xref: /linux/lib/maple_tree.c (revision 9ac45d4628dec6d78b17846115f6df6c1d1de69e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 #define MA_ROOT_PARENT 1
68 
69 /*
70  * Maple state flags
71  * * MA_STATE_BULK		- Bulk insert mode
72  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
73  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
74  */
75 #define MA_STATE_BULK		1
76 #define MA_STATE_REBALANCE	2
77 #define MA_STATE_PREALLOC	4
78 
79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
82 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
83 static struct kmem_cache *maple_node_cache;
84 
85 #ifdef CONFIG_DEBUG_MAPLE_TREE
86 static const unsigned long mt_max[] = {
87 	[maple_dense]		= MAPLE_NODE_SLOTS,
88 	[maple_leaf_64]		= ULONG_MAX,
89 	[maple_range_64]	= ULONG_MAX,
90 	[maple_arange_64]	= ULONG_MAX,
91 };
92 #define mt_node_max(x) mt_max[mte_node_type(x)]
93 #endif
94 
95 static const unsigned char mt_slots[] = {
96 	[maple_dense]		= MAPLE_NODE_SLOTS,
97 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
98 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
99 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
100 };
101 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
102 
103 static const unsigned char mt_pivots[] = {
104 	[maple_dense]		= 0,
105 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
106 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
107 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
108 };
109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110 
111 static const unsigned char mt_min_slots[] = {
112 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
113 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
114 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
115 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
116 };
117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118 
119 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
120 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
121 
122 struct maple_big_node {
123 	struct maple_pnode *parent;
124 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 	union {
126 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 		struct {
128 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 		};
131 	};
132 	unsigned char b_end;
133 	enum maple_type type;
134 };
135 
136 /*
137  * The maple_subtree_state is used to build a tree to replace a segment of an
138  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
139  * dead node and restart on updates.
140  */
141 struct maple_subtree_state {
142 	struct ma_state *orig_l;	/* Original left side of subtree */
143 	struct ma_state *orig_r;	/* Original right side of subtree */
144 	struct ma_state *l;		/* New left side of subtree */
145 	struct ma_state *m;		/* New middle of subtree (rare) */
146 	struct ma_state *r;		/* New right side of subtree */
147 	struct ma_topiary *free;	/* nodes to be freed */
148 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
149 	struct maple_big_node *bn;
150 };
151 
152 #ifdef CONFIG_KASAN_STACK
153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154 #define noinline_for_kasan noinline_for_stack
155 #else
156 #define noinline_for_kasan inline
157 #endif
158 
159 /* Functions */
160 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161 {
162 	return kmem_cache_alloc(maple_node_cache, gfp);
163 }
164 
165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166 {
167 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168 }
169 
170 static inline void mt_free_one(struct maple_node *node)
171 {
172 	kmem_cache_free(maple_node_cache, node);
173 }
174 
175 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176 {
177 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178 }
179 
180 static void mt_free_rcu(struct rcu_head *head)
181 {
182 	struct maple_node *node = container_of(head, struct maple_node, rcu);
183 
184 	kmem_cache_free(maple_node_cache, node);
185 }
186 
187 /*
188  * ma_free_rcu() - Use rcu callback to free a maple node
189  * @node: The node to free
190  *
191  * The maple tree uses the parent pointer to indicate this node is no longer in
192  * use and will be freed.
193  */
194 static void ma_free_rcu(struct maple_node *node)
195 {
196 	WARN_ON(node->parent != ma_parent_ptr(node));
197 	call_rcu(&node->rcu, mt_free_rcu);
198 }
199 
200 static void mas_set_height(struct ma_state *mas)
201 {
202 	unsigned int new_flags = mas->tree->ma_flags;
203 
204 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 	mas->tree->ma_flags = new_flags;
208 }
209 
210 static unsigned int mas_mt_height(struct ma_state *mas)
211 {
212 	return mt_height(mas->tree);
213 }
214 
215 static inline unsigned int mt_attr(struct maple_tree *mt)
216 {
217 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218 }
219 
220 static __always_inline enum maple_type mte_node_type(
221 		const struct maple_enode *entry)
222 {
223 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 		MAPLE_NODE_TYPE_MASK;
225 }
226 
227 static __always_inline bool ma_is_dense(const enum maple_type type)
228 {
229 	return type < maple_leaf_64;
230 }
231 
232 static __always_inline bool ma_is_leaf(const enum maple_type type)
233 {
234 	return type < maple_range_64;
235 }
236 
237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238 {
239 	return ma_is_leaf(mte_node_type(entry));
240 }
241 
242 /*
243  * We also reserve values with the bottom two bits set to '10' which are
244  * below 4096
245  */
246 static __always_inline bool mt_is_reserved(const void *entry)
247 {
248 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 		xa_is_internal(entry);
250 }
251 
252 static __always_inline void mas_set_err(struct ma_state *mas, long err)
253 {
254 	mas->node = MA_ERROR(err);
255 	mas->status = ma_error;
256 }
257 
258 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259 {
260 	return mas->status == ma_root;
261 }
262 
263 static __always_inline bool mas_is_start(const struct ma_state *mas)
264 {
265 	return mas->status == ma_start;
266 }
267 
268 static __always_inline bool mas_is_none(const struct ma_state *mas)
269 {
270 	return mas->status == ma_none;
271 }
272 
273 static __always_inline bool mas_is_paused(const struct ma_state *mas)
274 {
275 	return mas->status == ma_pause;
276 }
277 
278 static __always_inline bool mas_is_overflow(struct ma_state *mas)
279 {
280 	return mas->status == ma_overflow;
281 }
282 
283 static inline bool mas_is_underflow(struct ma_state *mas)
284 {
285 	return mas->status == ma_underflow;
286 }
287 
288 static __always_inline struct maple_node *mte_to_node(
289 		const struct maple_enode *entry)
290 {
291 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292 }
293 
294 /*
295  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296  * @entry: The maple encoded node
297  *
298  * Return: a maple topiary pointer
299  */
300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301 {
302 	return (struct maple_topiary *)
303 		((unsigned long)entry & ~MAPLE_NODE_MASK);
304 }
305 
306 /*
307  * mas_mn() - Get the maple state node.
308  * @mas: The maple state
309  *
310  * Return: the maple node (not encoded - bare pointer).
311  */
312 static inline struct maple_node *mas_mn(const struct ma_state *mas)
313 {
314 	return mte_to_node(mas->node);
315 }
316 
317 /*
318  * mte_set_node_dead() - Set a maple encoded node as dead.
319  * @mn: The maple encoded node.
320  */
321 static inline void mte_set_node_dead(struct maple_enode *mn)
322 {
323 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 	smp_wmb(); /* Needed for RCU */
325 }
326 
327 /* Bit 1 indicates the root is a node */
328 #define MAPLE_ROOT_NODE			0x02
329 /* maple_type stored bit 3-6 */
330 #define MAPLE_ENODE_TYPE_SHIFT		0x03
331 /* Bit 2 means a NULL somewhere below */
332 #define MAPLE_ENODE_NULL		0x04
333 
334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 					     enum maple_type type)
336 {
337 	return (void *)((unsigned long)node |
338 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339 }
340 
341 static inline void *mte_mk_root(const struct maple_enode *node)
342 {
343 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344 }
345 
346 static inline void *mte_safe_root(const struct maple_enode *node)
347 {
348 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349 }
350 
351 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
352 {
353 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354 }
355 
356 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
357 {
358 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359 }
360 
361 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
362 {
363 	return (unsigned long)node & MAPLE_ENODE_NULL;
364 }
365 
366 static __always_inline bool ma_is_root(struct maple_node *node)
367 {
368 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
369 }
370 
371 static __always_inline bool mte_is_root(const struct maple_enode *node)
372 {
373 	return ma_is_root(mte_to_node(node));
374 }
375 
376 static inline bool mas_is_root_limits(const struct ma_state *mas)
377 {
378 	return !mas->min && mas->max == ULONG_MAX;
379 }
380 
381 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382 {
383 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384 }
385 
386 /*
387  * The Parent Pointer
388  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
390  * bit values need an extra bit to store the offset.  This extra bit comes from
391  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
392  * indicate if bit 2 is part of the type or the slot.
393  *
394  * Note types:
395  *  0x??1 = Root
396  *  0x?00 = 16 bit nodes
397  *  0x010 = 32 bit nodes
398  *  0x110 = 64 bit nodes
399  *
400  * Slot size and alignment
401  *  0b??1 : Root
402  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
403  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
404  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
405  */
406 
407 #define MAPLE_PARENT_ROOT		0x01
408 
409 #define MAPLE_PARENT_SLOT_SHIFT		0x03
410 #define MAPLE_PARENT_SLOT_MASK		0xF8
411 
412 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
413 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
414 
415 #define MAPLE_PARENT_RANGE64		0x06
416 #define MAPLE_PARENT_RANGE32		0x04
417 #define MAPLE_PARENT_NOT_RANGE16	0x02
418 
419 /*
420  * mte_parent_shift() - Get the parent shift for the slot storage.
421  * @parent: The parent pointer cast as an unsigned long
422  * Return: The shift into that pointer to the star to of the slot
423  */
424 static inline unsigned long mte_parent_shift(unsigned long parent)
425 {
426 	/* Note bit 1 == 0 means 16B */
427 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 		return MAPLE_PARENT_SLOT_SHIFT;
429 
430 	return MAPLE_PARENT_16B_SLOT_SHIFT;
431 }
432 
433 /*
434  * mte_parent_slot_mask() - Get the slot mask for the parent.
435  * @parent: The parent pointer cast as an unsigned long.
436  * Return: The slot mask for that parent.
437  */
438 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_MASK;
443 
444 	return MAPLE_PARENT_16B_SLOT_MASK;
445 }
446 
447 /*
448  * mas_parent_type() - Return the maple_type of the parent from the stored
449  * parent type.
450  * @mas: The maple state
451  * @enode: The maple_enode to extract the parent's enum
452  * Return: The node->parent maple_type
453  */
454 static inline
455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456 {
457 	unsigned long p_type;
458 
459 	p_type = (unsigned long)mte_to_node(enode)->parent;
460 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 		return 0;
462 
463 	p_type &= MAPLE_NODE_MASK;
464 	p_type &= ~mte_parent_slot_mask(p_type);
465 	switch (p_type) {
466 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 		if (mt_is_alloc(mas->tree))
468 			return maple_arange_64;
469 		return maple_range_64;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * mas_set_parent() - Set the parent node and encode the slot
477  * @mas: The maple state
478  * @enode: The encoded maple node.
479  * @parent: The encoded maple node that is the parent of @enode.
480  * @slot: The slot that @enode resides in @parent.
481  *
482  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
483  * parent type.
484  */
485 static inline
486 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
487 		    const struct maple_enode *parent, unsigned char slot)
488 {
489 	unsigned long val = (unsigned long)parent;
490 	unsigned long shift;
491 	unsigned long type;
492 	enum maple_type p_type = mte_node_type(parent);
493 
494 	MAS_BUG_ON(mas, p_type == maple_dense);
495 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
496 
497 	switch (p_type) {
498 	case maple_range_64:
499 	case maple_arange_64:
500 		shift = MAPLE_PARENT_SLOT_SHIFT;
501 		type = MAPLE_PARENT_RANGE64;
502 		break;
503 	default:
504 	case maple_dense:
505 	case maple_leaf_64:
506 		shift = type = 0;
507 		break;
508 	}
509 
510 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
511 	val |= (slot << shift) | type;
512 	mte_to_node(enode)->parent = ma_parent_ptr(val);
513 }
514 
515 /*
516  * mte_parent_slot() - get the parent slot of @enode.
517  * @enode: The encoded maple node.
518  *
519  * Return: The slot in the parent node where @enode resides.
520  */
521 static __always_inline
522 unsigned int mte_parent_slot(const struct maple_enode *enode)
523 {
524 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
525 
526 	if (unlikely(val & MA_ROOT_PARENT))
527 		return 0;
528 
529 	/*
530 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
531 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
532 	 */
533 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
534 }
535 
536 /*
537  * mte_parent() - Get the parent of @node.
538  * @enode: The encoded maple node.
539  *
540  * Return: The parent maple node.
541  */
542 static __always_inline
543 struct maple_node *mte_parent(const struct maple_enode *enode)
544 {
545 	return (void *)((unsigned long)
546 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
547 }
548 
549 /*
550  * ma_dead_node() - check if the @enode is dead.
551  * @enode: The encoded maple node
552  *
553  * Return: true if dead, false otherwise.
554  */
555 static __always_inline bool ma_dead_node(const struct maple_node *node)
556 {
557 	struct maple_node *parent;
558 
559 	/* Do not reorder reads from the node prior to the parent check */
560 	smp_rmb();
561 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
562 	return (parent == node);
563 }
564 
565 /*
566  * mte_dead_node() - check if the @enode is dead.
567  * @enode: The encoded maple node
568  *
569  * Return: true if dead, false otherwise.
570  */
571 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
572 {
573 	struct maple_node *parent, *node;
574 
575 	node = mte_to_node(enode);
576 	/* Do not reorder reads from the node prior to the parent check */
577 	smp_rmb();
578 	parent = mte_parent(enode);
579 	return (parent == node);
580 }
581 
582 /*
583  * mas_allocated() - Get the number of nodes allocated in a maple state.
584  * @mas: The maple state
585  *
586  * The ma_state alloc member is overloaded to hold a pointer to the first
587  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
588  * set, then the alloc contains the number of requested nodes.  If there is an
589  * allocated node, then the total allocated nodes is in that node.
590  *
591  * Return: The total number of nodes allocated
592  */
593 static inline unsigned long mas_allocated(const struct ma_state *mas)
594 {
595 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
596 		return 0;
597 
598 	return mas->alloc->total;
599 }
600 
601 /*
602  * mas_set_alloc_req() - Set the requested number of allocations.
603  * @mas: the maple state
604  * @count: the number of allocations.
605  *
606  * The requested number of allocations is either in the first allocated node,
607  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
608  * no allocated node.  Set the request either in the node or do the necessary
609  * encoding to store in @mas->alloc directly.
610  */
611 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
612 {
613 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
614 		if (!count)
615 			mas->alloc = NULL;
616 		else
617 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
618 		return;
619 	}
620 
621 	mas->alloc->request_count = count;
622 }
623 
624 /*
625  * mas_alloc_req() - get the requested number of allocations.
626  * @mas: The maple state
627  *
628  * The alloc count is either stored directly in @mas, or in
629  * @mas->alloc->request_count if there is at least one node allocated.  Decode
630  * the request count if it's stored directly in @mas->alloc.
631  *
632  * Return: The allocation request count.
633  */
634 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
635 {
636 	if ((unsigned long)mas->alloc & 0x1)
637 		return (unsigned long)(mas->alloc) >> 1;
638 	else if (mas->alloc)
639 		return mas->alloc->request_count;
640 	return 0;
641 }
642 
643 /*
644  * ma_pivots() - Get a pointer to the maple node pivots.
645  * @node: the maple node
646  * @type: the node type
647  *
648  * In the event of a dead node, this array may be %NULL
649  *
650  * Return: A pointer to the maple node pivots
651  */
652 static inline unsigned long *ma_pivots(struct maple_node *node,
653 					   enum maple_type type)
654 {
655 	switch (type) {
656 	case maple_arange_64:
657 		return node->ma64.pivot;
658 	case maple_range_64:
659 	case maple_leaf_64:
660 		return node->mr64.pivot;
661 	case maple_dense:
662 		return NULL;
663 	}
664 	return NULL;
665 }
666 
667 /*
668  * ma_gaps() - Get a pointer to the maple node gaps.
669  * @node: the maple node
670  * @type: the node type
671  *
672  * Return: A pointer to the maple node gaps
673  */
674 static inline unsigned long *ma_gaps(struct maple_node *node,
675 				     enum maple_type type)
676 {
677 	switch (type) {
678 	case maple_arange_64:
679 		return node->ma64.gap;
680 	case maple_range_64:
681 	case maple_leaf_64:
682 	case maple_dense:
683 		return NULL;
684 	}
685 	return NULL;
686 }
687 
688 /*
689  * mas_safe_pivot() - get the pivot at @piv or mas->max.
690  * @mas: The maple state
691  * @pivots: The pointer to the maple node pivots
692  * @piv: The pivot to fetch
693  * @type: The maple node type
694  *
695  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
696  * otherwise.
697  */
698 static __always_inline unsigned long
699 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
700 	       unsigned char piv, enum maple_type type)
701 {
702 	if (piv >= mt_pivots[type])
703 		return mas->max;
704 
705 	return pivots[piv];
706 }
707 
708 /*
709  * mas_safe_min() - Return the minimum for a given offset.
710  * @mas: The maple state
711  * @pivots: The pointer to the maple node pivots
712  * @offset: The offset into the pivot array
713  *
714  * Return: The minimum range value that is contained in @offset.
715  */
716 static inline unsigned long
717 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
718 {
719 	if (likely(offset))
720 		return pivots[offset - 1] + 1;
721 
722 	return mas->min;
723 }
724 
725 /*
726  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
727  * @mn: The encoded maple node
728  * @piv: The pivot offset
729  * @val: The value of the pivot
730  */
731 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
732 				unsigned long val)
733 {
734 	struct maple_node *node = mte_to_node(mn);
735 	enum maple_type type = mte_node_type(mn);
736 
737 	BUG_ON(piv >= mt_pivots[type]);
738 	switch (type) {
739 	case maple_range_64:
740 	case maple_leaf_64:
741 		node->mr64.pivot[piv] = val;
742 		break;
743 	case maple_arange_64:
744 		node->ma64.pivot[piv] = val;
745 		break;
746 	case maple_dense:
747 		break;
748 	}
749 
750 }
751 
752 /*
753  * ma_slots() - Get a pointer to the maple node slots.
754  * @mn: The maple node
755  * @mt: The maple node type
756  *
757  * Return: A pointer to the maple node slots
758  */
759 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
760 {
761 	switch (mt) {
762 	case maple_arange_64:
763 		return mn->ma64.slot;
764 	case maple_range_64:
765 	case maple_leaf_64:
766 		return mn->mr64.slot;
767 	case maple_dense:
768 		return mn->slot;
769 	}
770 
771 	return NULL;
772 }
773 
774 static inline bool mt_write_locked(const struct maple_tree *mt)
775 {
776 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
777 		lockdep_is_held(&mt->ma_lock);
778 }
779 
780 static __always_inline bool mt_locked(const struct maple_tree *mt)
781 {
782 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
783 		lockdep_is_held(&mt->ma_lock);
784 }
785 
786 static __always_inline void *mt_slot(const struct maple_tree *mt,
787 		void __rcu **slots, unsigned char offset)
788 {
789 	return rcu_dereference_check(slots[offset], mt_locked(mt));
790 }
791 
792 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
793 		void __rcu **slots, unsigned char offset)
794 {
795 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
796 }
797 /*
798  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
799  * @mas: The maple state
800  * @slots: The pointer to the slots
801  * @offset: The offset into the slots array to fetch
802  *
803  * Return: The entry stored in @slots at the @offset.
804  */
805 static __always_inline void *mas_slot_locked(struct ma_state *mas,
806 		void __rcu **slots, unsigned char offset)
807 {
808 	return mt_slot_locked(mas->tree, slots, offset);
809 }
810 
811 /*
812  * mas_slot() - Get the slot value when not holding the maple tree lock.
813  * @mas: The maple state
814  * @slots: The pointer to the slots
815  * @offset: The offset into the slots array to fetch
816  *
817  * Return: The entry stored in @slots at the @offset
818  */
819 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
820 		unsigned char offset)
821 {
822 	return mt_slot(mas->tree, slots, offset);
823 }
824 
825 /*
826  * mas_root() - Get the maple tree root.
827  * @mas: The maple state.
828  *
829  * Return: The pointer to the root of the tree
830  */
831 static __always_inline void *mas_root(struct ma_state *mas)
832 {
833 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
834 }
835 
836 static inline void *mt_root_locked(struct maple_tree *mt)
837 {
838 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
839 }
840 
841 /*
842  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
843  * @mas: The maple state.
844  *
845  * Return: The pointer to the root of the tree
846  */
847 static inline void *mas_root_locked(struct ma_state *mas)
848 {
849 	return mt_root_locked(mas->tree);
850 }
851 
852 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
853 					     enum maple_type mt)
854 {
855 	switch (mt) {
856 	case maple_arange_64:
857 		return &mn->ma64.meta;
858 	default:
859 		return &mn->mr64.meta;
860 	}
861 }
862 
863 /*
864  * ma_set_meta() - Set the metadata information of a node.
865  * @mn: The maple node
866  * @mt: The maple node type
867  * @offset: The offset of the highest sub-gap in this node.
868  * @end: The end of the data in this node.
869  */
870 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
871 			       unsigned char offset, unsigned char end)
872 {
873 	struct maple_metadata *meta = ma_meta(mn, mt);
874 
875 	meta->gap = offset;
876 	meta->end = end;
877 }
878 
879 /*
880  * mt_clear_meta() - clear the metadata information of a node, if it exists
881  * @mt: The maple tree
882  * @mn: The maple node
883  * @type: The maple node type
884  */
885 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
886 				  enum maple_type type)
887 {
888 	struct maple_metadata *meta;
889 	unsigned long *pivots;
890 	void __rcu **slots;
891 	void *next;
892 
893 	switch (type) {
894 	case maple_range_64:
895 		pivots = mn->mr64.pivot;
896 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
897 			slots = mn->mr64.slot;
898 			next = mt_slot_locked(mt, slots,
899 					      MAPLE_RANGE64_SLOTS - 1);
900 			if (unlikely((mte_to_node(next) &&
901 				      mte_node_type(next))))
902 				return; /* no metadata, could be node */
903 		}
904 		fallthrough;
905 	case maple_arange_64:
906 		meta = ma_meta(mn, type);
907 		break;
908 	default:
909 		return;
910 	}
911 
912 	meta->gap = 0;
913 	meta->end = 0;
914 }
915 
916 /*
917  * ma_meta_end() - Get the data end of a node from the metadata
918  * @mn: The maple node
919  * @mt: The maple node type
920  */
921 static inline unsigned char ma_meta_end(struct maple_node *mn,
922 					enum maple_type mt)
923 {
924 	struct maple_metadata *meta = ma_meta(mn, mt);
925 
926 	return meta->end;
927 }
928 
929 /*
930  * ma_meta_gap() - Get the largest gap location of a node from the metadata
931  * @mn: The maple node
932  */
933 static inline unsigned char ma_meta_gap(struct maple_node *mn)
934 {
935 	return mn->ma64.meta.gap;
936 }
937 
938 /*
939  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
940  * @mn: The maple node
941  * @mt: The maple node type
942  * @offset: The location of the largest gap.
943  */
944 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
945 				   unsigned char offset)
946 {
947 
948 	struct maple_metadata *meta = ma_meta(mn, mt);
949 
950 	meta->gap = offset;
951 }
952 
953 /*
954  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
955  * @mat: the ma_topiary, a linked list of dead nodes.
956  * @dead_enode: the node to be marked as dead and added to the tail of the list
957  *
958  * Add the @dead_enode to the linked list in @mat.
959  */
960 static inline void mat_add(struct ma_topiary *mat,
961 			   struct maple_enode *dead_enode)
962 {
963 	mte_set_node_dead(dead_enode);
964 	mte_to_mat(dead_enode)->next = NULL;
965 	if (!mat->tail) {
966 		mat->tail = mat->head = dead_enode;
967 		return;
968 	}
969 
970 	mte_to_mat(mat->tail)->next = dead_enode;
971 	mat->tail = dead_enode;
972 }
973 
974 static void mt_free_walk(struct rcu_head *head);
975 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
976 			    bool free);
977 /*
978  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
979  * @mas: the maple state
980  * @mat: the ma_topiary linked list of dead nodes to free.
981  *
982  * Destroy walk a dead list.
983  */
984 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
985 {
986 	struct maple_enode *next;
987 	struct maple_node *node;
988 	bool in_rcu = mt_in_rcu(mas->tree);
989 
990 	while (mat->head) {
991 		next = mte_to_mat(mat->head)->next;
992 		node = mte_to_node(mat->head);
993 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
994 		if (in_rcu)
995 			call_rcu(&node->rcu, mt_free_walk);
996 		mat->head = next;
997 	}
998 }
999 /*
1000  * mas_descend() - Descend into the slot stored in the ma_state.
1001  * @mas: the maple state.
1002  *
1003  * Note: Not RCU safe, only use in write side or debug code.
1004  */
1005 static inline void mas_descend(struct ma_state *mas)
1006 {
1007 	enum maple_type type;
1008 	unsigned long *pivots;
1009 	struct maple_node *node;
1010 	void __rcu **slots;
1011 
1012 	node = mas_mn(mas);
1013 	type = mte_node_type(mas->node);
1014 	pivots = ma_pivots(node, type);
1015 	slots = ma_slots(node, type);
1016 
1017 	if (mas->offset)
1018 		mas->min = pivots[mas->offset - 1] + 1;
1019 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1020 	mas->node = mas_slot(mas, slots, mas->offset);
1021 }
1022 
1023 /*
1024  * mte_set_gap() - Set a maple node gap.
1025  * @mn: The encoded maple node
1026  * @gap: The offset of the gap to set
1027  * @val: The gap value
1028  */
1029 static inline void mte_set_gap(const struct maple_enode *mn,
1030 				 unsigned char gap, unsigned long val)
1031 {
1032 	switch (mte_node_type(mn)) {
1033 	default:
1034 		break;
1035 	case maple_arange_64:
1036 		mte_to_node(mn)->ma64.gap[gap] = val;
1037 		break;
1038 	}
1039 }
1040 
1041 /*
1042  * mas_ascend() - Walk up a level of the tree.
1043  * @mas: The maple state
1044  *
1045  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1046  * may cause several levels of walking up to find the correct min and max.
1047  * May find a dead node which will cause a premature return.
1048  * Return: 1 on dead node, 0 otherwise
1049  */
1050 static int mas_ascend(struct ma_state *mas)
1051 {
1052 	struct maple_enode *p_enode; /* parent enode. */
1053 	struct maple_enode *a_enode; /* ancestor enode. */
1054 	struct maple_node *a_node; /* ancestor node. */
1055 	struct maple_node *p_node; /* parent node. */
1056 	unsigned char a_slot;
1057 	enum maple_type a_type;
1058 	unsigned long min, max;
1059 	unsigned long *pivots;
1060 	bool set_max = false, set_min = false;
1061 
1062 	a_node = mas_mn(mas);
1063 	if (ma_is_root(a_node)) {
1064 		mas->offset = 0;
1065 		return 0;
1066 	}
1067 
1068 	p_node = mte_parent(mas->node);
1069 	if (unlikely(a_node == p_node))
1070 		return 1;
1071 
1072 	a_type = mas_parent_type(mas, mas->node);
1073 	mas->offset = mte_parent_slot(mas->node);
1074 	a_enode = mt_mk_node(p_node, a_type);
1075 
1076 	/* Check to make sure all parent information is still accurate */
1077 	if (p_node != mte_parent(mas->node))
1078 		return 1;
1079 
1080 	mas->node = a_enode;
1081 
1082 	if (mte_is_root(a_enode)) {
1083 		mas->max = ULONG_MAX;
1084 		mas->min = 0;
1085 		return 0;
1086 	}
1087 
1088 	min = 0;
1089 	max = ULONG_MAX;
1090 	if (!mas->offset) {
1091 		min = mas->min;
1092 		set_min = true;
1093 	}
1094 
1095 	if (mas->max == ULONG_MAX)
1096 		set_max = true;
1097 
1098 	do {
1099 		p_enode = a_enode;
1100 		a_type = mas_parent_type(mas, p_enode);
1101 		a_node = mte_parent(p_enode);
1102 		a_slot = mte_parent_slot(p_enode);
1103 		a_enode = mt_mk_node(a_node, a_type);
1104 		pivots = ma_pivots(a_node, a_type);
1105 
1106 		if (unlikely(ma_dead_node(a_node)))
1107 			return 1;
1108 
1109 		if (!set_min && a_slot) {
1110 			set_min = true;
1111 			min = pivots[a_slot - 1] + 1;
1112 		}
1113 
1114 		if (!set_max && a_slot < mt_pivots[a_type]) {
1115 			set_max = true;
1116 			max = pivots[a_slot];
1117 		}
1118 
1119 		if (unlikely(ma_dead_node(a_node)))
1120 			return 1;
1121 
1122 		if (unlikely(ma_is_root(a_node)))
1123 			break;
1124 
1125 	} while (!set_min || !set_max);
1126 
1127 	mas->max = max;
1128 	mas->min = min;
1129 	return 0;
1130 }
1131 
1132 /*
1133  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1134  * @mas: The maple state
1135  *
1136  * Return: A pointer to a maple node.
