_mas)) { 3181 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3182 r_mas.last = r_mas.index = r_mas.max; 3183 } else { 3184 mas_prev_sibling(&l_mas); 3185 shift = mas_data_end(&l_mas) + 1; 3186 mab_shift_right(b_node, shift); 3187 mas->offset += shift; 3188 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3189 b_node->b_end = shift + b_end; 3190 l_mas.index = l_mas.last = l_mas.min; 3191 } 3192 3193 return mas_spanning_rebalance(mas, &mast, empty_count); 3194 } 3195 3196 /* 3197 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3198 * state. 3199 * @mas: The maple state 3200 * @end: The end of the left-most node. 3201 * 3202 * During a mass-insert event (such as forking), it may be necessary to 3203 * rebalance the left-most node when it is not sufficient. 3204 */ 3205 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3206 { 3207 enum maple_type mt = mte_node_type(mas->node); 3208 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3209 struct maple_enode *eparent; 3210 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3211 void __rcu **l_slots, **slots; 3212 unsigned long *l_pivs, *pivs, gap; 3213 bool in_rcu = mt_in_rcu(mas->tree); 3214 3215 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3216 3217 l_mas = *mas; 3218 mas_prev_sibling(&l_mas); 3219 3220 /* set up node. */ 3221 if (in_rcu) { 3222 /* Allocate for both left and right as well as parent. */ 3223 mas_node_count(mas, 3); 3224 if (mas_is_err(mas)) 3225 return; 3226 3227 newnode = mas_pop_node(mas); 3228 } else { 3229 newnode = &reuse; 3230 } 3231 3232 node = mas_mn(mas); 3233 newnode->parent = node->parent; 3234 slots = ma_slots(newnode, mt); 3235 pivs = ma_pivots(newnode, mt); 3236 left = mas_mn(&l_mas); 3237 l_slots = ma_slots(left, mt); 3238 l_pivs = ma_pivots(left, mt); 3239 if (!l_slots[split]) 3240 split++; 3241 tmp = mas_data_end(&l_mas) - split; 3242 3243 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3244 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3245 pivs[tmp] = l_mas.max; 3246 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3247 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3248 3249 l_mas.max = l_pivs[split]; 3250 mas->min = l_mas.max + 1; 3251 eparent = mt_mk_node(mte_parent(l_mas.node), 3252 mas_parent_type(&l_mas, l_mas.node)); 3253 tmp += end; 3254 if (!in_rcu) { 3255 unsigned char max_p = mt_pivots[mt]; 3256 unsigned char max_s = mt_slots[mt]; 3257 3258 if (tmp < max_p) 3259 memset(pivs + tmp, 0, 3260 sizeof(unsigned long) * (max_p - tmp)); 3261 3262 if (tmp < mt_slots[mt]) 3263 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3264 3265 memcpy(node, newnode, sizeof(struct maple_node)); 3266 ma_set_meta(node, mt, 0, tmp - 1); 3267 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3268 l_pivs[split]); 3269 3270 /* Remove data from l_pivs. */ 3271 tmp = split + 1; 3272 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3273 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3274 ma_set_meta(left, mt, 0, split); 3275 3276 goto done; 3277 } 3278 3279 /* RCU requires replacing both l_mas, mas, and parent. */ 3280 mas->node = mt_mk_node(newnode, mt); 3281 ma_set_meta(newnode, mt, 0, tmp); 3282 3283 new_left = mas_pop_node(mas); 3284 new_left->parent = left->parent; 3285 mt = mte_node_type(l_mas.node); 3286 slots = ma_slots(new_left, mt); 3287 pivs = ma_pivots(new_left, mt); 3288 memcpy(slots, l_slots, sizeof(void *) * split); 3289 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3290 ma_set_meta(new_left, mt, 0, split); 3291 l_mas.node = mt_mk_node(new_left, mt); 3292 3293 /* replace parent. */ 3294 offset = mte_parent_slot(mas->node); 3295 mt = mas_parent_type(&l_mas, l_mas.node); 3296 parent = mas_pop_node(mas); 3297 slots = ma_slots(parent, mt); 3298 pivs = ma_pivots(parent, mt); 3299 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3300 rcu_assign_pointer(slots[offset], mas->node); 3301 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3302 pivs[offset - 1] = l_mas.max; 3303 eparent = mt_mk_node(parent, mt); 3304 done: 3305 gap = mas_leaf_max_gap(mas); 3306 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3307 gap = mas_leaf_max_gap(&l_mas); 3308 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3309 mas_ascend(mas); 3310 3311 if (in_rcu) 3312 mas_replace(mas, false); 3313 3314 mas_update_gap(mas); 3315 } 3316 3317 /* 3318 * mas_split_final_node() - Split the final node in a subtree operation. 3319 * @mast: the maple subtree state 3320 * @mas: The maple state 3321 * @height: The height of the tree in case it's a new root. 3322 */ 3323 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3324 struct ma_state *mas, int height) 3325 { 3326 struct maple_enode *ancestor; 3327 3328 if (mte_is_root(mas->node)) { 3329 if (mt_is_alloc(mas->tree)) 3330 mast->bn->type = maple_arange_64; 3331 else 3332 mast->bn->type = maple_range_64; 3333 mas->depth = height; 3334 } 3335 /* 3336 * Only a single node is used here, could be root. 3337 * The Big_node data should just fit in a single node. 3338 */ 3339 ancestor = mas_new_ma_node(mas, mast->bn); 3340 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3341 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3342 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3343 3344 mast->l->node = ancestor; 3345 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3346 mas->offset = mast->bn->b_end - 1; 3347 return true; 3348 } 3349 3350 /* 3351 * mast_fill_bnode() - Copy data into the big node in the subtree state 3352 * @mast: The maple subtree state 3353 * @mas: the maple state 3354 * @skip: The number of entries to skip for new nodes insertion. 3355 */ 3356 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3357 struct ma_state *mas, 3358 unsigned char skip) 3359 { 3360 bool cp = true; 3361 struct maple_enode *old = mas->node; 3362 unsigned char split; 3363 3364 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3365 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3366 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3367 mast->bn->b_end = 0; 3368 3369 if (mte_is_root(mas->node)) { 3370 cp = false; 3371 } else { 3372 mas_ascend(mas); 3373 mat_add(mast->free, old); 3374 mas->offset = mte_parent_slot(mas->node); 3375 } 3376 3377 if (cp && mast->l->offset) 3378 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3379 3380 split = mast->bn->b_end; 3381 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3382 mast->r->offset = mast->bn->b_end; 3383 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3384 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3385 cp = false; 3386 3387 if (cp) 3388 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3389 mast->bn, mast->bn->b_end); 3390 3391 mast->bn->b_end--; 3392 mast->bn->type = mte_node_type(mas->node); 3393 } 3394 3395 /* 3396 * mast_split_data() - Split the data in the subtree state big node into regular 3397 * nodes. 3398 * @mast: The maple subtree state 3399 * @mas: The maple state 3400 * @split: The location to split the big node 3401 */ 3402 static inline void mast_split_data(struct maple_subtree_state *mast, 3403 struct ma_state *mas, unsigned char split) 3404 { 3405 unsigned char p_slot; 3406 3407 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3408 mte_set_pivot(mast->r->node, 0, mast->r->max); 3409 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3410 mast->l->offset = mte_parent_slot(mas->node); 3411 mast->l->max = mast->bn->pivot[split]; 3412 mast->r->min = mast->l->max + 1; 3413 if (mte_is_leaf(mas->node)) 3414 return; 3415 3416 p_slot = mast->orig_l->offset; 3417 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3418 &p_slot, split); 3419 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3420 &p_slot, split); 3421 } 3422 3423 /* 3424 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3425 * data to the right or left node if there is room. 3426 * @mas: The maple state 3427 * @height: The current height of the maple state 3428 * @mast: The maple subtree state 3429 * @left: Push left or not. 3430 * 3431 * Keeping the height of the tree low means faster lookups. 3432 * 3433 * Return: True if pushed, false otherwise. 3434 */ 3435 static inline bool mas_push_data(struct ma_state *mas, int height, 3436 struct maple_subtree_state *mast, bool left) 3437 { 3438 unsigned char slot_total = mast->bn->b_end; 3439 unsigned char end, space, split; 3440 3441 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3442 tmp_mas = *mas; 3443 tmp_mas.depth = mast->l->depth; 3444 3445 if (left && !mas_prev_sibling(&tmp_mas)) 3446 return false; 3447 else if (!left && !mas_next_sibling(&tmp_mas)) 3448 return false; 3449 3450 end = mas_data_end(&tmp_mas); 3451 slot_total += end; 3452 space = 2 * mt_slot_count(mas->node) - 2; 3453 /* -2 instead of -1 to ensure there isn't a triple split */ 3454 if (ma_is_leaf(mast->bn->type)) 3455 space--; 3456 3457 if (mas->max == ULONG_MAX) 3458 space--; 3459 3460 if (slot_total >= space) 3461 return false; 3462 3463 /* Get the data; Fill mast->bn */ 3464 mast->bn->b_end++; 3465 if (left) { 3466 mab_shift_right(mast->bn, end + 1); 3467 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3468 mast->bn->b_end = slot_total + 1; 3469 } else { 3470 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3471 } 3472 3473 /* Configure mast for splitting of mast->bn */ 3474 split = mt_slots[mast->bn->type] - 2; 3475 if (left) { 3476 /* Switch mas to prev node */ 3477 mat_add(mast->free, mas->node); 3478 *mas = tmp_mas; 3479 /* Start using mast->l for the left side. */ 3480 tmp_mas.node = mast->l->node; 3481 *mast->l = tmp_mas; 3482 } else { 3483 mat_add(mast->free, tmp_mas.node); 3484 tmp_mas.node = mast->r->node; 3485 *mast->r = tmp_mas; 3486 split = slot_total - split; 3487 } 3488 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3489 /* Update parent slot for split calculation. */ 3490 if (left) 3491 mast->orig_l->offset += end + 1; 3492 3493 mast_split_data(mast, mas, split); 3494 mast_fill_bnode(mast, mas, 2); 3495 mas_split_final_node(mast, mas, height + 1); 3496 return true; 3497 } 3498 3499 /* 3500 * mas_split() - Split data that is too big for one node into two. 3501 * @mas: The maple state 3502 * @b_node: The maple big node 3503 * Return: 1 on success, 0 on failure. 3504 */ 3505 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3506 { 3507 struct maple_subtree_state mast; 3508 int height = 0; 3509 unsigned char mid_split, split = 0; 3510 3511 /* 3512 * Splitting is handled differently from any other B-tree; the Maple 3513 * Tree splits upwards. Splitting up means that the split operation 3514 * occurs when the walk of the tree hits the leaves and not on the way 3515 * down. The reason for splitting up is that it is impossible to know 3516 * how much space will be needed until the leaf is (or leaves are) 3517 * reached. Since overwriting data is allowed and a range could 3518 * overwrite more than one range or result in changing one entry into 3 3519 * entries, it is impossible to know if a split is required until the 3520 * data is examined. 3521 * 3522 * Splitting is a balancing act between keeping allocations to a minimum 3523 * and avoiding a 'jitter' event where a tree is expanded to make room 3524 * for an entry followed by a contraction when the entry is removed. To 3525 * accomplish the balance, there are empty slots remaining in both left 3526 * and right nodes after a split. 3527 */ 3528 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3529 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3530 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3531 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3532 MA_TOPIARY(mat, mas->tree); 3533 3534 trace_ma_op(__func__, mas); 3535 mas->depth = mas_mt_height(mas); 3536 /* Allocation failures will happen early. */ 3537 mas_node_count(mas, 1 + mas->depth * 2); 3538 if (mas_is_err(mas)) 3539 return 0; 3540 3541 mast.l = &l_mas; 3542 mast.r = &r_mas; 3543 mast.orig_l = &prev_l_mas; 3544 mast.orig_r = &prev_r_mas; 3545 mast.free = &mat; 3546 mast.bn = b_node; 3547 3548 while (height++ <= mas->depth) { 3549 if (mt_slots[b_node->type] > b_node->b_end) { 3550 mas_split_final_node(&mast, mas, height); 3551 break; 3552 } 3553 3554 l_mas = r_mas = *mas; 3555 l_mas.node = mas_new_ma_node(mas, b_node); 3556 r_mas.node = mas_new_ma_node(mas, b_node); 3557 /* 3558 * Another way that 'jitter' is avoided is to terminate a split up early if the 3559 * left or right node has space to spare. This is referred to as "pushing left" 3560 * or "pushing right" and is similar to the B* tree, except the nodes left or 3561 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3562 * is a significant savings. 3563 */ 3564 /* Try to push left. */ 3565 if (mas_push_data(mas, height, &mast, true)) 3566 break; 3567 3568 /* Try to push right. */ 3569 if (mas_push_data(mas, height, &mast, false)) 3570 break; 3571 3572 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3573 mast_split_data(&mast, mas, split); 3574 /* 3575 * Usually correct, mab_mas_cp in the above call overwrites 3576 * r->max. 3577 */ 3578 mast.r->max = mas->max; 3579 mast_fill_bnode(&mast, mas, 1); 3580 prev_l_mas = *mast.l; 3581 prev_r_mas = *mast.r; 3582 } 3583 3584 /* Set the original node as dead */ 3585 mat_add(mast.free, mas->node); 3586 mas->node = l_mas.node; 3587 mas_wmb_replace(mas, mast.free, NULL); 3588 mtree_range_walk(mas); 3589 return 1; 3590 } 3591 3592 /* 3593 * mas_reuse_node() - Reuse the node to store the data. 3594 * @wr_mas: The maple write state 3595 * @bn: The maple big node 3596 * @end: The end of the data. 3597 * 3598 * Will always return false in RCU mode. 3599 * 3600 * Return: True if node was reused, false otherwise. 