xref: /linux/lib/maple_tree.c (revision 91204e4703aef7bcdd045126b889d7e1aab63dd5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  */
8 
9 /*
10  * DOC: Interesting implementation details of the Maple Tree
11  *
12  * Each node type has a number of slots for entries and a number of slots for
13  * pivots.  In the case of dense nodes, the pivots are implied by the position
14  * and are simply the slot index + the minimum of the node.
15  *
16  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
17  * indicate that the tree is specifying ranges,  Pivots may appear in the
18  * subtree with an entry attached to the value where as keys are unique to a
19  * specific position of a B-tree.  Pivot values are inclusive of the slot with
20  * the same index.
21  *
22  *
23  * The following illustrates the layout of a range64 nodes slots and pivots.
24  *
25  *
26  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
28  *           │   │   │   │     │    │    │    │    └─ Implied maximum
29  *           │   │   │   │     │    │    │    └─ Pivot 14
30  *           │   │   │   │     │    │    └─ Pivot 13
31  *           │   │   │   │     │    └─ Pivot 12
32  *           │   │   │   │     └─ Pivot 11
33  *           │   │   │   └─ Pivot 2
34  *           │   │   └─ Pivot 1
35  *           │   └─ Pivot 0
36  *           └─  Implied minimum
37  *
38  * Slot contents:
39  *  Internal (non-leaf) nodes contain pointers to other nodes.
40  *  Leaf nodes contain entries.
41  *
42  * The location of interest is often referred to as an offset.  All offsets have
43  * a slot, but the last offset has an implied pivot from the node above (or
44  * UINT_MAX for the root node.
45  *
46  * Ranges complicate certain write activities.  When modifying any of
47  * the B-tree variants, it is known that one entry will either be added or
48  * deleted.  When modifying the Maple Tree, one store operation may overwrite
49  * the entire data set, or one half of the tree, or the middle half of the tree.
50  *
51  */
52 
53 
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
64 
65 #define MA_ROOT_PARENT 1
66 
67 /*
68  * Maple state flags
69  * * MA_STATE_BULK		- Bulk insert mode
70  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
71  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
72  */
73 #define MA_STATE_BULK		1
74 #define MA_STATE_REBALANCE	2
75 #define MA_STATE_PREALLOC	4
76 
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
81 
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 	[maple_dense]		= MAPLE_NODE_SLOTS,
85 	[maple_leaf_64]		= ULONG_MAX,
86 	[maple_range_64]	= ULONG_MAX,
87 	[maple_arange_64]	= ULONG_MAX,
88 };
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
90 #endif
91 
92 static const unsigned char mt_slots[] = {
93 	[maple_dense]		= MAPLE_NODE_SLOTS,
94 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
95 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
96 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
97 };
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
99 
100 static const unsigned char mt_pivots[] = {
101 	[maple_dense]		= 0,
102 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
103 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
104 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
105 };
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107 
108 static const unsigned char mt_min_slots[] = {
109 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
110 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
111 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
112 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
113 };
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115 
116 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
118 
119 struct maple_big_node {
120 	struct maple_pnode *parent;
121 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 	union {
123 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 		struct {
125 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 		};
128 	};
129 	unsigned char b_end;
130 	enum maple_type type;
131 };
132 
133 /*
134  * The maple_subtree_state is used to build a tree to replace a segment of an
135  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
136  * dead node and restart on updates.
137  */
138 struct maple_subtree_state {
139 	struct ma_state *orig_l;	/* Original left side of subtree */
140 	struct ma_state *orig_r;	/* Original right side of subtree */
141 	struct ma_state *l;		/* New left side of subtree */
142 	struct ma_state *m;		/* New middle of subtree (rare) */
143 	struct ma_state *r;		/* New right side of subtree */
144 	struct ma_topiary *free;	/* nodes to be freed */
145 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
146 	struct maple_big_node *bn;
147 };
148 
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
152 #else
153 #define noinline_for_kasan inline
154 #endif
155 
156 /* Functions */
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158 {
159 	return kmem_cache_alloc(maple_node_cache, gfp);
160 }
161 
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163 {
164 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165 }
166 
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168 {
169 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170 }
171 
172 static void mt_free_rcu(struct rcu_head *head)
173 {
174 	struct maple_node *node = container_of(head, struct maple_node, rcu);
175 
176 	kmem_cache_free(maple_node_cache, node);
177 }
178 
179 /*
180  * ma_free_rcu() - Use rcu callback to free a maple node
181  * @node: The node to free
182  *
183  * The maple tree uses the parent pointer to indicate this node is no longer in
184  * use and will be freed.
185  */
186 static void ma_free_rcu(struct maple_node *node)
187 {
188 	node->parent = ma_parent_ptr(node);
189 	call_rcu(&node->rcu, mt_free_rcu);
190 }
191 
192 static void mas_set_height(struct ma_state *mas)
193 {
194 	unsigned int new_flags = mas->tree->ma_flags;
195 
196 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 	BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 	mas->tree->ma_flags = new_flags;
200 }
201 
202 static unsigned int mas_mt_height(struct ma_state *mas)
203 {
204 	return mt_height(mas->tree);
205 }
206 
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208 {
209 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 		MAPLE_NODE_TYPE_MASK;
211 }
212 
213 static inline bool ma_is_dense(const enum maple_type type)
214 {
215 	return type < maple_leaf_64;
216 }
217 
218 static inline bool ma_is_leaf(const enum maple_type type)
219 {
220 	return type < maple_range_64;
221 }
222 
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
224 {
225 	return ma_is_leaf(mte_node_type(entry));
226 }
227 
228 /*
229  * We also reserve values with the bottom two bits set to '10' which are
230  * below 4096
231  */
232 static inline bool mt_is_reserved(const void *entry)
233 {
234 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 		xa_is_internal(entry);
236 }
237 
238 static inline void mas_set_err(struct ma_state *mas, long err)
239 {
240 	mas->node = MA_ERROR(err);
241 }
242 
243 static inline bool mas_is_ptr(struct ma_state *mas)
244 {
245 	return mas->node == MAS_ROOT;
246 }
247 
248 static inline bool mas_is_start(struct ma_state *mas)
249 {
250 	return mas->node == MAS_START;
251 }
252 
253 bool mas_is_err(struct ma_state *mas)
254 {
255 	return xa_is_err(mas->node);
256 }
257 
258 static inline bool mas_searchable(struct ma_state *mas)
259 {
260 	if (mas_is_none(mas))
261 		return false;
262 
263 	if (mas_is_ptr(mas))
264 		return false;
265 
266 	return true;
267 }
268 
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270 {
271 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272 }
273 
274 /*
275  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276  * @entry: The maple encoded node
277  *
278  * Return: a maple topiary pointer
279  */
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281 {
282 	return (struct maple_topiary *)
283 		((unsigned long)entry & ~MAPLE_NODE_MASK);
284 }
285 
286 /*
287  * mas_mn() - Get the maple state node.
288  * @mas: The maple state
289  *
290  * Return: the maple node (not encoded - bare pointer).
291  */
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
293 {
294 	return mte_to_node(mas->node);
295 }
296 
297 /*
298  * mte_set_node_dead() - Set a maple encoded node as dead.
299  * @mn: The maple encoded node.
300  */
301 static inline void mte_set_node_dead(struct maple_enode *mn)
302 {
303 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 	smp_wmb(); /* Needed for RCU */
305 }
306 
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE			0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT		0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL		0x04
313 
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 					     enum maple_type type)
316 {
317 	return (void *)((unsigned long)node |
318 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319 }
320 
321 static inline void *mte_mk_root(const struct maple_enode *node)
322 {
323 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324 }
325 
326 static inline void *mte_safe_root(const struct maple_enode *node)
327 {
328 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329 }
330 
331 static inline void *mte_set_full(const struct maple_enode *node)
332 {
333 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334 }
335 
336 static inline void *mte_clear_full(const struct maple_enode *node)
337 {
338 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339 }
340 
341 static inline bool mte_has_null(const struct maple_enode *node)
342 {
343 	return (unsigned long)node & MAPLE_ENODE_NULL;
344 }
345 
346 static inline bool ma_is_root(struct maple_node *node)
347 {
348 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
349 }
350 
351 static inline bool mte_is_root(const struct maple_enode *node)
352 {
353 	return ma_is_root(mte_to_node(node));
354 }
355 
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
357 {
358 	return !mas->min && mas->max == ULONG_MAX;
359 }
360 
361 static inline bool mt_is_alloc(struct maple_tree *mt)
362 {
363 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364 }
365 
366 /*
367  * The Parent Pointer
368  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
370  * bit values need an extra bit to store the offset.  This extra bit comes from
371  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
372  * indicate if bit 2 is part of the type or the slot.
373  *
374  * Note types:
375  *  0x??1 = Root
376  *  0x?00 = 16 bit nodes
377  *  0x010 = 32 bit nodes
378  *  0x110 = 64 bit nodes
379  *
380  * Slot size and alignment
381  *  0b??1 : Root
382  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
383  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
384  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
385  */
386 
387 #define MAPLE_PARENT_ROOT		0x01
388 
389 #define MAPLE_PARENT_SLOT_SHIFT		0x03
390 #define MAPLE_PARENT_SLOT_MASK		0xF8
391 
392 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
394 
395 #define MAPLE_PARENT_RANGE64		0x06
396 #define MAPLE_PARENT_RANGE32		0x04
397 #define MAPLE_PARENT_NOT_RANGE16	0x02
398 
399 /*
400  * mte_parent_shift() - Get the parent shift for the slot storage.
401  * @parent: The parent pointer cast as an unsigned long
402  * Return: The shift into that pointer to the star to of the slot
403  */
404 static inline unsigned long mte_parent_shift(unsigned long parent)
405 {
406 	/* Note bit 1 == 0 means 16B */
407 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 		return MAPLE_PARENT_SLOT_SHIFT;
409 
410 	return MAPLE_PARENT_16B_SLOT_SHIFT;
411 }
412 
413 /*
414  * mte_parent_slot_mask() - Get the slot mask for the parent.