1137  */
1138 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1139 {
1140 	struct maple_alloc *ret, *node = mas->alloc;
1141 	unsigned long total = mas_allocated(mas);
1142 	unsigned int req = mas_alloc_req(mas);
1143 
1144 	/* nothing or a request pending. */
1145 	if (WARN_ON(!total))
1146 		return NULL;
1147 
1148 	if (total == 1) {
1149 		/* single allocation in this ma_state */
1150 		mas->alloc = NULL;
1151 		ret = node;
1152 		goto single_node;
1153 	}
1154 
1155 	if (node->node_count == 1) {
1156 		/* Single allocation in this node. */
1157 		mas->alloc = node->slot[0];
1158 		mas->alloc->total = node->total - 1;
1159 		ret = node;
1160 		goto new_head;
1161 	}
1162 	node->total--;
1163 	ret = node->slot[--node->node_count];
1164 	node->slot[node->node_count] = NULL;
1165 
1166 single_node:
1167 new_head:
1168 	if (req) {
1169 		req++;
1170 		mas_set_alloc_req(mas, req);
1171 	}
1172 
1173 	memset(ret, 0, sizeof(*ret));
1174 	return (struct maple_node *)ret;
1175 }
1176 
1177 /*
1178  * mas_push_node() - Push a node back on the maple state allocation.
1179  * @mas: The maple state
1180  * @used: The used maple node
1181  *
1182  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1183  * requested node count as necessary.
1184  */
1185 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1186 {
1187 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1188 	struct maple_alloc *head = mas->alloc;
1189 	unsigned long count;
1190 	unsigned int requested = mas_alloc_req(mas);
1191 
1192 	count = mas_allocated(mas);
1193 
1194 	reuse->request_count = 0;
1195 	reuse->node_count = 0;
1196 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1197 		head->slot[head->node_count++] = reuse;
1198 		head->total++;
1199 		goto done;
1200 	}
1201 
1202 	reuse->total = 1;
1203 	if ((head) && !((unsigned long)head & 0x1)) {
1204 		reuse->slot[0] = head;
1205 		reuse->node_count = 1;
1206 		reuse->total += head->total;
1207 	}
1208 
1209 	mas->alloc = reuse;
1210 done:
1211 	if (requested > 1)
1212 		mas_set_alloc_req(mas, requested - 1);
1213 }
1214 
1215 /*
1216  * mas_alloc_nodes() - Allocate nodes into a maple state
1217  * @mas: The maple state
1218  * @gfp: The GFP Flags
1219  */
1220 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1221 {
1222 	struct maple_alloc *node;
1223 	unsigned long allocated = mas_allocated(mas);
1224 	unsigned int requested = mas_alloc_req(mas);
1225 	unsigned int count;
1226 	void **slots = NULL;
1227 	unsigned int max_req = 0;
1228 
1229 	if (!requested)
1230 		return;
1231 
1232 	mas_set_alloc_req(mas, 0);
1233 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1234 		if (allocated)
1235 			return;
1236 		BUG_ON(!allocated);
1237 		WARN_ON(!allocated);
1238 	}
1239 
1240 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1241 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1242 		if (!node)
1243 			goto nomem_one;
1244 
1245 		if (allocated) {
1246 			node->slot[0] = mas->alloc;
1247 			node->node_count = 1;
1248 		} else {
1249 			node->node_count = 0;
1250 		}
1251 
1252 		mas->alloc = node;
1253 		node->total = ++allocated;
1254 		requested--;
1255 	}
1256 
1257 	node = mas->alloc;
1258 	node->request_count = 0;
1259 	while (requested) {
1260 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1261 		slots = (void **)&node->slot[node->node_count];
1262 		max_req = min(requested, max_req);
1263 		count = mt_alloc_bulk(gfp, max_req, slots);
1264 		if (!count)
1265 			goto nomem_bulk;
1266 
1267 		if (node->node_count == 0) {
1268 			node->slot[0]->node_count = 0;
1269 			node->slot[0]->request_count = 0;
1270 		}
1271 
1272 		node->node_count += count;
1273 		allocated += count;
1274 		node = node->slot[0];
1275 		requested -= count;
1276 	}
1277 	mas->alloc->total = allocated;
1278 	return;
1279 
1280 nomem_bulk:
1281 	/* Clean up potential freed allocations on bulk failure */
1282 	memset(slots, 0, max_req * sizeof(unsigned long));
1283 nomem_one:
1284 	mas_set_alloc_req(mas, requested);
1285 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1286 		mas->alloc->total = allocated;
1287 	mas_set_err(mas, -ENOMEM);
1288 }
1289 
1290 /*
1291  * mas_free() - Free an encoded maple node
1292  * @mas: The maple state
1293  * @used: The encoded maple node to free.
1294  *
1295  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1296  * otherwise.
1297  */
1298 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1299 {
1300 	struct maple_node *tmp = mte_to_node(used);
1301 
1302 	if (mt_in_rcu(mas->tree))
1303 		ma_free_rcu(tmp);
1304 	else
1305 		mas_push_node(mas, tmp);
1306 }
1307 
1308 /*
1309  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1310  * if there is not enough nodes.
1311  * @mas: The maple state
1312  * @count: The number of nodes needed
1313  * @gfp: the gfp flags
1314  */
1315 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1316 {
1317 	unsigned long allocated = mas_allocated(mas);
1318 
1319 	if (allocated < count) {
1320 		mas_set_alloc_req(mas, count - allocated);
1321 		mas_alloc_nodes(mas, gfp);
1322 	}
1323 }
1324 
1325 /*
1326  * mas_node_count() - Check if enough nodes are allocated and request more if
1327  * there is not enough nodes.
1328  * @mas: The maple state
1329  * @count: The number of nodes needed
1330  *
1331  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1332  */
1333 static void mas_node_count(struct ma_state *mas, int count)
1334 {
1335 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1336 }
1337 
1338 /*
1339  * mas_start() - Sets up maple state for operations.
1340  * @mas: The maple state.
1341  *
1342  * If mas->status == mas_start, then set the min, max and depth to
1343  * defaults.
1344  *
1345  * Return:
1346  * - If mas->node is an error or not mas_start, return NULL.
1347  * - If it's an empty tree:     NULL & mas->status == ma_none
1348  * - If it's a single entry:    The entry & mas->status == ma_root
1349  * - If it's a tree:            NULL & mas->status == ma_active
1350  */
1351 static inline struct maple_enode *mas_start(struct ma_state *mas)
1352 {
1353 	if (likely(mas_is_start(mas))) {
1354 		struct maple_enode *root;
1355 
1356 		mas->min = 0;
1357 		mas->max = ULONG_MAX;
1358 
1359 retry:
1360 		mas->depth = 0;
1361 		root = mas_root(mas);
1362 		/* Tree with nodes */
1363 		if (likely(xa_is_node(root))) {
1364 			mas->depth = 1;
1365 			mas->status = ma_active;
1366 			mas->node = mte_safe_root(root);
1367 			mas->offset = 0;
1368 			if (mte_dead_node(mas->node))
1369 				goto retry;
1370 
1371 			return NULL;
1372 		}
1373 
1374 		mas->node = NULL;
1375 		/* empty tree */
1376 		if (unlikely(!root)) {
1377 			mas->status = ma_none;
1378 			mas->offset = MAPLE_NODE_SLOTS;
1379 			return NULL;
1380 		}
1381 
1382 		/* Single entry tree */
1383 		mas->status = ma_root;
1384 		mas->offset = MAPLE_NODE_SLOTS;
1385 
1386 		/* Single entry tree. */
1387 		if (mas->index > 0)
1388 			return NULL;
1389 
1390 		return root;
1391 	}
1392 
1393 	return NULL;
1394 }
1395 
1396 /*
1397  * ma_data_end() - Find the end of the data in a node.
1398  * @node: The maple node
1399  * @type: The maple node type
1400  * @pivots: The array of pivots in the node
1401  * @max: The maximum value in the node
1402  *
1403  * Uses metadata to find the end of the data when possible.
1404  * Return: The zero indexed last slot with data (may be null).
1405  */
1406 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1407 		enum maple_type type, unsigned long *pivots, unsigned long max)
1408 {
1409 	unsigned char offset;
1410 
1411 	if (!pivots)
1412 		return 0;
1413 
1414 	if (type == maple_arange_64)
1415 		return ma_meta_end(node, type);
1416 
1417 	offset = mt_pivots[type] - 1;
1418 	if (likely(!pivots[offset]))
1419 		return ma_meta_end(node, type);
1420 
1421 	if (likely(pivots[offset] == max))
1422 		return offset;
1423 
1424 	return mt_pivots[type];
1425 }
1426 
1427 /*
1428  * mas_data_end() - Find the end of the data (slot).
1429  * @mas: the maple state
1430  *
1431  * This method is optimized to check the metadata of a node if the node type
1432  * supports data end metadata.
1433  *
1434  * Return: The zero indexed last slot with data (may be null).
1435  */
1436 static inline unsigned char mas_data_end(struct ma_state *mas)
1437 {
1438 	enum maple_type type;
1439 	struct maple_node *node;
1440 	unsigned char offset;
1441 	unsigned long *pivots;
1442 
1443 	type = mte_node_type(mas->node);
1444 	node = mas_mn(mas);
1445 	if (type == maple_arange_64)
1446 		return ma_meta_end(node, type);
1447 
1448 	pivots = ma_pivots(node, type);
1449 	if (unlikely(ma_dead_node(node)))
1450 		return 0;
1451 
1452 	offset = mt_pivots[type] - 1;
1453 	if (likely(!pivots[offset]))
1454 		return ma_meta_end(node, type);
1455 
1456 	if (likely(pivots[offset] == mas->max))
1457 		return offset;
1458 
1459 	return mt_pivots[type];
1460 }
1461 
1462 /*
1463  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1464  * @mas: the maple state
1465  *
1466  * Return: The maximum gap in the leaf.
1467  */
1468 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1469 {
1470 	enum maple_type mt;
1471 	unsigned long pstart, gap, max_gap;
1472 	struct maple_node *mn;
1473 	unsigned long *pivots;
1474 	void __rcu **slots;
1475 	unsigned char i;
1476 	unsigned char max_piv;
1477 
1478 	mt = mte_node_type(mas->node);
1479 	mn = mas_mn(mas);
1480 	slots = ma_slots(mn, mt);
1481 	max_gap = 0;
1482 	if (unlikely(ma_is_dense(mt))) {
1483 		gap = 0;
1484 		for (i = 0; i < mt_slots[mt]; i++) {
1485 			if (slots[i]) {
1486 				if (gap > max_gap)
1487 					max_gap = gap;
1488 				gap = 0;
1489 			} else {
1490 				gap++;
1491 			}
1492 		}
1493 		if (gap > max_gap)
1494 			max_gap = gap;
1495 		return max_gap;
1496 	}
1497 
1498 	/*
1499 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1500 	 * be skipped if there is a gap in slot 0.
1501 	 */
1502 	pivots = ma_pivots(mn, mt);
1503 	if (likely(!slots[0])) {
1504 		max_gap = pivots[0] - mas->min + 1;
1505 		i = 2;
1506 	} else {
1507 		i = 1;
1508 	}
1509 
1510 	/* reduce max_piv as the special case is checked before the loop */
1511 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1512 	/*
1513 	 * Check end implied pivot which can only be a gap on the right most
1514 	 * node.
1515 	 */
1516 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1517 		gap = ULONG_MAX - pivots[max_piv];
1518 		if (gap > max_gap)
1519 			max_gap = gap;
1520 
1521 		if (max_gap > pivots[max_piv] - mas->min)
1522 			return max_gap;
1523 	}
1524 
1525 	for (; i <= max_piv; i++) {
1526 		/* data == no gap. */
1527 		if (likely(slots[i]))
1528 			continue;
1529 
1530 		pstart = pivots[i - 1];
1531 		gap = pivots[i] - pstart;
1532 		if (gap > max_gap)
1533 			max_gap = gap;
1534 
1535 		/* There cannot be two gaps in a row. */
1536 		i++;
1537 	}
1538 	return max_gap;
1539 }
1540 
1541 /*
1542  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1543  * @node: The maple node
1544  * @gaps: The pointer to the gaps
1545  * @mt: The maple node type
1546  * @off: Pointer to store the offset location of the gap.
1547  *
1548  * Uses the metadata data end to scan backwards across set gaps.
1549  *
1550  * Return: The maximum gap value
1551  */
1552 static inline unsigned long
1553 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1554 	    unsigned char *off)
1555 {
1556 	unsigned char offset, i;
1557 	unsigned long max_gap = 0;
1558 
1559 	i = offset = ma_meta_end(node, mt);
1560 	do {
1561 		if (gaps[i] > max_gap) {
1562 			max_gap = gaps[i];
1563 			offset = i;
1564 		}
1565 	} while (i--);
1566 
1567 	*off = offset;
1568 	return max_gap;
1569 }
1570 
1571 /*
1572  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1573  * @mas: The maple state.
1574  *
1575  * Return: The gap value.
1576  */
1577 static inline unsigned long mas_max_gap(struct ma_state *mas)
1578 {
1579 	unsigned long *gaps;
1580 	unsigned char offset;
1581 	enum maple_type mt;
1582 	struct maple_node *node;
1583 
1584 	mt = mte_node_type(mas->node);
1585 	if (ma_is_leaf(mt))
1586 		return mas_leaf_max_gap(mas);
1587 
1588 	node = mas_mn(mas);
1589 	MAS_BUG_ON(mas, mt != maple_arange_64);
1590 	offset = ma_meta_gap(node);
1591 	gaps = ma_gaps(node, mt);
1592 	return gaps[offset];
1593 }
1594 
1595 /*
1596  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1597  * @mas: The maple state
1598  * @offset: The gap offset in the parent to set
1599  * @new: The new gap value.
1600  *
1601  * Set the parent gap then continue to set the gap upwards, using the metadata
1602  * of the parent to see if it is necessary to check the node above.
1603  */
1604 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1605 		unsigned long new)
1606 {
1607 	unsigned long meta_gap = 0;
1608 	struct maple_node *pnode;
1609 	struct maple_enode *penode;
1610 	unsigned long *pgaps;
1611 	unsigned char meta_offset;
1612 	enum maple_type pmt;
1613 
1614 	pnode = mte_parent(mas->node);
1615 	pmt = mas_parent_type(mas, mas->node);
1616 	penode = mt_mk_node(pnode, pmt);
1617 	pgaps = ma_gaps(pnode, pmt);
1618 
1619 ascend:
1620 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1621 	meta_offset = ma_meta_gap(pnode);
1622 	meta_gap = pgaps[meta_offset];
1623 
1624 	pgaps[offset] = new;
1625 
1626 	if (meta_gap == new)
1627 		return;
1628 
1629 	if (offset != meta_offset) {
1630 		if (meta_gap > new)
1631 			return;
1632 
1633 		ma_set_meta_gap(pnode, pmt, offset);
1634 	} else if (new < meta_gap) {
1635 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1636 		ma_set_meta_gap(pnode, pmt, meta_offset);
1637 	}
1638 
1639 	if (ma_is_root(pnode))
1640 		return;
1641 
1642 	/* Go to the parent node. */
1643 	pnode = mte_parent(penode);
1644 	pmt = mas_parent_type(mas, penode);
1645 	pgaps = ma_gaps(pnode, pmt);
1646 	offset = mte_parent_slot(penode);
1647 	penode = mt_mk_node(pnode, pmt);
1648 	goto ascend;
1649 }
1650 
1651 /*
1652  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1653  * @mas: the maple state.
1654  */
1655 static inline void mas_update_gap(struct ma_state *mas)
1656 {
1657 	unsigned char pslot;
1658 	unsigned long p_gap;
1659 	unsigned long max_gap;
1660 
1661 	if (!mt_is_alloc(mas->tree))
1662 		return;
1663 
1664 	if (mte_is_root(mas->node))
1665 		return;
1666 
1667 	max_gap = mas_max_gap(mas);
1668 
1669 	pslot = mte_parent_slot(mas->node);
1670 	p_gap = ma_gaps(mte_parent(mas->node),
1671 			mas_parent_type(mas, mas->node))[pslot];
1672 
1673 	if (p_gap != max_gap)
1674 		mas_parent_gap(mas, pslot, max_gap);
1675 }
1676 
1677 /*
1678  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1679  * @parent with the slot encoded.
1680  * @mas: the maple state (for the tree)
1681  * @parent: the maple encoded node containing the children.
1682  */
1683 static inline void mas_adopt_children(struct ma_state *mas,
1684 		struct maple_enode *parent)
1685 {
1686 	enum maple_type type = mte_node_type(parent);
1687 	struct maple_node *node = mte_to_node(parent);
1688 	void __rcu **slots = ma_slots(node, type);
1689 	unsigned long *pivots = ma_pivots(node, type);
1690 	struct maple_enode *child;
1691 	unsigned char offset;
1692 
1693 	offset = ma_data_end(node, type, pivots, mas->max);
1694 	do {
1695 		child = mas_slot_locked(mas, slots, offset);
1696 		mas_set_parent(mas, child, parent, offset);
1697 	} while (offset--);
1698 }
1699 
1700 /*
1701  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1702  * node as dead.
1703  * @mas: the maple state with the new node
1704  * @old_enode: The old maple encoded node to replace.
1705  */
1706 static inline void mas_put_in_tree(struct ma_state *mas,
1707 		struct maple_enode *old_enode)
1708 	__must_hold(mas->tree->ma_lock)
1709 {
1710 	unsigned char offset;
1711 	void __rcu **slots;
1712 
1713 	if (mte_is_root(mas->node)) {
1714 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1715 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1716 		mas_set_height(mas);
1717 	} else {
1718 
1719 		offset = mte_parent_slot(mas->node);
1720 		slots = ma_slots(mte_parent(mas->node),
1721 				 mas_parent_type(mas, mas->node));
1722 		rcu_assign_pointer(slots[offset], mas->node);
1723 	}
1724 
1725 	mte_set_node_dead(old_enode);
1726 }
1727 
1728 /*
1729  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1730  * dead, and freeing it.
1731  * the parent encoding to locate the maple node in the tree.
1732  * @mas: the ma_state with @mas->node pointing to the new node.
1733  * @old_enode: The old maple encoded node.
1734  */
1735 static inline void mas_replace_node(struct ma_state *mas,
1736 		struct maple_enode *old_enode)
1737 	__must_hold(mas->tree->ma_lock)
1738 {
1739 	mas_put_in_tree(mas, old_enode);
1740 	mas_free(mas, old_enode);
1741 }
1742 
1743 /*
1744  * mas_find_child() - Find a child who has the parent @mas->node.
1745  * @mas: the maple state with the parent.
1746  * @child: the maple state to store the child.
1747  */
1748 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1749 	__must_hold(mas->tree->ma_lock)
1750 {
1751 	enum maple_type mt;
1752 	unsigned char offset;
1753 	unsigned char end;
1754 	unsigned long *pivots;
1755 	struct maple_enode *entry;
1756 	struct maple_node *node;
1757 	void __rcu **slots;
1758 
1759 	mt = mte_node_type(mas->node);
1760 	node = mas_mn(mas);
1761 	slots = ma_slots(node, mt);
1762 	pivots = ma_pivots(node, mt);
1763 	end = ma_data_end(node, mt, pivots, mas->max);
1764 	for (offset = mas->offset; offset <= end; offset++) {
1765 		entry = mas_slot_locked(mas, slots, offset);
1766 		if (mte_parent(entry) == node) {
1767 			*child = *mas;
1768 			mas->offset = offset + 1;
1769 			child->offset = offset;
1770 			mas_descend(child);
1771 			child->offset = 0;
1772 			return true;
1773 		}
1774 	}
1775 	return false;
1776 }
1777 
1778 /*
1779  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1780  * old data or set b_node->b_end.
1781  * @b_node: the maple_big_node
1782  * @shift: the shift count
1783  */
1784 static inline void mab_shift_right(struct maple_big_node *b_node,
1785 				 unsigned char shift)
1786 {
1787 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1788 
1789 	memmove(b_node->pivot + shift, b_node->pivot, size);
1790 	memmove(b_node->slot + shift, b_node->slot, size);
1791 	if (b_node->type == maple_arange_64)
1792 		memmove(b_node->gap + shift, b_node->gap, size);
1793 }
1794 
1795 /*
1796  * mab_middle_node() - Check if a middle node is needed (unlikely)
1797  * @b_node: the maple_big_node that contains the data.
1798  * @split: the potential split location
1799  * @slot_count: the size that can be stored in a single node being considered.
1800  *
1801  * Return: true if a middle node is required.
1802  */
1803 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1804 				   unsigned char slot_count)
1805 {
1806 	unsigned char size = b_node->b_end;
1807 
1808 	if (size >= 2 * slot_count)
1809 		return true;
1810 
1811 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1812 		return true;
1813 
1814 	return false;
1815 }
1816 
1817 /*
1818  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1819  * @b_node: the maple_big_node with the data
1820  * @split: the suggested split location
1821  * @slot_count: the number of slots in the node being considered.
1822  *
1823  * Return: the split location.
1824  */
1825 static inline int mab_no_null_split(struct maple_big_node *b_node,
1826 				    unsigned char split, unsigned char slot_count)
1827 {
1828 	if (!b_node->slot[split]) {
1829 		/*
1830 		 * If the split is less than the max slot && the right side will
1831 		 * still be sufficient, then increment the split on NULL.
1832 		 */
1833 		if ((split < slot_count - 1) &&
1834 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1835 			split++;
1836 		else
1837 			split--;
1838 	}
1839 	return split;
1840 }
1841 
1842 /*
1843  * mab_calc_split() - Calculate the split location and if there needs to be two
1844  * splits.
1845  * @mas: The maple state
1846  * @bn: The maple_big_node with the data
1847  * @mid_split: The second split, if required.  0 otherwise.
1848  *
1849  * Return: The first split location.  The middle split is set in @mid_split.
1850  */
1851 static inline int mab_calc_split(struct ma_state *mas,
1852 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1853 {
1854 	unsigned char b_end = bn->b_end;
1855 	int split = b_end / 2; /* Assume equal split. */
1856 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1857 
1858 	/*
1859 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1860 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1861 	 * limitation means that the split of a node must be checked for this condition
1862 	 * and be able to put more data in one direction or the other.
1863 	 */
1864 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1865 		*mid_split = 0;
1866 		split = b_end - mt_min_slots[bn->type];
1867 
1868 		if (!ma_is_leaf(bn->type))
1869 			return split;
1870 
1871 		mas->mas_flags |= MA_STATE_REBALANCE;
1872 		if (!bn->slot[split])
1873 			split--;
1874 		return split;
1875 	}
1876 
1877 	/*
1878 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1879 	 * split scenario.  The 3-way split comes about by means of a store of a range
1880 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1881 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1882 	 * also be located in different parent nodes which are also full.  This can
1883 	 * carry upwards all the way to the root in the worst case.
1884 	 */
1885 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1886 		split = b_end / 3;
1887 		*mid_split = split * 2;
1888 	} else {
1889 		slot_min = mt_min_slots[bn->type];
1890 
1891 		*mid_split = 0;
1892 		/*
1893 		 * Avoid having a range less than the slot count unless it
1894 		 * causes one node to be deficient.
1895 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1896 		 */
1897 		while ((split < slot_count - 1) &&
1898 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1899 		       (b_end - split > slot_min))
1900 			split++;
1901 	}
1902 
1903 	/* Avoid ending a node on a NULL entry */
1904 	split = mab_no_null_split(bn, split, slot_count);
1905 
1906 	if (unlikely(*mid_split))
1907 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1908 
1909 	return split;
1910 }
1911 
1912 /*
1913  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1914  * and set @b_node->b_end to the next free slot.
1915  * @mas: The maple state
1916  * @mas_start: The starting slot to copy
1917  * @mas_end: The end slot to copy (inclusively)
1918  * @b_node: The maple_big_node to place the data
1919  * @mab_start: The starting location in maple_big_node to store the data.
1920  */
1921 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1922 			unsigned char mas_end, struct maple_big_node *b_node,
1923 			unsigned char mab_start)
1924 {
1925 	enum maple_type mt;
1926 	struct maple_node *node;
1927 	void __rcu **slots;
1928 	unsigned long *pivots, *gaps;
1929 	int i = mas_start, j = mab_start;
1930 	unsigned char piv_end;
1931 
1932 	node = mas_mn(mas);
1933 	mt = mte_node_type(mas->node);
1934 	pivots = ma_pivots(node, mt);
1935 	if (!i) {
1936 		b_node->pivot[j] = pivots[i++];
1937 		if (unlikely(i > mas_end))
1938 			goto complete;
1939 		j++;
1940 	}
1941 
1942 	piv_end = min(mas_end, mt_pivots[mt]);
1943 	for (; i < piv_end; i++, j++) {
1944 		b_node->pivot[j] = pivots[i];
1945 		if (unlikely(!b_node->pivot[j]))
1946 			break;
1947 
1948 		if (unlikely(mas->max == b_node->pivot[j]))
1949 			goto complete;
1950 	}
1951 
1952 	if (likely(i <= mas_end))
1953 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1954 
1955 complete:
1956 	b_node->b_end = ++j;
1957 	j -= mab_start;
1958 	slots = ma_slots(node, mt);
1959 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1960 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1961 		gaps = ma_gaps(node, mt);
1962 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1963 		       sizeof(unsigned long) * j);
1964 	}
1965 }
1966 
1967 /*
1968  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1969  * @node: The maple node
1970  * @mt: The maple type
1971  * @end: The node end
1972  */
1973 static inline void mas_leaf_set_meta(struct maple_node *node,
1974 		enum maple_type mt, unsigned char end)
1975 {
1976 	if (end < mt_slots[mt] - 1)
1977 		ma_set_meta(node, mt, 0, end);
1978 }
1979 
1980 /*
1981  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982  * @b_node: the maple_big_node that has the data
1983  * @mab_start: the start location in @b_node.
1984  * @mab_end: The end location in @b_node (inclusively)
1985  * @mas: The maple state with the maple encoded node.
1986  */
1987 static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 			      unsigned char mab_start, unsigned char mab_end,
1989 			      struct ma_state *mas, bool new_max)
1990 {
1991 	int i, j = 0;
1992 	enum maple_type mt = mte_node_type(mas->node);
1993 	struct maple_node *node = mte_to_node(mas->node);
1994 	void __rcu **slots = ma_slots(node, mt);
1995 	unsigned long *pivots = ma_pivots(node, mt);
1996 	unsigned long *gaps = NULL;
1997 	unsigned char end;
1998 
1999 	if (mab_end - mab_start > mt_pivots[mt])
2000 		mab_end--;
2001 
2002 	if (!pivots[mt_pivots[mt] - 1])
2003 		slots[mt_pivots[mt]] = NULL;
2004 
2005 	i = mab_start;
2006 	do {
2007 		pivots[j++] = b_node->pivot[i++];
2008 	} while (i <= mab_end && likely(b_node->pivot[i]));
2009 
2010 	memcpy(slots, b_node->slot + mab_start,
2011 	       sizeof(void *) * (i - mab_start));
2012 
2013 	if (new_max)
2014 		mas->max = b_node->pivot[i - 1];
2015 
2016 	end = j - 1;
2017 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 		unsigned long max_gap = 0;
2019 		unsigned char offset = 0;
2020 
2021 		gaps = ma_gaps(node, mt);
2022 		do {
2023 			gaps[--j] = b_node->gap[--i];
2024 			if (gaps[j] > max_gap) {
2025 				offset = j;
2026 				max_gap = gaps[j];
2027 			}
2028 		} while (j);
2029 
2030 		ma_set_meta(node, mt, offset, end);
2031 	} else {
2032 		mas_leaf_set_meta(node, mt, end);
2033 	}
2034 }
2035 
2036 /*
2037  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2038  * @mas: The maple state
2039  * @end: The maple node end
2040  * @mt: The maple node type
2041  */
2042 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2043 				      enum maple_type mt)
2044 {
2045 	if (!(mas->mas_flags & MA_STATE_BULK))
2046 		return;
2047 
2048 	if (mte_is_root(mas->node))
2049 		return;
2050 
2051 	if (end > mt_min_slots[mt]) {
2052 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2053 		return;
2054 	}
2055 }
2056 
2057 /*
2058  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2059  * data from a maple encoded node.