3601 */ 3602 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3603 struct maple_big_node *bn, unsigned char end) 3604 { 3605 /* Need to be rcu safe. */ 3606 if (mt_in_rcu(wr_mas->mas->tree)) 3607 return false; 3608 3609 if (end > bn->b_end) { 3610 int clear = mt_slots[wr_mas->type] - bn->b_end; 3611 3612 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3613 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3614 } 3615 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3616 return true; 3617 } 3618 3619 /* 3620 * mas_commit_b_node() - Commit the big node into the tree. 3621 * @wr_mas: The maple write state 3622 * @b_node: The maple big node 3623 * @end: The end of the data. 3624 */ 3625 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3626 struct maple_big_node *b_node, unsigned char end) 3627 { 3628 struct maple_node *node; 3629 unsigned char b_end = b_node->b_end; 3630 enum maple_type b_type = b_node->type; 3631 3632 if ((b_end < mt_min_slots[b_type]) && 3633 (!mte_is_root(wr_mas->mas->node)) && 3634 (mas_mt_height(wr_mas->mas) > 1)) 3635 return mas_rebalance(wr_mas->mas, b_node); 3636 3637 if (b_end >= mt_slots[b_type]) 3638 return mas_split(wr_mas->mas, b_node); 3639 3640 if (mas_reuse_node(wr_mas, b_node, end)) 3641 goto reuse_node; 3642 3643 mas_node_count(wr_mas->mas, 1); 3644 if (mas_is_err(wr_mas->mas)) 3645 return 0; 3646 3647 node = mas_pop_node(wr_mas->mas); 3648 node->parent = mas_mn(wr_mas->mas)->parent; 3649 wr_mas->mas->node = mt_mk_node(node, b_type); 3650 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3651 mas_replace(wr_mas->mas, false); 3652 reuse_node: 3653 mas_update_gap(wr_mas->mas); 3654 return 1; 3655 } 3656 3657 /* 3658 * mas_root_expand() - Expand a root to a node 3659 * @mas: The maple state 3660 * @entry: The entry to store into the tree 3661 */ 3662 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3663 { 3664 void *contents = mas_root_locked(mas); 3665 enum maple_type type = maple_leaf_64; 3666 struct maple_node *node; 3667 void __rcu **slots; 3668 unsigned long *pivots; 3669 int slot = 0; 3670 3671 mas_node_count(mas, 1); 3672 if (unlikely(mas_is_err(mas))) 3673 return 0; 3674 3675 node = mas_pop_node(mas); 3676 pivots = ma_pivots(node, type); 3677 slots = ma_slots(node, type); 3678 node->parent = ma_parent_ptr( 3679 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3680 mas->node = mt_mk_node(node, type); 3681 3682 if (mas->index) { 3683 if (contents) { 3684 rcu_assign_pointer(slots[slot], contents); 3685 if (likely(mas->index > 1)) 3686 slot++; 3687 } 3688 pivots[slot++] = mas->index - 1; 3689 } 3690 3691 rcu_assign_pointer(slots[slot], entry); 3692 mas->offset = slot; 3693 pivots[slot] = mas->last; 3694 if (mas->last != ULONG_MAX) 3695 slot++; 3696 mas->depth = 1; 3697 mas_set_height(mas); 3698 ma_set_meta(node, maple_leaf_64, 0, slot); 3699 /* swap the new root into the tree */ 3700 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3701 return slot; 3702 } 3703 3704 static inline void mas_store_root(struct ma_state *mas, void *entry) 3705 { 3706 if (likely((mas->last != 0) || (mas->index != 0))) 3707 mas_root_expand(mas, entry); 3708 else if (((unsigned long) (entry) & 3) == 2) 3709 mas_root_expand(mas, entry); 3710 else { 3711 rcu_assign_pointer(mas->tree->ma_root, entry); 3712 mas->node = MAS_START; 3713 } 3714 } 3715 3716 /* 3717 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3718 * spans the node. 3719 * @mas: The maple state 3720 * @piv: The pivot value being written 3721 * @type: The maple node type 3722 * @entry: The data to write 3723 * 3724 * Spanning writes are writes that start in one node and end in another OR if 3725 * the write of a %NULL will cause the node to end with a %NULL. 3726 * 3727 * Return: True if this is a spanning write, false otherwise. 3728 */ 3729 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3730 { 3731 unsigned long max; 3732 unsigned long last = wr_mas->mas->last; 3733 unsigned long piv = wr_mas->r_max; 3734 enum maple_type type = wr_mas->type; 3735 void *entry = wr_mas->entry; 3736 3737 /* Contained in this pivot */ 3738 if (piv > last) 3739 return false; 3740 3741 max = wr_mas->mas->max; 3742 if (unlikely(ma_is_leaf(type))) { 3743 /* Fits in the node, but may span slots. */ 3744 if (last < max) 3745 return false; 3746 3747 /* Writes to the end of the node but not null. */ 3748 if ((last == max) && entry) 3749 return false; 3750 3751 /* 3752 * Writing ULONG_MAX is not a spanning write regardless of the 3753 * value being written as long as the range fits in the node. 3754 */ 3755 if ((last == ULONG_MAX) && (last == max)) 3756 return false; 3757 } else if (piv == last) { 3758 if (entry) 3759 return false; 3760 3761 /* Detect spanning store wr walk */ 3762 if (last == ULONG_MAX) 3763 return false; 3764 } 3765 3766 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3767 3768 return true; 3769 } 3770 3771 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3772 { 3773 wr_mas->type = mte_node_type(wr_mas->mas->node); 3774 mas_wr_node_walk(wr_mas); 3775 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3776 } 3777 3778 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3779 { 3780 wr_mas->mas->max = wr_mas->r_max; 3781 wr_mas->mas->min = wr_mas->r_min; 3782 wr_mas->mas->node = wr_mas->content; 3783 wr_mas->mas->offset = 0; 3784 wr_mas->mas->depth++; 3785 } 3786 /* 3787 * mas_wr_walk() - Walk the tree for a write. 3788 * @wr_mas: The maple write state 3789 * 3790 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3791 * 3792 * Return: True if it's contained in a node, false on spanning write. 3793 */ 3794 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3795 { 3796 struct ma_state *mas = wr_mas->mas; 3797 3798 while (true) { 3799 mas_wr_walk_descend(wr_mas); 3800 if (unlikely(mas_is_span_wr(wr_mas))) 3801 return false; 3802 3803 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3804 mas->offset); 3805 if (ma_is_leaf(wr_mas->type)) 3806 return true; 3807 3808 mas_wr_walk_traverse(wr_mas); 3809 } 3810 3811 return true; 3812 } 3813 3814 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3815 { 3816 struct ma_state *mas = wr_mas->mas; 3817 3818 while (true) { 3819 mas_wr_walk_descend(wr_mas); 3820 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3821 mas->offset); 3822 if (ma_is_leaf(wr_mas->type)) 3823 return true; 3824 mas_wr_walk_traverse(wr_mas); 3825 3826 } 3827 return true; 3828 } 3829 /* 3830 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3831 * @l_wr_mas: The left maple write state 3832 * @r_wr_mas: The right maple write state 3833 */ 3834 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3835 struct ma_wr_state *r_wr_mas) 3836 { 3837 struct ma_state *r_mas = r_wr_mas->mas; 3838 struct ma_state *l_mas = l_wr_mas->mas; 3839 unsigned char l_slot; 3840 3841 l_slot = l_mas->offset; 3842 if (!l_wr_mas->content) 3843 l_mas->index = l_wr_mas->r_min; 3844 3845 if ((l_mas->index == l_wr_mas->r_min) && 3846 (l_slot && 3847 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3848 if (l_slot > 1) 3849 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3850 else 3851 l_mas->index = l_mas->min; 3852 3853 l_mas->offset = l_slot - 1; 3854 } 3855 3856 if (!r_wr_mas->content) { 3857 if (r_mas->last < r_wr_mas->r_max) 3858 r_mas->last = r_wr_mas->r_max; 3859 r_mas->offset++; 3860 } else if ((r_mas->last == r_wr_mas->r_max) && 3861 (r_mas->last < r_mas->max) && 3862 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3863 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3864 r_wr_mas->type, r_mas->offset + 1); 3865 r_mas->offset++; 3866 } 3867 } 3868 3869 static inline void *mas_state_walk(struct ma_state *mas) 3870 { 3871 void *entry; 3872 3873 entry = mas_start(mas); 3874 if (mas_is_none(mas)) 3875 return NULL; 3876 3877 if (mas_is_ptr(mas)) 3878 return entry; 3879 3880 return mtree_range_walk(mas); 3881 } 3882 3883 /* 3884 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3885 * to date. 3886 * 3887 * @mas: The maple state. 3888 * 3889 * Note: Leaves mas in undesirable state. 3890 * Return: The entry for @mas->index or %NULL on dead node. 3891 */ 3892 static inline void *mtree_lookup_walk(struct ma_state *mas) 3893 { 3894 unsigned long *pivots; 3895 unsigned char offset; 3896 struct maple_node *node; 3897 struct maple_enode *next; 3898 enum maple_type type; 3899 void __rcu **slots; 3900 unsigned char end; 3901 unsigned long max; 3902 3903 next = mas->node; 3904 max = ULONG_MAX; 3905 do { 3906 offset = 0; 3907 node = mte_to_node(next); 3908 type = mte_node_type(next); 3909 pivots = ma_pivots(node, type); 3910 end = ma_data_end(node, type, pivots, max); 3911 if (unlikely(ma_dead_node(node))) 3912 goto dead_node; 3913 do { 3914 if (pivots[offset] >= mas->index) { 3915 max = pivots[offset]; 3916 break; 3917 } 3918 } while (++offset < end); 3919 3920 slots = ma_slots(node, type); 3921 next = mt_slot(mas->tree, slots, offset); 3922 if (unlikely(ma_dead_node(node))) 3923 goto dead_node; 3924 } while (!ma_is_leaf(type)); 3925 3926 return (void *)next; 3927 3928 dead_node: 3929 mas_reset(mas); 3930 return NULL; 3931 } 3932 3933 /* 3934 * mas_new_root() - Create a new root node that only contains the entry passed 3935 * in. 3936 * @mas: The maple state 3937 * @entry: The entry to store. 3938 * 3939 * Only valid when the index == 0 and the last == ULONG_MAX 3940 * 3941 * Return 0 on error, 1 on success. 3942 */ 3943 static inline int mas_new_root(struct ma_state *mas, void *entry) 3944 { 3945 struct maple_enode *root = mas_root_locked(mas); 3946 enum maple_type type = maple_leaf_64; 3947 struct maple_node *node; 3948 void __rcu **slots; 3949 unsigned long *pivots; 3950 3951 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3952 mas->depth = 0; 3953 mas_set_height(mas); 3954 rcu_assign_pointer(mas->tree->ma_root, entry); 3955 mas->node = MAS_START; 3956 goto done; 3957 } 3958 3959 mas_node_count(mas, 1); 3960 if (mas_is_err(mas)) 3961 return 0; 3962 3963 node = mas_pop_node(mas); 3964 pivots = ma_pivots(node, type); 3965 slots = ma_slots(node, type); 3966 node->parent = ma_parent_ptr( 3967 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3968 mas->node = mt_mk_node(node, type); 3969 rcu_assign_pointer(slots[0], entry); 3970 pivots[0] = mas->last; 3971 mas->depth = 1; 3972 mas_set_height(mas); 3973 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3974 3975 done: 3976 if (xa_is_node(root)) 3977 mte_destroy_walk(root, mas->tree); 3978 3979 return 1; 3980 } 3981 /* 3982 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3983 * and new nodes where necessary, then place the sub-tree in the actual tree. 3984 * Note that mas is expected to point to the node which caused the store to 3985 * span. 3986 * @wr_mas: The maple write state 3987 * 3988 * Return: 0 on error, positive on success. 3989 */ 3990 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3991 { 3992 struct maple_subtree_state mast; 3993 struct maple_big_node b_node; 3994 struct ma_state *mas; 3995 unsigned char height; 3996 3997 /* Left and Right side of spanning store */ 3998 MA_STATE(l_mas, NULL, 0, 0); 3999 MA_STATE(r_mas, NULL, 0, 0); 4000 4001 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 4002 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 4003 4004 /* 4005 * A store operation that spans multiple nodes is called a spanning 4006 * store and is handled early in the store call stack by the function 4007 * mas_is_span_wr(). When a spanning store is identified, the maple 4008 * state is duplicated. The first maple state walks the left tree path 4009 * to ``index``, the duplicate walks the right tree path to ``last``. 4010 * The data in the two nodes are combined into a single node, two nodes, 4011 * or possibly three nodes (see the 3-way split above). A ``NULL`` 4012 * written to the last entry of a node is considered a spanning store as 4013 * a rebalance is required for the operation to complete and an overflow 4014 * of data may happen. 4015 */ 4016 mas = wr_mas->mas; 4017 trace_ma_op(__func__, mas); 4018 4019 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 4020 return mas_new_root(mas, wr_mas->entry); 4021 /* 4022 * Node rebalancing may occur due to this store, so there may be three new 4023 * entries per level plus a new root. 4024 */ 4025 height = mas_mt_height(mas); 4026 mas_node_count(mas, 1 + height * 3); 4027 if (mas_is_err(mas)) 4028 return 0; 4029 4030 /* 4031 * Set up right side. Need to get to the next offset after the spanning 4032 * store to ensure it's not NULL and to combine both the next node and 4033 * the node with the start together. 4034 */ 4035 r_mas = *mas; 4036 /* Avoid overflow, walk to next slot in the tree. */ 4037 if (r_mas.last + 1) 4038 r_mas.last++; 4039 4040 r_mas.index = r_mas.last; 4041 mas_wr_walk_index(&r_wr_mas); 4042 r_mas.last = r_mas.index = mas->last; 4043 4044 /* Set up left side. */ 4045 l_mas = *mas; 4046 mas_wr_walk_index(&l_wr_mas); 4047 4048 if (!wr_mas->entry) { 4049 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4050 mas->offset = l_mas.offset; 4051 mas->index = l_mas.index; 4052 mas->last = l_mas.last = r_mas.last; 4053 } 4054 4055 /* expanding NULLs may make this cover the entire range */ 4056 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4057 mas_set_range(mas, 0, ULONG_MAX); 4058 return mas_new_root(mas, wr_mas->entry); 4059 } 4060 4061 memset(&b_node, 0, sizeof(struct maple_big_node)); 4062 /* Copy l_mas and store the value in b_node. */ 4063 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4064 /* Copy r_mas into b_node. */ 4065 if (r_mas.offset <= r_wr_mas.node_end) 4066 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4067 &b_node, b_node.b_end + 1); 4068 else 4069 b_node.b_end++; 4070 4071 /* Stop spanning searches by searching for just index. */ 4072 l_mas.index = l_mas.last = mas->index; 4073 4074 mast.bn = &b_node; 4075 mast.orig_l = &l_mas; 4076 mast.orig_r = &r_mas; 4077 /* Combine l_mas and r_mas and split them up evenly again. */ 4078 return mas_spanning_rebalance(mas, &mast, height + 1); 4079 } 4080 4081 /* 4082 * mas_wr_node_store() - Attempt to store the value in a node 4083 * @wr_mas: The maple write state 4084 * 4085 * Attempts to reuse the node, but may allocate. 4086 * 4087 * Return: True if stored, false otherwise 4088 */ 4089 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4090 { 4091 struct ma_state *mas = wr_mas->mas; 4092 void __rcu **dst_slots; 4093 unsigned long *dst_pivots; 4094 unsigned char dst_offset; 4095 unsigned char new_end = wr_mas->node_end; 4096 unsigned char offset; 4097 unsigned char node_slots = mt_slots[wr_mas->type]; 4098 struct maple_node reuse, *newnode; 4099 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4100 bool in_rcu = mt_in_rcu(mas->tree); 4101 4102 offset = mas->offset; 4103 if (mas->last == wr_mas->r_max) { 4104 /* runs right to the end of the node */ 4105 if (mas->last == mas->max) 4106 new_end = offset; 4107 /* don't copy this offset */ 4108 wr_mas->offset_end++; 4109 } else if (mas->last < wr_mas->r_max) { 4110 /* new range ends in this range */ 4111 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4112 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4113 4114 new_end++; 4115 } else { 4116 if (wr_mas->end_piv == mas->last) 4117 wr_mas->offset_end++; 4118 4119 new_end -= wr_mas->offset_end - offset - 1; 4120 } 4121 4122 /* new range starts within a range */ 4123 if (wr_mas->r_min < mas->index) 4124 new_end++; 4125 4126 /* Not enough room */ 4127 if (new_end >= node_slots) 4128 return false; 4129 4130 /* Not enough data. */ 4131 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4132 !