415  * @parent: The parent pointer cast as an unsigned long.
416  * Return: The slot mask for that parent.
417  */
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419 {
420 	/* Note bit 1 == 0 means 16B */
421 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 		return MAPLE_PARENT_SLOT_MASK;
423 
424 	return MAPLE_PARENT_16B_SLOT_MASK;
425 }
426 
427 /*
428  * mas_parent_enum() - Return the maple_type of the parent from the stored
429  * parent type.
430  * @mas: The maple state
431  * @node: The maple_enode to extract the parent's enum
432  * Return: The node->parent maple_type
433  */
434 static inline
435 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 				struct maple_tree *mt)
437 {
438 	unsigned long p_type;
439 
440 	p_type = (unsigned long)p_enode;
441 	if (p_type & MAPLE_PARENT_ROOT)
442 		return 0; /* Validated in the caller. */
443 
444 	p_type &= MAPLE_NODE_MASK;
445 	p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
446 
447 	switch (p_type) {
448 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
449 		if (mt_is_alloc(mt))
450 			return maple_arange_64;
451 		return maple_range_64;
452 	}
453 
454 	return 0;
455 }
456 
457 static inline
458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
459 {
460 	return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
461 }
462 
463 /*
464  * mte_set_parent() - Set the parent node and encode the slot
465  * @enode: The encoded maple node.
466  * @parent: The encoded maple node that is the parent of @enode.
467  * @slot: The slot that @enode resides in @parent.
468  *
469  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
470  * parent type.
471  */
472 static inline
473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
474 		    unsigned char slot)
475 {
476 	unsigned long val = (unsigned long)parent;
477 	unsigned long shift;
478 	unsigned long type;
479 	enum maple_type p_type = mte_node_type(parent);
480 
481 	BUG_ON(p_type == maple_dense);
482 	BUG_ON(p_type == maple_leaf_64);
483 
484 	switch (p_type) {
485 	case maple_range_64:
486 	case maple_arange_64:
487 		shift = MAPLE_PARENT_SLOT_SHIFT;
488 		type = MAPLE_PARENT_RANGE64;
489 		break;
490 	default:
491 	case maple_dense:
492 	case maple_leaf_64:
493 		shift = type = 0;
494 		break;
495 	}
496 
497 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 	val |= (slot << shift) | type;
499 	mte_to_node(enode)->parent = ma_parent_ptr(val);
500 }
501 
502 /*
503  * mte_parent_slot() - get the parent slot of @enode.
504  * @enode: The encoded maple node.
505  *
506  * Return: The slot in the parent node where @enode resides.
507  */
508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
509 {
510 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
511 
512 	if (val & MA_ROOT_PARENT)
513 		return 0;
514 
515 	/*
516 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
518 	 */
519 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
520 }
521 
522 /*
523  * mte_parent() - Get the parent of @node.
524  * @node: The encoded maple node.
525  *
526  * Return: The parent maple node.
527  */
528 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
529 {
530 	return (void *)((unsigned long)
531 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
532 }
533 
534 /*
535  * ma_dead_node() - check if the @enode is dead.
536  * @enode: The encoded maple node
537  *
538  * Return: true if dead, false otherwise.
539  */
540 static inline bool ma_dead_node(const struct maple_node *node)
541 {
542 	struct maple_node *parent = (void *)((unsigned long)
543 					     node->parent & ~MAPLE_NODE_MASK);
544 
545 	return (parent == node);
546 }
547 /*
548  * mte_dead_node() - check if the @enode is dead.
549  * @enode: The encoded maple node
550  *
551  * Return: true if dead, false otherwise.
552  */
553 static inline bool mte_dead_node(const struct maple_enode *enode)
554 {
555 	struct maple_node *parent, *node;
556 
557 	node = mte_to_node(enode);
558 	parent = mte_parent(enode);
559 	return (parent == node);
560 }
561 
562 /*
563  * mas_allocated() - Get the number of nodes allocated in a maple state.
564  * @mas: The maple state
565  *
566  * The ma_state alloc member is overloaded to hold a pointer to the first
567  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
568  * set, then the alloc contains the number of requested nodes.  If there is an
569  * allocated node, then the total allocated nodes is in that node.
570  *
571  * Return: The total number of nodes allocated
572  */
573 static inline unsigned long mas_allocated(const struct ma_state *mas)
574 {
575 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
576 		return 0;
577 
578 	return mas->alloc->total;
579 }
580 
581 /*
582  * mas_set_alloc_req() - Set the requested number of allocations.
583  * @mas: the maple state
584  * @count: the number of allocations.
585  *
586  * The requested number of allocations is either in the first allocated node,
587  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
588  * no allocated node.  Set the request either in the node or do the necessary
589  * encoding to store in @mas->alloc directly.
590  */
591 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
592 {
593 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
594 		if (!count)
595 			mas->alloc = NULL;
596 		else
597 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
598 		return;
599 	}
600 
601 	mas->alloc->request_count = count;
602 }
603 
604 /*
605  * mas_alloc_req() - get the requested number of allocations.
606  * @mas: The maple state
607  *
608  * The alloc count is either stored directly in @mas, or in
609  * @mas->alloc->request_count if there is at least one node allocated.  Decode
610  * the request count if it's stored directly in @mas->alloc.
611  *
612  * Return: The allocation request count.
613  */
614 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
615 {
616 	if ((unsigned long)mas->alloc & 0x1)
617 		return (unsigned long)(mas->alloc) >> 1;
618 	else if (mas->alloc)
619 		return mas->alloc->request_count;
620 	return 0;
621 }
622 
623 /*
624  * ma_pivots() - Get a pointer to the maple node pivots.
625  * @node - the maple node
626  * @type - the node type
627  *
628  * Return: A pointer to the maple node pivots
629  */
630 static inline unsigned long *ma_pivots(struct maple_node *node,
631 					   enum maple_type type)
632 {
633 	switch (type) {
634 	case maple_arange_64:
635 		return node->ma64.pivot;
636 	case maple_range_64:
637 	case maple_leaf_64:
638 		return node->mr64.pivot;
639 	case maple_dense:
640 		return NULL;
641 	}
642 	return NULL;
643 }
644 
645 /*
646  * ma_gaps() - Get a pointer to the maple node gaps.
647  * @node - the maple node
648  * @type - the node type
649  *
650  * Return: A pointer to the maple node gaps
651  */
652 static inline unsigned long *ma_gaps(struct maple_node *node,
653 				     enum maple_type type)
654 {
655 	switch (type) {
656 	case maple_arange_64:
657 		return node->ma64.gap;
658 	case maple_range_64:
659 	case maple_leaf_64:
660 	case maple_dense:
661 		return NULL;
662 	}
663 	return NULL;
664 }
665 
666 /*
667  * mte_pivot() - Get the pivot at @piv of the maple encoded node.
668  * @mn: The maple encoded node.
669  * @piv: The pivot.
670  *
671  * Return: the pivot at @piv of @mn.
672  */
673 static inline unsigned long mte_pivot(const struct maple_enode *mn,
674 				 unsigned char piv)
675 {
676 	struct maple_node *node = mte_to_node(mn);
677 	enum maple_type type = mte_node_type(mn);
678 
679 	if (piv >= mt_pivots[type]) {
680 		WARN_ON(1);
681 		return 0;
682 	}
683 	switch (type) {
684 	case maple_arange_64:
685 		return node->ma64.pivot[piv];
686 	case maple_range_64:
687 	case maple_leaf_64:
688 		return node->mr64.pivot[piv];
689 	case maple_dense:
690 		return 0;
691 	}
692 	return 0;
693 }
694 
695 /*
696  * mas_safe_pivot() - get the pivot at @piv or mas->max.
697  * @mas: The maple state
698  * @pivots: The pointer to the maple node pivots
699  * @piv: The pivot to fetch
700  * @type: The maple node type
701  *
702  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
703  * otherwise.
704  */
705 static inline unsigned long
706 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
707 	       unsigned char piv, enum maple_type type)
708 {
709 	if (piv >= mt_pivots[type])
710 		return mas->max;
711 
712 	return pivots[piv];
713 }
714 
715 /*
716  * mas_safe_min() - Return the minimum for a given offset.
717  * @mas: The maple state
718  * @pivots: The pointer to the maple node pivots
719  * @offset: The offset into the pivot array
720  *
721  * Return: The minimum range value that is contained in @offset.
722  */
723 static inline unsigned long
724 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
725 {
726 	if (likely(offset))
727 		return pivots[offset - 1] + 1;
728 
729 	return mas->min;
730 }
731 
732 /*
733  * mas_logical_pivot() - Get the logical pivot of a given offset.
734  * @mas: The maple state
735  * @pivots: The pointer to the maple node pivots
736  * @offset: The offset into the pivot array
737  * @type: The maple node type
738  *
739  * When there is no value at a pivot (beyond the end of the data), then the
740  * pivot is actually @mas->max.
741  *
742  * Return: the logical pivot of a given @offset.
743  */
744 static inline unsigned long
745 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
746 		  unsigned char offset, enum maple_type type)
747 {
748 	unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
749 
750 	if (likely(lpiv))
751 		return lpiv;
752 
753 	if (likely(offset))
754 		return mas->max;
755 
756 	return lpiv;
757 }
758 
759 /*
760  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
761  * @mn: The encoded maple node
762  * @piv: The pivot offset
763  * @val: The value of the pivot
764  */
765 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
766 				unsigned long val)
767 {
768 	struct maple_node *node = mte_to_node(mn);
769 	enum maple_type type = mte_node_type(mn);
770 
771 	BUG_ON(piv >= mt_pivots[type]);
772 	switch (type) {
773 	default:
774 	case maple_range_64:
775 	case maple_leaf_64:
776 		node->mr64.pivot[piv] = val;
777 		break;
778 	case maple_arange_64:
779 		node->ma64.pivot[piv] = val;
780 		break;
781 	case maple_dense:
782 		break;
783 	}
784 
785 }
786 
787 /*
788  * ma_slots() - Get a pointer to the maple node slots.