2060  * @wr_mas: the maple write state
2061  * @b_node: the maple_big_node to fill with data
2062  * @offset_end: the offset to end copying
2063  *
2064  * Return: The actual end of the data stored in @b_node
2065  */
2066 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2067 		struct maple_big_node *b_node, unsigned char offset_end)
2068 {
2069 	unsigned char slot;
2070 	unsigned char b_end;
2071 	/* Possible underflow of piv will wrap back to 0 before use. */
2072 	unsigned long piv;
2073 	struct ma_state *mas = wr_mas->mas;
2074 
2075 	b_node->type = wr_mas->type;
2076 	b_end = 0;
2077 	slot = mas->offset;
2078 	if (slot) {
2079 		/* Copy start data up to insert. */
2080 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2081 		b_end = b_node->b_end;
2082 		piv = b_node->pivot[b_end - 1];
2083 	} else
2084 		piv = mas->min - 1;
2085 
2086 	if (piv + 1 < mas->index) {
2087 		/* Handle range starting after old range */
2088 		b_node->slot[b_end] = wr_mas->content;
2089 		if (!wr_mas->content)
2090 			b_node->gap[b_end] = mas->index - 1 - piv;
2091 		b_node->pivot[b_end++] = mas->index - 1;
2092 	}
2093 
2094 	/* Store the new entry. */
2095 	mas->offset = b_end;
2096 	b_node->slot[b_end] = wr_mas->entry;
2097 	b_node->pivot[b_end] = mas->last;
2098 
2099 	/* Appended. */
2100 	if (mas->last >= mas->max)
2101 		goto b_end;
2102 
2103 	/* Handle new range ending before old range ends */
2104 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2105 	if (piv > mas->last) {
2106 		if (piv == ULONG_MAX)
2107 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2108 
2109 		if (offset_end != slot)
2110 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2111 							  offset_end);
2112 
2113 		b_node->slot[++b_end] = wr_mas->content;
2114 		if (!wr_mas->content)
2115 			b_node->gap[b_end] = piv - mas->last + 1;
2116 		b_node->pivot[b_end] = piv;
2117 	}
2118 
2119 	slot = offset_end + 1;
2120 	if (slot > mas->end)
2121 		goto b_end;
2122 
2123 	/* Copy end data to the end of the node. */
2124 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2125 	b_node->b_end--;
2126 	return;
2127 
2128 b_end:
2129 	b_node->b_end = b_end;
2130 }
2131 
2132 /*
2133  * mas_prev_sibling() - Find the previous node with the same parent.
2134  * @mas: the maple state
2135  *
2136  * Return: True if there is a previous sibling, false otherwise.
2137  */
2138 static inline bool mas_prev_sibling(struct ma_state *mas)
2139 {
2140 	unsigned int p_slot = mte_parent_slot(mas->node);
2141 
2142 	if (mte_is_root(mas->node))
2143 		return false;
2144 
2145 	if (!p_slot)
2146 		return false;
2147 
2148 	mas_ascend(mas);
2149 	mas->offset = p_slot - 1;
2150 	mas_descend(mas);
2151 	return true;
2152 }
2153 
2154 /*
2155  * mas_next_sibling() - Find the next node with the same parent.
2156  * @mas: the maple state
2157  *
2158  * Return: true if there is a next sibling, false otherwise.
2159  */
2160 static inline bool mas_next_sibling(struct ma_state *mas)
2161 {
2162 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2163 
2164 	if (mte_is_root(mas->node))
2165 		return false;
2166 
2167 	parent = *mas;
2168 	mas_ascend(&parent);
2169 	parent.offset = mte_parent_slot(mas->node) + 1;
2170 	if (parent.offset > mas_data_end(&parent))
2171 		return false;
2172 
2173 	*mas = parent;
2174 	mas_descend(mas);
2175 	return true;
2176 }
2177 
2178 /*
2179  * mas_node_or_none() - Set the enode and state.
2180  * @mas: the maple state
2181  * @enode: The encoded maple node.
2182  *
2183  * Set the node to the enode and the status.
2184  */
2185 static inline void mas_node_or_none(struct ma_state *mas,
2186 		struct maple_enode *enode)
2187 {
2188 	if (enode) {
2189 		mas->node = enode;
2190 		mas->status = ma_active;
2191 	} else {
2192 		mas->node = NULL;
2193 		mas->status = ma_none;
2194 	}
2195 }
2196 
2197 /*
2198  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199  * @wr_mas: The maple write state
2200  *
2201  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202  */
2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204 {
2205 	struct ma_state *mas = wr_mas->mas;
2206 	unsigned char count, offset;
2207 
2208 	if (unlikely(ma_is_dense(wr_mas->type))) {
2209 		wr_mas->r_max = wr_mas->r_min = mas->index;
2210 		mas->offset = mas->index = mas->min;
2211 		return;
2212 	}
2213 
2214 	wr_mas->node = mas_mn(wr_mas->mas);
2215 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 				       wr_mas->pivots, mas->max);
2218 	offset = mas->offset;
2219 
2220 	while (offset < count && mas->index > wr_mas->pivots[offset])
2221 		offset++;
2222 
2223 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225 	wr_mas->offset_end = mas->offset = offset;
2226 }
2227 
2228 /*
2229  * mast_rebalance_next() - Rebalance against the next node
2230  * @mast: The maple subtree state
2231  */
2232 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2233 {
2234 	unsigned char b_end = mast->bn->b_end;
2235 
2236 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2237 		   mast->bn, b_end);
2238 	mast->orig_r->last = mast->orig_r->max;
2239 }
2240 
2241 /*
2242  * mast_rebalance_prev() - Rebalance against the previous node
2243  * @mast: The maple subtree state
2244  */
2245 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2246 {
2247 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2248 	unsigned char b_end = mast->bn->b_end;
2249 
2250 	mab_shift_right(mast->bn, end);
2251 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2252 	mast->l->min = mast->orig_l->min;
2253 	mast->orig_l->index = mast->orig_l->min;
2254 	mast->bn->b_end = end + b_end;
2255 	mast->l->offset += end;
2256 }
2257 
2258 /*
2259  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2260  * the node to the right.  Checking the nodes to the right then the left at each
2261  * level upwards until root is reached.
2262  * Data is copied into the @mast->bn.
2263  * @mast: The maple_subtree_state.
2264  */
2265 static inline
2266 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2267 {
2268 	struct ma_state r_tmp = *mast->orig_r;
2269 	struct ma_state l_tmp = *mast->orig_l;
2270 	unsigned char depth = 0;
2271 
2272 	do {
2273 		mas_ascend(mast->orig_r);
2274 		mas_ascend(mast->orig_l);
2275 		depth++;
2276 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2277 			mast->orig_r->offset++;
2278 			do {
2279 				mas_descend(mast->orig_r);
2280 				mast->orig_r->offset = 0;
2281 			} while (--depth);
2282 
2283 			mast_rebalance_next(mast);
2284 			*mast->orig_l = l_tmp;
2285 			return true;
2286 		} else if (mast->orig_l->offset != 0) {
2287 			mast->orig_l->offset--;
2288 			do {
2289 				mas_descend(mast->orig_l);
2290 				mast->orig_l->offset =
2291 					mas_data_end(mast->orig_l);
2292 			} while (--depth);
2293 
2294 			mast_rebalance_prev(mast);
2295 			*mast->orig_r = r_tmp;
2296 			return true;
2297 		}
2298 	} while (!mte_is_root(mast->orig_r->node));
2299 
2300 	*mast->orig_r = r_tmp;
2301 	*mast->orig_l = l_tmp;
2302 	return false;
2303 }
2304 
2305 /*
2306  * mast_ascend() - Ascend the original left and right maple states.
2307  * @mast: the maple subtree state.
2308  *
2309  * Ascend the original left and right sides.  Set the offsets to point to the
2310  * data already in the new tree (@mast->l and @mast->r).
2311  */
2312 static inline void mast_ascend(struct maple_subtree_state *mast)
2313 {
2314 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2315 	mas_ascend(mast->orig_l);
2316 	mas_ascend(mast->orig_r);
2317 
2318 	mast->orig_r->offset = 0;
2319 	mast->orig_r->index = mast->r->max;
2320 	/* last should be larger than or equal to index */
2321 	if (mast->orig_r->last < mast->orig_r->index)
2322 		mast->orig_r->last = mast->orig_r->index;
2323 
2324 	wr_mas.type = mte_node_type(mast->orig_r->node);
2325 	mas_wr_node_walk(&wr_mas);
2326 	/* Set up the left side of things */
2327 	mast->orig_l->offset = 0;
2328 	mast->orig_l->index = mast->l->min;
2329 	wr_mas.mas = mast->orig_l;
2330 	wr_mas.type = mte_node_type(mast->orig_l->node);
2331 	mas_wr_node_walk(&wr_mas);
2332 
2333 	mast->bn->type = wr_mas.type;
2334 }
2335 
2336 /*
2337  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2338  * @mas: the maple state with the allocations.
2339  * @b_node: the maple_big_node with the type encoding.
2340  *
2341  * Use the node type from the maple_big_node to allocate a new node from the
2342  * ma_state.  This function exists mainly for code readability.
2343  *
2344  * Return: A new maple encoded node
2345  */
2346 static inline struct maple_enode
2347 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2348 {
2349 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2350 }
2351 
2352 /*
2353  * mas_mab_to_node() - Set up right and middle nodes
2354  *
2355  * @mas: the maple state that contains the allocations.
2356  * @b_node: the node which contains the data.
2357  * @left: The pointer which will have the left node
2358  * @right: The pointer which may have the right node
2359  * @middle: the pointer which may have the middle node (rare)
2360  * @mid_split: the split location for the middle node
2361  *
2362  * Return: the split of left.
2363  */
2364 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2365 	struct maple_big_node *b_node, struct maple_enode **left,
2366 	struct maple_enode **right, struct maple_enode **middle,
2367 	unsigned char *mid_split, unsigned long min)
2368 {
2369 	unsigned char split = 0;
2370 	unsigned char slot_count = mt_slots[b_node->type];
2371 
2372 	*left = mas_new_ma_node(mas, b_node);
2373 	*right = NULL;
2374 	*middle = NULL;
2375 	*mid_split = 0;
2376 
2377 	if (b_node->b_end < slot_count) {
2378 		split = b_node->b_end;
2379 	} else {
2380 		split = mab_calc_split(mas, b_node, mid_split, min);
2381 		*right = mas_new_ma_node(mas, b_node);
2382 	}
2383 
2384 	if (*mid_split)
2385 		*middle = mas_new_ma_node(mas, b_node);
2386 
2387 	return split;
2388 
2389 }
2390 
2391 /*
2392  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2393  * pointer.
2394  * @b_node: the big node to add the entry
2395  * @mas: the maple state to get the pivot (mas->max)
2396  * @entry: the entry to add, if NULL nothing happens.
2397  */
2398 static inline void mab_set_b_end(struct maple_big_node *b_node,
2399 				 struct ma_state *mas,
2400 				 void *entry)
2401 {
2402 	if (!entry)
2403 		return;
2404 
2405 	b_node->slot[b_node->b_end] = entry;
2406 	if (mt_is_alloc(mas->tree))
2407 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2408 	b_node->pivot[b_node->b_end++] = mas->max;
2409 }
2410 
2411 /*
2412  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2413  * of @mas->node to either @left or @right, depending on @slot and @split
2414  *
2415  * @mas: the maple state with the node that needs a parent
2416  * @left: possible parent 1
2417  * @right: possible parent 2
2418  * @slot: the slot the mas->node was placed
2419  * @split: the split location between @left and @right
2420  */
2421 static inline void mas_set_split_parent(struct ma_state *mas,
2422 					struct maple_enode *left,
2423 					struct maple_enode *right,
2424 					unsigned char *slot, unsigned char split)
2425 {
2426 	if (mas_is_none(mas))
2427 		return;
2428 
2429 	if ((*slot) <= split)
2430 		mas_set_parent(mas, mas->node, left, *slot);
2431 	else if (right)
2432 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2433 
2434 	(*slot)++;
2435 }
2436 
2437 /*
2438  * mte_mid_split_check() - Check if the next node passes the mid-split
2439  * @l: Pointer to left encoded maple node.
2440  * @m: Pointer to middle encoded maple node.
2441  * @r: Pointer to right encoded maple node.
2442  * @slot: The offset
2443  * @split: The split location.
2444  * @mid_split: The middle split.
2445  */
2446 static inline void mte_mid_split_check(struct maple_enode **l,
2447 				       struct maple_enode **r,
2448 				       struct maple_enode *right,
2449 				       unsigned char slot,
2450 				       unsigned char *split,
2451 				       unsigned char mid_split)
2452 {
2453 	if (*r == right)
2454 		return;
2455 
2456 	if (slot < mid_split)
2457 		return;
2458 
2459 	*l = *r;
2460 	*r = right;
2461 	*split = mid_split;
2462 }
2463 
2464 /*
2465  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2466  * is taken from @mast->l.
2467  * @mast: the maple subtree state
2468  * @left: the left node
2469  * @right: the right node
2470  * @split: the split location.
2471  */
2472 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2473 					  struct maple_enode *left,
2474 					  struct maple_enode *middle,
2475 					  struct maple_enode *right,
2476 					  unsigned char split,
2477 					  unsigned char mid_split)
2478 {
2479 	unsigned char slot;
2480 	struct maple_enode *l = left;
2481 	struct maple_enode *r = right;
2482 
2483 	if (mas_is_none(mast->l))
2484 		return;
2485 
2486 	if (middle)
2487 		r = middle;
2488 
2489 	slot = mast->l->offset;
2490 
2491 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2492 	mas_set_split_parent(mast->l, l, r, &slot, split);
2493 
2494 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2495 	mas_set_split_parent(mast->m, l, r, &slot, split);
2496 
2497 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2498 	mas_set_split_parent(mast->r, l, r, &slot, split);
2499 }
2500 
2501 /*
2502  * mas_topiary_node() - Dispose of a single node
2503  * @mas: The maple state for pushing nodes
2504  * @in_rcu: If the tree is in rcu mode
2505  *
2506  * The node will either be RCU freed or pushed back on the maple state.
2507  */
2508 static inline void mas_topiary_node(struct ma_state *mas,
2509 		struct ma_state *tmp_mas, bool in_rcu)
2510 {
2511 	struct maple_node *tmp;
2512 	struct maple_enode *enode;
2513 
2514 	if (mas_is_none(tmp_mas))
2515 		return;
2516 
2517 	enode = tmp_mas->node;
2518 	tmp = mte_to_node(enode);
2519 	mte_set_node_dead(enode);
2520 	if (in_rcu)
2521 		ma_free_rcu(tmp);
2522 	else
2523 		mas_push_node(mas, tmp);
2524 }
2525 
2526 /*
2527  * mas_topiary_replace() - Replace the data with new data, then repair the
2528  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2529  * the dead subtrees and topiary the nodes that are no longer of use.
2530  *
2531  * The new tree will have up to three children with the correct parent.  Keep
2532  * track of the new entries as they need to be followed to find the next level
2533  * of new entries.
2534  *
2535  * The old tree will have up to three children with the old parent.  Keep track
2536  * of the old entries as they may have more nodes below replaced.  Nodes within
2537  * [index, last] are dead subtrees, others need to be freed and followed.
2538  *
2539  * @mas: The maple state pointing at the new data
2540  * @old_enode: The maple encoded node being replaced
2541  *
2542  */
2543 static inline void mas_topiary_replace(struct ma_state *mas,
2544 		struct maple_enode *old_enode)
2545 {
2546 	struct ma_state tmp[3], tmp_next[3];
2547 	MA_TOPIARY(subtrees, mas->tree);
2548 	bool in_rcu;
2549 	int i, n;
2550 
2551 	/* Place data in tree & then mark node as old */
2552 	mas_put_in_tree(mas, old_enode);
2553 
2554 	/* Update the parent pointers in the tree */
2555 	tmp[0] = *mas;
2556 	tmp[0].offset = 0;
2557 	tmp[1].status = ma_none;
2558 	tmp[2].status = ma_none;
2559 	while (!mte_is_leaf(tmp[0].node)) {
2560 		n = 0;
2561 		for (i = 0; i < 3; i++) {
2562 			if (mas_is_none(&tmp[i]))
2563 				continue;
2564 
2565 			while (n < 3) {
2566 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2567 					break;
2568 				n++;
2569 			}
2570 
2571 			mas_adopt_children(&tmp[i], tmp[i].node);
2572 		}
2573 
2574 		if (MAS_WARN_ON(mas, n == 0))
2575 			break;
2576 
2577 		while (n < 3)
2578 			tmp_next[n++].status = ma_none;
2579 
2580 		for (i = 0; i < 3; i++)
2581 			tmp[i] = tmp_next[i];
2582 	}
2583 
2584 	/* Collect the old nodes that need to be discarded */
2585 	if (mte_is_leaf(old_enode))
2586 		return mas_free(mas, old_enode);
2587 
2588 	tmp[0] = *mas;
2589 	tmp[0].offset = 0;
2590 	tmp[0].node = old_enode;
2591 	tmp[1].status = ma_none;
2592 	tmp[2].status = ma_none;
2593 	in_rcu = mt_in_rcu(mas->tree);
2594 	do {
2595 		n = 0;
2596 		for (i = 0; i < 3; i++) {
2597 			if (mas_is_none(&tmp[i]))
2598 				continue;
2599 
2600 			while (n < 3) {
2601 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2602 					break;
2603 
2604 				if ((tmp_next[n].min >= tmp_next->index) &&
2605 				    (tmp_next[n].max <= tmp_next->last)) {
2606 					mat_add(&subtrees, tmp_next[n].node);
2607 					tmp_next[n].status = ma_none;
2608 				} else {
2609 					n++;
2610 				}
2611 			}
2612 		}
2613 
2614 		if (MAS_WARN_ON(mas, n == 0))
2615 			break;
2616 
2617 		while (n < 3)
2618 			tmp_next[n++].status = ma_none;
2619 
2620 		for (i = 0; i < 3; i++) {
2621 			mas_topiary_node(mas, &tmp[i], in_rcu);
2622 			tmp[i] = tmp_next[i];
2623 		}
2624 	} while (!mte_is_leaf(tmp[0].node));
2625 
2626 	for (i = 0; i < 3; i++)
2627 		mas_topiary_node(mas, &tmp[i], in_rcu);
2628 
2629 	mas_mat_destroy(mas, &subtrees);
2630 }
2631 
2632 /*
2633  * mas_wmb_replace() - Write memory barrier and replace
2634  * @mas: The maple state
2635  * @old_enode: The old maple encoded node that is being replaced.
2636  *
2637  * Updates gap as necessary.
2638  */
2639 static inline void mas_wmb_replace(struct ma_state *mas,
2640 		struct maple_enode *old_enode)
2641 {
2642 	/* Insert the new data in the tree */
2643 	mas_topiary_replace(mas, old_enode);
2644 
2645 	if (mte_is_leaf(mas->node))
2646 		return;
2647 
2648 	mas_update_gap(mas);
2649 }
2650 
2651 /*
2652  * mast_cp_to_nodes() - Copy data out to nodes.
2653  * @mast: The maple subtree state
2654  * @left: The left encoded maple node
2655  * @middle: The middle encoded maple node
2656  * @right: The right encoded maple node
2657  * @split: The location to split between left and (middle ? middle : right)
2658  * @mid_split: The location to split between middle and right.
2659  */
2660 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2661 	struct maple_enode *left, struct maple_enode *middle,
2662 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2663 {
2664 	bool new_lmax = true;
2665 
2666 	mas_node_or_none(mast->l, left);
2667 	mas_node_or_none(mast->m, middle);
2668 	mas_node_or_none(mast->r, right);
2669 
2670 	mast->l->min = mast->orig_l->min;
2671 	if (split == mast->bn->b_end) {
2672 		mast->l->max = mast->orig_r->max;
2673 		new_lmax = false;
2674 	}
2675 
2676 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2677 
2678 	if (middle) {
2679 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2680 		mast->m->min = mast->bn->pivot[split] + 1;
2681 		split = mid_split;
2682 	}
2683 
2684 	mast->r->max = mast->orig_r->max;
2685 	if (right) {
2686 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2687 		mast->r->min = mast->bn->pivot[split] + 1;
2688 	}
2689 }
2690 
2691 /*
2692  * mast_combine_cp_left - Copy in the original left side of the tree into the
2693  * combined data set in the maple subtree state big node.
2694  * @mast: The maple subtree state
2695  */
2696 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2697 {
2698 	unsigned char l_slot = mast->orig_l->offset;
2699 
2700 	if (!l_slot)
2701 		return;
2702 
2703 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2704 }
2705 
2706 /*
2707  * mast_combine_cp_right: Copy in the original right side of the tree into the
2708  * combined data set in the maple subtree state big node.
2709  * @mast: The maple subtree state
2710  */
2711 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2712 {
2713 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2714 		return;
2715 
2716 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2717 		   mt_slot_count(mast->orig_r->node), mast->bn,
2718 		   mast->bn->b_end);
2719 	mast->orig_r->last = mast->orig_r->max;
2720 }
2721 
2722 /*
2723  * mast_sufficient: Check if the maple subtree state has enough data in the big
2724  * node to create at least one sufficient node
2725  * @mast: the maple subtree state
2726  */
2727 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2728 {
2729 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2730 		return true;
2731 
2732 	return false;
2733 }
2734 
2735 /*
2736  * mast_overflow: Check if there is too much data in the subtree state for a
2737  * single node.
2738  * @mast: The maple subtree state
2739  */
2740 static inline bool mast_overflow(struct maple_subtree_state *mast)
2741 {
2742 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2743 		return true;
2744 
2745 	return false;
2746 }
2747 
2748 static inline void *mtree_range_walk(struct ma_state *mas)
2749 {
2750 	unsigned long *pivots;
2751 	unsigned char offset;
2752 	struct maple_node *node;
2753 	struct maple_enode *next, *last;
2754 	enum maple_type type;
2755 	void __rcu **slots;
2756 	unsigned char end;
2757 	unsigned long max, min;
2758 	unsigned long prev_max, prev_min;
2759 
2760 	next = mas->node;
2761 	min = mas->min;
2762 	max = mas->max;
2763 	do {
2764 		last = next;
2765 		node = mte_to_node(next);
2766 		type = mte_node_type(next);
2767 		pivots = ma_pivots(node, type);
2768 		end = ma_data_end(node, type, pivots, max);
2769 		prev_min = min;
2770 		prev_max = max;
2771 		if (pivots[0] >= mas->index) {
2772 			offset = 0;
2773 			max = pivots[0];
2774 			goto next;
2775 		}
2776 
2777 		offset = 1;
2778 		while (offset < end) {
2779 			if (pivots[offset] >= mas->index) {
2780 				max = pivots[offset];
2781 				break;
2782 			}
2783 			offset++;
2784 		}
2785 
2786 		min = pivots[offset - 1] + 1;
2787 next:
2788 		slots = ma_slots(node, type);
2789 		next = mt_slot(mas->tree, slots, offset);
2790 		if (unlikely(ma_dead_node(node)))
2791 			goto dead_node;
2792 	} while (!ma_is_leaf(type));
2793 
2794 	mas->end = end;
2795 	mas->offset = offset;
2796 	mas->index = min;
2797 	mas->last = max;
2798 	mas->min = prev_min;
2799 	mas->max = prev_max;
2800 	mas->node = last;
2801 	return (void *)next;
2802 
2803 dead_node:
2804 	mas_reset(mas);
2805 	return NULL;
2806 }
2807 
2808 /*
2809  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2810  * @mas: The starting maple state
2811  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2812  * @count: The estimated count of iterations needed.
2813  *
2814  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2815  * is hit.  First @b_node is split into two entries which are inserted into the
2816  * next iteration of the loop.  @b_node is returned populated with the final
2817  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2818  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2819  * to account of what has been copied into the new sub-tree.  The update of
2820  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2821  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2822  * the new sub-tree in case the sub-tree becomes the full tree.
2823  */
2824 static void mas_spanning_rebalance(struct ma_state *mas,
2825 		struct maple_subtree_state *mast, unsigned char count)
2826 {
2827 	unsigned char split, mid_split;
2828 	unsigned char slot = 0;
2829 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2830 	struct maple_enode *old_enode;
2831 
2832 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2833 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2834 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2835 
2836 	/*
2837 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2838 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2839 	 */
2840 	mast->l = &l_mas;
2841 	mast->m = &m_mas;
2842 	mast->r = &r_mas;
2843 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2844 
2845 	/* Check if this is not root and has sufficient data.  */
2846 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2847 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2848 		mast_spanning_rebalance(mast);
2849 
2850 	l_mas.depth = 0;
2851 
2852 	/*
2853 	 * Each level of the tree is examined and balanced, pushing data to the left or
2854 	 * right, or rebalancing against left or right nodes is employed to avoid
2855 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2856 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2857 	 * will have the incorrect parent pointers and currently be in two trees: the
2858 	 * original tree and the partially new tree.  To remedy the parent pointers in
2859 	 * the old tree, the new data is swapped into the active tree and a walk down
2860 	 * the tree is performed and the parent pointers are updated.
2861 	 * See mas_topiary_replace() for more information.
2862 	 */
2863 	while (count--) {
2864 		mast->bn->b_end--;
2865 		mast->bn->type = mte_node_type(mast->orig_l->node);
2866 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2867 					&mid_split, mast->orig_l->min);
2868 		mast_set_split_parents(mast, left, middle, right, split,
2869 				       mid_split);
2870 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2871 
2872 		/*
2873 		 * Copy data from next level in the tree to mast->bn from next
2874 		 * iteration
2875 		 */
2876 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2877 		mast->bn->type = mte_node_type(left);
2878 		l_mas.depth++;
2879 
2880 		/* Root already stored in l->node. */
2881 		if (mas_is_root_limits(mast->l))
2882 			goto new_root;
2883 
2884 		mast_ascend(mast);
2885 		mast_combine_cp_left(mast);
2886 		l_mas.offset = mast->bn->b_end;
2887 		mab_set_b_end(mast->bn, &l_mas, left);
2888 		mab_set_b_end(mast->bn, &m_mas, middle);
2889 		mab_set_b_end(mast->bn, &r_mas, right);
2890 
2891 		/* Copy anything necessary out of the right node. */
2892 		mast_combine_cp_right(mast);
2893 		mast->orig_l->last = mast->orig_l->max;
2894 
2895 		if (mast_sufficient(mast))
2896 			continue;
2897 
2898 		if (mast_overflow(mast))
2899 			continue;
2900 
2901 		/* May be a new root stored in mast->bn */
2902 		if (mas_is_root_limits(mast->orig_l))
2903 			break;
2904 
2905 		mast_spanning_rebalance(mast);
2906 
2907 		/* rebalancing from other nodes may require another loop. */
2908 		if (!count)
2909 			count++;
2910 	}
2911 
2912 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2913 				mte_node_type(mast->orig_l->node));
2914 	l_mas.depth++;
2915 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2916 	mas_set_parent(mas, left, l_mas.node, slot);
2917 	if (middle)
2918 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2919 
2920 	if (right)
2921 		mas_set_parent(mas, right, l_mas.node, ++slot);
2922 
2923 	if (mas_is_root_limits(mast->l)) {
2924 new_root:
2925 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2926 		while (!mte_is_root(mast->orig_l->node))
2927 			mast_ascend(mast);
2928 	} else {
2929 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2930 	}
2931 
2932 	old_enode = mast->orig_l->node;
2933 	mas->depth = l_mas.depth;
2934 	mas->node = l_mas.node;
2935 	mas->min = l_mas.min;
2936 	mas->max = l_mas.max;
2937 	mas->offset = l_mas.offset;
2938 	mas_wmb_replace(mas, old_enode);
2939 	mtree_range_walk(mas);
2940 	return;
2941 }
2942 
2943 /*
2944  * mas_rebalance() - Rebalance a given node.
2945  * @mas: The maple state
2946  * @b_node: The big maple node.
2947  *
2948  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2949  * Continue upwards until tree is sufficient.
2950  */
2951 static inline void mas_rebalance(struct ma_state *mas,
2952 				struct maple_big_node *b_node)
2953 {
2954 	char empty_count = mas_mt_height(mas);
2955 	struct maple_subtree_state mast;
2956 	unsigned char shift, b_end = ++b_node->b_end;
2957 
2958 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2959 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2960 
2961 	trace_ma_op(__func__, mas);
2962 
2963 	/*
2964 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2965 	 * against the node to the right if it exists, otherwise the node to the
2966 	 * left of this node is rebalanced against this node.  If rebalancing
2967 	 * causes just one node to be produced instead of two, then the parent
2968 	 * is also examined and rebalanced if it is insufficient.  Every level
2969 	 * tries to combine the data in the same way.  If one node contains the
2970 	 * entire range of the tree, then that node is used as a new root node.
2971 	 */
2972 
2973 	mast.orig_l = &l_mas;
2974 	mast.orig_r = &r_mas;
2975 	mast.bn = b_node;
2976 	mast.bn->type = mte_node_type(mas->node);
2977 
2978 	l_mas = r_mas = *mas;
2979 
2980 	if (mas_next_sibling(&r_mas)) {
2981 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2982 		r_mas.last = r_mas.index = r_mas.max;
2983 	} else {
2984 		mas_prev_sibling(&l_mas);
2985 		shift = mas_data_end(&l_mas) + 1;
2986 		mab_shift_right(b_node, shift);
2987 		mas->offset += shift;
2988 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2989 		b_node->b_end = shift + b_end;
2990 		l_mas.index = l_mas.last = l_mas.min;
2991 	}
2992 
2993 	return mas_spanning_rebalance(mas, &mast, empty_count);
2994 }
2995 
2996 /*
2997  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
2998  * state.
2999  * @mas: The maple state
3000  * @end: The end of the left-most node.
3001  *
3002  * During a mass-insert event (such as forking), it may be necessary to
3003  * rebalance the left-most node when it is not sufficient.