(mas->mas_flags & MA_STATE_BULK)) 4133 return false; 4134 4135 /* set up node. */ 4136 if (in_rcu) { 4137 mas_node_count(mas, 1); 4138 if (mas_is_err(mas)) 4139 return false; 4140 4141 newnode = mas_pop_node(mas); 4142 } else { 4143 memset(&reuse, 0, sizeof(struct maple_node)); 4144 newnode = &reuse; 4145 } 4146 4147 newnode->parent = mas_mn(mas)->parent; 4148 dst_pivots = ma_pivots(newnode, wr_mas->type); 4149 dst_slots = ma_slots(newnode, wr_mas->type); 4150 /* Copy from start to insert point */ 4151 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4152 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4153 dst_offset = offset; 4154 4155 /* Handle insert of new range starting after old range */ 4156 if (wr_mas->r_min < mas->index) { 4157 mas->offset++; 4158 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4159 dst_pivots[dst_offset++] = mas->index - 1; 4160 } 4161 4162 /* Store the new entry and range end. */ 4163 if (dst_offset < max_piv) 4164 dst_pivots[dst_offset] = mas->last; 4165 mas->offset = dst_offset; 4166 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4167 4168 /* 4169 * this range wrote to the end of the node or it overwrote the rest of 4170 * the data 4171 */ 4172 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4173 new_end = dst_offset; 4174 goto done; 4175 } 4176 4177 dst_offset++; 4178 /* Copy to the end of node if necessary. */ 4179 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4180 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4181 sizeof(void *) * copy_size); 4182 if (dst_offset < max_piv) { 4183 if (copy_size > max_piv - dst_offset) 4184 copy_size = max_piv - dst_offset; 4185 4186 memcpy(dst_pivots + dst_offset, 4187 wr_mas->pivots + wr_mas->offset_end, 4188 sizeof(unsigned long) * copy_size); 4189 } 4190 4191 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4192 dst_pivots[new_end] = mas->max; 4193 4194 done: 4195 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4196 if (in_rcu) { 4197 mte_set_node_dead(mas->node); 4198 mas->node = mt_mk_node(newnode, wr_mas->type); 4199 mas_replace(mas, false); 4200 } else { 4201 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4202 } 4203 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4204 mas_update_gap(mas); 4205 return true; 4206 } 4207 4208 /* 4209 * mas_wr_slot_store: Attempt to store a value in a slot. 4210 * @wr_mas: the maple write state 4211 * 4212 * Return: True if stored, false otherwise 4213 */ 4214 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4215 { 4216 struct ma_state *mas = wr_mas->mas; 4217 unsigned long lmax; /* Logical max. */ 4218 unsigned char offset = mas->offset; 4219 4220 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4221 (offset != wr_mas->node_end))) 4222 return false; 4223 4224 if (offset == wr_mas->node_end - 1) 4225 lmax = mas->max; 4226 else 4227 lmax = wr_mas->pivots[offset + 1]; 4228 4229 /* going to overwrite too many slots. */ 4230 if (lmax < mas->last) 4231 return false; 4232 4233 if (wr_mas->r_min == mas->index) { 4234 /* overwriting two or more ranges with one. */ 4235 if (lmax == mas->last) 4236 return false; 4237 4238 /* Overwriting all of offset and a portion of offset + 1. */ 4239 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4240 wr_mas->pivots[offset] = mas->last; 4241 goto done; 4242 } 4243 4244 /* Doesn't end on the next range end. */ 4245 if (lmax != mas->last) 4246 return false; 4247 4248 /* Overwriting a portion of offset and all of offset + 1 */ 4249 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4250 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4251 wr_mas->pivots[offset + 1] = mas->last; 4252 4253 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4254 wr_mas->pivots[offset] = mas->index - 1; 4255 mas->offset++; /* Keep mas accurate. */ 4256 4257 done: 4258 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4259 mas_update_gap(mas); 4260 return true; 4261 } 4262 4263 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4264 { 4265 while ((wr_mas->offset_end < wr_mas->node_end) && 4266 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4267 wr_mas->offset_end++; 4268 4269 if (wr_mas->offset_end < wr_mas->node_end) 4270 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4271 else 4272 wr_mas->end_piv = wr_mas->mas->max; 4273 } 4274 4275 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4276 { 4277 struct ma_state *mas = wr_mas->mas; 4278 4279 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4280 mas->last = wr_mas->end_piv; 4281 4282 /* Check next slot(s) if we are overwriting the end */ 4283 if ((mas->last == wr_mas->end_piv) && 4284 (wr_mas->node_end != wr_mas->offset_end) && 4285 !wr_mas->slots[wr_mas->offset_end + 1]) { 4286 wr_mas->offset_end++; 4287 if (wr_mas->offset_end == wr_mas->node_end) 4288 mas->last = mas->max; 4289 else 4290 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4291 wr_mas->end_piv = mas->last; 4292 } 4293 4294 if (!wr_mas->content) { 4295 /* If this one is null, the next and prev are not */ 4296 mas->index = wr_mas->r_min; 4297 } else { 4298 /* Check prev slot if we are overwriting the start */ 4299 if (mas->index == wr_mas->r_min && mas->offset && 4300 !wr_mas->slots[mas->offset - 1]) { 4301 mas->offset--; 4302 wr_mas->r_min = mas->index = 4303 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4304 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4305 } 4306 } 4307 } 4308 4309 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4310 { 4311 unsigned char end = wr_mas->node_end; 4312 unsigned char new_end = end + 1; 4313 struct ma_state *mas = wr_mas->mas; 4314 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4315 4316 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4317 if (new_end < node_pivots) 4318 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4319 4320 if (new_end < node_pivots) 4321 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4322 4323 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4324 mas->offset = new_end; 4325 wr_mas->pivots[end] = mas->index - 1; 4326 4327 return true; 4328 } 4329 4330 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4331 if (new_end < node_pivots) 4332 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4333 4334 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4335 if (new_end < node_pivots) 4336 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4337 4338 wr_mas->pivots[end] = mas->last; 4339 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4340 return true; 4341 } 4342 4343 return false; 4344 } 4345 4346 /* 4347 * mas_wr_bnode() - Slow path for a modification. 4348 * @wr_mas: The write maple state 4349 * 4350 * This is where split, rebalance end up. 4351 */ 4352 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4353 { 4354 struct maple_big_node b_node; 4355 4356 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4357 memset(&b_node, 0, sizeof(struct maple_big_node)); 4358 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4359 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4360 } 4361 4362 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4363 { 4364 unsigned char node_slots; 4365 unsigned char node_size; 4366 struct ma_state *mas = wr_mas->mas; 4367 4368 /* Direct replacement */ 4369 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4370 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4371 if (!!wr_mas->entry ^ !!wr_mas->content) 4372 mas_update_gap(mas); 4373 return; 4374 } 4375 4376 /* Attempt to append */ 4377 node_slots = mt_slots[wr_mas->type]; 4378 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4379 if (mas->max == ULONG_MAX) 4380 node_size++; 4381 4382 /* slot and node store will not fit, go to the slow path */ 4383 if (unlikely(node_size >= node_slots)) 4384 goto slow_path; 4385 4386 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4387 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4388 if (!wr_mas->content || !wr_mas->entry) 4389 mas_update_gap(mas); 4390 return; 4391 } 4392 4393 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4394 return; 4395 else if (mas_wr_node_store(wr_mas)) 4396 return; 4397 4398 if (mas_is_err(mas)) 4399 return; 4400 4401 slow_path: 4402 mas_wr_bnode(wr_mas); 4403 } 4404 4405 /* 4406 * mas_wr_store_entry() - Internal call to store a value 4407 * @mas: The maple state 4408 * @entry: The entry to store. 4409 * 4410 * Return: The contents that was stored at the index. 4411 */ 4412 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4413 { 4414 struct ma_state *mas = wr_mas->mas; 4415 4416 wr_mas->content = mas_start(mas); 4417 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4418 mas_store_root(mas, wr_mas->entry); 4419 return wr_mas->content; 4420 } 4421 4422 if (unlikely(!mas_wr_walk(wr_mas))) { 4423 mas_wr_spanning_store(wr_mas); 4424 return wr_mas->content; 4425 } 4426 4427 /* At this point, we are at the leaf node that needs to be altered. */ 4428 mas_wr_end_piv(wr_mas); 4429 4430 if (!wr_mas->entry) 4431 mas_wr_extend_null(wr_mas); 4432 4433 /* New root for a single pointer */ 4434 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4435 mas_new_root(mas, wr_mas->entry); 4436 return wr_mas->content; 4437 } 4438 4439 mas_wr_modify(wr_mas); 4440 return wr_mas->content; 4441 } 4442 4443 /** 4444 * mas_insert() - Internal call to insert a value 4445 * @mas: The maple state 4446 * @entry: The entry to store 4447 * 4448 * Return: %NULL or the contents that already exists at the requested index 4449 * otherwise. The maple state needs to be checked for error conditions. 4450 */ 4451 static inline void *mas_insert(struct ma_state *mas, void *entry) 4452 { 4453 MA_WR_STATE(wr_mas, mas, entry); 4454 4455 /* 4456 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4457 * tree. If the insert fits exactly into an existing gap with a value 4458 * of NULL, then the slot only needs to be written with the new value. 4459 * If the range being inserted is adjacent to another range, then only a 4460 * single pivot needs to be inserted (as well as writing the entry). If 4461 * the new range is within a gap but does not touch any other ranges, 4462 * then two pivots need to be inserted: the start - 1, and the end. As 4463 * usual, the entry must be written. Most operations require a new node 4464 * to be allocated and replace an existing node to ensure RCU safety, 4465 * when in RCU mode. The exception to requiring a newly allocated node 4466 * is when inserting at the end of a node (appending). When done 4467 * carefully, appending can reuse the node in place. 4468 */ 4469 wr_mas.content = mas_start(mas); 4470 if (wr_mas.content) 4471 goto exists; 4472 4473 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4474 mas_store_root(mas, entry); 4475 return NULL; 4476 } 4477 4478 /* spanning writes always overwrite something */ 4479 if (!mas_wr_walk(&wr_mas)) 4480 goto exists; 4481 4482 /* At this point, we are at the leaf node that needs to be altered. */ 4483 wr_mas.offset_end = mas->offset; 4484 wr_mas.end_piv = wr_mas.r_max; 4485 4486 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4487 goto exists; 4488 4489 if (!entry) 4490 return NULL; 4491 4492 mas_wr_modify(&wr_mas); 4493 return wr_mas.content; 4494 4495 exists: 4496 mas_set_err(mas, -EEXIST); 4497 return wr_mas.content; 4498 4499 } 4500 4501 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4502 { 4503 retry: 4504 mas_set(mas, index); 4505 mas_state_walk(mas); 4506 if (mas_is_start(mas)) 4507 goto retry; 4508 } 4509 4510 static inline bool mas_rewalk_if_dead(struct ma_state *mas, 4511 struct maple_node *node, const unsigned long index) 4512 { 4513 if (unlikely(ma_dead_node(node))) { 4514 mas_rewalk(mas, index); 4515 return true; 4516 } 4517 return false; 4518 } 4519 4520 /* 4521 * mas_prev_node() - Find the prev non-null entry at the same level in the 4522 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4523 * @mas: The maple state 4524 * @min: The lower limit to search 4525 * 4526 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4527 * Return: 1 if the node is dead, 0 otherwise. 4528 */ 4529 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4530 { 4531 enum maple_type mt; 4532 int offset, level; 4533 void __rcu **slots; 4534 struct maple_node *node; 4535 unsigned long *pivots; 4536 unsigned long max; 4537 4538 node = mas_mn(mas); 4539 if (!mas->min) 4540 goto no_entry; 4541 4542 max = mas->min - 1; 4543 if (max < min) 4544 goto no_entry; 4545 4546 level = 0; 4547 do { 4548 if (ma_is_root(node)) 4549 goto no_entry; 4550 4551 /* Walk up. */ 4552 if (unlikely(mas_ascend(mas))) 4553 return 1; 4554 offset = mas->offset; 4555 level++; 4556 node = mas_mn(mas); 4557 } while (!offset); 4558 4559 offset--; 4560 mt = mte_node_type(mas->node); 4561 while (level > 1) { 4562 level--; 4563 slots = ma_slots(node, mt); 4564 mas->node = mas_slot(mas, slots, offset); 4565 if (unlikely(ma_dead_node(node))) 4566 return 1; 4567 4568 mt = mte_node_type(mas->node); 4569 node = mas_mn(mas); 4570 pivots = ma_pivots(node, mt); 4571 offset = ma_data_end(node, mt, pivots, max); 4572 if (unlikely(ma_dead_node(node))) 4573 return 1; 4574 } 4575 4576 slots = ma_slots(node, mt); 4577 mas->node = mas_slot(mas, slots, offset); 4578 pivots = ma_pivots(node, mt); 4579 if (unlikely(ma_dead_node(node))) 4580 return 1; 4581 4582 if (likely(offset)) 4583 mas->min = pivots[offset - 1] + 1; 4584 mas->max = max; 4585 mas->offset = mas_data_end(mas); 4586 if (unlikely(mte_dead_node(mas->node))) 4587 return 1; 4588 4589 return 0; 4590 4591 no_entry: 4592 if (unlikely(ma_dead_node(node))) 4593 return 1; 4594 4595 mas->node = MAS_NONE; 4596 return 0; 4597 } 4598 4599 /* 4600 * mas_prev_slot() - Get the entry in the previous slot 4601 * 4602 * @mas: The maple state 4603 * @max: The minimum starting range 4604 * 4605 * Return: The entry in the previous slot which is possibly NULL 4606 */ 4607 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4608 { 4609 void *entry; 4610 void __rcu **slots; 4611 unsigned long pivot; 4612 enum maple_type type; 4613 unsigned long *pivots; 4614 struct maple_node *node; 4615 unsigned long save_point = mas->index; 4616 4617 retry: 4618 node = mas_mn(mas); 4619 type = mte_node_type(mas->node); 4620 pivots = ma_pivots(node, type); 4621 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4622 goto retry; 4623 4624 again: 4625 if (mas->min <= min) { 4626 pivot = mas_safe_min(mas, pivots, mas->offset); 4627 4628 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4629 goto retry; 4630 4631 if (pivot <= min) 4632 return NULL; 4633 } 4634 4635 if (likely(mas->offset)) { 4636 mas->offset--; 4637 mas->last = mas->index - 1; 4638 mas->index = mas_safe_min(mas, pivots, mas->offset); 4639 } else { 4640 if (mas_prev_node(mas, min)) { 4641 mas_rewalk(mas, save_point); 4642 goto retry; 4643 } 4644 4645 if (mas_is_none(mas)) 4646 return NULL; 4647 4648 mas->last = mas->max; 4649 node = mas_mn(mas); 4650 type = mte_node_type(mas->node); 4651 pivots = ma_pivots(node, type); 4652 mas->index = pivots[mas->offset - 1] + 1; 4653 } 4654 4655 slots = ma_slots(node, type); 4656 entry = mas_slot(mas, slots, mas->offset); 4657 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4658 goto retry; 4659 4660 if (likely(entry)) 4661 return entry; 4662 4663 if (!empty) 4664 goto again; 4665 4666 return entry; 4667 } 4668 4669 /* 4670 * mas_next_node() - Get the next node at the same level in the tree. 4671 * @mas: The maple state 4672 * @max: The maximum pivot value to check. 