789  * @mn: The maple node
790  * @mt: The maple node type
791  *
792  * Return: A pointer to the maple node slots
793  */
794 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
795 {
796 	switch (mt) {
797 	default:
798 	case maple_arange_64:
799 		return mn->ma64.slot;
800 	case maple_range_64:
801 	case maple_leaf_64:
802 		return mn->mr64.slot;
803 	case maple_dense:
804 		return mn->slot;
805 	}
806 }
807 
808 static inline bool mt_locked(const struct maple_tree *mt)
809 {
810 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
811 		lockdep_is_held(&mt->ma_lock);
812 }
813 
814 static inline void *mt_slot(const struct maple_tree *mt,
815 		void __rcu **slots, unsigned char offset)
816 {
817 	return rcu_dereference_check(slots[offset], mt_locked(mt));
818 }
819 
820 /*
821  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822  * @mas: The maple state
823  * @slots: The pointer to the slots
824  * @offset: The offset into the slots array to fetch
825  *
826  * Return: The entry stored in @slots at the @offset.
827  */
828 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 				       unsigned char offset)
830 {
831 	return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
832 }
833 
834 /*
835  * mas_slot() - Get the slot value when not holding the maple tree lock.
836  * @mas: The maple state
837  * @slots: The pointer to the slots
838  * @offset: The offset into the slots array to fetch
839  *
840  * Return: The entry stored in @slots at the @offset
841  */
842 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 			     unsigned char offset)
844 {
845 	return mt_slot(mas->tree, slots, offset);
846 }
847 
848 /*
849  * mas_root() - Get the maple tree root.
850  * @mas: The maple state.
851  *
852  * Return: The pointer to the root of the tree
853  */
854 static inline void *mas_root(struct ma_state *mas)
855 {
856 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
857 }
858 
859 static inline void *mt_root_locked(struct maple_tree *mt)
860 {
861 	return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
862 }
863 
864 /*
865  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866  * @mas: The maple state.
867  *
868  * Return: The pointer to the root of the tree
869  */
870 static inline void *mas_root_locked(struct ma_state *mas)
871 {
872 	return mt_root_locked(mas->tree);
873 }
874 
875 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
876 					     enum maple_type mt)
877 {
878 	switch (mt) {
879 	case maple_arange_64:
880 		return &mn->ma64.meta;
881 	default:
882 		return &mn->mr64.meta;
883 	}
884 }
885 
886 /*
887  * ma_set_meta() - Set the metadata information of a node.
888  * @mn: The maple node
889  * @mt: The maple node type
890  * @offset: The offset of the highest sub-gap in this node.
891  * @end: The end of the data in this node.
892  */
893 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 			       unsigned char offset, unsigned char end)
895 {
896 	struct maple_metadata *meta = ma_meta(mn, mt);
897 
898 	meta->gap = offset;
899 	meta->end = end;
900 }
901 
902 /*
903  * ma_meta_end() - Get the data end of a node from the metadata
904  * @mn: The maple node
905  * @mt: The maple node type
906  */
907 static inline unsigned char ma_meta_end(struct maple_node *mn,
908 					enum maple_type mt)
909 {
910 	struct maple_metadata *meta = ma_meta(mn, mt);
911 
912 	return meta->end;
913 }
914 
915 /*
916  * ma_meta_gap() - Get the largest gap location of a node from the metadata
917  * @mn: The maple node
918  * @mt: The maple node type
919  */
920 static inline unsigned char ma_meta_gap(struct maple_node *mn,
921 					enum maple_type mt)
922 {
923 	BUG_ON(mt != maple_arange_64);
924 
925 	return mn->ma64.meta.gap;
926 }
927 
928 /*
929  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
930  * @mn: The maple node
931  * @mn: The maple node type
932  * @offset: The location of the largest gap.
933  */
934 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
935 				   unsigned char offset)
936 {
937 
938 	struct maple_metadata *meta = ma_meta(mn, mt);
939 
940 	meta->gap = offset;
941 }
942 
943 /*
944  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
945  * @mat - the ma_topiary, a linked list of dead nodes.
946  * @dead_enode - the node to be marked as dead and added to the tail of the list
947  *
948  * Add the @dead_enode to the linked list in @mat.
949  */
950 static inline void mat_add(struct ma_topiary *mat,
951 			   struct maple_enode *dead_enode)
952 {
953 	mte_set_node_dead(dead_enode);
954 	mte_to_mat(dead_enode)->next = NULL;
955 	if (!mat->tail) {
956 		mat->tail = mat->head = dead_enode;
957 		return;
958 	}
959 
960 	mte_to_mat(mat->tail)->next = dead_enode;
961 	mat->tail = dead_enode;
962 }
963 
964 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
965 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
966 
967 /*
968  * mas_mat_free() - Free all nodes in a dead list.
969  * @mas - the maple state
970  * @mat - the ma_topiary linked list of dead nodes to free.
971  *
972  * Free walk a dead list.
973  */
974 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
975 {
976 	struct maple_enode *next;
977 
978 	while (mat->head) {
979 		next = mte_to_mat(mat->head)->next;
980 		mas_free(mas, mat->head);
981 		mat->head = next;
982 	}
983 }
984 
985 /*
986  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
987  * @mas - the maple state
988  * @mat - the ma_topiary linked list of dead nodes to free.
989  *
990  * Destroy walk a dead list.
991  */
992 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
993 {
994 	struct maple_enode *next;
995 
996 	while (mat->head) {
997 		next = mte_to_mat(mat->head)->next;
998 		mte_destroy_walk(mat->head, mat->mtree);
999 		mat->head = next;
1000 	}
1001 }
1002 /*
1003  * mas_descend() - Descend into the slot stored in the ma_state.
1004  * @mas - the maple state.
1005  *
1006  * Note: Not RCU safe, only use in write side or debug code.
1007  */
1008 static inline void mas_descend(struct ma_state *mas)
1009 {
1010 	enum maple_type type;
1011 	unsigned long *pivots;
1012 	struct maple_node *node;
1013 	void __rcu **slots;
1014 
1015 	node = mas_mn(mas);
1016 	type = mte_node_type(mas->node);
1017 	pivots = ma_pivots(node, type);
1018 	slots = ma_slots(node, type);
1019 
1020 	if (mas->offset)
1021 		mas->min = pivots[mas->offset - 1] + 1;
1022 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1023 	mas->node = mas_slot(mas, slots, mas->offset);
1024 }
1025 
1026 /*
1027  * mte_set_gap() - Set a maple node gap.
1028  * @mn: The encoded maple node
1029  * @gap: The offset of the gap to set
1030  * @val: The gap value
1031  */
1032 static inline void mte_set_gap(const struct maple_enode *mn,
1033 				 unsigned char gap, unsigned long val)
1034 {
1035 	switch (mte_node_type(mn)) {
1036 	default:
1037 		break;
1038 	case maple_arange_64:
1039 		mte_to_node(mn)->ma64.gap[gap] = val;
1040 		break;
1041 	}
1042 }
1043 
1044 /*
1045  * mas_ascend() - Walk up a level of the tree.
1046  * @mas: The maple state
1047  *
1048  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1049  * may cause several levels of walking up to find the correct min and max.
1050  * May find a dead node which will cause a premature return.
1051  * Return: 1 on dead node, 0 otherwise
1052  */
1053 static int mas_ascend(struct ma_state *mas)
1054 {
1055 	struct maple_enode *p_enode; /* parent enode. */
1056 	struct maple_enode *a_enode; /* ancestor enode. */
1057 	struct maple_node *a_node; /* ancestor node. */
1058 	struct maple_node *p_node; /* parent node. */
1059 	unsigned char a_slot;
1060 	enum maple_type a_type;
1061 	unsigned long min, max;
1062 	unsigned long *pivots;
1063 	unsigned char offset;
1064 	bool set_max = false, set_min = false;
1065 
1066 	a_node = mas_mn(mas);
1067 	if (ma_is_root(a_node)) {
1068 		mas->offset = 0;
1069 		return 0;
1070 	}
1071 
1072 	p_node = mte_parent(mas->node);
1073 	if (unlikely(a_node == p_node))
1074 		return 1;
1075 	a_type = mas_parent_enum(mas, mas->node);
1076 	offset = mte_parent_slot(mas->node);
1077 	a_enode = mt_mk_node(p_node, a_type);
1078 
1079 	/* Check to make sure all parent information is still accurate */
1080 	if (p_node != mte_parent(mas->node))
1081 		return 1;
1082 
1083 	mas->node = a_enode;
1084 	mas->offset = offset;
1085 
1086 	if (mte_is_root(a_enode)) {
1087 		mas->max = ULONG_MAX;
1088 		mas->min = 0;
1089 		return 0;
1090 	}
1091 
1092 	min = 0;
1093 	max = ULONG_MAX;
1094 	do {
1095 		p_enode = a_enode;
1096 		a_type = mas_parent_enum(mas, p_enode);
1097 		a_node = mte_parent(p_enode);
1098 		a_slot = mte_parent_slot(p_enode);
1099 		pivots = ma_pivots(a_node, a_type);
1100 		a_enode = mt_mk_node(a_node, a_type);
1101 
1102 		if (!set_min && a_slot) {
1103 			set_min = true;
1104 			min = pivots[a_slot - 1] + 1;
1105 		}
1106 
1107 		if (!set_max && a_slot < mt_pivots[a_type]) {
1108 			set_max = true;
1109 			max = pivots[a_slot];
1110 		}
1111 
1112 		if (unlikely(ma_dead_node(a_node)))
1113 			return 1;
1114 
1115 		if (unlikely(ma_is_root(a_node)))
1116 			break;
1117 
1118 	} while (!set_min || !set_max);
1119 
1120 	mas->max = max;
1121 	mas->min = min;
1122 	return 0;
1123 }
1124 
1125 /*
1126  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1127  * @mas: The maple state
1128  *
1129  * Return: A pointer to a maple node.