3004  */
3005 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3006 {
3007 	enum maple_type mt = mte_node_type(mas->node);
3008 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3009 	struct maple_enode *eparent, *old_eparent;
3010 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3011 	void __rcu **l_slots, **slots;
3012 	unsigned long *l_pivs, *pivs, gap;
3013 	bool in_rcu = mt_in_rcu(mas->tree);
3014 
3015 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3016 
3017 	l_mas = *mas;
3018 	mas_prev_sibling(&l_mas);
3019 
3020 	/* set up node. */
3021 	if (in_rcu) {
3022 		newnode = mas_pop_node(mas);
3023 	} else {
3024 		newnode = &reuse;
3025 	}
3026 
3027 	node = mas_mn(mas);
3028 	newnode->parent = node->parent;
3029 	slots = ma_slots(newnode, mt);
3030 	pivs = ma_pivots(newnode, mt);
3031 	left = mas_mn(&l_mas);
3032 	l_slots = ma_slots(left, mt);
3033 	l_pivs = ma_pivots(left, mt);
3034 	if (!l_slots[split])
3035 		split++;
3036 	tmp = mas_data_end(&l_mas) - split;
3037 
3038 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3039 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3040 	pivs[tmp] = l_mas.max;
3041 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3042 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3043 
3044 	l_mas.max = l_pivs[split];
3045 	mas->min = l_mas.max + 1;
3046 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3047 			     mas_parent_type(&l_mas, l_mas.node));
3048 	tmp += end;
3049 	if (!in_rcu) {
3050 		unsigned char max_p = mt_pivots[mt];
3051 		unsigned char max_s = mt_slots[mt];
3052 
3053 		if (tmp < max_p)
3054 			memset(pivs + tmp, 0,
3055 			       sizeof(unsigned long) * (max_p - tmp));
3056 
3057 		if (tmp < mt_slots[mt])
3058 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3059 
3060 		memcpy(node, newnode, sizeof(struct maple_node));
3061 		ma_set_meta(node, mt, 0, tmp - 1);
3062 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3063 			      l_pivs[split]);
3064 
3065 		/* Remove data from l_pivs. */
3066 		tmp = split + 1;
3067 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3068 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3069 		ma_set_meta(left, mt, 0, split);
3070 		eparent = old_eparent;
3071 
3072 		goto done;
3073 	}
3074 
3075 	/* RCU requires replacing both l_mas, mas, and parent. */
3076 	mas->node = mt_mk_node(newnode, mt);
3077 	ma_set_meta(newnode, mt, 0, tmp);
3078 
3079 	new_left = mas_pop_node(mas);
3080 	new_left->parent = left->parent;
3081 	mt = mte_node_type(l_mas.node);
3082 	slots = ma_slots(new_left, mt);
3083 	pivs = ma_pivots(new_left, mt);
3084 	memcpy(slots, l_slots, sizeof(void *) * split);
3085 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3086 	ma_set_meta(new_left, mt, 0, split);
3087 	l_mas.node = mt_mk_node(new_left, mt);
3088 
3089 	/* replace parent. */
3090 	offset = mte_parent_slot(mas->node);
3091 	mt = mas_parent_type(&l_mas, l_mas.node);
3092 	parent = mas_pop_node(mas);
3093 	slots = ma_slots(parent, mt);
3094 	pivs = ma_pivots(parent, mt);
3095 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3096 	rcu_assign_pointer(slots[offset], mas->node);
3097 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3098 	pivs[offset - 1] = l_mas.max;
3099 	eparent = mt_mk_node(parent, mt);
3100 done:
3101 	gap = mas_leaf_max_gap(mas);
3102 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3103 	gap = mas_leaf_max_gap(&l_mas);
3104 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3105 	mas_ascend(mas);
3106 
3107 	if (in_rcu) {
3108 		mas_replace_node(mas, old_eparent);
3109 		mas_adopt_children(mas, mas->node);
3110 	}
3111 
3112 	mas_update_gap(mas);
3113 }
3114 
3115 /*
3116  * mas_split_final_node() - Split the final node in a subtree operation.
3117  * @mast: the maple subtree state
3118  * @mas: The maple state
3119  * @height: The height of the tree in case it's a new root.
3120  */
3121 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3122 					struct ma_state *mas, int height)
3123 {
3124 	struct maple_enode *ancestor;
3125 
3126 	if (mte_is_root(mas->node)) {
3127 		if (mt_is_alloc(mas->tree))
3128 			mast->bn->type = maple_arange_64;
3129 		else
3130 			mast->bn->type = maple_range_64;
3131 		mas->depth = height;
3132 	}
3133 	/*
3134 	 * Only a single node is used here, could be root.
3135 	 * The Big_node data should just fit in a single node.
3136 	 */
3137 	ancestor = mas_new_ma_node(mas, mast->bn);
3138 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3139 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3140 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3141 
3142 	mast->l->node = ancestor;
3143 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3144 	mas->offset = mast->bn->b_end - 1;
3145 }
3146 
3147 /*
3148  * mast_fill_bnode() - Copy data into the big node in the subtree state
3149  * @mast: The maple subtree state
3150  * @mas: the maple state
3151  * @skip: The number of entries to skip for new nodes insertion.
3152  */
3153 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3154 					 struct ma_state *mas,
3155 					 unsigned char skip)
3156 {
3157 	bool cp = true;
3158 	unsigned char split;
3159 
3160 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3161 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3162 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3163 	mast->bn->b_end = 0;
3164 
3165 	if (mte_is_root(mas->node)) {
3166 		cp = false;
3167 	} else {
3168 		mas_ascend(mas);
3169 		mas->offset = mte_parent_slot(mas->node);
3170 	}
3171 
3172 	if (cp && mast->l->offset)
3173 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3174 
3175 	split = mast->bn->b_end;
3176 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3177 	mast->r->offset = mast->bn->b_end;
3178 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3179 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3180 		cp = false;
3181 
3182 	if (cp)
3183 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3184 			   mast->bn, mast->bn->b_end);
3185 
3186 	mast->bn->b_end--;
3187 	mast->bn->type = mte_node_type(mas->node);
3188 }
3189 
3190 /*
3191  * mast_split_data() - Split the data in the subtree state big node into regular
3192  * nodes.
3193  * @mast: The maple subtree state
3194  * @mas: The maple state
3195  * @split: The location to split the big node
3196  */
3197 static inline void mast_split_data(struct maple_subtree_state *mast,
3198 	   struct ma_state *mas, unsigned char split)
3199 {
3200 	unsigned char p_slot;
3201 
3202 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3203 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3204 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3205 	mast->l->offset = mte_parent_slot(mas->node);
3206 	mast->l->max = mast->bn->pivot[split];
3207 	mast->r->min = mast->l->max + 1;
3208 	if (mte_is_leaf(mas->node))
3209 		return;
3210 
3211 	p_slot = mast->orig_l->offset;
3212 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3213 			     &p_slot, split);
3214 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3215 			     &p_slot, split);
3216 }
3217 
3218 /*
3219  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3220  * data to the right or left node if there is room.
3221  * @mas: The maple state
3222  * @height: The current height of the maple state
3223  * @mast: The maple subtree state
3224  * @left: Push left or not.
3225  *
3226  * Keeping the height of the tree low means faster lookups.
3227  *
3228  * Return: True if pushed, false otherwise.
3229  */
3230 static inline bool mas_push_data(struct ma_state *mas, int height,
3231 				 struct maple_subtree_state *mast, bool left)
3232 {
3233 	unsigned char slot_total = mast->bn->b_end;
3234 	unsigned char end, space, split;
3235 
3236 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3237 	tmp_mas = *mas;
3238 	tmp_mas.depth = mast->l->depth;
3239 
3240 	if (left && !mas_prev_sibling(&tmp_mas))
3241 		return false;
3242 	else if (!left && !mas_next_sibling(&tmp_mas))
3243 		return false;
3244 
3245 	end = mas_data_end(&tmp_mas);
3246 	slot_total += end;
3247 	space = 2 * mt_slot_count(mas->node) - 2;
3248 	/* -2 instead of -1 to ensure there isn't a triple split */
3249 	if (ma_is_leaf(mast->bn->type))
3250 		space--;
3251 
3252 	if (mas->max == ULONG_MAX)
3253 		space--;
3254 
3255 	if (slot_total >= space)
3256 		return false;
3257 
3258 	/* Get the data; Fill mast->bn */
3259 	mast->bn->b_end++;
3260 	if (left) {
3261 		mab_shift_right(mast->bn, end + 1);
3262 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3263 		mast->bn->b_end = slot_total + 1;
3264 	} else {
3265 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3266 	}
3267 
3268 	/* Configure mast for splitting of mast->bn */
3269 	split = mt_slots[mast->bn->type] - 2;
3270 	if (left) {
3271 		/*  Switch mas to prev node  */
3272 		*mas = tmp_mas;
3273 		/* Start using mast->l for the left side. */
3274 		tmp_mas.node = mast->l->node;
3275 		*mast->l = tmp_mas;
3276 	} else {
3277 		tmp_mas.node = mast->r->node;
3278 		*mast->r = tmp_mas;
3279 		split = slot_total - split;
3280 	}
3281 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3282 	/* Update parent slot for split calculation. */
3283 	if (left)
3284 		mast->orig_l->offset += end + 1;
3285 
3286 	mast_split_data(mast, mas, split);
3287 	mast_fill_bnode(mast, mas, 2);
3288 	mas_split_final_node(mast, mas, height + 1);
3289 	return true;
3290 }
3291 
3292 /*
3293  * mas_split() - Split data that is too big for one node into two.
3294  * @mas: The maple state
3295  * @b_node: The maple big node
3296  */
3297 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3298 {
3299 	struct maple_subtree_state mast;
3300 	int height = 0;
3301 	unsigned char mid_split, split = 0;
3302 	struct maple_enode *old;
3303 
3304 	/*
3305 	 * Splitting is handled differently from any other B-tree; the Maple
3306 	 * Tree splits upwards.  Splitting up means that the split operation
3307 	 * occurs when the walk of the tree hits the leaves and not on the way
3308 	 * down.  The reason for splitting up is that it is impossible to know
3309 	 * how much space will be needed until the leaf is (or leaves are)
3310 	 * reached.  Since overwriting data is allowed and a range could
3311 	 * overwrite more than one range or result in changing one entry into 3
3312 	 * entries, it is impossible to know if a split is required until the
3313 	 * data is examined.
3314 	 *
3315 	 * Splitting is a balancing act between keeping allocations to a minimum
3316 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3317 	 * for an entry followed by a contraction when the entry is removed.  To
3318 	 * accomplish the balance, there are empty slots remaining in both left
3319 	 * and right nodes after a split.
3320 	 */
3321 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3322 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3323 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3324 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3325 
3326 	trace_ma_op(__func__, mas);
3327 	mas->depth = mas_mt_height(mas);
3328 
3329 	mast.l = &l_mas;
3330 	mast.r = &r_mas;
3331 	mast.orig_l = &prev_l_mas;
3332 	mast.orig_r = &prev_r_mas;
3333 	mast.bn = b_node;
3334 
3335 	while (height++ <= mas->depth) {
3336 		if (mt_slots[b_node->type] > b_node->b_end) {
3337 			mas_split_final_node(&mast, mas, height);
3338 			break;
3339 		}
3340 
3341 		l_mas = r_mas = *mas;
3342 		l_mas.node = mas_new_ma_node(mas, b_node);
3343 		r_mas.node = mas_new_ma_node(mas, b_node);
3344 		/*
3345 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3346 		 * left or right node has space to spare.  This is referred to as "pushing left"
3347 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3348 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3349 		 * is a significant savings.
3350 		 */
3351 		/* Try to push left. */
3352 		if (mas_push_data(mas, height, &mast, true))
3353 			break;
3354 		/* Try to push right. */
3355 		if (mas_push_data(mas, height, &mast, false))
3356 			break;
3357 
3358 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3359 		mast_split_data(&mast, mas, split);
3360 		/*
3361 		 * Usually correct, mab_mas_cp in the above call overwrites
3362 		 * r->max.
3363 		 */
3364 		mast.r->max = mas->max;
3365 		mast_fill_bnode(&mast, mas, 1);
3366 		prev_l_mas = *mast.l;
3367 		prev_r_mas = *mast.r;
3368 	}
3369 
3370 	/* Set the original node as dead */
3371 	old = mas->node;
3372 	mas->node = l_mas.node;
3373 	mas_wmb_replace(mas, old);
3374 	mtree_range_walk(mas);
3375 	return;
3376 }
3377 
3378 /*
3379  * mas_commit_b_node() - Commit the big node into the tree.
3380  * @wr_mas: The maple write state
3381  * @b_node: The maple big node
3382  */
3383 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3384 			    struct maple_big_node *b_node)
3385 {
3386 	enum store_type type = wr_mas->mas->store_type;
3387 
3388 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3389 
3390 	if (type == wr_rebalance)
3391 		return mas_rebalance(wr_mas->mas, b_node);
3392 
3393 	return mas_split(wr_mas->mas, b_node);
3394 }
3395 
3396 /*
3397  * mas_root_expand() - Expand a root to a node
3398  * @mas: The maple state
3399  * @entry: The entry to store into the tree
3400  */
3401 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3402 {
3403 	void *contents = mas_root_locked(mas);
3404 	enum maple_type type = maple_leaf_64;
3405 	struct maple_node *node;
3406 	void __rcu **slots;
3407 	unsigned long *pivots;
3408 	int slot = 0;
3409 
3410 	node = mas_pop_node(mas);
3411 	pivots = ma_pivots(node, type);
3412 	slots = ma_slots(node, type);
3413 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3414 	mas->node = mt_mk_node(node, type);
3415 	mas->status = ma_active;
3416 
3417 	if (mas->index) {
3418 		if (contents) {
3419 			rcu_assign_pointer(slots[slot], contents);
3420 			if (likely(mas->index > 1))
3421 				slot++;
3422 		}
3423 		pivots[slot++] = mas->index - 1;
3424 	}
3425 
3426 	rcu_assign_pointer(slots[slot], entry);
3427 	mas->offset = slot;
3428 	pivots[slot] = mas->last;
3429 	if (mas->last != ULONG_MAX)
3430 		pivots[++slot] = ULONG_MAX;
3431 
3432 	mas->depth = 1;
3433 	mas_set_height(mas);
3434 	ma_set_meta(node, maple_leaf_64, 0, slot);
3435 	/* swap the new root into the tree */
3436 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3437 	return slot;
3438 }
3439 
3440 static inline void mas_store_root(struct ma_state *mas, void *entry)
3441 {
3442 	if (likely((mas->last != 0) || (mas->index != 0)))
3443 		mas_root_expand(mas, entry);
3444 	else if (((unsigned long) (entry) & 3) == 2)
3445 		mas_root_expand(mas, entry);
3446 	else {
3447 		rcu_assign_pointer(mas->tree->ma_root, entry);
3448 		mas->status = ma_start;
3449 	}
3450 }
3451 
3452 /*
3453  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3454  * spans the node.
3455  * @wr_mas: The maple write state
3456  *
3457  * Spanning writes are writes that start in one node and end in another OR if
3458  * the write of a %NULL will cause the node to end with a %NULL.
3459  *
3460  * Return: True if this is a spanning write, false otherwise.
3461  */
3462 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3463 {
3464 	unsigned long max = wr_mas->r_max;
3465 	unsigned long last = wr_mas->mas->last;
3466 	enum maple_type type = wr_mas->type;
3467 	void *entry = wr_mas->entry;
3468 
3469 	/* Contained in this pivot, fast path */
3470 	if (last < max)
3471 		return false;
3472 
3473 	if (ma_is_leaf(type)) {
3474 		max = wr_mas->mas->max;
3475 		if (last < max)
3476 			return false;
3477 	}
3478 
3479 	if (last == max) {
3480 		/*
3481 		 * The last entry of leaf node cannot be NULL unless it is the
3482 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3483 		 */
3484 		if (entry || last == ULONG_MAX)
3485 			return false;
3486 	}
3487 
3488 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3489 	return true;
3490 }
3491 
3492 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3493 {
3494 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3495 	mas_wr_node_walk(wr_mas);
3496 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3497 }
3498 
3499 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3500 {
3501 	wr_mas->mas->max = wr_mas->r_max;
3502 	wr_mas->mas->min = wr_mas->r_min;
3503 	wr_mas->mas->node = wr_mas->content;
3504 	wr_mas->mas->offset = 0;
3505 	wr_mas->mas->depth++;
3506 }
3507 /*
3508  * mas_wr_walk() - Walk the tree for a write.
3509  * @wr_mas: The maple write state
3510  *
3511  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3512  *
3513  * Return: True if it's contained in a node, false on spanning write.
3514  */
3515 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3516 {
3517 	struct ma_state *mas = wr_mas->mas;
3518 
3519 	while (true) {
3520 		mas_wr_walk_descend(wr_mas);
3521 		if (unlikely(mas_is_span_wr(wr_mas)))
3522 			return false;
3523 
3524 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3525 						  mas->offset);
3526 		if (ma_is_leaf(wr_mas->type))
3527 			return true;
3528 
3529 		mas_wr_walk_traverse(wr_mas);
3530 	}
3531 
3532 	return true;
3533 }
3534 
3535 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3536 {
3537 	struct ma_state *mas = wr_mas->mas;
3538 
3539 	while (true) {
3540 		mas_wr_walk_descend(wr_mas);
3541 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3542 						  mas->offset);
3543 		if (ma_is_leaf(wr_mas->type))
3544 			return true;
3545 		mas_wr_walk_traverse(wr_mas);
3546 
3547 	}
3548 	return true;
3549 }
3550 /*
3551  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3552  * @l_wr_mas: The left maple write state
3553  * @r_wr_mas: The right maple write state
3554  */
3555 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3556 					    struct ma_wr_state *r_wr_mas)
3557 {
3558 	struct ma_state *r_mas = r_wr_mas->mas;
3559 	struct ma_state *l_mas = l_wr_mas->mas;
3560 	unsigned char l_slot;
3561 
3562 	l_slot = l_mas->offset;
3563 	if (!l_wr_mas->content)
3564 		l_mas->index = l_wr_mas->r_min;
3565 
3566 	if ((l_mas->index == l_wr_mas->r_min) &&
3567 		 (l_slot &&
3568 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3569 		if (l_slot > 1)
3570 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3571 		else
3572 			l_mas->index = l_mas->min;
3573 
3574 		l_mas->offset = l_slot - 1;
3575 	}
3576 
3577 	if (!r_wr_mas->content) {
3578 		if (r_mas->last < r_wr_mas->r_max)
3579 			r_mas->last = r_wr_mas->r_max;
3580 		r_mas->offset++;
3581 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3582 	    (r_mas->last < r_mas->max) &&
3583 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3584 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3585 					     r_wr_mas->type, r_mas->offset + 1);
3586 		r_mas->offset++;
3587 	}
3588 }
3589 
3590 static inline void *mas_state_walk(struct ma_state *mas)
3591 {
3592 	void *entry;
3593 
3594 	entry = mas_start(mas);
3595 	if (mas_is_none(mas))
3596 		return NULL;
3597 
3598 	if (mas_is_ptr(mas))
3599 		return entry;
3600 
3601 	return mtree_range_walk(mas);
3602 }
3603 
3604 /*
3605  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3606  * to date.
3607  *
3608  * @mas: The maple state.
3609  *
3610  * Note: Leaves mas in undesirable state.
3611  * Return: The entry for @mas->index or %NULL on dead node.
3612  */
3613 static inline void *mtree_lookup_walk(struct ma_state *mas)
3614 {
3615 	unsigned long *pivots;
3616 	unsigned char offset;
3617 	struct maple_node *node;
3618 	struct maple_enode *next;
3619 	enum maple_type type;
3620 	void __rcu **slots;
3621 	unsigned char end;
3622 
3623 	next = mas->node;
3624 	do {
3625 		node = mte_to_node(next);
3626 		type = mte_node_type(next);
3627 		pivots = ma_pivots(node, type);
3628 		end = mt_pivots[type];
3629 		offset = 0;
3630 		do {
3631 			if (pivots[offset] >= mas->index)
3632 				break;
3633 		} while (++offset < end);
3634 
3635 		slots = ma_slots(node, type);
3636 		next = mt_slot(mas->tree, slots, offset);
3637 		if (unlikely(ma_dead_node(node)))
3638 			goto dead_node;
3639 	} while (!ma_is_leaf(type));
3640 
3641 	return (void *)next;
3642 
3643 dead_node:
3644 	mas_reset(mas);
3645 	return NULL;
3646 }
3647 
3648 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3649 /*
3650  * mas_new_root() - Create a new root node that only contains the entry passed
3651  * in.
3652  * @mas: The maple state
3653  * @entry: The entry to store.
3654  *
3655  * Only valid when the index == 0 and the last == ULONG_MAX
3656  */
3657 static inline void mas_new_root(struct ma_state *mas, void *entry)
3658 {
3659 	struct maple_enode *root = mas_root_locked(mas);
3660 	enum maple_type type = maple_leaf_64;
3661 	struct maple_node *node;
3662 	void __rcu **slots;
3663 	unsigned long *pivots;
3664 
3665 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3666 		mas->depth = 0;
3667 		mas_set_height(mas);
3668 		rcu_assign_pointer(mas->tree->ma_root, entry);
3669 		mas->status = ma_start;
3670 		goto done;
3671 	}
3672 
3673 	node = mas_pop_node(mas);
3674 	pivots = ma_pivots(node, type);
3675 	slots = ma_slots(node, type);
3676 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3677 	mas->node = mt_mk_node(node, type);
3678 	mas->status = ma_active;
3679 	rcu_assign_pointer(slots[0], entry);
3680 	pivots[0] = mas->last;
3681 	mas->depth = 1;
3682 	mas_set_height(mas);
3683 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3684 
3685 done:
3686 	if (xa_is_node(root))
3687 		mte_destroy_walk(root, mas->tree);
3688 
3689 	return;
3690 }
3691 /*
3692  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3693  * and new nodes where necessary, then place the sub-tree in the actual tree.
3694  * Note that mas is expected to point to the node which caused the store to
3695  * span.
3696  * @wr_mas: The maple write state
3697  */
3698 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3699 {
3700 	struct maple_subtree_state mast;
3701 	struct maple_big_node b_node;
3702 	struct ma_state *mas;
3703 	unsigned char height;
3704 
3705 	/* Left and Right side of spanning store */
3706 	MA_STATE(l_mas, NULL, 0, 0);
3707 	MA_STATE(r_mas, NULL, 0, 0);
3708 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3709 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3710 
3711 	/*
3712 	 * A store operation that spans multiple nodes is called a spanning
3713 	 * store and is handled early in the store call stack by the function
3714 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3715 	 * state is duplicated.  The first maple state walks the left tree path
3716 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3717 	 * The data in the two nodes are combined into a single node, two nodes,
3718 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3719 	 * written to the last entry of a node is considered a spanning store as
3720 	 * a rebalance is required for the operation to complete and an overflow
3721 	 * of data may happen.
3722 	 */
3723 	mas = wr_mas->mas;
3724 	trace_ma_op(__func__, mas);
3725 
3726 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3727 		return mas_new_root(mas, wr_mas->entry);
3728 	/*
3729 	 * Node rebalancing may occur due to this store, so there may be three new
3730 	 * entries per level plus a new root.
3731 	 */
3732 	height = mas_mt_height(mas);
3733 
3734 	/*
3735 	 * Set up right side.  Need to get to the next offset after the spanning
3736 	 * store to ensure it's not NULL and to combine both the next node and
3737 	 * the node with the start together.
3738 	 */
3739 	r_mas = *mas;
3740 	/* Avoid overflow, walk to next slot in the tree. */
3741 	if (r_mas.last + 1)
3742 		r_mas.last++;
3743 
3744 	r_mas.index = r_mas.last;
3745 	mas_wr_walk_index(&r_wr_mas);
3746 	r_mas.last = r_mas.index = mas->last;
3747 
3748 	/* Set up left side. */
3749 	l_mas = *mas;
3750 	mas_wr_walk_index(&l_wr_mas);
3751 
3752 	if (!wr_mas->entry) {
3753 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3754 		mas->offset = l_mas.offset;
3755 		mas->index = l_mas.index;
3756 		mas->last = l_mas.last = r_mas.last;
3757 	}
3758 
3759 	/* expanding NULLs may make this cover the entire range */
3760 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3761 		mas_set_range(mas, 0, ULONG_MAX);
3762 		return mas_new_root(mas, wr_mas->entry);
3763 	}
3764 
3765 	memset(&b_node, 0, sizeof(struct maple_big_node));
3766 	/* Copy l_mas and store the value in b_node. */
3767 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3768 	/* Copy r_mas into b_node. */
3769 	if (r_mas.offset <= r_mas.end)
3770 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3771 			   &b_node, b_node.b_end + 1);
3772 	else
3773 		b_node.b_end++;
3774 
3775 	/* Stop spanning searches by searching for just index. */
3776 	l_mas.index = l_mas.last = mas->index;
3777 
3778 	mast.bn = &b_node;
3779 	mast.orig_l = &l_mas;
3780 	mast.orig_r = &r_mas;
3781 	/* Combine l_mas and r_mas and split them up evenly again. */
3782 	return mas_spanning_rebalance(mas, &mast, height + 1);
3783 }
3784 
3785 /*
3786  * mas_wr_node_store() - Attempt to store the value in a node
3787  * @wr_mas: The maple write state
3788  *
3789  * Attempts to reuse the node, but may allocate.
3790  */
3791 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3792 				     unsigned char new_end)
3793 {
3794 	struct ma_state *mas = wr_mas->mas;
3795 	void __rcu **dst_slots;
3796 	unsigned long *dst_pivots;
3797 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3798 	struct maple_node reuse, *newnode;
3799 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3800 	bool in_rcu = mt_in_rcu(mas->tree);
3801 
3802 	if (mas->last == wr_mas->end_piv)
3803 		offset_end++; /* don't copy this offset */
3804 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3805 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3806 
3807 	/* set up node. */
3808 	if (in_rcu) {
3809 		newnode = mas_pop_node(mas);
3810 	} else {
3811 		memset(&reuse, 0, sizeof(struct maple_node));
3812 		newnode = &reuse;
3813 	}
3814 
3815 	newnode->parent = mas_mn(mas)->parent;
3816 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3817 	dst_slots = ma_slots(newnode, wr_mas->type);
3818 	/* Copy from start to insert point */
3819 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3820 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3821 
3822 	/* Handle insert of new range starting after old range */
3823 	if (wr_mas->r_min < mas->index) {
3824 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3825 		dst_pivots[mas->offset++] = mas->index - 1;
3826 	}
3827 
3828 	/* Store the new entry and range end. */
3829 	if (mas->offset < node_pivots)
3830 		dst_pivots[mas->offset] = mas->last;
3831 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3832 
3833 	/*
3834 	 * this range wrote to the end of the node or it overwrote the rest of
3835 	 * the data
3836 	 */
3837 	if (offset_end > mas->end)
3838 		goto done;
3839 
3840 	dst_offset = mas->offset + 1;
3841 	/* Copy to the end of node if necessary. */
3842 	copy_size = mas->end - offset_end + 1;
3843 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3844 	       sizeof(void *) * copy_size);
3845 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3846 	       sizeof(unsigned long) * (copy_size - 1));
3847 
3848 	if (new_end < node_pivots)
3849 		dst_pivots[new_end] = mas->max;
3850 
3851 done:
3852 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3853 	if (in_rcu) {
3854 		struct maple_enode *old_enode = mas->node;
3855 
3856 		mas->node = mt_mk_node(newnode, wr_mas->type);
3857 		mas_replace_node(mas, old_enode);
3858 	} else {
3859 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3860 	}
3861 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3862 	mas_update_gap(mas);
3863 	mas->end = new_end;
3864 	return;
3865 }
3866 
3867 /*
3868  * mas_wr_slot_store: Attempt to store a value in a slot.
3869  * @wr_mas: the maple write state
3870  */
3871 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3872 {
3873 	struct ma_state *mas = wr_mas->mas;
3874 	unsigned char offset = mas->offset;
3875 	void __rcu **slots = wr_mas->slots;
3876 	bool gap = false;
3877 
3878 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3879 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3880 
3881 	if (wr_mas->offset_end - offset == 1) {
3882 		if (mas->index == wr_mas->r_min) {
3883 			/* Overwriting the range and a part of the next one */
3884 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3885 			wr_mas->pivots[offset] = mas->last;
3886 		} else {
3887 			/* Overwriting a part of the range and the next one */
3888 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3889 			wr_mas->pivots[offset] = mas->index - 1;
3890 			mas->offset++; /* Keep mas accurate. */
3891 		}
3892 	} else if (!mt_in_rcu(mas->tree)) {
3893 		/*
3894 		 * Expand the range, only partially overwriting the previous and
3895 		 * next ranges
3896 		 */
3897 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3898 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3899 		wr_mas->pivots[offset] = mas->index - 1;
3900 		wr_mas->pivots[offset + 1] = mas->last;
3901 		mas->offset++; /* Keep mas accurate. */
3902 	} else {
3903 		return;
3904 	}
3905 
3906 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3907 	/*
3908 	 * Only update gap when the new entry is empty or there is an empty
3909 	 * entry in the original two ranges.