4673 * 4674 * The next value will be mas->node[mas->offset] or MAS_NONE. 4675 * Return: 1 on dead node, 0 otherwise. 4676 */ 4677 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4678 unsigned long max) 4679 { 4680 unsigned long min; 4681 unsigned long *pivots; 4682 struct maple_enode *enode; 4683 int level = 0; 4684 unsigned char node_end; 4685 enum maple_type mt; 4686 void __rcu **slots; 4687 4688 if (mas->max >= max) 4689 goto no_entry; 4690 4691 min = mas->max + 1; 4692 level = 0; 4693 do { 4694 if (ma_is_root(node)) 4695 goto no_entry; 4696 4697 /* Walk up. */ 4698 if (unlikely(mas_ascend(mas))) 4699 return 1; 4700 4701 level++; 4702 node = mas_mn(mas); 4703 mt = mte_node_type(mas->node); 4704 pivots = ma_pivots(node, mt); 4705 node_end = ma_data_end(node, mt, pivots, mas->max); 4706 if (unlikely(ma_dead_node(node))) 4707 return 1; 4708 4709 } while (unlikely(mas->offset == node_end)); 4710 4711 slots = ma_slots(node, mt); 4712 mas->offset++; 4713 enode = mas_slot(mas, slots, mas->offset); 4714 if (unlikely(ma_dead_node(node))) 4715 return 1; 4716 4717 if (level > 1) 4718 mas->offset = 0; 4719 4720 while (unlikely(level > 1)) { 4721 level--; 4722 mas->node = enode; 4723 node = mas_mn(mas); 4724 mt = mte_node_type(mas->node); 4725 slots = ma_slots(node, mt); 4726 enode = mas_slot(mas, slots, 0); 4727 if (unlikely(ma_dead_node(node))) 4728 return 1; 4729 } 4730 4731 if (!mas->offset) 4732 pivots = ma_pivots(node, mt); 4733 4734 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4735 if (unlikely(ma_dead_node(node))) 4736 return 1; 4737 4738 mas->node = enode; 4739 mas->min = min; 4740 return 0; 4741 4742 no_entry: 4743 if (unlikely(ma_dead_node(node))) 4744 return 1; 4745 4746 mas->node = MAS_NONE; 4747 return 0; 4748 } 4749 4750 /* 4751 * mas_next_slot() - Get the entry in the next slot 4752 * 4753 * @mas: The maple state 4754 * @max: The maximum starting range 4755 * @empty: Can be empty 4756 * 4757 * Return: The entry in the next slot which is possibly NULL 4758 */ 4759 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4760 { 4761 void __rcu **slots; 4762 unsigned long *pivots; 4763 unsigned long pivot; 4764 enum maple_type type; 4765 struct maple_node *node; 4766 unsigned char data_end; 4767 unsigned long save_point = mas->last; 4768 void *entry; 4769 4770 retry: 4771 node = mas_mn(mas); 4772 type = mte_node_type(mas->node); 4773 pivots = ma_pivots(node, type); 4774 data_end = ma_data_end(node, type, pivots, mas->max); 4775 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4776 goto retry; 4777 4778 again: 4779 if (mas->max >= max) { 4780 if (likely(mas->offset < data_end)) 4781 pivot = pivots[mas->offset]; 4782 else 4783 return NULL; /* must be mas->max */ 4784 4785 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4786 goto retry; 4787 4788 if (pivot >= max) 4789 return NULL; 4790 } 4791 4792 if (likely(mas->offset < data_end)) { 4793 mas->index = pivots[mas->offset] + 1; 4794 mas->offset++; 4795 if (likely(mas->offset < data_end)) 4796 mas->last = pivots[mas->offset]; 4797 else 4798 mas->last = mas->max; 4799 } else { 4800 if (mas_next_node(mas, node, max)) { 4801 mas_rewalk(mas, save_point); 4802 goto retry; 4803 } 4804 4805 if (mas_is_none(mas)) 4806 return NULL; 4807 4808 mas->offset = 0; 4809 mas->index = mas->min; 4810 node = mas_mn(mas); 4811 type = mte_node_type(mas->node); 4812 pivots = ma_pivots(node, type); 4813 mas->last = pivots[0]; 4814 } 4815 4816 slots = ma_slots(node, type); 4817 entry = mt_slot(mas->tree, slots, mas->offset); 4818 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4819 goto retry; 4820 4821 if (entry) 4822 return entry; 4823 4824 if (!empty) { 4825 if (!mas->offset) 4826 data_end = 2; 4827 goto again; 4828 } 4829 4830 return entry; 4831 } 4832 4833 /* 4834 * mas_next_entry() - Internal function to get the next entry. 4835 * @mas: The maple state 4836 * @limit: The maximum range start. 4837 * 4838 * Set the @mas->node to the next entry and the range_start to 4839 * the beginning value for the entry. Does not check beyond @limit. 4840 * Sets @mas->index and @mas->last to the limit if it is hit. 4841 * Restarts on dead nodes. 4842 * 4843 * Return: the next entry or %NULL. 4844 */ 4845 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4846 { 4847 if (mas->last >= limit) 4848 return NULL; 4849 4850 return mas_next_slot(mas, limit, false); 4851 } 4852 4853 /* 4854 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4855 * highest gap address of a given size in a given node and descend. 4856 * @mas: The maple state 4857 * @size: The needed size. 4858 * 4859 * Return: True if found in a leaf, false otherwise. 4860 * 4861 */ 4862 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4863 unsigned long *gap_min, unsigned long *gap_max) 4864 { 4865 enum maple_type type = mte_node_type(mas->node); 4866 struct maple_node *node = mas_mn(mas); 4867 unsigned long *pivots, *gaps; 4868 void __rcu **slots; 4869 unsigned long gap = 0; 4870 unsigned long max, min; 4871 unsigned char offset; 4872 4873 if (unlikely(mas_is_err(mas))) 4874 return true; 4875 4876 if (ma_is_dense(type)) { 4877 /* dense nodes. */ 4878 mas->offset = (unsigned char)(mas->index - mas->min); 4879 return true; 4880 } 4881 4882 pivots = ma_pivots(node, type); 4883 slots = ma_slots(node, type); 4884 gaps = ma_gaps(node, type); 4885 offset = mas->offset; 4886 min = mas_safe_min(mas, pivots, offset); 4887 /* Skip out of bounds. */ 4888 while (mas->last < min) 4889 min = mas_safe_min(mas, pivots, --offset); 4890 4891 max = mas_safe_pivot(mas, pivots, offset, type); 4892 while (mas->index <= max) { 4893 gap = 0; 4894 if (gaps) 4895 gap = gaps[offset]; 4896 else if (!mas_slot(mas, slots, offset)) 4897 gap = max - min + 1; 4898 4899 if (gap) { 4900 if ((size <= gap) && (size <= mas->last - min + 1)) 4901 break; 4902 4903 if (!gaps) { 4904 /* Skip the next slot, it cannot be a gap. */ 4905 if (offset < 2) 4906 goto ascend; 4907 4908 offset -= 2; 4909 max = pivots[offset]; 4910 min = mas_safe_min(mas, pivots, offset); 4911 continue; 4912 } 4913 } 4914 4915 if (!offset) 4916 goto ascend; 4917 4918 offset--; 4919 max = min - 1; 4920 min = mas_safe_min(mas, pivots, offset); 4921 } 4922 4923 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4924 goto no_space; 4925 4926 if (unlikely(ma_is_leaf(type))) { 4927 mas->offset = offset; 4928 *gap_min = min; 4929 *gap_max = min + gap - 1; 4930 return true; 4931 } 4932 4933 /* descend, only happens under lock. */ 4934 mas->node = mas_slot(mas, slots, offset); 4935 mas->min = min; 4936 mas->max = max; 4937 mas->offset = mas_data_end(mas); 4938 return false; 4939 4940 ascend: 4941 if (!mte_is_root(mas->node)) 4942 return false; 4943 4944 no_space: 4945 mas_set_err(mas, -EBUSY); 4946 return false; 4947 } 4948 4949 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4950 { 4951 enum maple_type type = mte_node_type(mas->node); 4952 unsigned long pivot, min, gap = 0; 4953 unsigned char offset, data_end; 4954 unsigned long *gaps, *pivots; 4955 void __rcu **slots; 4956 struct maple_node *node; 4957 bool found = false; 4958 4959 if (ma_is_dense(type)) { 4960 mas->offset = (unsigned char)(mas->index - mas->min); 4961 return true; 4962 } 4963 4964 node = mas_mn(mas); 4965 pivots = ma_pivots(node, type); 4966 slots = ma_slots(node, type); 4967 gaps = ma_gaps(node, type); 4968 offset = mas->offset; 4969 min = mas_safe_min(mas, pivots, offset); 4970 data_end = ma_data_end(node, type, pivots, mas->max); 4971 for (; offset <= data_end; offset++) { 4972 pivot = mas_logical_pivot(mas, pivots, offset, type); 4973 4974 /* Not within lower bounds */ 4975 if (mas->index > pivot) 4976 goto next_slot; 4977 4978 if (gaps) 4979 gap = gaps[offset]; 4980 else if (!mas_slot(mas, slots, offset)) 4981 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4982 else 4983 goto next_slot; 4984 4985 if (gap >= size) { 4986 if (ma_is_leaf(type)) { 4987 found = true; 4988 goto done; 4989 } 4990 if (mas->index <= pivot) { 4991 mas->node = mas_slot(mas, slots, offset); 4992 mas->min = min; 4993 mas->max = pivot; 4994 offset = 0; 4995 break; 4996 } 4997 } 4998 next_slot: 4999 min = pivot + 1; 5000 if (mas->last <= pivot) { 5001 mas_set_err(mas, -EBUSY); 5002 return true; 5003 } 5004 } 5005 5006 if (mte_is_root(mas->node)) 5007 found = true; 5008 done: 5009 mas->offset = offset; 5010 return found; 5011 } 5012 5013 /** 5014 * mas_walk() - Search for @mas->index in the tree. 5015 * @mas: The maple state. 5016 * 5017 * mas->index and mas->last will be set to the range if there is a value. If 5018 * mas->node is MAS_NONE, reset to MAS_START. 5019 * 5020 * Return: the entry at the location or %NULL. 5021 */ 5022 void *mas_walk(struct ma_state *mas) 5023 { 5024 void *entry; 5025 5026 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas)) 5027 mas->node = MAS_START; 5028 retry: 5029 entry = mas_state_walk(mas); 5030 if (mas_is_start(mas)) { 5031 goto retry; 5032 } else if (mas_is_none(mas)) { 5033 mas->index = 0; 5034 mas->last = ULONG_MAX; 5035 } else if (mas_is_ptr(mas)) { 5036 if (!mas->index) { 5037 mas->last = 0; 5038 return entry; 5039 } 5040 5041 mas->index = 1; 5042 mas->last = ULONG_MAX; 5043 mas->node = MAS_NONE; 5044 return NULL; 5045 } 5046 5047 return entry; 5048 } 5049 EXPORT_SYMBOL_GPL(mas_walk); 5050 5051 static inline bool mas_rewind_node(struct ma_state *mas) 5052 { 5053 unsigned char slot; 5054 5055 do { 5056 if (mte_is_root(mas->node)) { 5057 slot = mas->offset; 5058 if (!slot) 5059 return false; 5060 } else { 5061 mas_ascend(mas); 5062 slot = mas->offset; 5063 } 5064 } while (!slot); 5065 5066 mas->offset = --slot; 5067 return true; 5068 } 5069 5070 /* 5071 * mas_skip_node() - Internal function. Skip over a node. 5072 * @mas: The maple state. 5073 * 5074 * Return: true if there is another node, false otherwise. 5075 */ 5076 static inline bool mas_skip_node(struct ma_state *mas) 5077 { 5078 if (mas_is_err(mas)) 5079 return false; 5080 5081 do { 5082 if (mte_is_root(mas->node)) { 5083 if (mas->offset >= mas_data_end(mas)) { 5084 mas_set_err(mas, -EBUSY); 5085 return false; 5086 } 5087 } else { 5088 mas_ascend(mas); 5089 } 5090 } while (mas->offset >= mas_data_end(mas)); 5091 5092 mas->offset++; 5093 return true; 5094 } 5095 5096 /* 5097 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5098 * @size 5099 * @mas: The maple state 5100 * @size: The size of the gap required 5101 * 5102 * Search between @mas->index and @mas->last for a gap of @size. 5103 */ 5104 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5105 { 5106 struct maple_enode *last = NULL; 5107 5108 /* 5109 * There are 4 options: 5110 * go to child (descend) 5111 * go back to parent (ascend) 5112 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5113 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5114 */ 5115 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5116 if (last == mas->node) 5117 mas_skip_node(mas); 5118 else 5119 last = mas->node; 5120 } 5121 } 5122 5123 /* 5124 * mas_fill_gap() - Fill a located gap with @entry. 5125 * @mas: The maple state 5126 * @entry: The value to store 5127 * @slot: The offset into the node to store the @entry 5128 * @size: The size of the entry 5129 * @index: The start location 5130 */ 5131 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5132 unsigned char slot, unsigned long size, unsigned long *index) 5133 { 5134 MA_WR_STATE(wr_mas, mas, entry); 5135 unsigned char pslot = mte_parent_slot(mas->node); 5136 struct maple_enode *mn = mas->node; 5137 unsigned long *pivots; 5138 enum maple_type ptype; 5139 /* 5140 * mas->index is the start address for the search 5141 * which may no longer be needed. 5142 * mas->last is the end address for the search 5143 */ 5144 5145 *index = mas->index; 5146 mas->last = mas->index + size - 1; 5147 5148 /* 5149 * It is possible that using mas->max and mas->min to correctly 5150 * calculate the index and last will cause an issue in the gap 5151 * calculation, so fix the ma_state here 5152 */ 5153 mas_ascend(mas); 5154 ptype = mte_node_type(mas->node); 5155 pivots = ma_pivots(mas_mn(mas), ptype); 5156 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5157 mas->min = mas_safe_min(mas, pivots, pslot); 5158 mas->node = mn; 5159 mas->offset = slot; 5160 mas_wr_store_entry(&wr_mas); 5161 } 5162 5163 /* 5164 * mas_sparse_area() - Internal function. Return upper or lower limit when 5165 * searching for a gap in an empty tree. 5166 * @mas: The maple state 5167 * @min: the minimum range 5168 * @max: The maximum range 5169 * @size: The size of the gap 5170 * @fwd: Searching forward or back 5171 */ 5172 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5173 unsigned long max, unsigned long size, bool fwd) 5174 { 5175 if (!unlikely(mas_is_none(mas)) && min == 0) { 5176 min++; 5177 /* 5178 * At this time, min is increased, we need to recheck whether 5179 * the size is satisfied. 5180 */ 5181 if (min > max || max - min + 1 < size) 5182 return -EBUSY; 5183 } 5184 /* mas_is_ptr */ 5185 5186 if (fwd) { 5187 mas->index = min; 5188 mas->last = min + size - 1; 5189 } else { 5190 mas->last = max; 5191 mas->index = max - size + 1; 5192 } 5193 return 0; 5194 } 5195 5196 /* 5197 * mas_empty_area() - Get the lowest address within the range that is 5198 * sufficient for the size requested. 5199 * @mas: The maple state 5200 * @min: The lowest value of the range 5201 * @max: The highest value of the range 5202 * @size: The size needed 5203 */ 5204 int mas_empty_area(struct ma_state *mas, unsigned long min, 5205 unsigned long max, unsigned long size) 5206 { 5207 unsigned char offset; 5208 unsigned long *pivots; 5209 enum maple_type mt; 5210 5211 if (min > max) 5212 return -EINVAL; 5213 5214 if (size == 0 || max - min < size - 1) 5215 return -EINVAL; 5216 5217 if (mas_is_start(mas)) 5218 mas_start(mas); 5219 else if (mas->offset >= 2) 5220 mas->offset -= 2; 5221 else if (!mas_skip_node(mas)) 5222 return -EBUSY; 5223 5224 /* Empty set */ 5225 if (mas_is_none(mas) || mas_is_ptr(mas)) 5226 return mas_sparse_area(mas, min, max, size, true); 5227 5228 /* The start of the window can only be within these values */ 5229 mas->index = min; 5230 mas->last = max; 5231 mas_awalk(mas, size); 5232 5233 if (unlikely(mas_is_err(mas))) 5234 return xa_err(mas->node); 5235 5236 offset = mas->offset; 5237 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5238 return -EBUSY; 5239 5240 mt = mte_node_type(mas->node); 5241 pivots = ma_pivots(mas_mn(mas), mt); 5242 min = mas_safe_min(mas, pivots, offset); 5243 if (mas->index < min) 5244 mas->index = min; 5245 mas->last = mas->index + size - 1; 5246 return 0; 5247 } 5248 EXPORT_SYMBOL_GPL(mas_empty_area); 5249 5250 /* 5251 * mas_empty_area_rev() - Get the highest address within the range that is 5252 * sufficient for the size requested. 