1130  */
1131 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1132 {
1133 	struct maple_alloc *ret, *node = mas->alloc;
1134 	unsigned long total = mas_allocated(mas);
1135 	unsigned int req = mas_alloc_req(mas);
1136 
1137 	/* nothing or a request pending. */
1138 	if (WARN_ON(!total))
1139 		return NULL;
1140 
1141 	if (total == 1) {
1142 		/* single allocation in this ma_state */
1143 		mas->alloc = NULL;
1144 		ret = node;
1145 		goto single_node;
1146 	}
1147 
1148 	if (node->node_count == 1) {
1149 		/* Single allocation in this node. */
1150 		mas->alloc = node->slot[0];
1151 		mas->alloc->total = node->total - 1;
1152 		ret = node;
1153 		goto new_head;
1154 	}
1155 	node->total--;
1156 	ret = node->slot[--node->node_count];
1157 	node->slot[node->node_count] = NULL;
1158 
1159 single_node:
1160 new_head:
1161 	if (req) {
1162 		req++;
1163 		mas_set_alloc_req(mas, req);
1164 	}
1165 
1166 	memset(ret, 0, sizeof(*ret));
1167 	return (struct maple_node *)ret;
1168 }
1169 
1170 /*
1171  * mas_push_node() - Push a node back on the maple state allocation.
1172  * @mas: The maple state
1173  * @used: The used maple node
1174  *
1175  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1176  * requested node count as necessary.
1177  */
1178 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1179 {
1180 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1181 	struct maple_alloc *head = mas->alloc;
1182 	unsigned long count;
1183 	unsigned int requested = mas_alloc_req(mas);
1184 
1185 	count = mas_allocated(mas);
1186 
1187 	reuse->request_count = 0;
1188 	reuse->node_count = 0;
1189 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1190 		head->slot[head->node_count++] = reuse;
1191 		head->total++;
1192 		goto done;
1193 	}
1194 
1195 	reuse->total = 1;
1196 	if ((head) && !((unsigned long)head & 0x1)) {
1197 		reuse->slot[0] = head;
1198 		reuse->node_count = 1;
1199 		reuse->total += head->total;
1200 	}
1201 
1202 	mas->alloc = reuse;
1203 done:
1204 	if (requested > 1)
1205 		mas_set_alloc_req(mas, requested - 1);
1206 }
1207 
1208 /*
1209  * mas_alloc_nodes() - Allocate nodes into a maple state
1210  * @mas: The maple state
1211  * @gfp: The GFP Flags
1212  */
1213 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1214 {
1215 	struct maple_alloc *node;
1216 	unsigned long allocated = mas_allocated(mas);
1217 	unsigned int requested = mas_alloc_req(mas);
1218 	unsigned int count;
1219 	void **slots = NULL;
1220 	unsigned int max_req = 0;
1221 
1222 	if (!requested)
1223 		return;
1224 
1225 	mas_set_alloc_req(mas, 0);
1226 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1227 		if (allocated)
1228 			return;
1229 		WARN_ON(!allocated);
1230 	}
1231 
1232 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1233 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1234 		if (!node)
1235 			goto nomem_one;
1236 
1237 		if (allocated) {
1238 			node->slot[0] = mas->alloc;
1239 			node->node_count = 1;
1240 		} else {
1241 			node->node_count = 0;
1242 		}
1243 
1244 		mas->alloc = node;
1245 		node->total = ++allocated;
1246 		requested--;
1247 	}
1248 
1249 	node = mas->alloc;
1250 	node->request_count = 0;
1251 	while (requested) {
1252 		max_req = MAPLE_ALLOC_SLOTS;
1253 		if (node->node_count) {
1254 			unsigned int offset = node->node_count;
1255 
1256 			slots = (void **)&node->slot[offset];
1257 			max_req -= offset;
1258 		} else {
1259 			slots = (void **)&node->slot;
1260 		}
1261 
1262 		max_req = min(requested, max_req);
1263 		count = mt_alloc_bulk(gfp, max_req, slots);
1264 		if (!count)
1265 			goto nomem_bulk;
1266 
1267 		node->node_count += count;
1268 		allocated += count;
1269 		node = node->slot[0];
1270 		node->node_count = 0;
1271 		node->request_count = 0;
1272 		requested -= count;
1273 	}
1274 	mas->alloc->total = allocated;
1275 	return;
1276 
1277 nomem_bulk:
1278 	/* Clean up potential freed allocations on bulk failure */
1279 	memset(slots, 0, max_req * sizeof(unsigned long));
1280 nomem_one:
1281 	mas_set_alloc_req(mas, requested);
1282 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1283 		mas->alloc->total = allocated;
1284 	mas_set_err(mas, -ENOMEM);
1285 }
1286 
1287 /*
1288  * mas_free() - Free an encoded maple node
1289  * @mas: The maple state
1290  * @used: The encoded maple node to free.
1291  *
1292  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1293  * otherwise.
1294  */
1295 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1296 {
1297 	struct maple_node *tmp = mte_to_node(used);
1298 
1299 	if (mt_in_rcu(mas->tree))
1300 		ma_free_rcu(tmp);
1301 	else
1302 		mas_push_node(mas, tmp);
1303 }
1304 
1305 /*
1306  * mas_node_count() - Check if enough nodes are allocated and request more if
1307  * there is not enough nodes.
1308  * @mas: The maple state
1309  * @count: The number of nodes needed
1310  * @gfp: the gfp flags
1311  */
1312 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1313 {
1314 	unsigned long allocated = mas_allocated(mas);
1315 
1316 	if (allocated < count) {
1317 		mas_set_alloc_req(mas, count - allocated);
1318 		mas_alloc_nodes(mas, gfp);
1319 	}
1320 }
1321 
1322 /*
1323  * mas_node_count() - Check if enough nodes are allocated and request more if
1324  * there is not enough nodes.
1325  * @mas: The maple state
1326  * @count: The number of nodes needed
1327  *
1328  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1329  */
1330 static void mas_node_count(struct ma_state *mas, int count)
1331 {
1332 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1333 }
1334 
1335 /*
1336  * mas_start() - Sets up maple state for operations.
1337  * @mas: The maple state.
1338  *
1339  * If mas->node == MAS_START, then set the min, max and depth to
1340  * defaults.
1341  *
1342  * Return:
1343  * - If mas->node is an error or not MAS_START, return NULL.
1344  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1345  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1346  * - If it's a tree:            NULL & mas->node == safe root node.
1347  */
1348 static inline struct maple_enode *mas_start(struct ma_state *mas)
1349 {
1350 	if (likely(mas_is_start(mas))) {
1351 		struct maple_enode *root;
1352 
1353 		mas->min = 0;
1354 		mas->max = ULONG_MAX;
1355 		mas->depth = 0;
1356 
1357 		root = mas_root(mas);
1358 		/* Tree with nodes */
1359 		if (likely(xa_is_node(root))) {
1360 			mas->depth = 1;
1361 			mas->node = mte_safe_root(root);
1362 			mas->offset = 0;
1363 			return NULL;
1364 		}
1365 
1366 		/* empty tree */
1367 		if (unlikely(!root)) {
1368 			mas->node = MAS_NONE;
1369 			mas->offset = MAPLE_NODE_SLOTS;
1370 			return NULL;
1371 		}
1372 
1373 		/* Single entry tree */
1374 		mas->node = MAS_ROOT;
1375 		mas->offset = MAPLE_NODE_SLOTS;
1376 
1377 		/* Single entry tree. */
1378 		if (mas->index > 0)
1379 			return NULL;
1380 
1381 		return root;
1382 	}
1383 
1384 	return NULL;
1385 }
1386 
1387 /*
1388  * ma_data_end() - Find the end of the data in a node.
1389  * @node: The maple node
1390  * @type: The maple node type
1391  * @pivots: The array of pivots in the node
1392  * @max: The maximum value in the node
1393  *
1394  * Uses metadata to find the end of the data when possible.
1395  * Return: The zero indexed last slot with data (may be null).
1396  */
1397 static inline unsigned char ma_data_end(struct maple_node *node,
1398 					enum maple_type type,
1399 					unsigned long *pivots,
1400 					unsigned long max)
1401 {
1402 	unsigned char offset;
1403 
1404 	if (type == maple_arange_64)
1405 		return ma_meta_end(node, type);
1406 
1407 	offset = mt_pivots[type] - 1;
1408 	if (likely(!pivots[offset]))
1409 		return ma_meta_end(node, type);
1410 
1411 	if (likely(pivots[offset] == max))
1412 		return offset;
1413 
1414 	return mt_pivots[type];
1415 }
1416 
1417 /*
1418  * mas_data_end() - Find the end of the data (slot).
1419  * @mas: the maple state
1420  *
1421  * This method is optimized to check the metadata of a node if the node type
1422  * supports data end metadata.
1423  *
1424  * Return: The zero indexed last slot with data (may be null).
1425  */
1426 static inline unsigned char mas_data_end(struct ma_state *mas)
1427 {
1428 	enum maple_type type;
1429 	struct maple_node *node;
1430 	unsigned char offset;
1431 	unsigned long *pivots;
1432 
1433 	type = mte_node_type(mas->node);
1434 	node = mas_mn(mas);
1435 	if (type == maple_arange_64)
1436 		return ma_meta_end(node, type);
1437 
1438 	pivots = ma_pivots(node, type);
1439 	offset = mt_pivots[type] - 1;
1440 	if (likely(!pivots[offset]))
1441 		return ma_meta_end(node, type);
1442 
1443 	if (likely(pivots[offset] == mas->max))
1444 		return offset;
1445 
1446 	return mt_pivots[type];
1447 }
1448 
1449 /*
1450  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1451  * @mas - the maple state
1452  *
1453  * Return: The maximum gap in the leaf.