3910 	 */
3911 	if (!wr_mas->entry || gap)
3912 		mas_update_gap(mas);
3913 
3914 	return;
3915 }
3916 
3917 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3918 {
3919 	struct ma_state *mas = wr_mas->mas;
3920 
3921 	if (!wr_mas->slots[wr_mas->offset_end]) {
3922 		/* If this one is null, the next and prev are not */
3923 		mas->last = wr_mas->end_piv;
3924 	} else {
3925 		/* Check next slot(s) if we are overwriting the end */
3926 		if ((mas->last == wr_mas->end_piv) &&
3927 		    (mas->end != wr_mas->offset_end) &&
3928 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3929 			wr_mas->offset_end++;
3930 			if (wr_mas->offset_end == mas->end)
3931 				mas->last = mas->max;
3932 			else
3933 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3934 			wr_mas->end_piv = mas->last;
3935 		}
3936 	}
3937 
3938 	if (!wr_mas->content) {
3939 		/* If this one is null, the next and prev are not */
3940 		mas->index = wr_mas->r_min;
3941 	} else {
3942 		/* Check prev slot if we are overwriting the start */
3943 		if (mas->index == wr_mas->r_min && mas->offset &&
3944 		    !wr_mas->slots[mas->offset - 1]) {
3945 			mas->offset--;
3946 			wr_mas->r_min = mas->index =
3947 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3948 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3949 		}
3950 	}
3951 }
3952 
3953 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3954 {
3955 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3956 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3957 		wr_mas->offset_end++;
3958 
3959 	if (wr_mas->offset_end < wr_mas->mas->end)
3960 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3961 	else
3962 		wr_mas->end_piv = wr_mas->mas->max;
3963 }
3964 
3965 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3966 {
3967 	struct ma_state *mas = wr_mas->mas;
3968 	unsigned char new_end = mas->end + 2;
3969 
3970 	new_end -= wr_mas->offset_end - mas->offset;
3971 	if (wr_mas->r_min == mas->index)
3972 		new_end--;
3973 
3974 	if (wr_mas->end_piv == mas->last)
3975 		new_end--;
3976 
3977 	return new_end;
3978 }
3979 
3980 /*
3981  * mas_wr_append: Attempt to append
3982  * @wr_mas: the maple write state
3983  * @new_end: The end of the node after the modification
3984  *
3985  * This is currently unsafe in rcu mode since the end of the node may be cached
3986  * by readers while the node contents may be updated which could result in
3987  * inaccurate information.
3988  */
3989 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3990 		unsigned char new_end)
3991 {
3992 	struct ma_state *mas = wr_mas->mas;
3993 	void __rcu **slots;
3994 	unsigned char end = mas->end;
3995 
3996 	if (new_end < mt_pivots[wr_mas->type]) {
3997 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
3998 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
3999 	}
4000 
4001 	slots = wr_mas->slots;
4002 	if (new_end == end + 1) {
4003 		if (mas->last == wr_mas->r_max) {
4004 			/* Append to end of range */
4005 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4006 			wr_mas->pivots[end] = mas->index - 1;
4007 			mas->offset = new_end;
4008 		} else {
4009 			/* Append to start of range */
4010 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4011 			wr_mas->pivots[end] = mas->last;
4012 			rcu_assign_pointer(slots[end], wr_mas->entry);
4013 		}
4014 	} else {
4015 		/* Append to the range without touching any boundaries. */
4016 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4017 		wr_mas->pivots[end + 1] = mas->last;
4018 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4019 		wr_mas->pivots[end] = mas->index - 1;
4020 		mas->offset = end + 1;
4021 	}
4022 
4023 	if (!wr_mas->content || !wr_mas->entry)
4024 		mas_update_gap(mas);
4025 
4026 	mas->end = new_end;
4027 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4028 	return;
4029 }
4030 
4031 /*
4032  * mas_wr_bnode() - Slow path for a modification.
4033  * @wr_mas: The write maple state
4034  *
4035  * This is where split, rebalance end up.
4036  */
4037 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4038 {
4039 	struct maple_big_node b_node;
4040 
4041 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4042 	memset(&b_node, 0, sizeof(struct maple_big_node));
4043 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4044 	mas_commit_b_node(wr_mas, &b_node);
4045 }
4046 
4047 /*
4048  * mas_wr_store_entry() - Internal call to store a value
4049  * @wr_mas: The maple write state
4050  */
4051 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4052 {
4053 	struct ma_state *mas = wr_mas->mas;
4054 	unsigned char new_end = mas_wr_new_end(wr_mas);
4055 
4056 	switch (mas->store_type) {
4057 	case wr_invalid:
4058 		MT_BUG_ON(mas->tree, 1);
4059 		return;
4060 	case wr_new_root:
4061 		mas_new_root(mas, wr_mas->entry);
4062 		break;
4063 	case wr_store_root:
4064 		mas_store_root(mas, wr_mas->entry);
4065 		break;
4066 	case wr_exact_fit:
4067 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4068 		if (!!wr_mas->entry ^ !!wr_mas->content)
4069 			mas_update_gap(mas);
4070 		break;
4071 	case wr_append:
4072 		mas_wr_append(wr_mas, new_end);
4073 		break;
4074 	case wr_slot_store:
4075 		mas_wr_slot_store(wr_mas);
4076 		break;
4077 	case wr_node_store:
4078 		mas_wr_node_store(wr_mas, new_end);
4079 		break;
4080 	case wr_spanning_store:
4081 		mas_wr_spanning_store(wr_mas);
4082 		break;
4083 	case wr_split_store:
4084 	case wr_rebalance:
4085 		mas_wr_bnode(wr_mas);
4086 		break;
4087 	}
4088 
4089 	return;
4090 }
4091 
4092 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4093 {
4094 	struct ma_state *mas = wr_mas->mas;
4095 
4096 	if (!mas_is_active(mas)) {
4097 		if (mas_is_start(mas))
4098 			goto set_content;
4099 
4100 		if (unlikely(mas_is_paused(mas)))
4101 			goto reset;
4102 
4103 		if (unlikely(mas_is_none(mas)))
4104 			goto reset;
4105 
4106 		if (unlikely(mas_is_overflow(mas)))
4107 			goto reset;
4108 
4109 		if (unlikely(mas_is_underflow(mas)))
4110 			goto reset;
4111 	}
4112 
4113 	/*
4114 	 * A less strict version of mas_is_span_wr() where we allow spanning
4115 	 * writes within this node.  This is to stop partial walks in
4116 	 * mas_prealloc() from being reset.
4117 	 */
4118 	if (mas->last > mas->max)
4119 		goto reset;
4120 
4121 	if (wr_mas->entry)
4122 		goto set_content;
4123 
4124 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4125 		goto reset;
4126 
4127 	goto set_content;
4128 
4129 reset:
4130 	mas_reset(mas);
4131 set_content:
4132 	wr_mas->content = mas_start(mas);
4133 }
4134 
4135 /**
4136  * mas_prealloc_calc() - Calculate number of nodes needed for a
4137  * given store oepration
4138  * @mas: The maple state
4139  * @entry: The entry to store into the tree
4140  *
4141  * Return: Number of nodes required for preallocation.
4142  */
4143 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4144 {
4145 	int ret = mas_mt_height(mas) * 3 + 1;
4146 
4147 	switch (mas->store_type) {
4148 	case wr_invalid:
4149 		WARN_ON_ONCE(1);
4150 		break;
4151 	case wr_new_root:
4152 		ret = 1;
4153 		break;
4154 	case wr_store_root:
4155 		if (likely((mas->last != 0) || (mas->index != 0)))
4156 			ret = 1;
4157 		else if (((unsigned long) (entry) & 3) == 2)
4158 			ret = 1;
4159 		else
4160 			ret = 0;
4161 		break;
4162 	case wr_spanning_store:
4163 		ret =  mas_mt_height(mas) * 3 + 1;
4164 		break;
4165 	case wr_split_store:
4166 		ret =  mas_mt_height(mas) * 2 + 1;
4167 		break;
4168 	case wr_rebalance:
4169 		ret =  mas_mt_height(mas) * 2 - 1;
4170 		break;
4171 	case wr_node_store:
4172 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4173 		break;
4174 	case wr_append:
4175 	case wr_exact_fit:
4176 	case wr_slot_store:
4177 		ret = 0;
4178 	}
4179 
4180 	return ret;
4181 }
4182 
4183 /*
4184  * mas_wr_store_type() - Set the store type for a given
4185  * store operation.
4186  * @wr_mas: The maple write state
4187  */
4188 static inline void mas_wr_store_type(struct ma_wr_state *wr_mas)
4189 {
4190 	struct ma_state *mas = wr_mas->mas;
4191 	unsigned char new_end;
4192 
4193 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) {
4194 		mas->store_type = wr_store_root;
4195 		return;
4196 	}
4197 
4198 	if (unlikely(!mas_wr_walk(wr_mas))) {
4199 		mas->store_type = wr_spanning_store;
4200 		return;
4201 	}
4202 
4203 	/* At this point, we are at the leaf node that needs to be altered. */
4204 	mas_wr_end_piv(wr_mas);
4205 	if (!wr_mas->entry)
4206 		mas_wr_extend_null(wr_mas);
4207 
4208 	new_end = mas_wr_new_end(wr_mas);
4209 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) {
4210 		mas->store_type = wr_exact_fit;
4211 		return;
4212 	}
4213 
4214 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4215 		mas->store_type = wr_new_root;
4216 		return;
4217 	}
4218 
4219 	/* Potential spanning rebalance collapsing a node */
4220 	if (new_end < mt_min_slots[wr_mas->type]) {
4221 		if (!mte_is_root(mas->node)) {
4222 			mas->store_type = wr_rebalance;
4223 			return;
4224 		}
4225 		mas->store_type = wr_node_store;
4226 		return;
4227 	}
4228 
4229 	if (new_end >= mt_slots[wr_mas->type]) {
4230 		mas->store_type = wr_split_store;
4231 		return;
4232 	}
4233 
4234 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) {
4235 		mas->store_type = wr_append;
4236 		return;
4237 	}
4238 
4239 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4240 		(wr_mas->offset_end - mas->offset == 1))) {
4241 		mas->store_type = wr_slot_store;
4242 		return;
4243 	}
4244 
4245 	if (mte_is_root(mas->node) || (new_end >= mt_min_slots[wr_mas->type]) ||
4246 		(mas->mas_flags & MA_STATE_BULK)) {
4247 		mas->store_type = wr_node_store;
4248 		return;
4249 	}
4250 
4251 	mas->store_type = wr_invalid;
4252 	MAS_WARN_ON(mas, 1);
4253 }
4254 
4255 /**
4256  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4257  * @wr_mas: The maple write state
4258  * @entry: The entry that will be stored
4259  *
4260  */
4261 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4262 {
4263 	struct ma_state *mas = wr_mas->mas;
4264 	int request;
4265 
4266 	mas_wr_prealloc_setup(wr_mas);
4267 	mas_wr_store_type(wr_mas);
4268 	request = mas_prealloc_calc(mas, entry);
4269 	if (!request)
4270 		return;
4271 
4272 	mas_node_count(mas, request);
4273 }
4274 
4275 /**
4276  * mas_insert() - Internal call to insert a value
4277  * @mas: The maple state
4278  * @entry: The entry to store
4279  *
4280  * Return: %NULL or the contents that already exists at the requested index
4281  * otherwise.  The maple state needs to be checked for error conditions.
4282  */
4283 static inline void *mas_insert(struct ma_state *mas, void *entry)
4284 {
4285 	MA_WR_STATE(wr_mas, mas, entry);
4286 
4287 	/*
4288 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4289 	 * tree.  If the insert fits exactly into an existing gap with a value
4290 	 * of NULL, then the slot only needs to be written with the new value.
4291 	 * If the range being inserted is adjacent to another range, then only a
4292 	 * single pivot needs to be inserted (as well as writing the entry).  If
4293 	 * the new range is within a gap but does not touch any other ranges,
4294 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4295 	 * usual, the entry must be written.  Most operations require a new node
4296 	 * to be allocated and replace an existing node to ensure RCU safety,
4297 	 * when in RCU mode.  The exception to requiring a newly allocated node
4298 	 * is when inserting at the end of a node (appending).  When done
4299 	 * carefully, appending can reuse the node in place.
4300 	 */
4301 	wr_mas.content = mas_start(mas);
4302 	if (wr_mas.content)
4303 		goto exists;
4304 
4305 	mas_wr_preallocate(&wr_mas, entry);
4306 	if (mas_is_err(mas))
4307 		return NULL;
4308 
4309 	/* spanning writes always overwrite something */
4310 	if (mas->store_type == wr_spanning_store)
4311 		goto exists;
4312 
4313 	/* At this point, we are at the leaf node that needs to be altered. */
4314 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4315 		wr_mas.offset_end = mas->offset;
4316 		wr_mas.end_piv = wr_mas.r_max;
4317 
4318 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4319 			goto exists;
4320 	}
4321 
4322 	mas_wr_store_entry(&wr_mas);
4323 	return wr_mas.content;
4324 
4325 exists:
4326 	mas_set_err(mas, -EEXIST);
4327 	return wr_mas.content;
4328 
4329 }
4330 
4331 /**
4332  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4333  * @mas: The maple state.
4334  * @startp: Pointer to ID.
4335  * @range_lo: Lower bound of range to search.
4336  * @range_hi: Upper bound of range to search.
4337  * @entry: The entry to store.
4338  * @next: Pointer to next ID to allocate.
4339  * @gfp: The GFP_FLAGS to use for allocations.
4340  *
4341  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4342  * allocation succeeded after wrapping, or -EBUSY if there are no
4343  * free entries.
4344  */
4345 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4346 		void *entry, unsigned long range_lo, unsigned long range_hi,
4347 		unsigned long *next, gfp_t gfp)
4348 {
4349 	unsigned long min = range_lo;
4350 	int ret = 0;
4351 
4352 	range_lo = max(min, *next);
4353 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4354 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4355 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4356 		ret = 1;
4357 	}
4358 	if (ret < 0 && range_lo > min) {
4359 		ret = mas_empty_area(mas, min, range_hi, 1);
4360 		if (ret == 0)
4361 			ret = 1;
4362 	}
4363 	if (ret < 0)
4364 		return ret;
4365 
4366 	do {
4367 		mas_insert(mas, entry);
4368 	} while (mas_nomem(mas, gfp));
4369 	if (mas_is_err(mas))
4370 		return xa_err(mas->node);
4371 
4372 	*startp = mas->index;
4373 	*next = *startp + 1;
4374 	if (*next == 0)
4375 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4376 
4377 	mas_destroy(mas);
4378 	return ret;
4379 }
4380 EXPORT_SYMBOL(mas_alloc_cyclic);
4381 
4382 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4383 {
4384 retry:
4385 	mas_set(mas, index);
4386 	mas_state_walk(mas);
4387 	if (mas_is_start(mas))
4388 		goto retry;
4389 }
4390 
4391 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4392 		struct maple_node *node, const unsigned long index)
4393 {
4394 	if (unlikely(ma_dead_node(node))) {
4395 		mas_rewalk(mas, index);
4396 		return true;
4397 	}
4398 	return false;
4399 }
4400 
4401 /*
4402  * mas_prev_node() - Find the prev non-null entry at the same level in the
4403  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4404  * ma_none.
4405  * @mas: The maple state
4406  * @min: The lower limit to search
4407  *
4408  * The prev node value will be mas->node[mas->offset] or the status will be
4409  * ma_none.
4410  * Return: 1 if the node is dead, 0 otherwise.
4411  */
4412 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4413 {
4414 	enum maple_type mt;
4415 	int offset, level;
4416 	void __rcu **slots;
4417 	struct maple_node *node;
4418 	unsigned long *pivots;
4419 	unsigned long max;
4420 
4421 	node = mas_mn(mas);
4422 	if (!mas->min)
4423 		goto no_entry;
4424 
4425 	max = mas->min - 1;
4426 	if (max < min)
4427 		goto no_entry;
4428 
4429 	level = 0;
4430 	do {
4431 		if (ma_is_root(node))
4432 			goto no_entry;
4433 
4434 		/* Walk up. */
4435 		if (unlikely(mas_ascend(mas)))
4436 			return 1;
4437 		offset = mas->offset;
4438 		level++;
4439 		node = mas_mn(mas);
4440 	} while (!offset);
4441 
4442 	offset--;
4443 	mt = mte_node_type(mas->node);
4444 	while (level > 1) {
4445 		level--;
4446 		slots = ma_slots(node, mt);
4447 		mas->node = mas_slot(mas, slots, offset);
4448 		if (unlikely(ma_dead_node(node)))
4449 			return 1;
4450 
4451 		mt = mte_node_type(mas->node);
4452 		node = mas_mn(mas);
4453 		pivots = ma_pivots(node, mt);
4454 		offset = ma_data_end(node, mt, pivots, max);
4455 		if (unlikely(ma_dead_node(node)))
4456 			return 1;
4457 	}
4458 
4459 	slots = ma_slots(node, mt);
4460 	mas->node = mas_slot(mas, slots, offset);
4461 	pivots = ma_pivots(node, mt);
4462 	if (unlikely(ma_dead_node(node)))
4463 		return 1;
4464 
4465 	if (likely(offset))
4466 		mas->min = pivots[offset - 1] + 1;
4467 	mas->max = max;
4468 	mas->offset = mas_data_end(mas);
4469 	if (unlikely(mte_dead_node(mas->node)))
4470 		return 1;
4471 
4472 	mas->end = mas->offset;
4473 	return 0;
4474 
4475 no_entry:
4476 	if (unlikely(ma_dead_node(node)))
4477 		return 1;
4478 
4479 	mas->status = ma_underflow;
4480 	return 0;
4481 }
4482 
4483 /*
4484  * mas_prev_slot() - Get the entry in the previous slot
4485  *
4486  * @mas: The maple state
4487  * @min: The minimum starting range
4488  * @empty: Can be empty
4489  *
4490  * Return: The entry in the previous slot which is possibly NULL
4491  */
4492 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4493 {
4494 	void *entry;
4495 	void __rcu **slots;
4496 	unsigned long pivot;
4497 	enum maple_type type;
4498 	unsigned long *pivots;
4499 	struct maple_node *node;
4500 	unsigned long save_point = mas->index;
4501 
4502 retry:
4503 	node = mas_mn(mas);
4504 	type = mte_node_type(mas->node);
4505 	pivots = ma_pivots(node, type);
4506 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4507 		goto retry;
4508 
4509 	if (mas->min <= min) {
4510 		pivot = mas_safe_min(mas, pivots, mas->offset);
4511 
4512 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4513 			goto retry;
4514 
4515 		if (pivot <= min)
4516 			goto underflow;
4517 	}
4518 
4519 again:
4520 	if (likely(mas->offset)) {
4521 		mas->offset--;
4522 		mas->last = mas->index - 1;
4523 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4524 	} else  {
4525 		if (mas->index <= min)
4526 			goto underflow;
4527 
4528 		if (mas_prev_node(mas, min)) {
4529 			mas_rewalk(mas, save_point);
4530 			goto retry;
4531 		}
4532 
4533 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4534 			return NULL;
4535 
4536 		mas->last = mas->max;
4537 		node = mas_mn(mas);
4538 		type = mte_node_type(mas->node);
4539 		pivots = ma_pivots(node, type);
4540 		mas->index = pivots[mas->offset - 1] + 1;
4541 	}
4542 
4543 	slots = ma_slots(node, type);
4544 	entry = mas_slot(mas, slots, mas->offset);
4545 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4546 		goto retry;
4547 
4548 
4549 	if (likely(entry))
4550 		return entry;
4551 
4552 	if (!empty) {
4553 		if (mas->index <= min) {
4554 			mas->status = ma_underflow;
4555 			return NULL;
4556 		}
4557 
4558 		goto again;
4559 	}
4560 
4561 	return entry;
4562 
4563 underflow:
4564 	mas->status = ma_underflow;
4565 	return NULL;
4566 }
4567 
4568 /*
4569  * mas_next_node() - Get the next node at the same level in the tree.
4570  * @mas: The maple state
4571  * @node: The maple node
4572  * @max: The maximum pivot value to check.
4573  *
4574  * The next value will be mas->node[mas->offset] or the status will have
4575  * overflowed.
4576  * Return: 1 on dead node, 0 otherwise.
4577  */
4578 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4579 		unsigned long max)
4580 {
4581 	unsigned long min;
4582 	unsigned long *pivots;
4583 	struct maple_enode *enode;
4584 	struct maple_node *tmp;
4585 	int level = 0;
4586 	unsigned char node_end;
4587 	enum maple_type mt;
4588 	void __rcu **slots;
4589 
4590 	if (mas->max >= max)
4591 		goto overflow;
4592 
4593 	min = mas->max + 1;
4594 	level = 0;
4595 	do {
4596 		if (ma_is_root(node))
4597 			goto overflow;
4598 
4599 		/* Walk up. */
4600 		if (unlikely(mas_ascend(mas)))
4601 			return 1;
4602 
4603 		level++;
4604 		node = mas_mn(mas);
4605 		mt = mte_node_type(mas->node);
4606 		pivots = ma_pivots(node, mt);
4607 		node_end = ma_data_end(node, mt, pivots, mas->max);
4608 		if (unlikely(ma_dead_node(node)))
4609 			return 1;
4610 
4611 	} while (unlikely(mas->offset == node_end));
4612 
4613 	slots = ma_slots(node, mt);
4614 	mas->offset++;
4615 	enode = mas_slot(mas, slots, mas->offset);
4616 	if (unlikely(ma_dead_node(node)))
4617 		return 1;
4618 
4619 	if (level > 1)
4620 		mas->offset = 0;
4621 
4622 	while (unlikely(level > 1)) {
4623 		level--;
4624 		mas->node = enode;
4625 		node = mas_mn(mas);
4626 		mt = mte_node_type(mas->node);
4627 		slots = ma_slots(node, mt);
4628 		enode = mas_slot(mas, slots, 0);
4629 		if (unlikely(ma_dead_node(node)))
4630 			return 1;
4631 	}
4632 
4633 	if (!mas->offset)
4634 		pivots = ma_pivots(node, mt);
4635 
4636 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4637 	tmp = mte_to_node(enode);
4638 	mt = mte_node_type(enode);
4639 	pivots = ma_pivots(tmp, mt);
4640 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4641 	if (unlikely(ma_dead_node(node)))
4642 		return 1;
4643 
4644 	mas->node = enode;
4645 	mas->min = min;
4646 	return 0;
4647 
4648 overflow:
4649 	if (unlikely(ma_dead_node(node)))
4650 		return 1;
4651 
4652 	mas->status = ma_overflow;
4653 	return 0;
4654 }
4655 
4656 /*
4657  * mas_next_slot() - Get the entry in the next slot
4658  *
4659  * @mas: The maple state
4660  * @max: The maximum starting range
4661  * @empty: Can be empty
4662  *
4663  * Return: The entry in the next slot which is possibly NULL
4664  */
4665 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4666 {
4667 	void __rcu **slots;
4668 	unsigned long *pivots;
4669 	unsigned long pivot;
4670 	enum maple_type type;
4671 	struct maple_node *node;
4672 	unsigned long save_point = mas->last;
4673 	void *entry;
4674 
4675 retry:
4676 	node = mas_mn(mas);
4677 	type = mte_node_type(mas->node);
4678 	pivots = ma_pivots(node, type);
4679 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4680 		goto retry;
4681 
4682 	if (mas->max >= max) {
4683 		if (likely(mas->offset < mas->end))
4684 			pivot = pivots[mas->offset];
4685 		else
4686 			pivot = mas->max;
4687 
4688 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4689 			goto retry;
4690 
4691 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4692 			mas->status = ma_overflow;
4693 			return NULL;
4694 		}
4695 	}
4696 
4697 	if (likely(mas->offset < mas->end)) {
4698 		mas->index = pivots[mas->offset] + 1;
4699 again:
4700 		mas->offset++;
4701 		if (likely(mas->offset < mas->end))
4702 			mas->last = pivots[mas->offset];
4703 		else
4704 			mas->last = mas->max;
4705 	} else  {
4706 		if (mas->last >= max) {
4707 			mas->status = ma_overflow;
4708 			return NULL;
4709 		}
4710 
4711 		if (mas_next_node(mas, node, max)) {
4712 			mas_rewalk(mas, save_point);
4713 			goto retry;
4714 		}
4715 
4716 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4717 			return NULL;
4718 
4719 		mas->offset = 0;
4720 		mas->index = mas->min;
4721 		node = mas_mn(mas);
4722 		type = mte_node_type(mas->node);
4723 		pivots = ma_pivots(node, type);
4724 		mas->last = pivots[0];
4725 	}
4726 
4727 	slots = ma_slots(node, type);
4728 	entry = mt_slot(mas->tree, slots, mas->offset);
4729 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4730 		goto retry;
4731 
4732 	if (entry)
4733 		return entry;
4734 
4735 
4736 	if (!empty) {
4737 		if (mas->last >= max) {
4738 			mas->status = ma_overflow;
4739 			return NULL;
4740 		}
4741 
4742 		mas->index = mas->last + 1;
4743 		goto again;
4744 	}
4745 
4746 	return entry;
4747 }
4748 
4749 /*
4750  * mas_next_entry() - Internal function to get the next entry.
4751  * @mas: The maple state
4752  * @limit: The maximum range start.
4753  *
4754  * Set the @mas->node to the next entry and the range_start to
4755  * the beginning value for the entry.  Does not check beyond @limit.
4756  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4757  * @mas->last on overflow.
4758  * Restarts on dead nodes.
4759  *
4760  * Return: the next entry or %NULL.
4761  */
4762 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4763 {
4764 	if (mas->last >= limit) {
4765 		mas->status = ma_overflow;
4766 		return NULL;
4767 	}
4768 
4769 	return mas_next_slot(mas, limit, false);
4770 }
4771 
4772 /*
4773  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4774  * highest gap address of a given size in a given node and descend.
4775  * @mas: The maple state
4776  * @size: The needed size.
4777  *
4778  * Return: True if found in a leaf, false otherwise.
4779  *
4780  */
4781 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4782 		unsigned long *gap_min, unsigned long *gap_max)
4783 {
4784 	enum maple_type type = mte_node_type(mas->node);
4785 	struct maple_node *node = mas_mn(mas);
4786 	unsigned long *pivots, *gaps;
4787 	void __rcu **slots;
4788 	unsigned long gap = 0;
4789 	unsigned long max, min;
4790 	unsigned char offset;
4791 
4792 	if (unlikely(mas_is_err(mas)))
4793 		return true;
4794 
4795 	if (ma_is_dense(type)) {
4796 		/* dense nodes. */
4797 		mas->offset = (unsigned char)(mas->index - mas->min);
4798 		return true;
4799 	}
4800 
4801 	pivots = ma_pivots(node, type);
4802 	slots = ma_slots(node, type);
4803 	gaps = ma_gaps(node, type);
4804 	offset = mas->offset;
4805 	min = mas_safe_min(mas, pivots, offset);
4806 	/* Skip out of bounds. */
4807 	while (mas->last < min)
4808 		min = mas_safe_min(mas, pivots, --offset);
4809 
4810 	max = mas_safe_pivot(mas, pivots, offset, type);
4811 	while (mas->index <= max) {
4812 		gap = 0;
4813 		if (gaps)
4814 			gap = gaps[offset];
4815 		else if (!mas_slot(mas, slots, offset))
4816 			gap = max - min + 1;
4817 
4818 		if (gap) {
4819 			if ((size <= gap) && (size <= mas->last - min + 1))
4820 				break;
4821 
4822 			if (!gaps) {
4823 				/* Skip the next slot, it cannot be a gap. */
4824 				if (offset < 2)
4825 					goto ascend;
4826 
4827 				offset -= 2;
4828 				max = pivots[offset];
4829 				min = mas_safe_min(mas, pivots, offset);
4830 				continue;
4831 			}
4832 		}
4833 
4834 		if (!offset)
4835 			goto ascend;
4836 
4837 		offset--;
4838 		max = min - 1;
4839 		min = mas_safe_min(mas, pivots, offset);
4840 	}
4841 
4842 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4843 		goto no_space;
4844 
4845 	if (unlikely(ma_is_leaf(type))) {
4846 		mas->offset = offset;
4847 		*gap_min = min;
4848 		*gap_max = min + gap - 1;
4849 		return true;
4850 	}
4851 
4852 	/* descend, only happens under lock. */
4853 	mas->node = mas_slot(mas, slots, offset);
4854 	mas->min = min;
4855 	mas->max = max;
4856 	mas->offset = mas_data_end(mas);
4857 	return false;
4858 
4859 ascend:
4860 	if (!mte_is_root(mas->node))
4861 		return false;
4862 
4863 no_space:
4864 	mas_set_err(mas, -EBUSY);
4865 	return false;
4866 }
4867 
4868 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4869 {
4870 	enum maple_type type = mte_node_type(mas->node);
4871 	unsigned long pivot, min, gap = 0;
4872 	unsigned char offset, data_end;
4873 	unsigned long *gaps, *pivots;
4874 	void __rcu **slots;
4875 	struct maple_node *node;
4876 	bool found = false;
4877 
4878 	if (ma_is_dense(type)) {
4879 		mas->offset = (unsigned char)(mas->index - mas->min);
4880 		return true;
4881 	}
4882 
4883 	node = mas_mn(mas);
4884 	pivots = ma_pivots(node, type);
4885 	slots = ma_slots(node, type);
4886 	gaps = ma_gaps(node, type);
4887 	offset = mas->offset;
4888 	min = mas_safe_min(mas, pivots, offset);
4889 	data_end = ma_data_end(node, type, pivots, mas->max);
4890 	for (; offset <= data_end; offset++) {
4891 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4892 
4893 		/* Not within lower bounds */
4894 		if (mas->index > pivot)
4895 			goto next_slot;
4896 
4897 		if (gaps)
4898 			gap = gaps[offset];
4899 		else if (!mas_slot(mas, slots, offset))
4900 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4901 		else
4902 			goto next_slot;
4903 
4904 		if (gap >= size) {
4905 			if (ma_is_leaf(type)) {
4906 				found = true;
4907 				goto done;
4908 			}
4909 			if (mas->index <= pivot) {
4910 				mas->node = mas_slot(mas, slots, offset);
4911 				mas->min = min;
4912 				mas->max = pivot;
4913 				offset = 0;
4914 				break;
4915 			}
4916 		}
4917 next_slot:
4918 		min = pivot + 1;
4919 		if (mas->last <= pivot) {
4920 			mas_set_err(mas, -EBUSY);
4921 			return true;
4922 		}
4923 	}
4924 
4925 	if (mte_is_root(mas->node))
4926 		found = true;
4927 done:
4928 	mas->offset = offset;
4929 	return found;
4930 }
4931 
4932 /**
4933  * mas_walk() - Search for @mas->index in the tree.