5253 * @mas: The maple state 5254 * @min: The lowest value of the range 5255 * @max: The highest value of the range 5256 * @size: The size needed 5257 */ 5258 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5259 unsigned long max, unsigned long size) 5260 { 5261 struct maple_enode *last = mas->node; 5262 5263 if (min > max) 5264 return -EINVAL; 5265 5266 if (size == 0 || max - min < size - 1) 5267 return -EINVAL; 5268 5269 if (mas_is_start(mas)) { 5270 mas_start(mas); 5271 mas->offset = mas_data_end(mas); 5272 } else if (mas->offset >= 2) { 5273 mas->offset -= 2; 5274 } else if (!mas_rewind_node(mas)) { 5275 return -EBUSY; 5276 } 5277 5278 /* Empty set. */ 5279 if (mas_is_none(mas) || mas_is_ptr(mas)) 5280 return mas_sparse_area(mas, min, max, size, false); 5281 5282 /* The start of the window can only be within these values. */ 5283 mas->index = min; 5284 mas->last = max; 5285 5286 while (!mas_rev_awalk(mas, size, &min, &max)) { 5287 if (last == mas->node) { 5288 if (!mas_rewind_node(mas)) 5289 return -EBUSY; 5290 } else { 5291 last = mas->node; 5292 } 5293 } 5294 5295 if (mas_is_err(mas)) 5296 return xa_err(mas->node); 5297 5298 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5299 return -EBUSY; 5300 5301 /* Trim the upper limit to the max. */ 5302 if (max < mas->last) 5303 mas->last = max; 5304 5305 mas->index = mas->last - size + 1; 5306 return 0; 5307 } 5308 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5309 5310 static inline int mas_alloc(struct ma_state *mas, void *entry, 5311 unsigned long size, unsigned long *index) 5312 { 5313 unsigned long min; 5314 5315 mas_start(mas); 5316 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5317 mas_root_expand(mas, entry); 5318 if (mas_is_err(mas)) 5319 return xa_err(mas->node); 5320 5321 if (!mas->index) 5322 return mas_pivot(mas, 0); 5323 return mas_pivot(mas, 1); 5324 } 5325 5326 /* Must be walking a tree. */ 5327 mas_awalk(mas, size); 5328 if (mas_is_err(mas)) 5329 return xa_err(mas->node); 5330 5331 if (mas->offset == MAPLE_NODE_SLOTS) 5332 goto no_gap; 5333 5334 /* 5335 * At this point, mas->node points to the right node and we have an 5336 * offset that has a sufficient gap. 5337 */ 5338 min = mas->min; 5339 if (mas->offset) 5340 min = mas_pivot(mas, mas->offset - 1) + 1; 5341 5342 if (mas_is_err(mas)) 5343 return xa_err(mas->node); 5344 5345 if (mas->index < min) 5346 mas->index = min; 5347 5348 mas_fill_gap(mas, entry, mas->offset, size, index); 5349 return 0; 5350 5351 no_gap: 5352 return -EBUSY; 5353 } 5354 5355 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5356 unsigned long max, void *entry, 5357 unsigned long size, unsigned long *index) 5358 { 5359 int ret = 0; 5360 5361 ret = mas_empty_area_rev(mas, min, max, size); 5362 if (ret) 5363 return ret; 5364 5365 if (mas_is_err(mas)) 5366 return xa_err(mas->node); 5367 5368 if (mas->offset == MAPLE_NODE_SLOTS) 5369 goto no_gap; 5370 5371 mas_fill_gap(mas, entry, mas->offset, size, index); 5372 return 0; 5373 5374 no_gap: 5375 return -EBUSY; 5376 } 5377 5378 /* 5379 * mte_dead_leaves() - Mark all leaves of a node as dead. 5380 * @mas: The maple state 5381 * @slots: Pointer to the slot array 5382 * @type: The maple node type 5383 * 5384 * Must hold the write lock. 5385 * 5386 * Return: The number of leaves marked as dead. 5387 */ 5388 static inline 5389 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5390 void __rcu **slots) 5391 { 5392 struct maple_node *node; 5393 enum maple_type type; 5394 void *entry; 5395 int offset; 5396 5397 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5398 entry = mt_slot(mt, slots, offset); 5399 type = mte_node_type(entry); 5400 node = mte_to_node(entry); 5401 /* Use both node and type to catch LE & BE metadata */ 5402 if (!node || !type) 5403 break; 5404 5405 mte_set_node_dead(entry); 5406 node->type = type; 5407 rcu_assign_pointer(slots[offset], node); 5408 } 5409 5410 return offset; 5411 } 5412 5413 /** 5414 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5415 * @enode: The maple encoded node 5416 * @offset: The starting offset 5417 * 5418 * Note: This can only be used from the RCU callback context. 5419 */ 5420 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5421 { 5422 struct maple_node *node, *next; 5423 void __rcu **slots = NULL; 5424 5425 next = mte_to_node(*enode); 5426 do { 5427 *enode = ma_enode_ptr(next); 5428 node = mte_to_node(*enode); 5429 slots = ma_slots(node, node->type); 5430 next = rcu_dereference_protected(slots[offset], 5431 lock_is_held(&rcu_callback_map)); 5432 offset = 0; 5433 } while (!ma_is_leaf(next->type)); 5434 5435 return slots; 5436 } 5437 5438 /** 5439 * mt_free_walk() - Walk & free a tree in the RCU callback context 5440 * @head: The RCU head that's within the node. 5441 * 5442 * Note: This can only be used from the RCU callback context. 5443 */ 5444 static void mt_free_walk(struct rcu_head *head) 5445 { 5446 void __rcu **slots; 5447 struct maple_node *node, *start; 5448 struct maple_enode *enode; 5449 unsigned char offset; 5450 enum maple_type type; 5451 5452 node = container_of(head, struct maple_node, rcu); 5453 5454 if (ma_is_leaf(node->type)) 5455 goto free_leaf; 5456 5457 start = node; 5458 enode = mt_mk_node(node, node->type); 5459 slots = mte_dead_walk(&enode, 0); 5460 node = mte_to_node(enode); 5461 do { 5462 mt_free_bulk(node->slot_len, slots); 5463 offset = node->parent_slot + 1; 5464 enode = node->piv_parent; 5465 if (mte_to_node(enode) == node) 5466 goto free_leaf; 5467 5468 type = mte_node_type(enode); 5469 slots = ma_slots(mte_to_node(enode), type); 5470 if ((offset < mt_slots[type]) && 5471 rcu_dereference_protected(slots[offset], 5472 lock_is_held(&rcu_callback_map))) 5473 slots = mte_dead_walk(&enode, offset); 5474 node = mte_to_node(enode); 5475 } while ((node != start) || (node->slot_len < offset)); 5476 5477 slots = ma_slots(node, node->type); 5478 mt_free_bulk(node->slot_len, slots); 5479 5480 free_leaf: 5481 mt_free_rcu(&node->rcu); 5482 } 5483 5484 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5485 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5486 { 5487 struct maple_node *node; 5488 struct maple_enode *next = *enode; 5489 void __rcu **slots = NULL; 5490 enum maple_type type; 5491 unsigned char next_offset = 0; 5492 5493 do { 5494 *enode = next; 5495 node = mte_to_node(*enode); 5496 type = mte_node_type(*enode); 5497 slots = ma_slots(node, type); 5498 next = mt_slot_locked(mt, slots, next_offset); 5499 if ((mte_dead_node(next))) 5500 next = mt_slot_locked(mt, slots, ++next_offset); 5501 5502 mte_set_node_dead(*enode); 5503 node->type = type; 5504 node->piv_parent = prev; 5505 node->parent_slot = offset; 5506 offset = next_offset; 5507 next_offset = 0; 5508 prev = *enode; 5509 } while (!mte_is_leaf(next)); 5510 5511 return slots; 5512 } 5513 5514 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5515 bool free) 5516 { 5517 void __rcu **slots; 5518 struct maple_node *node = mte_to_node(enode); 5519 struct maple_enode *start; 5520 5521 if (mte_is_leaf(enode)) { 5522 node->type = mte_node_type(enode); 5523 goto free_leaf; 5524 } 5525 5526 start = enode; 5527 slots = mte_destroy_descend(&enode, mt, start, 0); 5528 node = mte_to_node(enode); // Updated in the above call. 5529 do { 5530 enum maple_type type; 5531 unsigned char offset; 5532 struct maple_enode *parent, *tmp; 5533 5534 node->slot_len = mte_dead_leaves(enode, mt, slots); 5535 if (free) 5536 mt_free_bulk(node->slot_len, slots); 5537 offset = node->parent_slot + 1; 5538 enode = node->piv_parent; 5539 if (mte_to_node(enode) == node) 5540 goto free_leaf; 5541 5542 type = mte_node_type(enode); 5543 slots = ma_slots(mte_to_node(enode), type); 5544 if (offset >= mt_slots[type]) 5545 goto next; 5546 5547 tmp = mt_slot_locked(mt, slots, offset); 5548 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5549 parent = enode; 5550 enode = tmp; 5551 slots = mte_destroy_descend(&enode, mt, parent, offset); 5552 } 5553 next: 5554 node = mte_to_node(enode); 5555 } while (start != enode); 5556 5557 node = mte_to_node(enode); 5558 node->slot_len = mte_dead_leaves(enode, mt, slots); 5559 if (free) 5560 mt_free_bulk(node->slot_len, slots); 5561 5562 free_leaf: 5563 if (free) 5564 mt_free_rcu(&node->rcu); 5565 else 5566 mt_clear_meta(mt, node, node->type); 5567 } 5568 5569 /* 5570 * mte_destroy_walk() - Free a tree or sub-tree. 5571 * @enode: the encoded maple node (maple_enode) to start 5572 * @mt: the tree to free - needed for node types. 5573 * 5574 * Must hold the write lock. 5575 */ 5576 static inline void mte_destroy_walk(struct maple_enode *enode, 5577 struct maple_tree *mt) 5578 { 5579 struct maple_node *node = mte_to_node(enode); 5580 5581 if (mt_in_rcu(mt)) { 5582 mt_destroy_walk(enode, mt, false); 5583 call_rcu(&node->rcu, mt_free_walk); 5584 } else { 5585 mt_destroy_walk(enode, mt, true); 5586 } 5587 } 5588 5589 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5590 { 5591 if (unlikely(mas_is_paused(wr_mas->mas))) 5592 mas_reset(wr_mas->mas); 5593 5594 if (!mas_is_start(wr_mas->mas)) { 5595 if (mas_is_none(wr_mas->mas)) { 5596 mas_reset(wr_mas->mas); 5597 } else { 5598 wr_mas->r_max = wr_mas->mas->max; 5599 wr_mas->type = mte_node_type(wr_mas->mas->node); 5600 if (mas_is_span_wr(wr_mas)) 5601 mas_reset(wr_mas->mas); 5602 } 5603 } 5604 } 5605 5606 /* Interface */ 5607 5608 /** 5609 * mas_store() - Store an @entry. 5610 * @mas: The maple state. 5611 * @entry: The entry to store. 5612 * 5613 * The @mas->index and @mas->last is used to set the range for the @entry. 5614 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5615 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5616 * 5617 * Return: the first entry between mas->index and mas->last or %NULL. 5618 */ 5619 void *mas_store(struct ma_state *mas, void *entry) 5620 { 5621 MA_WR_STATE(wr_mas, mas, entry); 5622 5623 trace_ma_write(__func__, mas, 0, entry); 5624 #ifdef CONFIG_DEBUG_MAPLE_TREE 5625 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5626 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5627 5628 if (mas->index > mas->last) { 5629 mas_set_err(mas, -EINVAL); 5630 return NULL; 5631 } 5632 5633 #endif 5634 5635 /* 5636 * Storing is the same operation as insert with the added caveat that it 5637 * can overwrite entries. Although this seems simple enough, one may 5638 * want to examine what happens if a single store operation was to 5639 * overwrite multiple entries within a self-balancing B-Tree. 5640 */ 5641 mas_wr_store_setup(&wr_mas); 5642 mas_wr_store_entry(&wr_mas); 5643 return wr_mas.content; 5644 } 5645 EXPORT_SYMBOL_GPL(mas_store); 5646 5647 /** 5648 * mas_store_gfp() - Store a value into the tree. 5649 * @mas: The maple state 5650 * @entry: The entry to store 5651 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5652 * 5653 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5654 * be allocated. 5655 */ 5656 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5657 { 5658 MA_WR_STATE(wr_mas, mas, entry); 5659 5660 mas_wr_store_setup(&wr_mas); 5661 trace_ma_write(__func__, mas, 0, entry); 5662 retry: 5663 mas_wr_store_entry(&wr_mas); 5664 if (unlikely(mas_nomem(mas, gfp))) 5665 goto retry; 5666 5667 if (unlikely(mas_is_err(mas))) 5668 return xa_err(mas->node); 5669 5670 return 0; 5671 } 5672 EXPORT_SYMBOL_GPL(mas_store_gfp); 5673 5674 /** 5675 * mas_store_prealloc() - Store a value into the tree using memory 5676 * preallocated in the maple state. 5677 * @mas: The maple state 5678 * @entry: The entry to store. 5679 */ 5680 void mas_store_prealloc(struct ma_state *mas, void *entry) 5681 { 5682 MA_WR_STATE(wr_mas, mas, entry); 5683 5684 mas_wr_store_setup(&wr_mas); 5685 trace_ma_write(__func__, mas, 0, entry); 5686 mas_wr_store_entry(&wr_mas); 5687 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5688 mas_destroy(mas); 5689 } 5690 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5691 5692 /** 5693 * mas_preallocate() - Preallocate enough nodes for a store operation 5694 * @mas: The maple state 5695 * @gfp: The GFP_FLAGS to use for allocations. 5696 * 5697 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5698 */ 5699 int mas_preallocate(struct ma_state *mas, gfp_t gfp) 5700 { 5701 int ret; 5702 5703 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5704 mas->mas_flags |= MA_STATE_PREALLOC; 5705 if (likely(!mas_is_err(mas))) 5706 return 0; 5707 5708 mas_set_alloc_req(mas, 0); 5709 ret = xa_err(mas->node); 5710 mas_reset(mas); 5711 mas_destroy(mas); 5712 mas_reset(mas); 5713 return ret; 5714 } 5715 EXPORT_SYMBOL_GPL(mas_preallocate); 5716 5717 /* 5718 * mas_destroy() - destroy a maple state. 5719 * @mas: The maple state 5720 * 5721 * Upon completion, check the left-most node and rebalance against the node to 5722 * the right if necessary. Frees any allocated nodes associated with this maple 5723 * state. 5724 */ 5725 void mas_destroy(struct ma_state *mas) 5726 { 5727 struct maple_alloc *node; 5728 unsigned long total; 5729 5730 /* 5731 * When using mas_for_each() to insert an expected number of elements, 5732 * it is possible that the number inserted is less than the expected 5733 * number. To fix an invalid final node, a check is performed here to 5734 * rebalance the previous node with the final node. 5735 */ 5736 if (mas->mas_flags & MA_STATE_REBALANCE) { 5737 unsigned char end; 5738 5739 mas_start(mas); 5740 mtree_range_walk(mas); 5741 end = mas_data_end(mas) + 1; 5742 if (end < mt_min_slot_count(mas->node) - 1) 5743 mas_destroy_rebalance(mas, end); 5744 5745 mas->mas_flags &= ~MA_STATE_REBALANCE; 5746 } 5747 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5748 5749 total = mas_allocated(mas); 5750 while (total) { 5751 node = mas->alloc; 5752 mas->alloc = node->slot[0]; 5753 if (node->node_count > 1) { 5754 size_t count = node->node_count - 1; 5755 5756 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5757 total -= count; 5758 } 5759 kmem_cache_free(maple_node_cache, node); 5760 total--; 5761 } 5762 5763 mas->alloc = NULL; 5764 } 5765 EXPORT_SYMBOL_GPL(mas_destroy); 5766 5767 /* 5768 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5769 * @mas: The maple state 5770 * @nr_entries: The number of expected entries. 