1454  */
1455 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1456 {
1457 	enum maple_type mt;
1458 	unsigned long pstart, gap, max_gap;
1459 	struct maple_node *mn;
1460 	unsigned long *pivots;
1461 	void __rcu **slots;
1462 	unsigned char i;
1463 	unsigned char max_piv;
1464 
1465 	mt = mte_node_type(mas->node);
1466 	mn = mas_mn(mas);
1467 	slots = ma_slots(mn, mt);
1468 	max_gap = 0;
1469 	if (unlikely(ma_is_dense(mt))) {
1470 		gap = 0;
1471 		for (i = 0; i < mt_slots[mt]; i++) {
1472 			if (slots[i]) {
1473 				if (gap > max_gap)
1474 					max_gap = gap;
1475 				gap = 0;
1476 			} else {
1477 				gap++;
1478 			}
1479 		}
1480 		if (gap > max_gap)
1481 			max_gap = gap;
1482 		return max_gap;
1483 	}
1484 
1485 	/*
1486 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1487 	 * be skipped if there is a gap in slot 0.
1488 	 */
1489 	pivots = ma_pivots(mn, mt);
1490 	if (likely(!slots[0])) {
1491 		max_gap = pivots[0] - mas->min + 1;
1492 		i = 2;
1493 	} else {
1494 		i = 1;
1495 	}
1496 
1497 	/* reduce max_piv as the special case is checked before the loop */
1498 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1499 	/*
1500 	 * Check end implied pivot which can only be a gap on the right most
1501 	 * node.
1502 	 */
1503 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1504 		gap = ULONG_MAX - pivots[max_piv];
1505 		if (gap > max_gap)
1506 			max_gap = gap;
1507 	}
1508 
1509 	for (; i <= max_piv; i++) {
1510 		/* data == no gap. */
1511 		if (likely(slots[i]))
1512 			continue;
1513 
1514 		pstart = pivots[i - 1];
1515 		gap = pivots[i] - pstart;
1516 		if (gap > max_gap)
1517 			max_gap = gap;
1518 
1519 		/* There cannot be two gaps in a row. */
1520 		i++;
1521 	}
1522 	return max_gap;
1523 }
1524 
1525 /*
1526  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1527  * @node: The maple node
1528  * @gaps: The pointer to the gaps
1529  * @mt: The maple node type
1530  * @*off: Pointer to store the offset location of the gap.
1531  *
1532  * Uses the metadata data end to scan backwards across set gaps.
1533  *
1534  * Return: The maximum gap value
1535  */
1536 static inline unsigned long
1537 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1538 	    unsigned char *off)
1539 {
1540 	unsigned char offset, i;
1541 	unsigned long max_gap = 0;
1542 
1543 	i = offset = ma_meta_end(node, mt);
1544 	do {
1545 		if (gaps[i] > max_gap) {
1546 			max_gap = gaps[i];
1547 			offset = i;
1548 		}
1549 	} while (i--);
1550 
1551 	*off = offset;
1552 	return max_gap;
1553 }
1554 
1555 /*
1556  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1557  * @mas: The maple state.
1558  *
1559  * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1560  *
1561  * Return: The gap value.
1562  */
1563 static inline unsigned long mas_max_gap(struct ma_state *mas)
1564 {
1565 	unsigned long *gaps;
1566 	unsigned char offset;
1567 	enum maple_type mt;
1568 	struct maple_node *node;
1569 
1570 	mt = mte_node_type(mas->node);
1571 	if (ma_is_leaf(mt))
1572 		return mas_leaf_max_gap(mas);
1573 
1574 	node = mas_mn(mas);
1575 	offset = ma_meta_gap(node, mt);
1576 	if (offset == MAPLE_ARANGE64_META_MAX)
1577 		return 0;
1578 
1579 	gaps = ma_gaps(node, mt);
1580 	return gaps[offset];
1581 }
1582 
1583 /*
1584  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1585  * @mas: The maple state
1586  * @offset: The gap offset in the parent to set
1587  * @new: The new gap value.
1588  *
1589  * Set the parent gap then continue to set the gap upwards, using the metadata
1590  * of the parent to see if it is necessary to check the node above.
1591  */
1592 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1593 		unsigned long new)
1594 {
1595 	unsigned long meta_gap = 0;
1596 	struct maple_node *pnode;
1597 	struct maple_enode *penode;
1598 	unsigned long *pgaps;
1599 	unsigned char meta_offset;
1600 	enum maple_type pmt;
1601 
1602 	pnode = mte_parent(mas->node);
1603 	pmt = mas_parent_enum(mas, mas->node);
1604 	penode = mt_mk_node(pnode, pmt);
1605 	pgaps = ma_gaps(pnode, pmt);
1606 
1607 ascend:
1608 	meta_offset = ma_meta_gap(pnode, pmt);
1609 	if (meta_offset == MAPLE_ARANGE64_META_MAX)
1610 		meta_gap = 0;
1611 	else
1612 		meta_gap = pgaps[meta_offset];
1613 
1614 	pgaps[offset] = new;
1615 
1616 	if (meta_gap == new)
1617 		return;
1618 
1619 	if (offset != meta_offset) {
1620 		if (meta_gap > new)
1621 			return;
1622 
1623 		ma_set_meta_gap(pnode, pmt, offset);
1624 	} else if (new < meta_gap) {
1625 		meta_offset = 15;
1626 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1627 		ma_set_meta_gap(pnode, pmt, meta_offset);
1628 	}
1629 
1630 	if (ma_is_root(pnode))
1631 		return;
1632 
1633 	/* Go to the parent node. */
1634 	pnode = mte_parent(penode);
1635 	pmt = mas_parent_enum(mas, penode);
1636 	pgaps = ma_gaps(pnode, pmt);
1637 	offset = mte_parent_slot(penode);
1638 	penode = mt_mk_node(pnode, pmt);
1639 	goto ascend;
1640 }
1641 
1642 /*
1643  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1644  * @mas - the maple state.
1645  */
1646 static inline void mas_update_gap(struct ma_state *mas)
1647 {
1648 	unsigned char pslot;
1649 	unsigned long p_gap;
1650 	unsigned long max_gap;
1651 
1652 	if (!mt_is_alloc(mas->tree))
1653 		return;
1654 
1655 	if (mte_is_root(mas->node))
1656 		return;
1657 
1658 	max_gap = mas_max_gap(mas);
1659 
1660 	pslot = mte_parent_slot(mas->node);
1661 	p_gap = ma_gaps(mte_parent(mas->node),
1662 			mas_parent_enum(mas, mas->node))[pslot];
1663 
1664 	if (p_gap != max_gap)
1665 		mas_parent_gap(mas, pslot, max_gap);
1666 }
1667 
1668 /*
1669  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1670  * @parent with the slot encoded.
1671  * @mas - the maple state (for the tree)
1672  * @parent - the maple encoded node containing the children.
1673  */
1674 static inline void mas_adopt_children(struct ma_state *mas,
1675 		struct maple_enode *parent)
1676 {
1677 	enum maple_type type = mte_node_type(parent);
1678 	struct maple_node *node = mas_mn(mas);
1679 	void __rcu **slots = ma_slots(node, type);
1680 	unsigned long *pivots = ma_pivots(node, type);
1681 	struct maple_enode *child;
1682 	unsigned char offset;
1683 
1684 	offset = ma_data_end(node, type, pivots, mas->max);
1685 	do {
1686 		child = mas_slot_locked(mas, slots, offset);
1687 		mte_set_parent(child, parent, offset);
1688 	} while (offset--);
1689 }
1690 
1691 /*
1692  * mas_replace() - Replace a maple node in the tree with mas->node.  Uses the
1693  * parent encoding to locate the maple node in the tree.
1694  * @mas - the ma_state to use for operations.
1695  * @advanced - boolean to adopt the child nodes and free the old node (false) or
1696  * leave the node (true) and handle the adoption and free elsewhere.
1697  */
1698 static inline void mas_replace(struct ma_state *mas, bool advanced)
1699 	__must_hold(mas->tree->lock)
1700 {
1701 	struct maple_node *mn = mas_mn(mas);
1702 	struct maple_enode *old_enode;
1703 	unsigned char offset = 0;
1704 	void __rcu **slots = NULL;
1705 
1706 	if (ma_is_root(mn)) {
1707 		old_enode = mas_root_locked(mas);
1708 	} else {
1709 		offset = mte_parent_slot(mas->node);
1710 		slots = ma_slots(mte_parent(mas->node),
1711 				 mas_parent_enum(mas, mas->node));
1712 		old_enode = mas_slot_locked(mas, slots, offset);
1713 	}
1714 
1715 	if (!advanced && !mte_is_leaf(mas->node))
1716 		mas_adopt_children(mas, mas->node);
1717 
1718 	if (mte_is_root(mas->node)) {
1719 		mn->parent = ma_parent_ptr(
1720 			      ((unsigned long)mas->tree | MA_ROOT_PARENT));
1721 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1722 		mas_set_height(mas);
1723 	} else {
1724 		rcu_assign_pointer(slots[offset], mas->node);
1725 	}
1726 
1727 	if (!advanced)
1728 		mas_free(mas, old_enode);
1729 }
1730 
1731 /*
1732  * mas_new_child() - Find the new child of a node.
1733  * @mas: the maple state
1734  * @child: the maple state to store the child.