4934  * @mas: The maple state.
4935  *
4936  * mas->index and mas->last will be set to the range if there is a value.  If
4937  * mas->status is ma_none, reset to ma_start
4938  *
4939  * Return: the entry at the location or %NULL.
4940  */
4941 void *mas_walk(struct ma_state *mas)
4942 {
4943 	void *entry;
4944 
4945 	if (!mas_is_active(mas) || !mas_is_start(mas))
4946 		mas->status = ma_start;
4947 retry:
4948 	entry = mas_state_walk(mas);
4949 	if (mas_is_start(mas)) {
4950 		goto retry;
4951 	} else if (mas_is_none(mas)) {
4952 		mas->index = 0;
4953 		mas->last = ULONG_MAX;
4954 	} else if (mas_is_ptr(mas)) {
4955 		if (!mas->index) {
4956 			mas->last = 0;
4957 			return entry;
4958 		}
4959 
4960 		mas->index = 1;
4961 		mas->last = ULONG_MAX;
4962 		mas->status = ma_none;
4963 		return NULL;
4964 	}
4965 
4966 	return entry;
4967 }
4968 EXPORT_SYMBOL_GPL(mas_walk);
4969 
4970 static inline bool mas_rewind_node(struct ma_state *mas)
4971 {
4972 	unsigned char slot;
4973 
4974 	do {
4975 		if (mte_is_root(mas->node)) {
4976 			slot = mas->offset;
4977 			if (!slot)
4978 				return false;
4979 		} else {
4980 			mas_ascend(mas);
4981 			slot = mas->offset;
4982 		}
4983 	} while (!slot);
4984 
4985 	mas->offset = --slot;
4986 	return true;
4987 }
4988 
4989 /*
4990  * mas_skip_node() - Internal function.  Skip over a node.
4991  * @mas: The maple state.
4992  *
4993  * Return: true if there is another node, false otherwise.
4994  */
4995 static inline bool mas_skip_node(struct ma_state *mas)
4996 {
4997 	if (mas_is_err(mas))
4998 		return false;
4999 
5000 	do {
5001 		if (mte_is_root(mas->node)) {
5002 			if (mas->offset >= mas_data_end(mas)) {
5003 				mas_set_err(mas, -EBUSY);
5004 				return false;
5005 			}
5006 		} else {
5007 			mas_ascend(mas);
5008 		}
5009 	} while (mas->offset >= mas_data_end(mas));
5010 
5011 	mas->offset++;
5012 	return true;
5013 }
5014 
5015 /*
5016  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5017  * @size
5018  * @mas: The maple state
5019  * @size: The size of the gap required
5020  *
5021  * Search between @mas->index and @mas->last for a gap of @size.
5022  */
5023 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5024 {
5025 	struct maple_enode *last = NULL;
5026 
5027 	/*
5028 	 * There are 4 options:
5029 	 * go to child (descend)
5030 	 * go back to parent (ascend)
5031 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5032 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5033 	 */
5034 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5035 		if (last == mas->node)
5036 			mas_skip_node(mas);
5037 		else
5038 			last = mas->node;
5039 	}
5040 }
5041 
5042 /*
5043  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5044  * searching for a gap in an empty tree.
5045  * @mas: The maple state
5046  * @min: the minimum range
5047  * @max: The maximum range
5048  * @size: The size of the gap
5049  * @fwd: Searching forward or back
5050  */
5051 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5052 				unsigned long max, unsigned long size, bool fwd)
5053 {
5054 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5055 		min++;
5056 		/*
5057 		 * At this time, min is increased, we need to recheck whether
5058 		 * the size is satisfied.
5059 		 */
5060 		if (min > max || max - min + 1 < size)
5061 			return -EBUSY;
5062 	}
5063 	/* mas_is_ptr */
5064 
5065 	if (fwd) {
5066 		mas->index = min;
5067 		mas->last = min + size - 1;
5068 	} else {
5069 		mas->last = max;
5070 		mas->index = max - size + 1;
5071 	}
5072 	return 0;
5073 }
5074 
5075 /*
5076  * mas_empty_area() - Get the lowest address within the range that is
5077  * sufficient for the size requested.
5078  * @mas: The maple state
5079  * @min: The lowest value of the range
5080  * @max: The highest value of the range
5081  * @size: The size needed
5082  */
5083 int mas_empty_area(struct ma_state *mas, unsigned long min,
5084 		unsigned long max, unsigned long size)
5085 {
5086 	unsigned char offset;
5087 	unsigned long *pivots;
5088 	enum maple_type mt;
5089 	struct maple_node *node;
5090 
5091 	if (min > max)
5092 		return -EINVAL;
5093 
5094 	if (size == 0 || max - min < size - 1)
5095 		return -EINVAL;
5096 
5097 	if (mas_is_start(mas))
5098 		mas_start(mas);
5099 	else if (mas->offset >= 2)
5100 		mas->offset -= 2;
5101 	else if (!mas_skip_node(mas))
5102 		return -EBUSY;
5103 
5104 	/* Empty set */
5105 	if (mas_is_none(mas) || mas_is_ptr(mas))
5106 		return mas_sparse_area(mas, min, max, size, true);
5107 
5108 	/* The start of the window can only be within these values */
5109 	mas->index = min;
5110 	mas->last = max;
5111 	mas_awalk(mas, size);
5112 
5113 	if (unlikely(mas_is_err(mas)))
5114 		return xa_err(mas->node);
5115 
5116 	offset = mas->offset;
5117 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5118 		return -EBUSY;
5119 
5120 	node = mas_mn(mas);
5121 	mt = mte_node_type(mas->node);
5122 	pivots = ma_pivots(node, mt);
5123 	min = mas_safe_min(mas, pivots, offset);
5124 	if (mas->index < min)
5125 		mas->index = min;
5126 	mas->last = mas->index + size - 1;
5127 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5128 	return 0;
5129 }
5130 EXPORT_SYMBOL_GPL(mas_empty_area);
5131 
5132 /*
5133  * mas_empty_area_rev() - Get the highest address within the range that is
5134  * sufficient for the size requested.
5135  * @mas: The maple state
5136  * @min: The lowest value of the range
5137  * @max: The highest value of the range
5138  * @size: The size needed
5139  */
5140 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5141 		unsigned long max, unsigned long size)
5142 {
5143 	struct maple_enode *last = mas->node;
5144 
5145 	if (min > max)
5146 		return -EINVAL;
5147 
5148 	if (size == 0 || max - min < size - 1)
5149 		return -EINVAL;
5150 
5151 	if (mas_is_start(mas))
5152 		mas_start(mas);
5153 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5154 		return -EBUSY;
5155 
5156 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5157 		return mas_sparse_area(mas, min, max, size, false);
5158 	else if (mas->offset >= 2)
5159 		mas->offset -= 2;
5160 	else
5161 		mas->offset = mas_data_end(mas);
5162 
5163 
5164 	/* The start of the window can only be within these values. */
5165 	mas->index = min;
5166 	mas->last = max;
5167 
5168 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5169 		if (last == mas->node) {
5170 			if (!mas_rewind_node(mas))
5171 				return -EBUSY;
5172 		} else {
5173 			last = mas->node;
5174 		}
5175 	}
5176 
5177 	if (mas_is_err(mas))
5178 		return xa_err(mas->node);
5179 
5180 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5181 		return -EBUSY;
5182 
5183 	/* Trim the upper limit to the max. */
5184 	if (max < mas->last)
5185 		mas->last = max;
5186 
5187 	mas->index = mas->last - size + 1;
5188 	mas->end = mas_data_end(mas);
5189 	return 0;
5190 }
5191 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5192 
5193 /*
5194  * mte_dead_leaves() - Mark all leaves of a node as dead.
5195  * @enode: the encoded node
5196  * @mt: the maple tree
5197  * @slots: Pointer to the slot array
5198  *
5199  * Must hold the write lock.
5200  *
5201  * Return: The number of leaves marked as dead.
5202  */
5203 static inline
5204 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5205 			      void __rcu **slots)
5206 {
5207 	struct maple_node *node;
5208 	enum maple_type type;
5209 	void *entry;
5210 	int offset;
5211 
5212 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5213 		entry = mt_slot(mt, slots, offset);
5214 		type = mte_node_type(entry);
5215 		node = mte_to_node(entry);
5216 		/* Use both node and type to catch LE & BE metadata */
5217 		if (!node || !type)
5218 			break;
5219 
5220 		mte_set_node_dead(entry);
5221 		node->type = type;
5222 		rcu_assign_pointer(slots[offset], node);
5223 	}
5224 
5225 	return offset;
5226 }
5227 
5228 /**
5229  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5230  * @enode: The maple encoded node
5231  * @offset: The starting offset
5232  *
5233  * Note: This can only be used from the RCU callback context.
5234  */
5235 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5236 {
5237 	struct maple_node *node, *next;
5238 	void __rcu **slots = NULL;
5239 
5240 	next = mte_to_node(*enode);
5241 	do {
5242 		*enode = ma_enode_ptr(next);
5243 		node = mte_to_node(*enode);
5244 		slots = ma_slots(node, node->type);
5245 		next = rcu_dereference_protected(slots[offset],
5246 					lock_is_held(&rcu_callback_map));
5247 		offset = 0;
5248 	} while (!ma_is_leaf(next->type));
5249 
5250 	return slots;
5251 }
5252 
5253 /**
5254  * mt_free_walk() - Walk & free a tree in the RCU callback context
5255  * @head: The RCU head that's within the node.
5256  *
5257  * Note: This can only be used from the RCU callback context.
5258  */
5259 static void mt_free_walk(struct rcu_head *head)
5260 {
5261 	void __rcu **slots;
5262 	struct maple_node *node, *start;
5263 	struct maple_enode *enode;
5264 	unsigned char offset;
5265 	enum maple_type type;
5266 
5267 	node = container_of(head, struct maple_node, rcu);
5268 
5269 	if (ma_is_leaf(node->type))
5270 		goto free_leaf;
5271 
5272 	start = node;
5273 	enode = mt_mk_node(node, node->type);
5274 	slots = mte_dead_walk(&enode, 0);
5275 	node = mte_to_node(enode);
5276 	do {
5277 		mt_free_bulk(node->slot_len, slots);
5278 		offset = node->parent_slot + 1;
5279 		enode = node->piv_parent;
5280 		if (mte_to_node(enode) == node)
5281 			goto free_leaf;
5282 
5283 		type = mte_node_type(enode);
5284 		slots = ma_slots(mte_to_node(enode), type);
5285 		if ((offset < mt_slots[type]) &&
5286 		    rcu_dereference_protected(slots[offset],
5287 					      lock_is_held(&rcu_callback_map)))
5288 			slots = mte_dead_walk(&enode, offset);
5289 		node = mte_to_node(enode);
5290 	} while ((node != start) || (node->slot_len < offset));
5291 
5292 	slots = ma_slots(node, node->type);
5293 	mt_free_bulk(node->slot_len, slots);
5294 
5295 free_leaf:
5296 	mt_free_rcu(&node->rcu);
5297 }
5298 
5299 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5300 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5301 {
5302 	struct maple_node *node;
5303 	struct maple_enode *next = *enode;
5304 	void __rcu **slots = NULL;
5305 	enum maple_type type;
5306 	unsigned char next_offset = 0;
5307 
5308 	do {
5309 		*enode = next;
5310 		node = mte_to_node(*enode);
5311 		type = mte_node_type(*enode);
5312 		slots = ma_slots(node, type);
5313 		next = mt_slot_locked(mt, slots, next_offset);
5314 		if ((mte_dead_node(next)))
5315 			next = mt_slot_locked(mt, slots, ++next_offset);
5316 
5317 		mte_set_node_dead(*enode);
5318 		node->type = type;
5319 		node->piv_parent = prev;
5320 		node->parent_slot = offset;
5321 		offset = next_offset;
5322 		next_offset = 0;
5323 		prev = *enode;
5324 	} while (!mte_is_leaf(next));
5325 
5326 	return slots;
5327 }
5328 
5329 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5330 			    bool free)
5331 {
5332 	void __rcu **slots;
5333 	struct maple_node *node = mte_to_node(enode);
5334 	struct maple_enode *start;
5335 
5336 	if (mte_is_leaf(enode)) {
5337 		node->type = mte_node_type(enode);
5338 		goto free_leaf;
5339 	}
5340 
5341 	start = enode;
5342 	slots = mte_destroy_descend(&enode, mt, start, 0);
5343 	node = mte_to_node(enode); // Updated in the above call.
5344 	do {
5345 		enum maple_type type;
5346 		unsigned char offset;
5347 		struct maple_enode *parent, *tmp;
5348 
5349 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5350 		if (free)
5351 			mt_free_bulk(node->slot_len, slots);
5352 		offset = node->parent_slot + 1;
5353 		enode = node->piv_parent;
5354 		if (mte_to_node(enode) == node)
5355 			goto free_leaf;
5356 
5357 		type = mte_node_type(enode);
5358 		slots = ma_slots(mte_to_node(enode), type);
5359 		if (offset >= mt_slots[type])
5360 			goto next;
5361 
5362 		tmp = mt_slot_locked(mt, slots, offset);
5363 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5364 			parent = enode;
5365 			enode = tmp;
5366 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5367 		}
5368 next:
5369 		node = mte_to_node(enode);
5370 	} while (start != enode);
5371 
5372 	node = mte_to_node(enode);
5373 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5374 	if (free)
5375 		mt_free_bulk(node->slot_len, slots);
5376 
5377 free_leaf:
5378 	if (free)
5379 		mt_free_rcu(&node->rcu);
5380 	else
5381 		mt_clear_meta(mt, node, node->type);
5382 }
5383 
5384 /*
5385  * mte_destroy_walk() - Free a tree or sub-tree.
5386  * @enode: the encoded maple node (maple_enode) to start
5387  * @mt: the tree to free - needed for node types.
5388  *
5389  * Must hold the write lock.
5390  */
5391 static inline void mte_destroy_walk(struct maple_enode *enode,
5392 				    struct maple_tree *mt)
5393 {
5394 	struct maple_node *node = mte_to_node(enode);
5395 
5396 	if (mt_in_rcu(mt)) {
5397 		mt_destroy_walk(enode, mt, false);
5398 		call_rcu(&node->rcu, mt_free_walk);
5399 	} else {
5400 		mt_destroy_walk(enode, mt, true);
5401 	}
5402 }
5403 /* Interface */
5404 
5405 /**
5406  * mas_store() - Store an @entry.
5407  * @mas: The maple state.
5408  * @entry: The entry to store.
5409  *
5410  * The @mas->index and @mas->last is used to set the range for the @entry.
5411  *
5412  * Return: the first entry between mas->index and mas->last or %NULL.
5413  */
5414 void *mas_store(struct ma_state *mas, void *entry)
5415 {
5416 	int request;
5417 	MA_WR_STATE(wr_mas, mas, entry);
5418 
5419 	trace_ma_write(__func__, mas, 0, entry);
5420 #ifdef CONFIG_DEBUG_MAPLE_TREE
5421 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5422 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5423 
5424 	if (mas->index > mas->last) {
5425 		mas_set_err(mas, -EINVAL);
5426 		return NULL;
5427 	}
5428 
5429 #endif
5430 
5431 	/*
5432 	 * Storing is the same operation as insert with the added caveat that it
5433 	 * can overwrite entries.  Although this seems simple enough, one may
5434 	 * want to examine what happens if a single store operation was to
5435 	 * overwrite multiple entries within a self-balancing B-Tree.
5436 	 */
5437 	mas_wr_prealloc_setup(&wr_mas);
5438 	mas_wr_store_type(&wr_mas);
5439 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5440 		mas_wr_store_entry(&wr_mas);
5441 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5442 		return wr_mas.content;
5443 	}
5444 
5445 	request = mas_prealloc_calc(mas, entry);
5446 	if (!request)
5447 		goto store;
5448 
5449 	mas_node_count(mas, request);
5450 	if (mas_is_err(mas))
5451 		return NULL;
5452 
5453 store:
5454 	mas_wr_store_entry(&wr_mas);
5455 	mas_destroy(mas);
5456 	return wr_mas.content;
5457 }
5458 EXPORT_SYMBOL_GPL(mas_store);
5459 
5460 /**
5461  * mas_store_gfp() - Store a value into the tree.
5462  * @mas: The maple state
5463  * @entry: The entry to store
5464  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5465  *
5466  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5467  * be allocated.
5468  */
5469 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5470 {
5471 	unsigned long index = mas->index;
5472 	unsigned long last = mas->last;
5473 	MA_WR_STATE(wr_mas, mas, entry);
5474 	int ret = 0;
5475 
5476 retry:
5477 	mas_wr_preallocate(&wr_mas, entry);
5478 	if (unlikely(mas_nomem(mas, gfp))) {
5479 		if (!entry)
5480 			__mas_set_range(mas, index, last);
5481 		goto retry;
5482 	}
5483 
5484 	if (mas_is_err(mas)) {
5485 		ret = xa_err(mas->node);
5486 		goto out;
5487 	}
5488 
5489 	mas_wr_store_entry(&wr_mas);
5490 out:
5491 	mas_destroy(mas);
5492 	return ret;
5493 }
5494 EXPORT_SYMBOL_GPL(mas_store_gfp);
5495 
5496 /**
5497  * mas_store_prealloc() - Store a value into the tree using memory
5498  * preallocated in the maple state.
5499  * @mas: The maple state
5500  * @entry: The entry to store.
5501  */
5502 void mas_store_prealloc(struct ma_state *mas, void *entry)
5503 {
5504 	MA_WR_STATE(wr_mas, mas, entry);
5505 
5506 	if (mas->store_type == wr_store_root) {
5507 		mas_wr_prealloc_setup(&wr_mas);
5508 		goto store;
5509 	}
5510 
5511 	mas_wr_walk_descend(&wr_mas);
5512 	if (mas->store_type != wr_spanning_store) {
5513 		/* set wr_mas->content to current slot */
5514 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5515 		mas_wr_end_piv(&wr_mas);
5516 	}
5517 
5518 store:
5519 	trace_ma_write(__func__, mas, 0, entry);
5520 	mas_wr_store_entry(&wr_mas);
5521 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5522 	mas_destroy(mas);
5523 }
5524 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5525 
5526 /**
5527  * mas_preallocate() - Preallocate enough nodes for a store operation
5528  * @mas: The maple state
5529  * @entry: The entry that will be stored
5530  * @gfp: The GFP_FLAGS to use for allocations.
5531  *
5532  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5533  */
5534 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5535 {
5536 	MA_WR_STATE(wr_mas, mas, entry);
5537 	int ret = 0;
5538 	int request;
5539 
5540 	mas_wr_prealloc_setup(&wr_mas);
5541 	mas_wr_store_type(&wr_mas);
5542 	request = mas_prealloc_calc(mas, entry);
5543 	if (!request)
5544 		return ret;
5545 
5546 	mas_node_count_gfp(mas, request, gfp);
5547 	if (mas_is_err(mas)) {
5548 		mas_set_alloc_req(mas, 0);
5549 		ret = xa_err(mas->node);
5550 		mas_destroy(mas);
5551 		mas_reset(mas);
5552 		return ret;
5553 	}
5554 
5555 	mas->mas_flags |= MA_STATE_PREALLOC;
5556 	return ret;
5557 }
5558 EXPORT_SYMBOL_GPL(mas_preallocate);
5559 
5560 /*
5561  * mas_destroy() - destroy a maple state.
5562  * @mas: The maple state
5563  *
5564  * Upon completion, check the left-most node and rebalance against the node to
5565  * the right if necessary.  Frees any allocated nodes associated with this maple
5566  * state.
5567  */
5568 void mas_destroy(struct ma_state *mas)
5569 {
5570 	struct maple_alloc *node;
5571 	unsigned long total;
5572 
5573 	/*
5574 	 * When using mas_for_each() to insert an expected number of elements,
5575 	 * it is possible that the number inserted is less than the expected
5576 	 * number.  To fix an invalid final node, a check is performed here to
5577 	 * rebalance the previous node with the final node.
5578 	 */
5579 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5580 		unsigned char end;
5581 		if (mas_is_err(mas))
5582 			mas_reset(mas);
5583 		mas_start(mas);
5584 		mtree_range_walk(mas);
5585 		end = mas->end + 1;
5586 		if (end < mt_min_slot_count(mas->node) - 1)
5587 			mas_destroy_rebalance(mas, end);
5588 
5589 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5590 	}
5591 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5592 
5593 	total = mas_allocated(mas);
5594 	while (total) {
5595 		node = mas->alloc;
5596 		mas->alloc = node->slot[0];
5597 		if (node->node_count > 1) {
5598 			size_t count = node->node_count - 1;
5599 
5600 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5601 			total -= count;
5602 		}
5603 		mt_free_one(ma_mnode_ptr(node));
5604 		total--;
5605 	}
5606 
5607 	mas->alloc = NULL;
5608 }
5609 EXPORT_SYMBOL_GPL(mas_destroy);
5610 
5611 /*
5612  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5613  * @mas: The maple state
5614  * @nr_entries: The number of expected entries.
5615  *
5616  * This will attempt to pre-allocate enough nodes to store the expected number
5617  * of entries.  The allocations will occur using the bulk allocator interface
5618  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5619  * to ensure any unused nodes are freed.
5620  *
5621  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5622  */
5623 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5624 {
5625 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5626 	struct maple_enode *enode = mas->node;
5627 	int nr_nodes;
5628 	int ret;
5629 
5630 	/*
5631 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5632 	 * forking a process and duplicating the VMAs from one tree to a new
5633 	 * tree.  When such a situation arises, it is known that the new tree is
5634 	 * not going to be used until the entire tree is populated.  For
5635 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5636 	 * This allows for optimistic splitting that favours the left and reuse
5637 	 * of nodes during the operation.
5638 	 */
5639 
5640 	/* Optimize splitting for bulk insert in-order */
5641 	mas->mas_flags |= MA_STATE_BULK;
5642 
5643 	/*
5644 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5645 	 * If this is wrong, it just means allocation can happen during
5646 	 * insertion of entries.
5647 	 */
5648 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5649 	if (!mt_is_alloc(mas->tree))
5650 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5651 
5652 	/* Leaves; reduce slots to keep space for expansion */
5653 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5654 	/* Internal nodes */
5655 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5656 	/* Add working room for split (2 nodes) + new parents */
5657 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5658 
5659 	/* Detect if allocations run out */
5660 	mas->mas_flags |= MA_STATE_PREALLOC;
5661 
5662 	if (!mas_is_err(mas))
5663 		return 0;
5664 
5665 	ret = xa_err(mas->node);
5666 	mas->node = enode;
5667 	mas_destroy(mas);
5668 	return ret;
5669 
5670 }
5671 EXPORT_SYMBOL_GPL(mas_expected_entries);
5672 
5673 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5674 		void **entry)
5675 {
5676 	bool was_none = mas_is_none(mas);
5677 
5678 	if (unlikely(mas->last >= max)) {
5679 		mas->status = ma_overflow;
5680 		return true;
5681 	}
5682 
5683 	switch (mas->status) {
5684 	case ma_active:
5685 		return false;
5686 	case ma_none:
5687 		fallthrough;
5688 	case ma_pause:
5689 		mas->status = ma_start;
5690 		fallthrough;
5691 	case ma_start:
5692 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5693 		break;
5694 	case ma_overflow:
5695 		/* Overflowed before, but the max changed */
5696 		mas->status = ma_active;
5697 		break;
5698 	case ma_underflow:
5699 		/* The user expects the mas to be one before where it is */
5700 		mas->status = ma_active;
5701 		*entry = mas_walk(mas);
5702 		if (*entry)
5703 			return true;
5704 		break;
5705 	case ma_root:
5706 		break;
5707 	case ma_error:
5708 		return true;
5709 	}
5710 
5711 	if (likely(mas_is_active(mas))) /* Fast path */
5712 		return false;
5713 
5714 	if (mas_is_ptr(mas)) {
5715 		*entry = NULL;
5716 		if (was_none && mas->index == 0) {
5717 			mas->index = mas->last = 0;
5718 			return true;
5719 		}
5720 		mas->index = 1;
5721 		mas->last = ULONG_MAX;
5722 		mas->status = ma_none;
5723 		return true;
5724 	}
5725 
5726 	if (mas_is_none(mas))
5727 		return true;
5728 
5729 	return false;
5730 }
5731 
5732 /**
5733  * mas_next() - Get the next entry.
5734  * @mas: The maple state
5735  * @max: The maximum index to check.
5736  *
5737  * Returns the next entry after @mas->index.
5738  * Must hold rcu_read_lock or the write lock.
5739  * Can return the zero entry.
5740  *
5741  * Return: The next entry or %NULL
5742  */
5743 void *mas_next(struct ma_state *mas, unsigned long max)
5744 {
5745 	void *entry = NULL;
5746 
5747 	if (mas_next_setup(mas, max, &entry))
5748 		return entry;
5749 
5750 	/* Retries on dead nodes handled by mas_next_slot */
5751 	return mas_next_slot(mas, max, false);
5752 }
5753 EXPORT_SYMBOL_GPL(mas_next);
5754 
5755 /**
5756  * mas_next_range() - Advance the maple state to the next range
5757  * @mas: The maple state
5758  * @max: The maximum index to check.
5759  *
5760  * Sets @mas->index and @mas->last to the range.
5761  * Must hold rcu_read_lock or the write lock.
5762  * Can return the zero entry.
5763  *
5764  * Return: The next entry or %NULL
5765  */
5766 void *mas_next_range(struct ma_state *mas, unsigned long max)
5767 {
5768 	void *entry = NULL;
5769 
5770 	if (mas_next_setup(mas, max, &entry))
5771 		return entry;
5772 
5773 	/* Retries on dead nodes handled by mas_next_slot */
5774 	return mas_next_slot(mas, max, true);
5775 }
5776 EXPORT_SYMBOL_GPL(mas_next_range);
5777 
5778 /**
5779  * mt_next() - get the next value in the maple tree
5780  * @mt: The maple tree
5781  * @index: The start index
5782  * @max: The maximum index to check
5783  *
5784  * Takes RCU read lock internally to protect the search, which does not
5785  * protect the returned pointer after dropping RCU read lock.
5786  * See also: Documentation/core-api/maple_tree.rst
5787  *
5788  * Return: The entry higher than @index or %NULL if nothing is found.