5771 * 5772 * This will attempt to pre-allocate enough nodes to store the expected number 5773 * of entries. The allocations will occur using the bulk allocator interface 5774 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5775 * to ensure any unused nodes are freed. 5776 * 5777 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5778 */ 5779 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5780 { 5781 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5782 struct maple_enode *enode = mas->node; 5783 int nr_nodes; 5784 int ret; 5785 5786 /* 5787 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5788 * forking a process and duplicating the VMAs from one tree to a new 5789 * tree. When such a situation arises, it is known that the new tree is 5790 * not going to be used until the entire tree is populated. For 5791 * performance reasons, it is best to use a bulk load with RCU disabled. 5792 * This allows for optimistic splitting that favours the left and reuse 5793 * of nodes during the operation. 5794 */ 5795 5796 /* Optimize splitting for bulk insert in-order */ 5797 mas->mas_flags |= MA_STATE_BULK; 5798 5799 /* 5800 * Avoid overflow, assume a gap between each entry and a trailing null. 5801 * If this is wrong, it just means allocation can happen during 5802 * insertion of entries. 5803 */ 5804 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5805 if (!mt_is_alloc(mas->tree)) 5806 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5807 5808 /* Leaves; reduce slots to keep space for expansion */ 5809 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5810 /* Internal nodes */ 5811 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5812 /* Add working room for split (2 nodes) + new parents */ 5813 mas_node_count(mas, nr_nodes + 3); 5814 5815 /* Detect if allocations run out */ 5816 mas->mas_flags |= MA_STATE_PREALLOC; 5817 5818 if (!mas_is_err(mas)) 5819 return 0; 5820 5821 ret = xa_err(mas->node); 5822 mas->node = enode; 5823 mas_destroy(mas); 5824 return ret; 5825 5826 } 5827 EXPORT_SYMBOL_GPL(mas_expected_entries); 5828 5829 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max, 5830 void **entry) 5831 { 5832 bool was_none = mas_is_none(mas); 5833 5834 if (mas_is_none(mas) || mas_is_paused(mas)) 5835 mas->node = MAS_START; 5836 5837 if (mas_is_start(mas)) 5838 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5839 5840 if (mas_is_ptr(mas)) { 5841 *entry = NULL; 5842 if (was_none && mas->index == 0) { 5843 mas->index = mas->last = 0; 5844 return true; 5845 } 5846 mas->index = 1; 5847 mas->last = ULONG_MAX; 5848 mas->node = MAS_NONE; 5849 return true; 5850 } 5851 5852 if (mas_is_none(mas)) 5853 return true; 5854 return false; 5855 } 5856 5857 /** 5858 * mas_next() - Get the next entry. 5859 * @mas: The maple state 5860 * @max: The maximum index to check. 5861 * 5862 * Returns the next entry after @mas->index. 5863 * Must hold rcu_read_lock or the write lock. 5864 * Can return the zero entry. 5865 * 5866 * Return: The next entry or %NULL 5867 */ 5868 void *mas_next(struct ma_state *mas, unsigned long max) 5869 { 5870 void *entry = NULL; 5871 5872 if (mas_next_setup(mas, max, &entry)) 5873 return entry; 5874 5875 /* Retries on dead nodes handled by mas_next_slot */ 5876 return mas_next_slot(mas, max, false); 5877 } 5878 EXPORT_SYMBOL_GPL(mas_next); 5879 5880 /** 5881 * mas_next_range() - Advance the maple state to the next range 5882 * @mas: The maple state 5883 * @max: The maximum index to check. 5884 * 5885 * Sets @mas->index and @mas->last to the range. 5886 * Must hold rcu_read_lock or the write lock. 5887 * Can return the zero entry. 5888 * 5889 * Return: The next entry or %NULL 5890 */ 5891 void *mas_next_range(struct ma_state *mas, unsigned long max) 5892 { 5893 void *entry = NULL; 5894 5895 if (mas_next_setup(mas, max, &entry)) 5896 return entry; 5897 5898 /* Retries on dead nodes handled by mas_next_slot */ 5899 return mas_next_slot(mas, max, true); 5900 } 5901 EXPORT_SYMBOL_GPL(mas_next_range); 5902 5903 /** 5904 * mt_next() - get the next value in the maple tree 5905 * @mt: The maple tree 5906 * @index: The start index 5907 * @max: The maximum index to check 5908 * 5909 * Return: The entry at @index or higher, or %NULL if nothing is found. 5910 */ 5911 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5912 { 5913 void *entry = NULL; 5914 MA_STATE(mas, mt, index, index); 5915 5916 rcu_read_lock(); 5917 entry = mas_next(&mas, max); 5918 rcu_read_unlock(); 5919 return entry; 5920 } 5921 EXPORT_SYMBOL_GPL(mt_next); 5922 5923 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min, 5924 void **entry) 5925 { 5926 if (mas->index <= min) 5927 goto none; 5928 5929 if (mas_is_none(mas) || mas_is_paused(mas)) 5930 mas->node = MAS_START; 5931 5932 if (mas_is_start(mas)) { 5933 mas_walk(mas); 5934 if (!mas->index) 5935 goto none; 5936 } 5937 5938 if (unlikely(mas_is_ptr(mas))) { 5939 if (!mas->index) 5940 goto none; 5941 mas->index = mas->last = 0; 5942 *entry = mas_root(mas); 5943 return true; 5944 } 5945 5946 if (mas_is_none(mas)) { 5947 if (mas->index) { 5948 /* Walked to out-of-range pointer? */ 5949 mas->index = mas->last = 0; 5950 mas->node = MAS_ROOT; 5951 *entry = mas_root(mas); 5952 return true; 5953 } 5954 return true; 5955 } 5956 5957 return false; 5958 5959 none: 5960 mas->node = MAS_NONE; 5961 return true; 5962 } 5963 5964 /** 5965 * mas_prev() - Get the previous entry 5966 * @mas: The maple state 5967 * @min: The minimum value to check. 5968 * 5969 * Must hold rcu_read_lock or the write lock. 5970 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5971 * searchable nodes. 5972 * 5973 * Return: the previous value or %NULL. 5974 */ 5975 void *mas_prev(struct ma_state *mas, unsigned long min) 5976 { 5977 void *entry = NULL; 5978 5979 if (mas_prev_setup(mas, min, &entry)) 5980 return entry; 5981 5982 return mas_prev_slot(mas, min, false); 5983 } 5984 EXPORT_SYMBOL_GPL(mas_prev); 5985 5986 /** 5987 * mas_prev_range() - Advance to the previous range 5988 * @mas: The maple state 5989 * @min: The minimum value to check. 5990 * 5991 * Sets @mas->index and @mas->last to the range. 5992 * Must hold rcu_read_lock or the write lock. 5993 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5994 * searchable nodes. 5995 * 5996 * Return: the previous value or %NULL. 5997 */ 5998 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5999 { 6000 void *entry = NULL; 6001 6002 if (mas_prev_setup(mas, min, &entry)) 6003 return entry; 6004 6005 return mas_prev_slot(mas, min, true); 6006 } 6007 EXPORT_SYMBOL_GPL(mas_prev_range); 6008 6009 /** 6010 * mt_prev() - get the previous value in the maple tree 6011 * @mt: The maple tree 6012 * @index: The start index 6013 * @min: The minimum index to check 6014 * 6015 * Return: The entry at @index or lower, or %NULL if nothing is found. 6016 */ 6017 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 6018 { 6019 void *entry = NULL; 6020 MA_STATE(mas, mt, index, index); 6021 6022 rcu_read_lock(); 6023 entry = mas_prev(&mas, min); 6024 rcu_read_unlock(); 6025 return entry; 6026 } 6027 EXPORT_SYMBOL_GPL(mt_prev); 6028 6029 /** 6030 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 6031 * @mas: The maple state to pause 6032 * 6033 * Some users need to pause a walk and drop the lock they're holding in 6034 * order to yield to a higher priority thread or carry out an operation 6035 * on an entry. Those users should call this function before they drop 6036 * the lock. It resets the @mas to be suitable for the next iteration 6037 * of the loop after the user has reacquired the lock. If most entries 6038 * found during a walk require you to call mas_pause(), the mt_for_each() 6039 * iterator may be more appropriate. 6040 * 6041 */ 6042 void mas_pause(struct ma_state *mas) 6043 { 6044 mas->node = MAS_PAUSE; 6045 } 6046 EXPORT_SYMBOL_GPL(mas_pause); 6047 6048 /** 6049 * mas_find_setup() - Internal function to set up mas_find*(). 6050 * @mas: The maple state 6051 * @max: The maximum index 6052 * @entry: Pointer to the entry 6053 * 6054 * Returns: True if entry is the answer, false otherwise. 6055 */ 6056 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max, 6057 void **entry) 6058 { 6059 *entry = NULL; 6060 6061 if (unlikely(mas_is_none(mas))) { 6062 if (unlikely(mas->last >= max)) 6063 return true; 6064 6065 mas->index = mas->last; 6066 mas->node = MAS_START; 6067 } else if (unlikely(mas_is_paused(mas))) { 6068 if (unlikely(mas->last >= max)) 6069 return true; 6070 6071 mas->node = MAS_START; 6072 mas->index = ++mas->last; 6073 } else if (unlikely(mas_is_ptr(mas))) 6074 goto ptr_out_of_range; 6075 6076 if (unlikely(mas_is_start(mas))) { 6077 /* First run or continue */ 6078 if (mas->index > max) 6079 return true; 6080 6081 *entry = mas_walk(mas); 6082 if (*entry) 6083 return true; 6084 6085 } 6086 6087 if (unlikely(!mas_searchable(mas))) { 6088 if (unlikely(mas_is_ptr(mas))) 6089 goto ptr_out_of_range; 6090 6091 return true; 6092 } 6093 6094 if (mas->index == max) 6095 return true; 6096 6097 return false; 6098 6099 ptr_out_of_range: 6100 mas->node = MAS_NONE; 6101 mas->index = 1; 6102 mas->last = ULONG_MAX; 6103 return true; 6104 } 6105 6106 /** 6107 * mas_find() - On the first call, find the entry at or after mas->index up to 6108 * %max. Otherwise, find the entry after mas->index. 6109 * @mas: The maple state 6110 * @max: The maximum value to check. 6111 * 6112 * Must hold rcu_read_lock or the write lock. 6113 * If an entry exists, last and index are updated accordingly. 6114 * May set @mas->node to MAS_NONE. 6115 * 6116 * Return: The entry or %NULL. 6117 */ 6118 void *mas_find(struct ma_state *mas, unsigned long max) 6119 { 6120 void *entry = NULL; 6121 6122 if (mas_find_setup(mas, max, &entry)) 6123 return entry; 6124 6125 /* Retries on dead nodes handled by mas_next_slot */ 6126 return mas_next_slot(mas, max, false); 6127 } 6128 EXPORT_SYMBOL_GPL(mas_find); 6129 6130 /** 6131 * mas_find_range() - On the first call, find the entry at or after 6132 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6133 * @mas: The maple state 6134 * @max: The maximum value to check. 6135 * 6136 * Must hold rcu_read_lock or the write lock. 6137 * If an entry exists, last and index are updated accordingly. 6138 * May set @mas->node to MAS_NONE. 6139 * 6140 * Return: The entry or %NULL. 6141 */ 6142 void *mas_find_range(struct ma_state *mas, unsigned long max) 6143 { 6144 void *entry; 6145 6146 if (mas_find_setup(mas, max, &entry)) 6147 return entry; 6148 6149 /* Retries on dead nodes handled by mas_next_slot */ 6150 return mas_next_slot(mas, max, true); 6151 } 6152 EXPORT_SYMBOL_GPL(mas_find_range); 6153 6154 /** 6155 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6156 * @mas: The maple state 6157 * @min: The minimum index 6158 * @entry: Pointer to the entry 6159 * 6160 * Returns: True if entry is the answer, false otherwise. 6161 */ 6162 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6163 void **entry) 6164 { 6165 *entry = NULL; 6166 6167 if (unlikely(mas_is_none(mas))) { 6168 if (mas->index <= min) 6169 goto none; 6170 6171 mas->last = mas->index; 6172 mas->node = MAS_START; 6173 } 6174 6175 if (unlikely(mas_is_paused(mas))) { 6176 if (unlikely(mas->index <= min)) { 6177 mas->node = MAS_NONE; 6178 return true; 6179 } 6180 mas->node = MAS_START; 6181 mas->last = --mas->index; 6182 } 6183 6184 if (unlikely(mas_is_start(mas))) { 6185 /* First run or continue */ 6186 if (mas->index < min) 6187 return true; 6188 6189 *entry = mas_walk(mas); 6190 if (*entry) 6191 return true; 6192 } 6193 6194 if (unlikely(!mas_searchable(mas))) { 6195 if (mas_is_ptr(mas)) 6196 goto none; 6197 6198 if (mas_is_none(mas)) { 6199 /* 6200 * Walked to the location, and there was nothing so the 6201 * previous location is 0. 6202 */ 6203 mas->last = mas->index = 0; 6204 mas->node = MAS_ROOT; 6205 *entry = mas_root(mas); 6206 return true; 6207 } 6208 } 6209 6210 if (mas->index < min) 6211 return true; 6212 6213 return false; 6214 6215 none: 6216 mas->node = MAS_NONE; 6217 return true; 6218 } 6219 6220 /** 6221 * mas_find_rev: On the first call, find the first non-null entry at or below 6222 * mas->index down to %min. Otherwise find the first non-null entry below 6223 * mas->index down to %min. 6224 * @mas: The maple state 6225 * @min: The minimum value to check. 6226 * 6227 * Must hold rcu_read_lock or the write lock. 6228 * If an entry exists, last and index are updated accordingly. 6229 * May set @mas->node to MAS_NONE. 6230 * 6231 * Return: The entry or %NULL. 6232 */ 6233 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6234 { 6235 void *entry; 6236 6237 if (mas_find_rev_setup(mas, min, &entry)) 6238 return entry; 6239 6240 /* Retries on dead nodes handled by mas_prev_slot */ 6241 return mas_prev_slot(mas, min, false); 6242 6243 } 6244 EXPORT_SYMBOL_GPL(mas_find_rev); 6245 6246 /** 6247 * mas_find_range_rev: On the first call, find the first non-null entry at or 6248 * below mas->index down to %min. Otherwise advance to the previous slot after 6249 * mas->index down to %min. 6250 * @mas: The maple state 6251 * @min: The minimum value to check. 6252 * 6253 * Must hold rcu_read_lock or the write lock. 6254 * If an entry exists, last and index are updated accordingly. 6255 * May set @mas->node to MAS_NONE. 6256 * 6257 * Return: The entry or %NULL. 6258 */ 6259 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6260 { 6261 void *entry; 6262 6263 if (mas_find_rev_setup(mas, min, &entry)) 6264 return entry; 6265 6266 /* Retries on dead nodes handled by mas_prev_slot */ 6267 return mas_prev_slot(mas, min, true); 6268 } 6269 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6270 6271 /** 6272 * mas_erase() - Find the range in which index resides and erase the entire 6273 * range. 6274 * @mas: The maple state 6275 * 6276 * Must hold the write lock. 6277 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6278 * erases that range. 6279 * 6280 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6281 */ 6282 void *mas_erase(struct ma_state *mas) 6283 { 6284 void *entry; 6285 MA_WR_STATE(wr_mas, mas, NULL); 6286 6287 if (mas_is_none(mas) || mas_is_paused(mas)) 6288 mas->node = MAS_START; 6289 6290 /* Retry unnecessary when holding the write lock. */ 6291 entry = mas_state_walk(mas); 6292 if (!entry) 6293 return NULL; 6294 6295 write_retry: 6296 /* Must reset to ensure spanning writes of last slot are detected */ 6297 mas_reset(mas); 6298 mas_wr_store_setup(&wr_mas); 6299 mas_wr_store_entry(&wr_mas); 6300 if (mas_nomem(mas, GFP_KERNEL)) 6301 goto write_retry; 6302 6303 return entry; 6304 } 6305 EXPORT_SYMBOL_GPL(mas_erase); 6306 6307 /** 6308 * mas_nomem() - Check if there was an error allocating and do the allocation 6309 * if necessary If there are allocations, then free them. 6310 * @mas: The maple state 6311 * @gfp: The GFP_FLAGS to use for allocations 6312 * Return: true on allocation, false otherwise. 