1735  */
1736 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1737 	__must_hold(mas->tree->lock)
1738 {
1739 	enum maple_type mt;
1740 	unsigned char offset;
1741 	unsigned char end;
1742 	unsigned long *pivots;
1743 	struct maple_enode *entry;
1744 	struct maple_node *node;
1745 	void __rcu **slots;
1746 
1747 	mt = mte_node_type(mas->node);
1748 	node = mas_mn(mas);
1749 	slots = ma_slots(node, mt);
1750 	pivots = ma_pivots(node, mt);
1751 	end = ma_data_end(node, mt, pivots, mas->max);
1752 	for (offset = mas->offset; offset <= end; offset++) {
1753 		entry = mas_slot_locked(mas, slots, offset);
1754 		if (mte_parent(entry) == node) {
1755 			*child = *mas;
1756 			mas->offset = offset + 1;
1757 			child->offset = offset;
1758 			mas_descend(child);
1759 			child->offset = 0;
1760 			return true;
1761 		}
1762 	}
1763 	return false;
1764 }
1765 
1766 /*
1767  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1768  * old data or set b_node->b_end.
1769  * @b_node: the maple_big_node
1770  * @shift: the shift count
1771  */
1772 static inline void mab_shift_right(struct maple_big_node *b_node,
1773 				 unsigned char shift)
1774 {
1775 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1776 
1777 	memmove(b_node->pivot + shift, b_node->pivot, size);
1778 	memmove(b_node->slot + shift, b_node->slot, size);
1779 	if (b_node->type == maple_arange_64)
1780 		memmove(b_node->gap + shift, b_node->gap, size);
1781 }
1782 
1783 /*
1784  * mab_middle_node() - Check if a middle node is needed (unlikely)
1785  * @b_node: the maple_big_node that contains the data.
1786  * @size: the amount of data in the b_node
1787  * @split: the potential split location
1788  * @slot_count: the size that can be stored in a single node being considered.
1789  *
1790  * Return: true if a middle node is required.
1791  */
1792 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1793 				   unsigned char slot_count)
1794 {
1795 	unsigned char size = b_node->b_end;
1796 
1797 	if (size >= 2 * slot_count)
1798 		return true;
1799 
1800 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1801 		return true;
1802 
1803 	return false;
1804 }
1805 
1806 /*
1807  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1808  * @b_node: the maple_big_node with the data
1809  * @split: the suggested split location
1810  * @slot_count: the number of slots in the node being considered.
1811  *
1812  * Return: the split location.
1813  */
1814 static inline int mab_no_null_split(struct maple_big_node *b_node,
1815 				    unsigned char split, unsigned char slot_count)
1816 {
1817 	if (!b_node->slot[split]) {
1818 		/*
1819 		 * If the split is less than the max slot && the right side will
1820 		 * still be sufficient, then increment the split on NULL.
1821 		 */
1822 		if ((split < slot_count - 1) &&
1823 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1824 			split++;
1825 		else
1826 			split--;
1827 	}
1828 	return split;
1829 }
1830 
1831 /*
1832  * mab_calc_split() - Calculate the split location and if there needs to be two
1833  * splits.
1834  * @bn: The maple_big_node with the data
1835  * @mid_split: The second split, if required.  0 otherwise.
1836  *
1837  * Return: The first split location.  The middle split is set in @mid_split.
1838  */
1839 static inline int mab_calc_split(struct ma_state *mas,
1840 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1841 {
1842 	unsigned char b_end = bn->b_end;
1843 	int split = b_end / 2; /* Assume equal split. */
1844 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1845 
1846 	/*
1847 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1848 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1849 	 * limitation means that the split of a node must be checked for this condition
1850 	 * and be able to put more data in one direction or the other.
1851 	 */
1852 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1853 		*mid_split = 0;
1854 		split = b_end - mt_min_slots[bn->type];
1855 
1856 		if (!ma_is_leaf(bn->type))
1857 			return split;
1858 
1859 		mas->mas_flags |= MA_STATE_REBALANCE;
1860 		if (!bn->slot[split])
1861 			split--;
1862 		return split;
1863 	}
1864 
1865 	/*
1866 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1867 	 * split scenario.  The 3-way split comes about by means of a store of a range
1868 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1869 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1870 	 * also be located in different parent nodes which are also full.  This can
1871 	 * carry upwards all the way to the root in the worst case.
1872 	 */
1873 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1874 		split = b_end / 3;
1875 		*mid_split = split * 2;
1876 	} else {
1877 		slot_min = mt_min_slots[bn->type];
1878 
1879 		*mid_split = 0;
1880 		/*
1881 		 * Avoid having a range less than the slot count unless it
1882 		 * causes one node to be deficient.
1883 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1884 		 */
1885 		while (((bn->pivot[split] - min) < slot_count - 1) &&
1886 		       (split < slot_count - 1) && (b_end - split > slot_min))
1887 			split++;
1888 	}
1889 
1890 	/* Avoid ending a node on a NULL entry */
1891 	split = mab_no_null_split(bn, split, slot_count);
1892 
1893 	if (unlikely(*mid_split))
1894 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1895 
1896 	return split;
1897 }
1898 
1899 /*
1900  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1901  * and set @b_node->b_end to the next free slot.
1902  * @mas: The maple state
1903  * @mas_start: The starting slot to copy
1904  * @mas_end: The end slot to copy (inclusively)
1905  * @b_node: The maple_big_node to place the data
1906  * @mab_start: The starting location in maple_big_node to store the data.
1907  */
1908 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1909 			unsigned char mas_end, struct maple_big_node *b_node,
1910 			unsigned char mab_start)
1911 {
1912 	enum maple_type mt;
1913 	struct maple_node *node;
1914 	void __rcu **slots;
1915 	unsigned long *pivots, *gaps;
1916 	int i = mas_start, j = mab_start;
1917 	unsigned char piv_end;
1918 
1919 	node = mas_mn(mas);
1920 	mt = mte_node_type(mas->node);
1921 	pivots = ma_pivots(node, mt);
1922 	if (!i) {
1923 		b_node->pivot[j] = pivots[i++];
1924 		if (unlikely(i > mas_end))
1925 			goto complete;
1926 		j++;
1927 	}
1928 
1929 	piv_end = min(mas_end, mt_pivots[mt]);
1930 	for (; i < piv_end; i++, j++) {
1931 		b_node->pivot[j] = pivots[i];
1932 		if (unlikely(!b_node->pivot[j]))
1933 			break;
1934 
1935 		if (unlikely(mas->max == b_node->pivot[j]))
1936 			goto complete;
1937 	}
1938 
1939 	if (likely(i <= mas_end))
1940 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1941 
1942 complete:
1943 	b_node->b_end = ++j;
1944 	j -= mab_start;
1945 	slots = ma_slots(node, mt);
1946 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1947 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1948 		gaps = ma_gaps(node, mt);
1949 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1950 		       sizeof(unsigned long) * j);
1951 	}
1952 }
1953 
1954 /*
1955  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1956  * @mas: The maple state
1957  * @node: The maple node
1958  * @pivots: pointer to the maple node pivots
1959  * @mt: The maple type
1960  * @end: The assumed end
1961  *
1962  * Note, end may be incremented within this function but not modified at the
1963  * source.  This is fine since the metadata is the last thing to be stored in a
1964  * node during a write.
1965  */
1966 static inline void mas_leaf_set_meta(struct ma_state *mas,
1967 		struct maple_node *node, unsigned long *pivots,
1968 		enum maple_type mt, unsigned char end)
1969 {
1970 	/* There is no room for metadata already */
1971 	if (mt_pivots[mt] <= end)
1972 		return;
1973 
1974 	if (pivots[end] && pivots[end] < mas->max)
1975 		end++;
1976 
1977 	if (end < mt_slots[mt] - 1)
1978 		ma_set_meta(node, mt, 0, end);
1979 }
1980 
1981 /*
1982  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983  * @b_node: the maple_big_node that has the data
1984  * @mab_start: the start location in @b_node.
1985  * @mab_end: The end location in @b_node (inclusively)
1986  * @mas: The maple state with the maple encoded node.
1987  */
1988 static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 			      unsigned char mab_start, unsigned char mab_end,
1990 			      struct ma_state *mas, bool new_max)
1991 {
1992 	int i, j = 0;
1993 	enum maple_type mt = mte_node_type(mas->node);
1994 	struct maple_node *node = mte_to_node(mas->node);
1995 	void __rcu **slots = ma_slots(node, mt);
1996 	unsigned long *pivots = ma_pivots(node, mt);
1997 	unsigned long *gaps = NULL;
1998 	unsigned char end;
1999 
2000 	if (mab_end - mab_start > mt_pivots[mt])
2001 		mab_end--;
2002 
2003 	if (!pivots[mt_pivots[mt] - 1])
2004 		slots[mt_pivots[mt]] = NULL;
2005 
2006 	i = mab_start;
2007 	do {
2008 		pivots[j++] = b_node->pivot[i++];
2009 	} while (i <= mab_end && likely(b_node->pivot[i]));
2010 
2011 	memcpy(slots, b_node->slot + mab_start,
2012 	       sizeof(void *) * (i - mab_start));
2013 
2014 	if (new_max)
2015 		mas->max = b_node->pivot[i - 1];
2016 
2017 	end = j - 1;
2018 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 		unsigned long max_gap = 0;
2020 		unsigned char offset = 15;
2021 
2022 		gaps = ma_gaps(node, mt);
2023 		do {
2024 			gaps[--j] = b_node->gap[--i];
2025 			if (gaps[j] > max_gap) {
2026 				offset = j;
2027 				max_gap = gaps[j];
2028 			}
2029 		} while (j);
2030 
2031 		ma_set_meta(node, mt, offset, end);
2032 	} else {
2033 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2034 	}
2035 }
2036 
2037 /*
2038  * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2039  * @mas: the maple state with the maple encoded node of the sub-tree.
2040  *
2041  * Descend through a sub-tree and adopt children who do not have the correct
2042  * parents set.  Follow the parents which have the correct parents as they are
2043  * the new entries which need to be followed to find other incorrectly set
2044  * parents.