5789  */
5790 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5791 {
5792 	void *entry = NULL;
5793 	MA_STATE(mas, mt, index, index);
5794 
5795 	rcu_read_lock();
5796 	entry = mas_next(&mas, max);
5797 	rcu_read_unlock();
5798 	return entry;
5799 }
5800 EXPORT_SYMBOL_GPL(mt_next);
5801 
5802 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5803 {
5804 	if (unlikely(mas->index <= min)) {
5805 		mas->status = ma_underflow;
5806 		return true;
5807 	}
5808 
5809 	switch (mas->status) {
5810 	case ma_active:
5811 		return false;
5812 	case ma_start:
5813 		break;
5814 	case ma_none:
5815 		fallthrough;
5816 	case ma_pause:
5817 		mas->status = ma_start;
5818 		break;
5819 	case ma_underflow:
5820 		/* underflowed before but the min changed */
5821 		mas->status = ma_active;
5822 		break;
5823 	case ma_overflow:
5824 		/* User expects mas to be one after where it is */
5825 		mas->status = ma_active;
5826 		*entry = mas_walk(mas);
5827 		if (*entry)
5828 			return true;
5829 		break;
5830 	case ma_root:
5831 		break;
5832 	case ma_error:
5833 		return true;
5834 	}
5835 
5836 	if (mas_is_start(mas))
5837 		mas_walk(mas);
5838 
5839 	if (unlikely(mas_is_ptr(mas))) {
5840 		if (!mas->index) {
5841 			mas->status = ma_none;
5842 			return true;
5843 		}
5844 		mas->index = mas->last = 0;
5845 		*entry = mas_root(mas);
5846 		return true;
5847 	}
5848 
5849 	if (mas_is_none(mas)) {
5850 		if (mas->index) {
5851 			/* Walked to out-of-range pointer? */
5852 			mas->index = mas->last = 0;
5853 			mas->status = ma_root;
5854 			*entry = mas_root(mas);
5855 			return true;
5856 		}
5857 		return true;
5858 	}
5859 
5860 	return false;
5861 }
5862 
5863 /**
5864  * mas_prev() - Get the previous entry
5865  * @mas: The maple state
5866  * @min: The minimum value to check.
5867  *
5868  * Must hold rcu_read_lock or the write lock.
5869  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5870  * searchable nodes.
5871  *
5872  * Return: the previous value or %NULL.
5873  */
5874 void *mas_prev(struct ma_state *mas, unsigned long min)
5875 {
5876 	void *entry = NULL;
5877 
5878 	if (mas_prev_setup(mas, min, &entry))
5879 		return entry;
5880 
5881 	return mas_prev_slot(mas, min, false);
5882 }
5883 EXPORT_SYMBOL_GPL(mas_prev);
5884 
5885 /**
5886  * mas_prev_range() - Advance to the previous range
5887  * @mas: The maple state
5888  * @min: The minimum value to check.
5889  *
5890  * Sets @mas->index and @mas->last to the range.
5891  * Must hold rcu_read_lock or the write lock.
5892  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5893  * searchable nodes.
5894  *
5895  * Return: the previous value or %NULL.
5896  */
5897 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5898 {
5899 	void *entry = NULL;
5900 
5901 	if (mas_prev_setup(mas, min, &entry))
5902 		return entry;
5903 
5904 	return mas_prev_slot(mas, min, true);
5905 }
5906 EXPORT_SYMBOL_GPL(mas_prev_range);
5907 
5908 /**
5909  * mt_prev() - get the previous value in the maple tree
5910  * @mt: The maple tree
5911  * @index: The start index
5912  * @min: The minimum index to check
5913  *
5914  * Takes RCU read lock internally to protect the search, which does not
5915  * protect the returned pointer after dropping RCU read lock.
5916  * See also: Documentation/core-api/maple_tree.rst
5917  *
5918  * Return: The entry before @index or %NULL if nothing is found.
5919  */
5920 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5921 {
5922 	void *entry = NULL;
5923 	MA_STATE(mas, mt, index, index);
5924 
5925 	rcu_read_lock();
5926 	entry = mas_prev(&mas, min);
5927 	rcu_read_unlock();
5928 	return entry;
5929 }
5930 EXPORT_SYMBOL_GPL(mt_prev);
5931 
5932 /**
5933  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5934  * @mas: The maple state to pause
5935  *
5936  * Some users need to pause a walk and drop the lock they're holding in
5937  * order to yield to a higher priority thread or carry out an operation
5938  * on an entry.  Those users should call this function before they drop
5939  * the lock.  It resets the @mas to be suitable for the next iteration
5940  * of the loop after the user has reacquired the lock.  If most entries
5941  * found during a walk require you to call mas_pause(), the mt_for_each()
5942  * iterator may be more appropriate.
5943  *
5944  */
5945 void mas_pause(struct ma_state *mas)
5946 {
5947 	mas->status = ma_pause;
5948 	mas->node = NULL;
5949 }
5950 EXPORT_SYMBOL_GPL(mas_pause);
5951 
5952 /**
5953  * mas_find_setup() - Internal function to set up mas_find*().
5954  * @mas: The maple state
5955  * @max: The maximum index
5956  * @entry: Pointer to the entry
5957  *
5958  * Returns: True if entry is the answer, false otherwise.
5959  */
5960 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5961 {
5962 	switch (mas->status) {
5963 	case ma_active:
5964 		if (mas->last < max)
5965 			return false;
5966 		return true;
5967 	case ma_start:
5968 		break;
5969 	case ma_pause:
5970 		if (unlikely(mas->last >= max))
5971 			return true;
5972 
5973 		mas->index = ++mas->last;
5974 		mas->status = ma_start;
5975 		break;
5976 	case ma_none:
5977 		if (unlikely(mas->last >= max))
5978 			return true;
5979 
5980 		mas->index = mas->last;
5981 		mas->status = ma_start;
5982 		break;
5983 	case ma_underflow:
5984 		/* mas is pointing at entry before unable to go lower */
5985 		if (unlikely(mas->index >= max)) {
5986 			mas->status = ma_overflow;
5987 			return true;
5988 		}
5989 
5990 		mas->status = ma_active;
5991 		*entry = mas_walk(mas);
5992 		if (*entry)
5993 			return true;
5994 		break;
5995 	case ma_overflow:
5996 		if (unlikely(mas->last >= max))
5997 			return true;
5998 
5999 		mas->status = ma_active;
6000 		*entry = mas_walk(mas);
6001 		if (*entry)
6002 			return true;
6003 		break;
6004 	case ma_root:
6005 		break;
6006 	case ma_error:
6007 		return true;
6008 	}
6009 
6010 	if (mas_is_start(mas)) {
6011 		/* First run or continue */
6012 		if (mas->index > max)
6013 			return true;
6014 
6015 		*entry = mas_walk(mas);
6016 		if (*entry)
6017 			return true;
6018 
6019 	}
6020 
6021 	if (unlikely(mas_is_ptr(mas)))
6022 		goto ptr_out_of_range;
6023 
6024 	if (unlikely(mas_is_none(mas)))
6025 		return true;
6026 
6027 	if (mas->index == max)
6028 		return true;
6029 
6030 	return false;
6031 
6032 ptr_out_of_range:
6033 	mas->status = ma_none;
6034 	mas->index = 1;
6035 	mas->last = ULONG_MAX;
6036 	return true;
6037 }
6038 
6039 /**
6040  * mas_find() - On the first call, find the entry at or after mas->index up to
6041  * %max.  Otherwise, find the entry after mas->index.
6042  * @mas: The maple state
6043  * @max: The maximum value to check.
6044  *
6045  * Must hold rcu_read_lock or the write lock.
6046  * If an entry exists, last and index are updated accordingly.
6047  * May set @mas->status to ma_overflow.
6048  *
6049  * Return: The entry or %NULL.
6050  */
6051 void *mas_find(struct ma_state *mas, unsigned long max)
6052 {
6053 	void *entry = NULL;
6054 
6055 	if (mas_find_setup(mas, max, &entry))
6056 		return entry;
6057 
6058 	/* Retries on dead nodes handled by mas_next_slot */
6059 	entry = mas_next_slot(mas, max, false);
6060 	/* Ignore overflow */
6061 	mas->status = ma_active;
6062 	return entry;
6063 }
6064 EXPORT_SYMBOL_GPL(mas_find);
6065 
6066 /**
6067  * mas_find_range() - On the first call, find the entry at or after
6068  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6069  * @mas: The maple state
6070  * @max: The maximum value to check.
6071  *
6072  * Must hold rcu_read_lock or the write lock.
6073  * If an entry exists, last and index are updated accordingly.
6074  * May set @mas->status to ma_overflow.
6075  *
6076  * Return: The entry or %NULL.
6077  */
6078 void *mas_find_range(struct ma_state *mas, unsigned long max)
6079 {
6080 	void *entry = NULL;
6081 
6082 	if (mas_find_setup(mas, max, &entry))
6083 		return entry;
6084 
6085 	/* Retries on dead nodes handled by mas_next_slot */
6086 	return mas_next_slot(mas, max, true);
6087 }
6088 EXPORT_SYMBOL_GPL(mas_find_range);
6089 
6090 /**
6091  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6092  * @mas: The maple state
6093  * @min: The minimum index
6094  * @entry: Pointer to the entry
6095  *
6096  * Returns: True if entry is the answer, false otherwise.
6097  */
6098 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6099 		void **entry)
6100 {
6101 
6102 	switch (mas->status) {
6103 	case ma_active:
6104 		goto active;
6105 	case ma_start:
6106 		break;
6107 	case ma_pause:
6108 		if (unlikely(mas->index <= min)) {
6109 			mas->status = ma_underflow;
6110 			return true;
6111 		}
6112 		mas->last = --mas->index;
6113 		mas->status = ma_start;
6114 		break;
6115 	case ma_none:
6116 		if (mas->index <= min)
6117 			goto none;
6118 
6119 		mas->last = mas->index;
6120 		mas->status = ma_start;
6121 		break;
6122 	case ma_overflow: /* user expects the mas to be one after where it is */
6123 		if (unlikely(mas->index <= min)) {
6124 			mas->status = ma_underflow;
6125 			return true;
6126 		}
6127 
6128 		mas->status = ma_active;
6129 		break;
6130 	case ma_underflow: /* user expects the mas to be one before where it is */
6131 		if (unlikely(mas->index <= min))
6132 			return true;
6133 
6134 		mas->status = ma_active;
6135 		break;
6136 	case ma_root:
6137 		break;
6138 	case ma_error:
6139 		return true;
6140 	}
6141 
6142 	if (mas_is_start(mas)) {
6143 		/* First run or continue */
6144 		if (mas->index < min)
6145 			return true;
6146 
6147 		*entry = mas_walk(mas);
6148 		if (*entry)
6149 			return true;
6150 	}
6151 
6152 	if (unlikely(mas_is_ptr(mas)))
6153 		goto none;
6154 
6155 	if (unlikely(mas_is_none(mas))) {
6156 		/*
6157 		 * Walked to the location, and there was nothing so the previous
6158 		 * location is 0.
6159 		 */
6160 		mas->last = mas->index = 0;
6161 		mas->status = ma_root;
6162 		*entry = mas_root(mas);
6163 		return true;
6164 	}
6165 
6166 active:
6167 	if (mas->index < min)
6168 		return true;
6169 
6170 	return false;
6171 
6172 none:
6173 	mas->status = ma_none;
6174 	return true;
6175 }
6176 
6177 /**
6178  * mas_find_rev: On the first call, find the first non-null entry at or below
6179  * mas->index down to %min.  Otherwise find the first non-null entry below
6180  * mas->index down to %min.
6181  * @mas: The maple state
6182  * @min: The minimum value to check.
6183  *
6184  * Must hold rcu_read_lock or the write lock.
6185  * If an entry exists, last and index are updated accordingly.
6186  * May set @mas->status to ma_underflow.
6187  *
6188  * Return: The entry or %NULL.
6189  */
6190 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6191 {
6192 	void *entry = NULL;
6193 
6194 	if (mas_find_rev_setup(mas, min, &entry))
6195 		return entry;
6196 
6197 	/* Retries on dead nodes handled by mas_prev_slot */
6198 	return mas_prev_slot(mas, min, false);
6199 
6200 }
6201 EXPORT_SYMBOL_GPL(mas_find_rev);
6202 
6203 /**
6204  * mas_find_range_rev: On the first call, find the first non-null entry at or
6205  * below mas->index down to %min.  Otherwise advance to the previous slot after
6206  * mas->index down to %min.
6207  * @mas: The maple state
6208  * @min: The minimum value to check.
6209  *
6210  * Must hold rcu_read_lock or the write lock.
6211  * If an entry exists, last and index are updated accordingly.
6212  * May set @mas->status to ma_underflow.
6213  *
6214  * Return: The entry or %NULL.
6215  */
6216 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6217 {
6218 	void *entry = NULL;
6219 
6220 	if (mas_find_rev_setup(mas, min, &entry))
6221 		return entry;
6222 
6223 	/* Retries on dead nodes handled by mas_prev_slot */
6224 	return mas_prev_slot(mas, min, true);
6225 }
6226 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6227 
6228 /**
6229  * mas_erase() - Find the range in which index resides and erase the entire
6230  * range.
6231  * @mas: The maple state
6232  *
6233  * Must hold the write lock.
6234  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6235  * erases that range.
6236  *
6237  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6238  */
6239 void *mas_erase(struct ma_state *mas)
6240 {
6241 	void *entry;
6242 	unsigned long index = mas->index;
6243 	MA_WR_STATE(wr_mas, mas, NULL);
6244 
6245 	if (!mas_is_active(mas) || !mas_is_start(mas))
6246 		mas->status = ma_start;
6247 
6248 write_retry:
6249 	entry = mas_state_walk(mas);
6250 	if (!entry)
6251 		return NULL;
6252 
6253 	/* Must reset to ensure spanning writes of last slot are detected */
6254 	mas_reset(mas);
6255 	mas_wr_preallocate(&wr_mas, NULL);
6256 	if (mas_nomem(mas, GFP_KERNEL)) {
6257 		/* in case the range of entry changed when unlocked */
6258 		mas->index = mas->last = index;
6259 		goto write_retry;
6260 	}
6261 
6262 	if (mas_is_err(mas))
6263 		goto out;
6264 
6265 	mas_wr_store_entry(&wr_mas);
6266 out:
6267 	mas_destroy(mas);
6268 	return entry;
6269 }
6270 EXPORT_SYMBOL_GPL(mas_erase);
6271 
6272 /**
6273  * mas_nomem() - Check if there was an error allocating and do the allocation
6274  * if necessary If there are allocations, then free them.
6275  * @mas: The maple state
6276  * @gfp: The GFP_FLAGS to use for allocations
6277  * Return: true on allocation, false otherwise.
6278  */
6279 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6280 	__must_hold(mas->tree->ma_lock)
6281 {
6282 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6283 		return false;
6284 
6285 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6286 		mtree_unlock(mas->tree);
6287 		mas_alloc_nodes(mas, gfp);
6288 		mtree_lock(mas->tree);
6289 	} else {
6290 		mas_alloc_nodes(mas, gfp);
6291 	}
6292 
6293 	if (!mas_allocated(mas))
6294 		return false;
6295 
6296 	mas->status = ma_start;
6297 	return true;
6298 }
6299 
6300 void __init maple_tree_init(void)
6301 {
6302 	maple_node_cache = kmem_cache_create("maple_node",
6303 			sizeof(struct maple_node), sizeof(struct maple_node),
6304 			SLAB_PANIC, NULL);
6305 }
6306 
6307 /**
6308  * mtree_load() - Load a value stored in a maple tree
6309  * @mt: The maple tree
6310  * @index: The index to load
6311  *
6312  * Return: the entry or %NULL
6313  */
6314 void *mtree_load(struct maple_tree *mt, unsigned long index)
6315 {
6316 	MA_STATE(mas, mt, index, index);
6317 	void *entry;
6318 
6319 	trace_ma_read(__func__, &mas);
6320 	rcu_read_lock();
6321 retry:
6322 	entry = mas_start(&mas);
6323 	if (unlikely(mas_is_none(&mas)))
6324 		goto unlock;
6325 
6326 	if (unlikely(mas_is_ptr(&mas))) {
6327 		if (index)
6328 			entry = NULL;
6329 
6330 		goto unlock;
6331 	}
6332 
6333 	entry = mtree_lookup_walk(&mas);
6334 	if (!entry && unlikely(mas_is_start(&mas)))
6335 		goto retry;
6336 unlock:
6337 	rcu_read_unlock();
6338 	if (xa_is_zero(entry))
6339 		return NULL;
6340 
6341 	return entry;
6342 }
6343 EXPORT_SYMBOL(mtree_load);
6344 
6345 /**
6346  * mtree_store_range() - Store an entry at a given range.
6347  * @mt: The maple tree
6348  * @index: The start of the range
6349  * @last: The end of the range
6350  * @entry: The entry to store
6351  * @gfp: The GFP_FLAGS to use for allocations
6352  *
6353  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6354  * be allocated.
6355  */
6356 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6357 		unsigned long last, void *entry, gfp_t gfp)
6358 {
6359 	MA_STATE(mas, mt, index, last);
6360 	int ret = 0;
6361 
6362 	trace_ma_write(__func__, &mas, 0, entry);
6363 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6364 		return -EINVAL;
6365 
6366 	if (index > last)
6367 		return -EINVAL;
6368 
6369 	mtree_lock(mt);
6370 	ret = mas_store_gfp(&mas, entry, gfp);
6371 	mtree_unlock(mt);
6372 
6373 	return ret;
6374 }
6375 EXPORT_SYMBOL(mtree_store_range);
6376 
6377 /**
6378  * mtree_store() - Store an entry at a given index.
6379  * @mt: The maple tree
6380  * @index: The index to store the value
6381  * @entry: The entry to store
6382  * @gfp: The GFP_FLAGS to use for allocations
6383  *
6384  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6385  * be allocated.
6386  */
6387 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6388 		 gfp_t gfp)
6389 {
6390 	return mtree_store_range(mt, index, index, entry, gfp);
6391 }
6392 EXPORT_SYMBOL(mtree_store);
6393 
6394 /**
6395  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6396  * @mt: The maple tree
6397  * @first: The start of the range
6398  * @last: The end of the range
6399  * @entry: The entry to store
6400  * @gfp: The GFP_FLAGS to use for allocations.
6401  *
6402  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6403  * request, -ENOMEM if memory could not be allocated.
6404  */
6405 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6406 		unsigned long last, void *entry, gfp_t gfp)
6407 {
6408 	MA_STATE(ms, mt, first, last);
6409 	int ret = 0;
6410 
6411 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6412 		return -EINVAL;
6413 
6414 	if (first > last)
6415 		return -EINVAL;
6416 
6417 	mtree_lock(mt);
6418 retry:
6419 	mas_insert(&ms, entry);
6420 	if (mas_nomem(&ms, gfp))
6421 		goto retry;
6422 
6423 	mtree_unlock(mt);
6424 	if (mas_is_err(&ms))
6425 		ret = xa_err(ms.node);
6426 
6427 	mas_destroy(&ms);
6428 	return ret;
6429 }
6430 EXPORT_SYMBOL(mtree_insert_range);
6431 
6432 /**
6433  * mtree_insert() - Insert an entry at a given index if there is no value.
6434  * @mt: The maple tree
6435  * @index : The index to store the value
6436  * @entry: The entry to store
6437  * @gfp: The GFP_FLAGS to use for allocations.
6438  *
6439  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6440  * request, -ENOMEM if memory could not be allocated.
6441  */
6442 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6443 		 gfp_t gfp)
6444 {
6445 	return mtree_insert_range(mt, index, index, entry, gfp);
6446 }
6447 EXPORT_SYMBOL(mtree_insert);
6448 
6449 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6450 		void *entry, unsigned long size, unsigned long min,
6451 		unsigned long max, gfp_t gfp)
6452 {
6453 	int ret = 0;
6454 
6455 	MA_STATE(mas, mt, 0, 0);
6456 	if (!mt_is_alloc(mt))
6457 		return -EINVAL;
6458 
6459 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6460 		return -EINVAL;
6461 
6462 	mtree_lock(mt);
6463 retry:
6464 	ret = mas_empty_area(&mas, min, max, size);
6465 	if (ret)
6466 		goto unlock;
6467 
6468 	mas_insert(&mas, entry);
6469 	/*
6470 	 * mas_nomem() may release the lock, causing the allocated area
6471 	 * to be unavailable, so try to allocate a free area again.
6472 	 */
6473 	if (mas_nomem(&mas, gfp))
6474 		goto retry;
6475 
6476 	if (mas_is_err(&mas))
6477 		ret = xa_err(mas.node);
6478 	else
6479 		*startp = mas.index;
6480 
6481 unlock:
6482 	mtree_unlock(mt);
6483 	mas_destroy(&mas);
6484 	return ret;
6485 }
6486 EXPORT_SYMBOL(mtree_alloc_range);
6487 
6488 /**
6489  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6490  * @mt: The maple tree.
6491  * @startp: Pointer to ID.
6492  * @range_lo: Lower bound of range to search.
6493  * @range_hi: Upper bound of range to search.
6494  * @entry: The entry to store.
6495  * @next: Pointer to next ID to allocate.
6496  * @gfp: The GFP_FLAGS to use for allocations.
6497  *
6498  * Finds an empty entry in @mt after @next, stores the new index into
6499  * the @id pointer, stores the entry at that index, then updates @next.
6500  *
6501  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6502  *
6503  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6504  * the @gfp flags permit.
6505  *
6506  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6507  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6508  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6509  * free entries.
6510  */
6511 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6512 		void *entry, unsigned long range_lo, unsigned long range_hi,
6513 		unsigned long *next, gfp_t gfp)
6514 {
6515 	int ret;
6516 
6517 	MA_STATE(mas, mt, 0, 0);
6518 
6519 	if (!mt_is_alloc(mt))
6520 		return -EINVAL;
6521 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6522 		return -EINVAL;
6523 	mtree_lock(mt);
6524 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6525 			       next, gfp);
6526 	mtree_unlock(mt);
6527 	return ret;
6528 }
6529 EXPORT_SYMBOL(mtree_alloc_cyclic);
6530 
6531 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6532 		void *entry, unsigned long size, unsigned long min,
6533 		unsigned long max, gfp_t gfp)
6534 {
6535 	int ret = 0;
6536 
6537 	MA_STATE(mas, mt, 0, 0);
6538 	if (!mt_is_alloc(mt))
6539 		return -EINVAL;
6540 
6541 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6542 		return -EINVAL;
6543 
6544 	mtree_lock(mt);
6545 retry:
6546 	ret = mas_empty_area_rev(&mas, min, max, size);
6547 	if (ret)
6548 		goto unlock;
6549 
6550 	mas_insert(&mas, entry);
6551 	/*
6552 	 * mas_nomem() may release the lock, causing the allocated area
6553 	 * to be unavailable, so try to allocate a free area again.
6554 	 */
6555 	if (mas_nomem(&mas, gfp))
6556 		goto retry;
6557 
6558 	if (mas_is_err(&mas))
6559 		ret = xa_err(mas.node);
6560 	else
6561 		*startp = mas.index;
6562 
6563 unlock:
6564 	mtree_unlock(mt);
6565 	mas_destroy(&mas);
6566 	return ret;
6567 }
6568 EXPORT_SYMBOL(mtree_alloc_rrange);
6569 
6570 /**
6571  * mtree_erase() - Find an index and erase the entire range.
6572  * @mt: The maple tree
6573  * @index: The index to erase
6574  *
6575  * Erasing is the same as a walk to an entry then a store of a NULL to that
6576  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6577  *
6578  * Return: The entry stored at the @index or %NULL
6579  */
6580 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6581 {
6582 	void *entry = NULL;
6583 
6584 	MA_STATE(mas, mt, index, index);
6585 	trace_ma_op(__func__, &mas);
6586 
6587 	mtree_lock(mt);
6588 	entry = mas_erase(&mas);
6589 	mtree_unlock(mt);
6590 
6591 	return entry;
6592 }
6593 EXPORT_SYMBOL(mtree_erase);
6594 
6595 /*
6596  * mas_dup_free() - Free an incomplete duplication of a tree.
6597  * @mas: The maple state of a incomplete tree.
6598  *
6599  * The parameter @mas->node passed in indicates that the allocation failed on
6600  * this node. This function frees all nodes starting from @mas->node in the
6601  * reverse order of mas_dup_build(). There is no need to hold the source tree
6602  * lock at this time.
6603  */
6604 static void mas_dup_free(struct ma_state *mas)
6605 {
6606 	struct maple_node *node;
6607 	enum maple_type type;
6608 	void __rcu **slots;
6609 	unsigned char count, i;
6610 
6611 	/* Maybe the first node allocation failed. */
6612 	if (mas_is_none(mas))
6613 		return;
6614 
6615 	while (!mte_is_root(mas->node)) {
6616 		mas_ascend(mas);
6617 		if (mas->offset) {
6618 			mas->offset--;
6619 			do {
6620 				mas_descend(mas);
6621 				mas->offset = mas_data_end(mas);
6622 			} while (!mte_is_leaf(mas->node));
6623 
6624 			mas_ascend(mas);
6625 		}
6626 
6627 		node = mte_to_node(mas->node);
6628 		type = mte_node_type(mas->node);
6629 		slots = ma_slots(node, type);
6630 		count = mas_data_end(mas) + 1;
6631 		for (i = 0; i < count; i++)
6632 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6633 		mt_free_bulk(count, slots);
6634 	}
6635 
6636 	node = mte_to_node(mas->node);
6637 	mt_free_one(node);
6638 }
6639 
6640 /*
6641  * mas_copy_node() - Copy a maple node and replace the parent.
6642  * @mas: The maple state of source tree.
6643  * @new_mas: The maple state of new tree.
6644  * @parent: The parent of the new node.
6645  *
6646  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6647  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6648  */
6649 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6650 		struct maple_pnode *parent)
6651 {
6652 	struct maple_node *node = mte_to_node(mas->node);
6653 	struct maple_node *new_node = mte_to_node(new_mas->node);
6654 	unsigned long val;
6655 
6656 	/* Copy the node completely. */
6657 	memcpy(new_node, node, sizeof(struct maple_node));
6658 	/* Update the parent node pointer. */
6659 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6660 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6661 }
6662 
6663 /*
6664  * mas_dup_alloc() - Allocate child nodes for a maple node.
6665  * @mas: The maple state of source tree.
6666  * @new_mas: The maple state of new tree.
6667  * @gfp: The GFP_FLAGS to use for allocations.
6668  *
6669  * This function allocates child nodes for @new_mas->node during the duplication
6670  * process. If memory allocation fails, @mas is set to -ENOMEM.
6671  */
6672 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6673 		gfp_t gfp)
6674 {
6675 	struct maple_node *node = mte_to_node(mas->node);
6676 	struct maple_node *new_node = mte_to_node(new_mas->node);
6677 	enum maple_type type;
6678 	unsigned char request, count, i;
6679 	void __rcu **slots;
6680 	void __rcu **new_slots;
6681 	unsigned long val;
6682 
6683 	/* Allocate memory for child nodes. */
6684 	type = mte_node_type(mas->node);
6685 	new_slots = ma_slots(new_node, type);
6686 	request = mas_data_end(mas) + 1;
6687 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6688 	if (unlikely(count < request)) {
6689 		memset(new_slots, 0, request * sizeof(void *));
6690 		mas_set_err(mas, -ENOMEM);
6691 		return;
6692 	}
6693 
6694 	/* Restore node type information in slots. */
6695 	slots = ma_slots(node, type);
6696 	for (i = 0; i < count; i++) {
6697 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6698 		val &= MAPLE_NODE_MASK;
6699 		((unsigned long *)new_slots)[i] |= val;
6700 	}
6701 }
6702 
6703 /*
6704  * mas_dup_build() - Build a new maple tree from a source tree
6705  * @mas: The maple state of source tree, need to be in MAS_START state.
6706  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6707  * @gfp: The GFP_FLAGS to use for allocations.
6708  *
6709  * This function builds a new tree in DFS preorder. If the memory allocation
6710  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6711  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6712  *
6713  * Note that the attributes of the two trees need to be exactly the same, and the
6714  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6715  */
6716 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6717 		gfp_t gfp)
6718 {
6719 	struct maple_node *node;
6720 	struct maple_pnode *parent = NULL;
6721 	struct maple_enode *root;
6722 	enum maple_type type;
6723 
6724 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6725 	    unlikely(!mtree_empty(new_mas->tree))) {
6726 		mas_set_err(mas, -EINVAL);
6727 		return;
6728 	}
6729 
6730 	root = mas_start(mas);
6731 	if (mas_is_ptr(mas) || mas_is_none(mas))
6732 		goto set_new_tree;
6733 
6734 	node = mt_alloc_one(gfp);
6735 	if (!node) {
6736 		new_mas->status = ma_none;
6737 		mas_set_err(mas, -ENOMEM);
6738 		return;
6739 	}
6740 
6741 	type = mte_node_type(mas->node);
6742 	root = mt_mk_node(node, type);
6743 	new_mas->node = root;
6744 	new_mas->min = 0;
6745 	new_mas->max = ULONG_MAX;
6746 	root = mte_mk_root(root);
6747 	while (1) {
6748 		mas_copy_node(mas, new_mas, parent);
6749 		if (!mte_is_leaf(mas->node)) {
6750 			/* Only allocate child nodes for non-leaf nodes. */
6751 			mas_dup_alloc(mas, new_mas, gfp);
6752 			if (unlikely(mas_is_err(mas)))
6753 				return;
6754 		} else {
6755 			/*
6756 			 * This is the last leaf node and duplication is
6757 			 * completed.