6313 */ 6314 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6315 __must_hold(mas->tree->lock) 6316 { 6317 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6318 mas_destroy(mas); 6319 return false; 6320 } 6321 6322 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6323 mtree_unlock(mas->tree); 6324 mas_alloc_nodes(mas, gfp); 6325 mtree_lock(mas->tree); 6326 } else { 6327 mas_alloc_nodes(mas, gfp); 6328 } 6329 6330 if (!mas_allocated(mas)) 6331 return false; 6332 6333 mas->node = MAS_START; 6334 return true; 6335 } 6336 6337 void __init maple_tree_init(void) 6338 { 6339 maple_node_cache = kmem_cache_create("maple_node", 6340 sizeof(struct maple_node), sizeof(struct maple_node), 6341 SLAB_PANIC, NULL); 6342 } 6343 6344 /** 6345 * mtree_load() - Load a value stored in a maple tree 6346 * @mt: The maple tree 6347 * @index: The index to load 6348 * 6349 * Return: the entry or %NULL 6350 */ 6351 void *mtree_load(struct maple_tree *mt, unsigned long index) 6352 { 6353 MA_STATE(mas, mt, index, index); 6354 void *entry; 6355 6356 trace_ma_read(__func__, &mas); 6357 rcu_read_lock(); 6358 retry: 6359 entry = mas_start(&mas); 6360 if (unlikely(mas_is_none(&mas))) 6361 goto unlock; 6362 6363 if (unlikely(mas_is_ptr(&mas))) { 6364 if (index) 6365 entry = NULL; 6366 6367 goto unlock; 6368 } 6369 6370 entry = mtree_lookup_walk(&mas); 6371 if (!entry && unlikely(mas_is_start(&mas))) 6372 goto retry; 6373 unlock: 6374 rcu_read_unlock(); 6375 if (xa_is_zero(entry)) 6376 return NULL; 6377 6378 return entry; 6379 } 6380 EXPORT_SYMBOL(mtree_load); 6381 6382 /** 6383 * mtree_store_range() - Store an entry at a given range. 6384 * @mt: The maple tree 6385 * @index: The start of the range 6386 * @last: The end of the range 6387 * @entry: The entry to store 6388 * @gfp: The GFP_FLAGS to use for allocations 6389 * 6390 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6391 * be allocated. 6392 */ 6393 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6394 unsigned long last, void *entry, gfp_t gfp) 6395 { 6396 MA_STATE(mas, mt, index, last); 6397 MA_WR_STATE(wr_mas, &mas, entry); 6398 6399 trace_ma_write(__func__, &mas, 0, entry); 6400 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6401 return -EINVAL; 6402 6403 if (index > last) 6404 return -EINVAL; 6405 6406 mtree_lock(mt); 6407 retry: 6408 mas_wr_store_entry(&wr_mas); 6409 if (mas_nomem(&mas, gfp)) 6410 goto retry; 6411 6412 mtree_unlock(mt); 6413 if (mas_is_err(&mas)) 6414 return xa_err(mas.node); 6415 6416 return 0; 6417 } 6418 EXPORT_SYMBOL(mtree_store_range); 6419 6420 /** 6421 * mtree_store() - Store an entry at a given index. 6422 * @mt: The maple tree 6423 * @index: The index to store the value 6424 * @entry: The entry to store 6425 * @gfp: The GFP_FLAGS to use for allocations 6426 * 6427 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6428 * be allocated. 6429 */ 6430 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6431 gfp_t gfp) 6432 { 6433 return mtree_store_range(mt, index, index, entry, gfp); 6434 } 6435 EXPORT_SYMBOL(mtree_store); 6436 6437 /** 6438 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6439 * @mt: The maple tree 6440 * @first: The start of the range 6441 * @last: The end of the range 6442 * @entry: The entry to store 6443 * @gfp: The GFP_FLAGS to use for allocations. 6444 * 6445 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6446 * request, -ENOMEM if memory could not be allocated. 6447 */ 6448 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6449 unsigned long last, void *entry, gfp_t gfp) 6450 { 6451 MA_STATE(ms, mt, first, last); 6452 6453 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6454 return -EINVAL; 6455 6456 if (first > last) 6457 return -EINVAL; 6458 6459 mtree_lock(mt); 6460 retry: 6461 mas_insert(&ms, entry); 6462 if (mas_nomem(&ms, gfp)) 6463 goto retry; 6464 6465 mtree_unlock(mt); 6466 if (mas_is_err(&ms)) 6467 return xa_err(ms.node); 6468 6469 return 0; 6470 } 6471 EXPORT_SYMBOL(mtree_insert_range); 6472 6473 /** 6474 * mtree_insert() - Insert an entry at a give index if there is no value. 6475 * @mt: The maple tree 6476 * @index : The index to store the value 6477 * @entry: The entry to store 6478 * @gfp: The FGP_FLAGS to use for allocations. 6479 * 6480 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6481 * request, -ENOMEM if memory could not be allocated. 6482 */ 6483 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6484 gfp_t gfp) 6485 { 6486 return mtree_insert_range(mt, index, index, entry, gfp); 6487 } 6488 EXPORT_SYMBOL(mtree_insert); 6489 6490 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6491 void *entry, unsigned long size, unsigned long min, 6492 unsigned long max, gfp_t gfp) 6493 { 6494 int ret = 0; 6495 6496 MA_STATE(mas, mt, min, min); 6497 if (!mt_is_alloc(mt)) 6498 return -EINVAL; 6499 6500 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6501 return -EINVAL; 6502 6503 if (min > max) 6504 return -EINVAL; 6505 6506 if (max < size) 6507 return -EINVAL; 6508 6509 if (!size) 6510 return -EINVAL; 6511 6512 mtree_lock(mt); 6513 retry: 6514 mas.offset = 0; 6515 mas.index = min; 6516 mas.last = max - size + 1; 6517 ret = mas_alloc(&mas, entry, size, startp); 6518 if (mas_nomem(&mas, gfp)) 6519 goto retry; 6520 6521 mtree_unlock(mt); 6522 return ret; 6523 } 6524 EXPORT_SYMBOL(mtree_alloc_range); 6525 6526 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6527 void *entry, unsigned long size, unsigned long min, 6528 unsigned long max, gfp_t gfp) 6529 { 6530 int ret = 0; 6531 6532 MA_STATE(mas, mt, min, max - size + 1); 6533 if (!mt_is_alloc(mt)) 6534 return -EINVAL; 6535 6536 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6537 return -EINVAL; 6538 6539 if (min > max) 6540 return -EINVAL; 6541 6542 if (max < size - 1) 6543 return -EINVAL; 6544 6545 if (!size) 6546 return -EINVAL; 6547 6548 mtree_lock(mt); 6549 retry: 6550 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6551 if (mas_nomem(&mas, gfp)) 6552 goto retry; 6553 6554 mtree_unlock(mt); 6555 return ret; 6556 } 6557 EXPORT_SYMBOL(mtree_alloc_rrange); 6558 6559 /** 6560 * mtree_erase() - Find an index and erase the entire range. 6561 * @mt: The maple tree 6562 * @index: The index to erase 6563 * 6564 * Erasing is the same as a walk to an entry then a store of a NULL to that 6565 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6566 * 6567 * Return: The entry stored at the @index or %NULL 6568 */ 6569 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6570 { 6571 void *entry = NULL; 6572 6573 MA_STATE(mas, mt, index, index); 6574 trace_ma_op(__func__, &mas); 6575 6576 mtree_lock(mt); 6577 entry = mas_erase(&mas); 6578 mtree_unlock(mt); 6579 6580 return entry; 6581 } 6582 EXPORT_SYMBOL(mtree_erase); 6583 6584 /** 6585 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6586 * @mt: The maple tree 6587 * 6588 * Note: Does not handle locking. 6589 */ 6590 void __mt_destroy(struct maple_tree *mt) 6591 { 6592 void *root = mt_root_locked(mt); 6593 6594 rcu_assign_pointer(mt->ma_root, NULL); 6595 if (xa_is_node(root)) 6596 mte_destroy_walk(root, mt); 6597 6598 mt->ma_flags = 0; 6599 } 6600 EXPORT_SYMBOL_GPL(__mt_destroy); 6601 6602 /** 6603 * mtree_destroy() - Destroy a maple tree 6604 * @mt: The maple tree 6605 * 6606 * Frees all resources used by the tree. Handles locking. 6607 */ 6608 void mtree_destroy(struct maple_tree *mt) 6609 { 6610 mtree_lock(mt); 6611 __mt_destroy(mt); 6612 mtree_unlock(mt); 6613 } 6614 EXPORT_SYMBOL(mtree_destroy); 6615 6616 /** 6617 * mt_find() - Search from the start up until an entry is found. 6618 * @mt: The maple tree 6619 * @index: Pointer which contains the start location of the search 6620 * @max: The maximum value to check 6621 * 6622 * Handles locking. @index will be incremented to one beyond the range. 6623 * 6624 * Return: The entry at or after the @index or %NULL 6625 */ 6626 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6627 { 6628 MA_STATE(mas, mt, *index, *index); 6629 void *entry; 6630 #ifdef CONFIG_DEBUG_MAPLE_TREE 6631 unsigned long copy = *index; 6632 #endif 6633 6634 trace_ma_read(__func__, &mas); 6635 6636 if ((*index) > max) 6637 return NULL; 6638 6639 rcu_read_lock(); 6640 retry: 6641 entry = mas_state_walk(&mas); 6642 if (mas_is_start(&mas)) 6643 goto retry; 6644 6645 if (unlikely(xa_is_zero(entry))) 6646 entry = NULL; 6647 6648 if (entry) 6649 goto unlock; 6650 6651 while (mas_searchable(&mas) && (mas.last < max)) { 6652 entry = mas_next_entry(&mas, max); 6653 if (likely(entry && !xa_is_zero(entry))) 6654 break; 6655 } 6656 6657 if (unlikely(xa_is_zero(entry))) 6658 entry = NULL; 6659 unlock: 6660 rcu_read_unlock(); 6661 if (likely(entry)) { 6662 *index = mas.last + 1; 6663 #ifdef CONFIG_DEBUG_MAPLE_TREE 6664 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6665 pr_err("index not increased! %lx <= %lx\n", 6666 *index, copy); 6667 #endif 6668 } 6669 6670 return entry; 6671 } 6672 EXPORT_SYMBOL(mt_find); 6673 6674 /** 6675 * mt_find_after() - Search from the start up until an entry is found. 6676 * @mt: The maple tree 6677 * @index: Pointer which contains the start location of the search 6678 * @max: The maximum value to check 6679 * 6680 * Handles locking, detects wrapping on index == 0 6681 * 6682 * Return: The entry at or after the @index or %NULL 6683 */ 6684 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6685 unsigned long max) 6686 { 6687 if (!(*index)) 6688 return NULL; 6689 6690 return mt_find(mt, index, max); 6691 } 6692 EXPORT_SYMBOL(mt_find_after); 6693 6694 #ifdef CONFIG_DEBUG_MAPLE_TREE 6695 atomic_t maple_tree_tests_run; 6696 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6697 atomic_t maple_tree_tests_passed; 6698 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6699 6700 #ifndef __KERNEL__ 6701 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6702 void mt_set_non_kernel(unsigned int val) 6703 { 6704 kmem_cache_set_non_kernel(maple_node_cache, val); 6705 } 6706 6707 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6708 unsigned long mt_get_alloc_size(void) 6709 { 6710 return kmem_cache_get_alloc(maple_node_cache); 6711 } 6712 6713 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6714 void mt_zero_nr_tallocated(void) 6715 { 6716 kmem_cache_zero_nr_tallocated(maple_node_cache); 6717 } 6718 6719 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6720 unsigned int mt_nr_tallocated(void) 6721 { 6722 return kmem_cache_nr_tallocated(maple_node_cache); 6723 } 6724 6725 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6726 unsigned int mt_nr_allocated(void) 6727 { 6728 return kmem_cache_nr_allocated(maple_node_cache); 6729 } 6730 6731 /* 6732 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6733 * @mas: The maple state 6734 * @index: The index to restore in @mas. 6735 * 6736 * Used in test code. 6737 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6738 */ 6739 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6740 { 6741 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6742 return 0; 6743 6744 if (likely(!mte_dead_node(mas->node))) 6745 return 0; 6746 6747 mas_rewalk(mas, index); 6748 return 1; 6749 } 6750 6751 void mt_cache_shrink(void) 6752 { 6753 } 6754 #else 6755 /* 6756 * mt_cache_shrink() - For testing, don't use this. 6757 * 6758 * Certain testcases can trigger an OOM when combined with other memory 6759 * debugging configuration options. This function is used to reduce the 6760 * possibility of an out of memory even due to kmem_cache objects remaining 6761 * around for longer than usual. 6762 */ 6763 void mt_cache_shrink(void) 6764 { 6765 kmem_cache_shrink(maple_node_cache); 6766 6767 } 6768 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6769 6770 #endif /* not defined __KERNEL__ */ 6771 /* 6772 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6773 * @mas: The maple state 6774 * @offset: The offset into the slot array to fetch. 6775 * 6776 * Return: The entry stored at @offset. 6777 */ 6778 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6779 unsigned char offset) 6780 { 6781 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6782 offset); 6783 } 6784 6785 6786 /* 6787 * mas_first_entry() - Go the first leaf and find the first entry. 6788 * @mas: the maple state. 6789 * @limit: the maximum index to check. 6790 * @*r_start: Pointer to set to the range start. 6791 * 6792 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6793 * 6794 * Return: The first entry or MAS_NONE. 6795 */ 6796 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6797 unsigned long limit, enum maple_type mt) 6798 6799 { 6800 unsigned long max; 6801 unsigned long *pivots; 6802 void __rcu **slots; 6803 void *entry = NULL; 6804 6805 mas->index = mas->min; 6806 if (mas->index > limit) 6807 goto none; 6808 6809 max = mas->max; 6810 mas->offset = 0; 6811 while (likely(!ma_is_leaf(mt))) { 6812 MAS_WARN_ON(mas, mte_dead_node(mas->node)); 6813 slots = ma_slots(mn, mt); 6814 entry = mas_slot(mas, slots, 0); 6815 pivots = ma_pivots(mn, mt); 6816 if (unlikely(ma_dead_node(mn))) 6817 return NULL; 6818 max = pivots[0]; 6819 mas->node = entry; 6820 mn = mas_mn(mas); 6821 mt = mte_node_type(mas->node); 6822 } 6823 MAS_WARN_ON(mas, mte_dead_node(mas->node)); 6824 6825 mas->max = max; 6826 slots = ma_slots(mn, mt); 6827 entry = mas_slot(mas, slots, 0); 6828 if (unlikely(ma_dead_node(mn))) 6829 return NULL; 6830 6831 /* Slot 0 or 1 must be set */ 6832 if (mas->index > limit) 6833 goto none; 6834 6835 if (likely(entry)) 6836 return entry; 6837 6838 mas->offset = 1; 6839 entry = mas_slot(mas, slots, 1); 6840 pivots = ma_pivots(mn, mt); 6841 if (unlikely(ma_dead_node(mn))) 6842 return NULL; 6843 6844 mas->index = pivots[0] + 1; 6845 if (mas->index > limit) 6846 goto none; 6847 6848 if (likely(entry)) 6849 return entry; 6850 6851 none: 6852 if (likely(!ma_dead_node(mn))) 6853 mas->node = MAS_NONE; 6854 return NULL; 6855 } 6856 6857 /* Depth first search, post-order */ 6858 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6859 { 6860 6861 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6862 unsigned long p_min, p_max; 6863 6864 mas_next_node(mas, mas_mn(mas), max); 6865 if (!mas_is_none(mas)) 6866 return; 6867 6868 if (mte_is_root(mn)) 6869 return; 6870 6871 mas->node = mn; 6872 mas_ascend(mas); 6873 do { 6874 p = mas->node; 6875 p_min = mas->min; 6876 p_max = mas->max; 6877 mas_prev_node(mas, 0); 6878 } while (!mas_is_none(mas)); 6879 6880 mas->node = p; 6881 mas->max = p_max; 6882 mas->min = p_min; 6883 } 6884 6885 /* Tree validations */ 6886 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6887 unsigned long min, unsigned long max, unsigned int depth, 6888 enum mt_dump_format format); 6889 static void mt_dump_range(unsigned long min, unsigned long max, 6890 unsigned int depth, enum mt_dump_format format) 6891 { 6892 static const char spaces[] = " "; 6893 6894 switch(format) { 6895 case mt_dump_hex: 6896 if (min == max) 6897 pr_info("%.