2045  */
2046 static inline void mas_descend_adopt(struct ma_state *mas)
2047 {
2048 	struct ma_state list[3], next[3];
2049 	int i, n;
2050 
2051 	/*
2052 	 * At each level there may be up to 3 correct parent pointers which indicates
2053 	 * the new nodes which need to be walked to find any new nodes at a lower level.
2054 	 */
2055 
2056 	for (i = 0; i < 3; i++) {
2057 		list[i] = *mas;
2058 		list[i].offset = 0;
2059 		next[i].offset = 0;
2060 	}
2061 	next[0] = *mas;
2062 
2063 	while (!mte_is_leaf(list[0].node)) {
2064 		n = 0;
2065 		for (i = 0; i < 3; i++) {
2066 			if (mas_is_none(&list[i]))
2067 				continue;
2068 
2069 			if (i && list[i-1].node == list[i].node)
2070 				continue;
2071 
2072 			while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2073 				n++;
2074 
2075 			mas_adopt_children(&list[i], list[i].node);
2076 		}
2077 
2078 		while (n < 3)
2079 			next[n++].node = MAS_NONE;
2080 
2081 		/* descend by setting the list to the children */
2082 		for (i = 0; i < 3; i++)
2083 			list[i] = next[i];
2084 	}
2085 }
2086 
2087 /*
2088  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2089  * @mas: The maple state
2090  * @end: The maple node end
2091  * @mt: The maple node type
2092  */
2093 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2094 				      enum maple_type mt)
2095 {
2096 	if (!(mas->mas_flags & MA_STATE_BULK))
2097 		return;
2098 
2099 	if (mte_is_root(mas->node))
2100 		return;
2101 
2102 	if (end > mt_min_slots[mt]) {
2103 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2104 		return;
2105 	}
2106 }
2107 
2108 /*
2109  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2110  * data from a maple encoded node.
2111  * @wr_mas: the maple write state
2112  * @b_node: the maple_big_node to fill with data
2113  * @offset_end: the offset to end copying
2114  *
2115  * Return: The actual end of the data stored in @b_node
2116  */
2117 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2118 		struct maple_big_node *b_node, unsigned char offset_end)
2119 {
2120 	unsigned char slot;
2121 	unsigned char b_end;
2122 	/* Possible underflow of piv will wrap back to 0 before use. */
2123 	unsigned long piv;
2124 	struct ma_state *mas = wr_mas->mas;
2125 
2126 	b_node->type = wr_mas->type;
2127 	b_end = 0;
2128 	slot = mas->offset;
2129 	if (slot) {
2130 		/* Copy start data up to insert. */
2131 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2132 		b_end = b_node->b_end;
2133 		piv = b_node->pivot[b_end - 1];
2134 	} else
2135 		piv = mas->min - 1;
2136 
2137 	if (piv + 1 < mas->index) {
2138 		/* Handle range starting after old range */
2139 		b_node->slot[b_end] = wr_mas->content;
2140 		if (!wr_mas->content)
2141 			b_node->gap[b_end] = mas->index - 1 - piv;
2142 		b_node->pivot[b_end++] = mas->index - 1;
2143 	}
2144 
2145 	/* Store the new entry. */
2146 	mas->offset = b_end;
2147 	b_node->slot[b_end] = wr_mas->entry;
2148 	b_node->pivot[b_end] = mas->last;
2149 
2150 	/* Appended. */
2151 	if (mas->last >= mas->max)
2152 		goto b_end;
2153 
2154 	/* Handle new range ending before old range ends */
2155 	piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2156 	if (piv > mas->last) {
2157 		if (piv == ULONG_MAX)
2158 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2159 
2160 		if (offset_end != slot)
2161 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2162 							  offset_end);
2163 
2164 		b_node->slot[++b_end] = wr_mas->content;
2165 		if (!wr_mas->content)
2166 			b_node->gap[b_end] = piv - mas->last + 1;
2167 		b_node->pivot[b_end] = piv;
2168 	}
2169 
2170 	slot = offset_end + 1;
2171 	if (slot > wr_mas->node_end)
2172 		goto b_end;
2173 
2174 	/* Copy end data to the end of the node. */
2175 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2176 	b_node->b_end--;
2177 	return;
2178 
2179 b_end:
2180 	b_node->b_end = b_end;
2181 }
2182 
2183 /*
2184  * mas_prev_sibling() - Find the previous node with the same parent.
2185  * @mas: the maple state
2186  *
2187  * Return: True if there is a previous sibling, false otherwise.
2188  */
2189 static inline bool mas_prev_sibling(struct ma_state *mas)
2190 {
2191 	unsigned int p_slot = mte_parent_slot(mas->node);
2192 
2193 	if (mte_is_root(mas->node))
2194 		return false;
2195 
2196 	if (!p_slot)
2197 		return false;
2198 
2199 	mas_ascend(mas);
2200 	mas->offset = p_slot - 1;
2201 	mas_descend(mas);
2202 	return true;
2203 }
2204 
2205 /*
2206  * mas_next_sibling() - Find the next node with the same parent.
2207  * @mas: the maple state
2208  *
2209  * Return: true if there is a next sibling, false otherwise.
2210  */
2211 static inline bool mas_next_sibling(struct ma_state *mas)
2212 {
2213 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2214 
2215 	if (mte_is_root(mas->node))
2216 		return false;
2217 
2218 	parent = *mas;
2219 	mas_ascend(&parent);
2220 	parent.offset = mte_parent_slot(mas->node) + 1;
2221 	if (parent.offset > mas_data_end(&parent))
2222 		return false;
2223 
2224 	*mas = parent;
2225 	mas_descend(mas);
2226 	return true;
2227 }
2228 
2229 /*
2230  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2231  * @enode: The encoded maple node.
2232  *
2233  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2234  *
2235  * Return: @enode or MAS_NONE
2236  */
2237 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2238 {
2239 	if (enode)
2240 		return enode;
2241 
2242 	return ma_enode_ptr(MAS_NONE);
2243 }
2244 
2245 /*
2246  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2247  * @wr_mas: The maple write state
2248  *
2249  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2250  */
2251 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2252 {
2253 	struct ma_state *mas = wr_mas->mas;
2254 	unsigned char count;
2255 	unsigned char offset;
2256 	unsigned long index, min, max;
2257 
2258 	if (unlikely(ma_is_dense(wr_mas->type))) {
2259 		wr_mas->r_max = wr_mas->r_min = mas->index;
2260 		mas->offset = mas->index = mas->min;
2261 		return;
2262 	}
2263 
2264 	wr_mas->node = mas_mn(wr_mas->mas);
2265 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2266 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2267 					       wr_mas->pivots, mas->max);
2268 	offset = mas->offset;
2269 	min = mas_safe_min(mas, wr_mas->pivots, offset);
2270 	if (unlikely(offset == count))
2271 		goto max;
2272 
2273 	max = wr_mas->pivots[offset];
2274 	index = mas->index;
2275 	if (unlikely(index <= max))
2276 		goto done;
2277 
2278 	if (unlikely(!max && offset))
2279 		goto max;
2280 
2281 	min = max + 1;
2282 	while (++offset < count) {
2283 		max = wr_mas->pivots[offset];
2284 		if (index <= max)
2285 			goto done;
2286 		else if (unlikely(!max))
2287 			break;
2288 
2289 		min = max + 1;
2290 	}
2291 
2292 max:
2293 	max = mas->max;
2294 done:
2295 	wr_mas->r_max = max;
2296 	wr_mas->r_min = min;
2297 	wr_mas->offset_end = mas->offset = offset;
2298 }
2299 
2300 /*
2301  * mas_topiary_range() - Add a range of slots to the topiary.
2302  * @mas: The maple state
2303  * @destroy: The topiary to add the slots (usually destroy)
2304  * @start: The starting slot inclusively
2305  * @end: The end slot inclusively
2306  */
2307 static inline void mas_topiary_range(struct ma_state *mas,
2308 	struct ma_topiary *destroy, unsigned char start, unsigned char end)
2309 {
2310 	void __rcu **slots;
2311 	unsigned char offset;
2312 
2313 	MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2314 	slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2315 	for (offset = start; offset <= end; offset++) {
2316 		struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2317 
2318 		if (mte_dead_node(enode))
2319 			continue;
2320 
2321 		mat_add(destroy, enode);
2322 	}
2323 }
2324 
2325 /*
2326  * mast_topiary() - Add the portions of the tree to the removal list; either to
2327  * be freed or discarded (destroy walk).
2328  * @mast: The maple_subtree_state.
2329  */
2330 static inline void mast_topiary(struct maple_subtree_state *mast)
2331 {
2332 	MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2333 	unsigned char r_start, r_end;
2334 	unsigned char l_start, l_end;
2335 	void __rcu **l_slots, **r_slots;
2336 
2337 	wr_mas.type = mte_node_type(mast->orig_l->node);
2338 	mast->orig_l->index = mast->orig_l->last;
2339 	mas_wr_node_walk(&wr_mas);
2340 	l_start = mast->orig_l->offset + 1;
2341 	l_end = mas_data_end(mast->orig_l);
2342 	r_start = 0;
2343 	r_end = mast->orig_r->offset;
2344 
2345 	if (r_end)
2346 		r_end--;
2347 
2348 	l_slots = ma_slots(mas_mn(mast->orig_l),
2349 			   mte_node_type(mast->orig_l->node));
2350 
2351 	r_slots = ma_slots(mas_mn(mast->orig_r),
2352 			   mte_node_type(mast->orig_r->node));
2353 
2354 	if ((l_start < l_end) &&
2355 	    mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2356 		l_start++;
2357 	}
2358 
2359 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2360 		if (r_end)
2361 			r_end--;
2362 	}
2363 
2364 	if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2365 		return;
2366 
2367 	/* At the node where left and right sides meet, add the parts between */
2368 	if (mast->orig_l->node == mast->orig_r->node) {
2369 		return mas_topiary_range(mast->orig_l, mast->destroy,
2370 					     l_start, r_end);
2371 	}
2372 
2373 	/* mast->orig_r is different and consumed. */
2374 	if (mte_is_leaf(mast->orig_r->node))
2375 		return;
2376 
2377 	if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2378 		l_end--;
2379 
2380 
2381 	if (l_start <= l_end)
2382 		mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2383 
2384 	if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2385 		r_start++;
2386 
2387 	if (r_start <= r_end)
2388 		mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2389 }
2390 
2391 /*
2392  * mast_rebalance_next() - Rebalance against the next node
2393  * @mast: The maple subtree state
2394  * @old_r: The encoded maple node to the right (next node).