6758 			 */
6759 			if (mas->max == ULONG_MAX)
6760 				goto done;
6761 
6762 			/* This is not the last leaf node and needs to go up. */
6763 			do {
6764 				mas_ascend(mas);
6765 				mas_ascend(new_mas);
6766 			} while (mas->offset == mas_data_end(mas));
6767 
6768 			/* Move to the next subtree. */
6769 			mas->offset++;
6770 			new_mas->offset++;
6771 		}
6772 
6773 		mas_descend(mas);
6774 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6775 		mas_descend(new_mas);
6776 		mas->offset = 0;
6777 		new_mas->offset = 0;
6778 	}
6779 done:
6780 	/* Specially handle the parent of the root node. */
6781 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6782 set_new_tree:
6783 	/* Make them the same height */
6784 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6785 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6786 }
6787 
6788 /**
6789  * __mt_dup(): Duplicate an entire maple tree
6790  * @mt: The source maple tree
6791  * @new: The new maple tree
6792  * @gfp: The GFP_FLAGS to use for allocations
6793  *
6794  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6795  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6796  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6797  * source node except for all the addresses stored in it. It will be faster than
6798  * traversing all elements in the source tree and inserting them one by one into
6799  * the new tree.
6800  * The user needs to ensure that the attributes of the source tree and the new
6801  * tree are the same, and the new tree needs to be an empty tree, otherwise
6802  * -EINVAL will be returned.
6803  * Note that the user needs to manually lock the source tree and the new tree.
6804  *
6805  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6806  * the attributes of the two trees are different or the new tree is not an empty
6807  * tree.
6808  */
6809 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6810 {
6811 	int ret = 0;
6812 	MA_STATE(mas, mt, 0, 0);
6813 	MA_STATE(new_mas, new, 0, 0);
6814 
6815 	mas_dup_build(&mas, &new_mas, gfp);
6816 	if (unlikely(mas_is_err(&mas))) {
6817 		ret = xa_err(mas.node);
6818 		if (ret == -ENOMEM)
6819 			mas_dup_free(&new_mas);
6820 	}
6821 
6822 	return ret;
6823 }
6824 EXPORT_SYMBOL(__mt_dup);
6825 
6826 /**
6827  * mtree_dup(): Duplicate an entire maple tree
6828  * @mt: The source maple tree
6829  * @new: The new maple tree
6830  * @gfp: The GFP_FLAGS to use for allocations
6831  *
6832  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6833  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6834  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6835  * source node except for all the addresses stored in it. It will be faster than
6836  * traversing all elements in the source tree and inserting them one by one into
6837  * the new tree.
6838  * The user needs to ensure that the attributes of the source tree and the new
6839  * tree are the same, and the new tree needs to be an empty tree, otherwise
6840  * -EINVAL will be returned.
6841  *
6842  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6843  * the attributes of the two trees are different or the new tree is not an empty
6844  * tree.
6845  */
6846 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6847 {
6848 	int ret = 0;
6849 	MA_STATE(mas, mt, 0, 0);
6850 	MA_STATE(new_mas, new, 0, 0);
6851 
6852 	mas_lock(&new_mas);
6853 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6854 	mas_dup_build(&mas, &new_mas, gfp);
6855 	mas_unlock(&mas);
6856 	if (unlikely(mas_is_err(&mas))) {
6857 		ret = xa_err(mas.node);
6858 		if (ret == -ENOMEM)
6859 			mas_dup_free(&new_mas);
6860 	}
6861 
6862 	mas_unlock(&new_mas);
6863 	return ret;
6864 }
6865 EXPORT_SYMBOL(mtree_dup);
6866 
6867 /**
6868  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6869  * @mt: The maple tree
6870  *
6871  * Note: Does not handle locking.
6872  */
6873 void __mt_destroy(struct maple_tree *mt)
6874 {
6875 	void *root = mt_root_locked(mt);
6876 
6877 	rcu_assign_pointer(mt->ma_root, NULL);
6878 	if (xa_is_node(root))
6879 		mte_destroy_walk(root, mt);
6880 
6881 	mt->ma_flags = mt_attr(mt);
6882 }
6883 EXPORT_SYMBOL_GPL(__mt_destroy);
6884 
6885 /**
6886  * mtree_destroy() - Destroy a maple tree
6887  * @mt: The maple tree
6888  *
6889  * Frees all resources used by the tree.  Handles locking.
6890  */
6891 void mtree_destroy(struct maple_tree *mt)
6892 {
6893 	mtree_lock(mt);
6894 	__mt_destroy(mt);
6895 	mtree_unlock(mt);
6896 }
6897 EXPORT_SYMBOL(mtree_destroy);
6898 
6899 /**
6900  * mt_find() - Search from the start up until an entry is found.
6901  * @mt: The maple tree
6902  * @index: Pointer which contains the start location of the search
6903  * @max: The maximum value of the search range
6904  *
6905  * Takes RCU read lock internally to protect the search, which does not
6906  * protect the returned pointer after dropping RCU read lock.
6907  * See also: Documentation/core-api/maple_tree.rst
6908  *
6909  * In case that an entry is found @index is updated to point to the next
6910  * possible entry independent whether the found entry is occupying a
6911  * single index or a range if indices.
6912  *
6913  * Return: The entry at or after the @index or %NULL
6914  */
6915 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6916 {
6917 	MA_STATE(mas, mt, *index, *index);
6918 	void *entry;
6919 #ifdef CONFIG_DEBUG_MAPLE_TREE
6920 	unsigned long copy = *index;
6921 #endif
6922 
6923 	trace_ma_read(__func__, &mas);
6924 
6925 	if ((*index) > max)
6926 		return NULL;
6927 
6928 	rcu_read_lock();
6929 retry:
6930 	entry = mas_state_walk(&mas);
6931 	if (mas_is_start(&mas))
6932 		goto retry;
6933 
6934 	if (unlikely(xa_is_zero(entry)))
6935 		entry = NULL;
6936 
6937 	if (entry)
6938 		goto unlock;
6939 
6940 	while (mas_is_active(&mas) && (mas.last < max)) {
6941 		entry = mas_next_entry(&mas, max);
6942 		if (likely(entry && !xa_is_zero(entry)))
6943 			break;
6944 	}
6945 
6946 	if (unlikely(xa_is_zero(entry)))
6947 		entry = NULL;
6948 unlock:
6949 	rcu_read_unlock();
6950 	if (likely(entry)) {
6951 		*index = mas.last + 1;
6952 #ifdef CONFIG_DEBUG_MAPLE_TREE
6953 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6954 			pr_err("index not increased! %lx <= %lx\n",
6955 			       *index, copy);
6956 #endif
6957 	}
6958 
6959 	return entry;
6960 }
6961 EXPORT_SYMBOL(mt_find);
6962 
6963 /**
6964  * mt_find_after() - Search from the start up until an entry is found.
6965  * @mt: The maple tree
6966  * @index: Pointer which contains the start location of the search
6967  * @max: The maximum value to check
6968  *
6969  * Same as mt_find() except that it checks @index for 0 before
6970  * searching. If @index == 0, the search is aborted. This covers a wrap
6971  * around of @index to 0 in an iterator loop.
6972  *
6973  * Return: The entry at or after the @index or %NULL
6974  */
6975 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6976 		    unsigned long max)
6977 {
6978 	if (!(*index))
6979 		return NULL;
6980 
6981 	return mt_find(mt, index, max);
6982 }
6983 EXPORT_SYMBOL(mt_find_after);
6984 
6985 #ifdef CONFIG_DEBUG_MAPLE_TREE
6986 atomic_t maple_tree_tests_run;
6987 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6988 atomic_t maple_tree_tests_passed;
6989 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6990 
6991 #ifndef __KERNEL__
6992 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6993 void mt_set_non_kernel(unsigned int val)
6994 {
6995 	kmem_cache_set_non_kernel(maple_node_cache, val);
6996 }
6997 
6998 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6999 		void (*callback)(void *));
7000 void mt_set_callback(void (*callback)(void *))
7001 {
7002 	kmem_cache_set_callback(maple_node_cache, callback);
7003 }
7004 
7005 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
7006 void mt_set_private(void *private)
7007 {
7008 	kmem_cache_set_private(maple_node_cache, private);
7009 }
7010 
7011 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7012 unsigned long mt_get_alloc_size(void)
7013 {
7014 	return kmem_cache_get_alloc(maple_node_cache);
7015 }
7016 
7017 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7018 void mt_zero_nr_tallocated(void)
7019 {
7020 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7021 }
7022 
7023 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7024 unsigned int mt_nr_tallocated(void)
7025 {
7026 	return kmem_cache_nr_tallocated(maple_node_cache);
7027 }
7028 
7029 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7030 unsigned int mt_nr_allocated(void)
7031 {
7032 	return kmem_cache_nr_allocated(maple_node_cache);
7033 }
7034 
7035 void mt_cache_shrink(void)
7036 {
7037 }
7038 #else
7039 /*
7040  * mt_cache_shrink() - For testing, don't use this.
7041  *
7042  * Certain testcases can trigger an OOM when combined with other memory
7043  * debugging configuration options.  This function is used to reduce the
7044  * possibility of an out of memory even due to kmem_cache objects remaining
7045  * around for longer than usual.
7046  */
7047 void mt_cache_shrink(void)
7048 {
7049 	kmem_cache_shrink(maple_node_cache);
7050 
7051 }
7052 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7053 
7054 #endif /* not defined __KERNEL__ */
7055 /*
7056  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7057  * @mas: The maple state
7058  * @offset: The offset into the slot array to fetch.
7059  *
7060  * Return: The entry stored at @offset.
7061  */
7062 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7063 		unsigned char offset)
7064 {
7065 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7066 			offset);
7067 }
7068 
7069 /* Depth first search, post-order */
7070 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7071 {
7072 
7073 	struct maple_enode *p, *mn = mas->node;
7074 	unsigned long p_min, p_max;
7075 
7076 	mas_next_node(mas, mas_mn(mas), max);
7077 	if (!mas_is_overflow(mas))
7078 		return;
7079 
7080 	if (mte_is_root(mn))
7081 		return;
7082 
7083 	mas->node = mn;
7084 	mas_ascend(mas);
7085 	do {
7086 		p = mas->node;
7087 		p_min = mas->min;
7088 		p_max = mas->max;
7089 		mas_prev_node(mas, 0);
7090 	} while (!mas_is_underflow(mas));
7091 
7092 	mas->node = p;
7093 	mas->max = p_max;
7094 	mas->min = p_min;
7095 }
7096 
7097 /* Tree validations */
7098 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7099 		unsigned long min, unsigned long max, unsigned int depth,
7100 		enum mt_dump_format format);
7101 static void mt_dump_range(unsigned long min, unsigned long max,
7102 			  unsigned int depth, enum mt_dump_format format)
7103 {
7104 	static const char spaces[] = "                                ";
7105 
7106 	switch(format) {
7107 	case mt_dump_hex:
7108 		if (min == max)
7109 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7110 		else
7111 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7112 		break;
7113 	case mt_dump_dec:
7114 		if (min == max)
7115 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7116 		else
7117 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7118 	}
7119 }
7120 
7121 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7122 			  unsigned int depth, enum mt_dump_format format)
7123 {
7124 	mt_dump_range(min, max, depth, format);
7125 
7126 	if (xa_is_value(entry))
7127 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7128 				xa_to_value(entry), entry);
7129 	else if (xa_is_zero(entry))
7130 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7131 	else if (mt_is_reserved(entry))
7132 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7133 	else
7134 		pr_cont("%p\n", entry);
7135 }
7136 
7137 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7138 		unsigned long min, unsigned long max, unsigned int depth,
7139 		enum mt_dump_format format)
7140 {
7141 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7142 	bool leaf = mte_is_leaf(entry);
7143 	unsigned long first = min;
7144 	int i;
7145 
7146 	pr_cont(" contents: ");
7147 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7148 		switch(format) {
7149 		case mt_dump_hex:
7150 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7151 			break;
7152 		case mt_dump_dec:
7153 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7154 		}
7155 	}
7156 	pr_cont("%p\n", node->slot[i]);
7157 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7158 		unsigned long last = max;
7159 
7160 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7161 			last = node->pivot[i];
7162 		else if (!node->slot[i] && max != mt_node_max(entry))
7163 			break;
7164 		if (last == 0 && i > 0)
7165 			break;
7166 		if (leaf)
7167 			mt_dump_entry(mt_slot(mt, node->slot, i),
7168 					first, last, depth + 1, format);
7169 		else if (node->slot[i])
7170 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7171 					first, last, depth + 1, format);
7172 
7173 		if (last == max)
7174 			break;
7175 		if (last > max) {
7176 			switch(format) {
7177 			case mt_dump_hex:
7178 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7179 					node, last, max, i);
7180 				break;
7181 			case mt_dump_dec:
7182 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7183 					node, last, max, i);
7184 			}
7185 		}
7186 		first = last + 1;
7187 	}
7188 }
7189 
7190 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7191 	unsigned long min, unsigned long max, unsigned int depth,
7192 	enum mt_dump_format format)
7193 {
7194 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7195 	unsigned long first = min;
7196 	int i;
7197 
7198 	pr_cont(" contents: ");
7199 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7200 		switch (format) {
7201 		case mt_dump_hex:
7202 			pr_cont("%lx ", node->gap[i]);
7203 			break;
7204 		case mt_dump_dec:
7205 			pr_cont("%lu ", node->gap[i]);
7206 		}
7207 	}
7208 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7209 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7210 		switch (format) {
7211 		case mt_dump_hex:
7212 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7213 			break;
7214 		case mt_dump_dec:
7215 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7216 		}
7217 	}
7218 	pr_cont("%p\n", node->slot[i]);
7219 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7220 		unsigned long last = max;
7221 
7222 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7223 			last = node->pivot[i];
7224 		else if (!node->slot[i])
7225 			break;
7226 		if (last == 0 && i > 0)
7227 			break;
7228 		if (node->slot[i])
7229 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7230 					first, last, depth + 1, format);
7231 
7232 		if (last == max)
7233 			break;
7234 		if (last > max) {
7235 			switch(format) {
7236 			case mt_dump_hex:
7237 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7238 					node, last, max, i);
7239 				break;
7240 			case mt_dump_dec:
7241 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7242 					node, last, max, i);
7243 			}
7244 		}
7245 		first = last + 1;
7246 	}
7247 }
7248 
7249 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7250 		unsigned long min, unsigned long max, unsigned int depth,
7251 		enum mt_dump_format format)
7252 {
7253 	struct maple_node *node = mte_to_node(entry);
7254 	unsigned int type = mte_node_type(entry);
7255 	unsigned int i;
7256 
7257 	mt_dump_range(min, max, depth, format);
7258 
7259 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7260 			node ? node->parent : NULL);
7261 	switch (type) {
7262 	case maple_dense:
7263 		pr_cont("\n");
7264 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7265 			if (min + i > max)
7266 				pr_cont("OUT OF RANGE: ");
7267 			mt_dump_entry(mt_slot(mt, node->slot, i),
7268 					min + i, min + i, depth, format);
7269 		}
7270 		break;
7271 	case maple_leaf_64:
7272 	case maple_range_64:
7273 		mt_dump_range64(mt, entry, min, max, depth, format);
7274 		break;
7275 	case maple_arange_64:
7276 		mt_dump_arange64(mt, entry, min, max, depth, format);
7277 		break;
7278 
7279 	default:
7280 		pr_cont(" UNKNOWN TYPE\n");
7281 	}
7282 }
7283 
7284 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7285 {
7286 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7287 
7288 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7289 		 mt, mt->ma_flags, mt_height(mt), entry);
7290 	if (!xa_is_node(entry))
7291 		mt_dump_entry(entry, 0, 0, 0, format);
7292 	else if (entry)
7293 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7294 }
7295 EXPORT_SYMBOL_GPL(mt_dump);
7296 
7297 /*
7298  * Calculate the maximum gap in a node and check if that's what is reported in
7299  * the parent (unless root).
7300  */
7301 static void mas_validate_gaps(struct ma_state *mas)
7302 {
7303 	struct maple_enode *mte = mas->node;
7304 	struct maple_node *p_mn, *node = mte_to_node(mte);
7305 	enum maple_type mt = mte_node_type(mas->node);
7306 	unsigned long gap = 0, max_gap = 0;
7307 	unsigned long p_end, p_start = mas->min;
7308 	unsigned char p_slot, offset;
7309 	unsigned long *gaps = NULL;
7310 	unsigned long *pivots = ma_pivots(node, mt);
7311 	unsigned int i;
7312 
7313 	if (ma_is_dense(mt)) {
7314 		for (i = 0; i < mt_slot_count(mte); i++) {
7315 			if (mas_get_slot(mas, i)) {
7316 				if (gap > max_gap)
7317 					max_gap = gap;
7318 				gap = 0;
7319 				continue;
7320 			}
7321 			gap++;
7322 		}
7323 		goto counted;
7324 	}
7325 
7326 	gaps = ma_gaps(node, mt);
7327 	for (i = 0; i < mt_slot_count(mte); i++) {
7328 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7329 
7330 		if (!gaps) {
7331 			if (!mas_get_slot(mas, i))
7332 				gap = p_end - p_start + 1;
7333 		} else {
7334 			void *entry = mas_get_slot(mas, i);
7335 
7336 			gap = gaps[i];
7337 			MT_BUG_ON(mas->tree, !entry);
7338 
7339 			if (gap > p_end - p_start + 1) {
7340 				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7341 				       mas_mn(mas), i, gap, p_end, p_start,
7342 				       p_end - p_start + 1);
7343 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7344 			}
7345 		}
7346 
7347 		if (gap > max_gap)
7348 			max_gap = gap;
7349 
7350 		p_start = p_end + 1;
7351 		if (p_end >= mas->max)
7352 			break;
7353 	}
7354 
7355 counted:
7356 	if (mt == maple_arange_64) {
7357 		MT_BUG_ON(mas->tree, !gaps);
7358 		offset = ma_meta_gap(node);
7359 		if (offset > i) {
7360 			pr_err("gap offset %p[%u] is invalid\n", node, offset);
7361 			MT_BUG_ON(mas->tree, 1);
7362 		}
7363 
7364 		if (gaps[offset] != max_gap) {
7365 			pr_err("gap %p[%u] is not the largest gap %lu\n",
7366 			       node, offset, max_gap);
7367 			MT_BUG_ON(mas->tree, 1);
7368 		}
7369 
7370 		for (i++ ; i < mt_slot_count(mte); i++) {
7371 			if (gaps[i] != 0) {
7372 				pr_err("gap %p[%u] beyond node limit != 0\n",
7373 				       node, i);
7374 				MT_BUG_ON(mas->tree, 1);
7375 			}
7376 		}
7377 	}
7378 
7379 	if (mte_is_root(mte))
7380 		return;
7381 
7382 	p_slot = mte_parent_slot(mas->node);
7383 	p_mn = mte_parent(mte);
7384 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7385 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7386 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7387 		mt_dump(mas->tree, mt_dump_hex);
7388 		MT_BUG_ON(mas->tree, 1);
7389 	}
7390 }
7391 
7392 static void mas_validate_parent_slot(struct ma_state *mas)
7393 {
7394 	struct maple_node *parent;
7395 	struct maple_enode *node;
7396 	enum maple_type p_type;
7397 	unsigned char p_slot;
7398 	void __rcu **slots;
7399 	int i;
7400 
7401 	if (mte_is_root(mas->node))
7402 		return;
7403 
7404 	p_slot = mte_parent_slot(mas->node);
7405 	p_type = mas_parent_type(mas, mas->node);
7406 	parent = mte_parent(mas->node);
7407 	slots = ma_slots(parent, p_type);
7408 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7409 
7410 	/* Check prev/next parent slot for duplicate node entry */
7411 
7412 	for (i = 0; i < mt_slots[p_type]; i++) {
7413 		node = mas_slot(mas, slots, i);
7414 		if (i == p_slot) {
7415 			if (node != mas->node)
7416 				pr_err("parent %p[%u] does not have %p\n",
7417 					parent, i, mas_mn(mas));
7418 			MT_BUG_ON(mas->tree, node != mas->node);
7419 		} else if (node == mas->node) {
7420 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7421 			       mas_mn(mas), parent, i, p_slot);
7422 			MT_BUG_ON(mas->tree, node == mas->node);
7423 		}
7424 	}
7425 }
7426 
7427 static void mas_validate_child_slot(struct ma_state *mas)
7428 {
7429 	enum maple_type type = mte_node_type(mas->node);
7430 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7431 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7432 	struct maple_enode *child;
7433 	unsigned char i;
7434 
7435 	if (mte_is_leaf(mas->node))
7436 		return;
7437 
7438 	for (i = 0; i < mt_slots[type]; i++) {
7439 		child = mas_slot(mas, slots, i);
7440 
7441 		if (!child) {
7442 			pr_err("Non-leaf node lacks child at %p[%u]\n",
7443 			       mas_mn(mas), i);
7444 			MT_BUG_ON(mas->tree, 1);
7445 		}
7446 
7447 		if (mte_parent_slot(child) != i) {
7448 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7449 			       mas_mn(mas), i, mte_to_node(child),
7450 			       mte_parent_slot(child));
7451 			MT_BUG_ON(mas->tree, 1);
7452 		}
7453 
7454 		if (mte_parent(child) != mte_to_node(mas->node)) {
7455 			pr_err("child %p has parent %p not %p\n",
7456 			       mte_to_node(child), mte_parent(child),
7457 			       mte_to_node(mas->node));
7458 			MT_BUG_ON(mas->tree, 1);
7459 		}
7460 
7461 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7462 			break;
7463 	}
7464 }
7465 
7466 /*
7467  * Validate all pivots are within mas->min and mas->max, check metadata ends
7468  * where the maximum ends and ensure there is no slots or pivots set outside of
7469  * the end of the data.
7470  */
7471 static void mas_validate_limits(struct ma_state *mas)
7472 {
7473 	int i;
7474 	unsigned long prev_piv = 0;
7475 	enum maple_type type = mte_node_type(mas->node);
7476 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7477 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7478 
7479 	for (i = 0; i < mt_slots[type]; i++) {
7480 		unsigned long piv;
7481 
7482 		piv = mas_safe_pivot(mas, pivots, i, type);
7483 
7484 		if (!piv && (i != 0)) {
7485 			pr_err("Missing node limit pivot at %p[%u]",
7486 			       mas_mn(mas), i);
7487 			MAS_WARN_ON(mas, 1);
7488 		}
7489 
7490 		if (prev_piv > piv) {
7491 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7492 				mas_mn(mas), i, piv, prev_piv);
7493 			MAS_WARN_ON(mas, piv < prev_piv);
7494 		}
7495 
7496 		if (piv < mas->min) {
7497 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7498 				piv, mas->min);
7499 			MAS_WARN_ON(mas, piv < mas->min);
7500 		}
7501 		if (piv > mas->max) {
7502 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7503 				piv, mas->max);
7504 			MAS_WARN_ON(mas, piv > mas->max);
7505 		}
7506 		prev_piv = piv;
7507 		if (piv == mas->max)
7508 			break;
7509 	}
7510 
7511 	if (mas_data_end(mas) != i) {
7512 		pr_err("node%p: data_end %u != the last slot offset %u\n",
7513 		       mas_mn(mas), mas_data_end(mas), i);
7514 		MT_BUG_ON(mas->tree, 1);
7515 	}
7516 
7517 	for (i += 1; i < mt_slots[type]; i++) {
7518 		void *entry = mas_slot(mas, slots, i);
7519 
7520 		if (entry && (i != mt_slots[type] - 1)) {
7521 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7522 			       i, entry);
7523 			MT_BUG_ON(mas->tree, entry != NULL);
7524 		}
7525 
7526 		if (i < mt_pivots[type]) {
7527 			unsigned long piv = pivots[i];
7528 
7529 			if (!piv)
7530 				continue;
7531 
7532 			pr_err("%p[%u] should not have piv %lu\n",
7533 			       mas_mn(mas), i, piv);
7534 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7535 		}
7536 	}
7537 }
7538 
7539 static void mt_validate_nulls(struct maple_tree *mt)
7540 {
7541 	void *entry, *last = (void *)1;
7542 	unsigned char offset = 0;
7543 	void __rcu **slots;
7544 	MA_STATE(mas, mt, 0, 0);
7545 
7546 	mas_start(&mas);
7547 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7548 		return;
7549 
7550 	while (!mte_is_leaf(mas.node))
7551 		mas_descend(&mas);
7552 
7553 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7554 	do {
7555 		entry = mas_slot(&mas, slots, offset);
7556 		if (!last && !entry) {
7557 			pr_err("Sequential nulls end at %p[%u]\n",
7558 				mas_mn(&mas), offset);
7559 		}
7560 		MT_BUG_ON(mt, !last && !entry);
7561 		last = entry;
7562 		if (offset == mas_data_end(&mas)) {
7563 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7564 			if (mas_is_overflow(&mas))
7565 				return;
7566 			offset = 0;
7567 			slots = ma_slots(mte_to_node(mas.node),
7568 					 mte_node_type(mas.node));
7569 		} else {
7570 			offset++;
7571 		}
7572 
7573 	} while (!mas_is_overflow(&mas));
7574 }
7575 
7576 /*
7577  * validate a maple tree by checking:
7578  * 1. The limits (pivots are within mas->min to mas->max)
7579  * 2. The gap is correctly set in the parents
7580  */
7581 void mt_validate(struct maple_tree *mt)
7582 	__must_hold(mas->tree->ma_lock)
7583 {
7584 	unsigned char end;
7585 
7586 	MA_STATE(mas, mt, 0, 0);
7587 	mas_start(&mas);
7588 	if (!mas_is_active(&mas))
7589 		return;
7590 
7591 	while (!mte_is_leaf(mas.node))
7592 		mas_descend(&mas);
7593 
7594 	while (!mas_is_overflow(&mas)) {
7595 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7596 		end = mas_data_end(&mas);
7597 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7598 				(mas.max != ULONG_MAX))) {
7599 			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7600 		}
7601 
7602 		mas_validate_parent_slot(&mas);
7603 		mas_validate_limits(&mas);
7604 		mas_validate_child_slot(&mas);
7605 		if (mt_is_alloc(mt))
7606 			mas_validate_gaps(&mas);
7607 		mas_dfs_postorder(&mas, ULONG_MAX);
7608 	}
7609 	mt_validate_nulls(mt);
7610 }
7611 EXPORT_SYMBOL_GPL(mt_validate);
7612 
7613 void mas_dump(const struct ma_state *mas)
7614 {
7615 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7616 	switch (mas->status) {
7617 	case ma_active:
7618 		pr_err("(ma_active)");
7619 		break;
7620 	case ma_none:
7621 		pr_err("(ma_none)");
7622 		break;
7623 	case ma_root:
7624 		pr_err("(ma_root)");
7625 		break;
7626 	case ma_start:
7627 		pr_err("(ma_start) ");
7628 		break;
7629 	case ma_pause:
7630 		pr_err("(ma_pause) ");
7631 		break;
7632 	case ma_overflow:
7633 		pr_err("(ma_overflow) ");
7634 		break;
7635 	case ma_underflow:
7636 		pr_err("(ma_underflow) ");
7637 		break;
7638 	case ma_error:
7639 		pr_err("(ma_error) ");
7640 		break;
7641 	}
7642 
7643 	pr_err("Store Type: ");
7644 	switch (mas->store_type) {
7645 	case wr_invalid:
7646 		pr_err("invalid store type\n");
7647 		break;
7648 	case wr_new_root:
7649 		pr_err("new_root\n");
7650 		break;
7651 	case wr_store_root:
7652 		pr_err("store_root\n");
7653 		break;
7654 	case wr_exact_fit:
7655 		pr_err("exact_fit\n");
7656 		break;
7657 	case wr_split_store:
7658 		pr_err("split_store\n");
7659 		break;
7660 	case wr_slot_store:
7661 		pr_err("slot_store\n");
7662 		break;
7663 	case wr_append:
7664 		pr_err("append\n");
7665 		break;
7666 	case wr_node_store:
7667 		pr_err("node_store\n");
7668 		break;
7669 	case wr_spanning_store:
7670 		pr_err("spanning_store\n");
7671 		break;
7672 	case wr_rebalance:
7673 		pr_err("rebalance\n");
7674 		break;
7675 	}
7676 
7677 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7678 	       mas->index, mas->last);
7679 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7680 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7681 	if (mas->index > mas->last)
7682 		pr_err("Check index & last\n");
7683 }
7684 EXPORT_SYMBOL_GPL(mas_dump);
7685 
7686 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7687 {
7688 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7689 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7690 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7691 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7692 	       wr_mas->end_piv);
7693 }
7694 EXPORT_SYMBOL_GPL(mas_wr_dump);
7695 
7696 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7697