*s%lx: ", depth * 2, spaces, min); 6898 else 6899 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 6900 break; 6901 default: 6902 case mt_dump_dec: 6903 if (min == max) 6904 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6905 else 6906 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6907 } 6908 } 6909 6910 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6911 unsigned int depth, enum mt_dump_format format) 6912 { 6913 mt_dump_range(min, max, depth, format); 6914 6915 if (xa_is_value(entry)) 6916 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6917 xa_to_value(entry), entry); 6918 else if (xa_is_zero(entry)) 6919 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6920 else if (mt_is_reserved(entry)) 6921 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6922 else 6923 pr_cont("%p\n", entry); 6924 } 6925 6926 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6927 unsigned long min, unsigned long max, unsigned int depth, 6928 enum mt_dump_format format) 6929 { 6930 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6931 bool leaf = mte_is_leaf(entry); 6932 unsigned long first = min; 6933 int i; 6934 6935 pr_cont(" contents: "); 6936 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 6937 switch(format) { 6938 case mt_dump_hex: 6939 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 6940 break; 6941 default: 6942 case mt_dump_dec: 6943 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6944 } 6945 } 6946 pr_cont("%p\n", node->slot[i]); 6947 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6948 unsigned long last = max; 6949 6950 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6951 last = node->pivot[i]; 6952 else if (!node->slot[i] && max != mt_node_max(entry)) 6953 break; 6954 if (last == 0 && i > 0) 6955 break; 6956 if (leaf) 6957 mt_dump_entry(mt_slot(mt, node->slot, i), 6958 first, last, depth + 1, format); 6959 else if (node->slot[i]) 6960 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6961 first, last, depth + 1, format); 6962 6963 if (last == max) 6964 break; 6965 if (last > max) { 6966 switch(format) { 6967 case mt_dump_hex: 6968 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 6969 node, last, max, i); 6970 break; 6971 default: 6972 case mt_dump_dec: 6973 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6974 node, last, max, i); 6975 } 6976 } 6977 first = last + 1; 6978 } 6979 } 6980 6981 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6982 unsigned long min, unsigned long max, unsigned int depth, 6983 enum mt_dump_format format) 6984 { 6985 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6986 bool leaf = mte_is_leaf(entry); 6987 unsigned long first = min; 6988 int i; 6989 6990 pr_cont(" contents: "); 6991 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6992 pr_cont("%lu ", node->gap[i]); 6993 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6994 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6995 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6996 pr_cont("%p\n", node->slot[i]); 6997 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6998 unsigned long last = max; 6999 7000 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7001 last = node->pivot[i]; 7002 else if (!node->slot[i]) 7003 break; 7004 if (last == 0 && i > 0) 7005 break; 7006 if (leaf) 7007 mt_dump_entry(mt_slot(mt, node->slot, i), 7008 first, last, depth + 1, format); 7009 else if (node->slot[i]) 7010 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7011 first, last, depth + 1, format); 7012 7013 if (last == max) 7014 break; 7015 if (last > max) { 7016 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7017 node, last, max, i); 7018 break; 7019 } 7020 first = last + 1; 7021 } 7022 } 7023 7024 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7025 unsigned long min, unsigned long max, unsigned int depth, 7026 enum mt_dump_format format) 7027 { 7028 struct maple_node *node = mte_to_node(entry); 7029 unsigned int type = mte_node_type(entry); 7030 unsigned int i; 7031 7032 mt_dump_range(min, max, depth, format); 7033 7034 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7035 node ? node->parent : NULL); 7036 switch (type) { 7037 case maple_dense: 7038 pr_cont("\n"); 7039 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7040 if (min + i > max) 7041 pr_cont("OUT OF RANGE: "); 7042 mt_dump_entry(mt_slot(mt, node->slot, i), 7043 min + i, min + i, depth, format); 7044 } 7045 break; 7046 case maple_leaf_64: 7047 case maple_range_64: 7048 mt_dump_range64(mt, entry, min, max, depth, format); 7049 break; 7050 case maple_arange_64: 7051 mt_dump_arange64(mt, entry, min, max, depth, format); 7052 break; 7053 7054 default: 7055 pr_cont(" UNKNOWN TYPE\n"); 7056 } 7057 } 7058 7059 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7060 { 7061 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7062 7063 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7064 mt, mt->ma_flags, mt_height(mt), entry); 7065 if (!xa_is_node(entry)) 7066 mt_dump_entry(entry, 0, 0, 0, format); 7067 else if (entry) 7068 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7069 } 7070 EXPORT_SYMBOL_GPL(mt_dump); 7071 7072 /* 7073 * Calculate the maximum gap in a node and check if that's what is reported in 7074 * the parent (unless root). 7075 */ 7076 static void mas_validate_gaps(struct ma_state *mas) 7077 { 7078 struct maple_enode *mte = mas->node; 7079 struct maple_node *p_mn; 7080 unsigned long gap = 0, max_gap = 0; 7081 unsigned long p_end, p_start = mas->min; 7082 unsigned char p_slot; 7083 unsigned long *gaps = NULL; 7084 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 7085 int i; 7086 7087 if (ma_is_dense(mte_node_type(mte))) { 7088 for (i = 0; i < mt_slot_count(mte); i++) { 7089 if (mas_get_slot(mas, i)) { 7090 if (gap > max_gap) 7091 max_gap = gap; 7092 gap = 0; 7093 continue; 7094 } 7095 gap++; 7096 } 7097 goto counted; 7098 } 7099 7100 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 7101 for (i = 0; i < mt_slot_count(mte); i++) { 7102 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 7103 7104 if (!gaps) { 7105 if (mas_get_slot(mas, i)) { 7106 gap = 0; 7107 goto not_empty; 7108 } 7109 7110 gap += p_end - p_start + 1; 7111 } else { 7112 void *entry = mas_get_slot(mas, i); 7113 7114 gap = gaps[i]; 7115 if (!entry) { 7116 if (gap != p_end - p_start + 1) { 7117 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 7118 mas_mn(mas), i, 7119 mas_get_slot(mas, i), gap, 7120 p_end, p_start); 7121 mt_dump(mas->tree, mt_dump_hex); 7122 7123 MT_BUG_ON(mas->tree, 7124 gap != p_end - p_start + 1); 7125 } 7126 } else { 7127 if (gap > p_end - p_start + 1) { 7128 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7129 mas_mn(mas), i, gap, p_end, p_start, 7130 p_end - p_start + 1); 7131 MT_BUG_ON(mas->tree, 7132 gap > p_end - p_start + 1); 7133 } 7134 } 7135 } 7136 7137 if (gap > max_gap) 7138 max_gap = gap; 7139 not_empty: 7140 p_start = p_end + 1; 7141 if (p_end >= mas->max) 7142 break; 7143 } 7144 7145 counted: 7146 if (mte_is_root(mte)) 7147 return; 7148 7149 p_slot = mte_parent_slot(mas->node); 7150 p_mn = mte_parent(mte); 7151 MT_BUG_ON(mas->tree, max_gap > mas->max); 7152 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7153 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7154 mt_dump(mas->tree, mt_dump_hex); 7155 } 7156 7157 MT_BUG_ON(mas->tree, 7158 ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap); 7159 } 7160 7161 static void mas_validate_parent_slot(struct ma_state *mas) 7162 { 7163 struct maple_node *parent; 7164 struct maple_enode *node; 7165 enum maple_type p_type; 7166 unsigned char p_slot; 7167 void __rcu **slots; 7168 int i; 7169 7170 if (mte_is_root(mas->node)) 7171 return; 7172 7173 p_slot = mte_parent_slot(mas->node); 7174 p_type = mas_parent_type(mas, mas->node); 7175 parent = mte_parent(mas->node); 7176 slots = ma_slots(parent, p_type); 7177 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7178 7179 /* Check prev/next parent slot for duplicate node entry */ 7180 7181 for (i = 0; i < mt_slots[p_type]; i++) { 7182 node = mas_slot(mas, slots, i); 7183 if (i == p_slot) { 7184 if (node != mas->node) 7185 pr_err("parent %p[%u] does not have %p\n", 7186 parent, i, mas_mn(mas)); 7187 MT_BUG_ON(mas->tree, node != mas->node); 7188 } else if (node == mas->node) { 7189 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7190 mas_mn(mas), parent, i, p_slot); 7191 MT_BUG_ON(mas->tree, node == mas->node); 7192 } 7193 } 7194 } 7195 7196 static void mas_validate_child_slot(struct ma_state *mas) 7197 { 7198 enum maple_type type = mte_node_type(mas->node); 7199 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7200 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7201 struct maple_enode *child; 7202 unsigned char i; 7203 7204 if (mte_is_leaf(mas->node)) 7205 return; 7206 7207 for (i = 0; i < mt_slots[type]; i++) { 7208 child = mas_slot(mas, slots, i); 7209 if (!pivots[i] || pivots[i] == mas->max) 7210 break; 7211 7212 if (!child) 7213 break; 7214 7215 if (mte_parent_slot(child) != i) { 7216 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7217 mas_mn(mas), i, mte_to_node(child), 7218 mte_parent_slot(child)); 7219 MT_BUG_ON(mas->tree, 1); 7220 } 7221 7222 if (mte_parent(child) != mte_to_node(mas->node)) { 7223 pr_err("child %p has parent %p not %p\n", 7224 mte_to_node(child), mte_parent(child), 7225 mte_to_node(mas->node)); 7226 MT_BUG_ON(mas->tree, 1); 7227 } 7228 } 7229 } 7230 7231 /* 7232 * Validate all pivots are within mas->min and mas->max. 7233 */ 7234 static void mas_validate_limits(struct ma_state *mas) 7235 { 7236 int i; 7237 unsigned long prev_piv = 0; 7238 enum maple_type type = mte_node_type(mas->node); 7239 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7240 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7241 7242 /* all limits are fine here. */ 7243 if (mte_is_root(mas->node)) 7244 return; 7245 7246 for (i = 0; i < mt_slots[type]; i++) { 7247 unsigned long piv; 7248 7249 piv = mas_safe_pivot(mas, pivots, i, type); 7250 7251 if (!piv && (i != 0)) 7252 break; 7253 7254 if (!mte_is_leaf(mas->node)) { 7255 void *entry = mas_slot(mas, slots, i); 7256 7257 if (!entry) 7258 pr_err("%p[%u] cannot be null\n", 7259 mas_mn(mas), i); 7260 7261 MT_BUG_ON(mas->tree, !entry); 7262 } 7263 7264 if (prev_piv > piv) { 7265 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7266 mas_mn(mas), i, piv, prev_piv); 7267 MAS_WARN_ON(mas, piv < prev_piv); 7268 } 7269 7270 if (piv < mas->min) { 7271 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7272 piv, mas->min); 7273 MAS_WARN_ON(mas, piv < mas->min); 7274 } 7275 if (piv > mas->max) { 7276 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7277 piv, mas->max); 7278 MAS_WARN_ON(mas, piv > mas->max); 7279 } 7280 prev_piv = piv; 7281 if (piv == mas->max) 7282 break; 7283 } 7284 for (i += 1; i < mt_slots[type]; i++) { 7285 void *entry = mas_slot(mas, slots, i); 7286 7287 if (entry && (i != mt_slots[type] - 1)) { 7288 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7289 i, entry); 7290 MT_BUG_ON(mas->tree, entry != NULL); 7291 } 7292 7293 if (i < mt_pivots[type]) { 7294 unsigned long piv = pivots[i]; 7295 7296 if (!piv) 7297 continue; 7298 7299 pr_err("%p[%u] should not have piv %lu\n", 7300 mas_mn(mas), i, piv); 7301 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7302 } 7303 } 7304 } 7305 7306 static void mt_validate_nulls(struct maple_tree *mt) 7307 { 7308 void *entry, *last = (void *)1; 7309 unsigned char offset = 0; 7310 void __rcu **slots; 7311 MA_STATE(mas, mt, 0, 0); 7312 7313 mas_start(&mas); 7314 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7315 return; 7316 7317 while (!mte_is_leaf(mas.node)) 7318 mas_descend(&mas); 7319 7320 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7321 do { 7322 entry = mas_slot(&mas, slots, offset); 7323 if (!last && !entry) { 7324 pr_err("Sequential nulls end at %p[%u]\n", 7325 mas_mn(&mas), offset); 7326 } 7327 MT_BUG_ON(mt, !last && !entry); 7328 last = entry; 7329 if (offset == mas_data_end(&mas)) { 7330 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7331 if (mas_is_none(&mas)) 7332 return; 7333 offset = 0; 7334 slots = ma_slots(mte_to_node(mas.node), 7335 mte_node_type(mas.node)); 7336 } else { 7337 offset++; 7338 } 7339 7340 } while (!mas_is_none(&mas)); 7341 } 7342 7343 /* 7344 * validate a maple tree by checking: 7345 * 1. The limits (pivots are within mas->min to mas->max) 7346 * 2. The gap is correctly set in the parents 7347 */ 7348 void mt_validate(struct maple_tree *mt) 7349 { 7350 unsigned char end; 7351 7352 MA_STATE(mas, mt, 0, 0); 7353 rcu_read_lock(); 7354 mas_start(&mas); 7355 if (!mas_searchable(&mas)) 7356 goto done; 7357 7358 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7359 while (!mas_is_none(&mas)) { 7360 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7361 if (!mte_is_root(mas.node)) { 7362 end = mas_data_end(&mas); 7363 if (MAS_WARN_ON(&mas, 7364 (end < mt_min_slot_count(mas.node)) && 7365 (mas.max != ULONG_MAX))) { 7366 pr_err("Invalid size %u of %p\n", end, 7367 mas_mn(&mas)); 7368 } 7369 } 7370 mas_validate_parent_slot(&mas); 7371 mas_validate_child_slot(&mas); 7372 mas_validate_limits(&mas); 7373 if (mt_is_alloc(mt)) 7374 mas_validate_gaps(&mas); 7375 mas_dfs_postorder(&mas, ULONG_MAX); 7376 } 7377 mt_validate_nulls(mt); 7378 done: 7379 rcu_read_unlock(); 7380 7381 } 7382 EXPORT_SYMBOL_GPL(mt_validate); 7383 7384 void mas_dump(const struct ma_state *mas) 7385 { 7386 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7387 if (mas_is_none(mas)) 7388 pr_err("(MAS_NONE) "); 7389 else if (mas_is_ptr(mas)) 7390 pr_err("(MAS_ROOT) "); 7391 else if (mas_is_start(mas)) 7392 pr_err("(MAS_START) "); 7393 else if (mas_is_paused(mas)) 7394 pr_err("(MAS_PAUSED) "); 7395 7396 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last); 7397 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7398 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7399 if (mas->index > mas->last) 7400 pr_err("Check index & last\n"); 7401 } 7402 EXPORT_SYMBOL_GPL(mas_dump); 7403 7404 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7405 { 7406 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7407 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7408 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7409 wr_mas->type, wr_mas->offset_end, wr_mas->node_end, 7410 wr_mas->end_piv); 7411 } 7412 EXPORT_SYMBOL_GPL(mas_wr_dump); 7413 7414 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7415