2395  */
2396 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2397 {
2398 	unsigned char b_end = mast->bn->b_end;
2399 
2400 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2401 		   mast->bn, b_end);
2402 	mast->orig_r->last = mast->orig_r->max;
2403 }
2404 
2405 /*
2406  * mast_rebalance_prev() - Rebalance against the previous node
2407  * @mast: The maple subtree state
2408  * @old_l: The encoded maple node to the left (previous node)
2409  */
2410 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2411 {
2412 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2413 	unsigned char b_end = mast->bn->b_end;
2414 
2415 	mab_shift_right(mast->bn, end);
2416 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2417 	mast->l->min = mast->orig_l->min;
2418 	mast->orig_l->index = mast->orig_l->min;
2419 	mast->bn->b_end = end + b_end;
2420 	mast->l->offset += end;
2421 }
2422 
2423 /*
2424  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2425  * the node to the right.  Checking the nodes to the right then the left at each
2426  * level upwards until root is reached.  Free and destroy as needed.
2427  * Data is copied into the @mast->bn.
2428  * @mast: The maple_subtree_state.
2429  */
2430 static inline
2431 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2432 {
2433 	struct ma_state r_tmp = *mast->orig_r;
2434 	struct ma_state l_tmp = *mast->orig_l;
2435 	struct maple_enode *ancestor = NULL;
2436 	unsigned char start, end;
2437 	unsigned char depth = 0;
2438 
2439 	r_tmp = *mast->orig_r;
2440 	l_tmp = *mast->orig_l;
2441 	do {
2442 		mas_ascend(mast->orig_r);
2443 		mas_ascend(mast->orig_l);
2444 		depth++;
2445 		if (!ancestor &&
2446 		    (mast->orig_r->node == mast->orig_l->node)) {
2447 			ancestor = mast->orig_r->node;
2448 			end = mast->orig_r->offset - 1;
2449 			start = mast->orig_l->offset + 1;
2450 		}
2451 
2452 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2453 			if (!ancestor) {
2454 				ancestor = mast->orig_r->node;
2455 				start = 0;
2456 			}
2457 
2458 			mast->orig_r->offset++;
2459 			do {
2460 				mas_descend(mast->orig_r);
2461 				mast->orig_r->offset = 0;
2462 				depth--;
2463 			} while (depth);
2464 
2465 			mast_rebalance_next(mast);
2466 			do {
2467 				unsigned char l_off = 0;
2468 				struct maple_enode *child = r_tmp.node;
2469 
2470 				mas_ascend(&r_tmp);
2471 				if (ancestor == r_tmp.node)
2472 					l_off = start;
2473 
2474 				if (r_tmp.offset)
2475 					r_tmp.offset--;
2476 
2477 				if (l_off < r_tmp.offset)
2478 					mas_topiary_range(&r_tmp, mast->destroy,
2479 							  l_off, r_tmp.offset);
2480 
2481 				if (l_tmp.node != child)
2482 					mat_add(mast->free, child);
2483 
2484 			} while (r_tmp.node != ancestor);
2485 
2486 			*mast->orig_l = l_tmp;
2487 			return true;
2488 
2489 		} else if (mast->orig_l->offset != 0) {
2490 			if (!ancestor) {
2491 				ancestor = mast->orig_l->node;
2492 				end = mas_data_end(mast->orig_l);
2493 			}
2494 
2495 			mast->orig_l->offset--;
2496 			do {
2497 				mas_descend(mast->orig_l);
2498 				mast->orig_l->offset =
2499 					mas_data_end(mast->orig_l);
2500 				depth--;
2501 			} while (depth);
2502 
2503 			mast_rebalance_prev(mast);
2504 			do {
2505 				unsigned char r_off;
2506 				struct maple_enode *child = l_tmp.node;
2507 
2508 				mas_ascend(&l_tmp);
2509 				if (ancestor == l_tmp.node)
2510 					r_off = end;
2511 				else
2512 					r_off = mas_data_end(&l_tmp);
2513 
2514 				if (l_tmp.offset < r_off)
2515 					l_tmp.offset++;
2516 
2517 				if (l_tmp.offset < r_off)
2518 					mas_topiary_range(&l_tmp, mast->destroy,
2519 							  l_tmp.offset, r_off);
2520 
2521 				if (r_tmp.node != child)
2522 					mat_add(mast->free, child);
2523 
2524 			} while (l_tmp.node != ancestor);
2525 
2526 			*mast->orig_r = r_tmp;
2527 			return true;
2528 		}
2529 	} while (!mte_is_root(mast->orig_r->node));
2530 
2531 	*mast->orig_r = r_tmp;
2532 	*mast->orig_l = l_tmp;
2533 	return false;
2534 }
2535 
2536 /*
2537  * mast_ascend_free() - Add current original maple state nodes to the free list
2538  * and ascend.
2539  * @mast: the maple subtree state.
2540  *
2541  * Ascend the original left and right sides and add the previous nodes to the
2542  * free list.  Set the slots to point to the correct location in the new nodes.
2543  */
2544 static inline void
2545 mast_ascend_free(struct maple_subtree_state *mast)
2546 {
2547 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2548 	struct maple_enode *left = mast->orig_l->node;
2549 	struct maple_enode *right = mast->orig_r->node;
2550 
2551 	mas_ascend(mast->orig_l);
2552 	mas_ascend(mast->orig_r);
2553 	mat_add(mast->free, left);
2554 
2555 	if (left != right)
2556 		mat_add(mast->free, right);
2557 
2558 	mast->orig_r->offset = 0;
2559 	mast->orig_r->index = mast->r->max;
2560 	/* last should be larger than or equal to index */
2561 	if (mast->orig_r->last < mast->orig_r->index)
2562 		mast->orig_r->last = mast->orig_r->index;
2563 	/*
2564 	 * The node may not contain the value so set slot to ensure all
2565 	 * of the nodes contents are freed or destroyed.
2566 	 */
2567 	wr_mas.type = mte_node_type(mast->orig_r->node);
2568 	mas_wr_node_walk(&wr_mas);
2569 	/* Set up the left side of things */
2570 	mast->orig_l->offset = 0;
2571 	mast->orig_l->index = mast->l->min;
2572 	wr_mas.mas = mast->orig_l;
2573 	wr_mas.type = mte_node_type(mast->orig_l->node);
2574 	mas_wr_node_walk(&wr_mas);
2575 
2576 	mast->bn->type = wr_mas.type;
2577 }
2578 
2579 /*
2580  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2581  * @mas: the maple state with the allocations.
2582  * @b_node: the maple_big_node with the type encoding.
2583  *
2584  * Use the node type from the maple_big_node to allocate a new node from the
2585  * ma_state.  This function exists mainly for code readability.
2586  *
2587  * Return: A new maple encoded node
2588  */
2589 static inline struct maple_enode
2590 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2591 {
2592 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2593 }
2594 
2595 /*
2596  * mas_mab_to_node() - Set up right and middle nodes
2597  *
2598  * @mas: the maple state that contains the allocations.
2599  * @b_node: the node which contains the data.
2600  * @left: The pointer which will have the left node
2601  * @right: The pointer which may have the right node
2602  * @middle: the pointer which may have the middle node (rare)
2603  * @mid_split: the split location for the middle node
2604  *
2605  * Return: the split of left.
2606  */
2607 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2608 	struct maple_big_node *b_node, struct maple_enode **left,
2609 	struct maple_enode **right, struct maple_enode **middle,
2610 	unsigned char *mid_split, unsigned long min)
2611 {
2612 	unsigned char split = 0;
2613 	unsigned char slot_count = mt_slots[b_node->type];
2614 
2615 	*left = mas_new_ma_node(mas, b_node);
2616 	*right = NULL;
2617 	*middle = NULL;
2618 	*mid_split = 0;
2619 
2620 	if (b_node->b_end < slot_count) {
2621 		split = b_node->b_end;
2622 	} else {
2623 		split = mab_calc_split(mas, b_node, mid_split, min);
2624 		*right = mas_new_ma_node(mas, b_node);
2625 	}
2626 
2627 	if (*mid_split)
2628 		*middle = mas_new_ma_node(mas, b_node);
2629 
2630 	return split;
2631 
2632 }
2633 
2634 /*
2635  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2636  * pointer.
2637  * @b_node - the big node to add the entry
2638  * @mas - the maple state to get the pivot (mas->max)
2639  * @entry - the entry to add, if NULL nothing happens.
2640  */
2641 static inline void mab_set_b_end(struct maple_big_node *b_node,
2642 				 struct ma_state *mas,
2643 				 void *entry)
2644 {
2645 	if (!entry)
2646 		return;
2647 
2648 	b_node->slot[b_node->b_end] = entry;
2649 	if (mt_is_alloc(mas->tree))
2650 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2651 	b_node->pivot[b_node->b_end++] = mas->max;
2652 }
2653 
2654 /*
2655  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2656  * of @mas->node to either @left or @right, depending on @slot and @split
2657  *
2658  * @mas - the maple state with the node that needs a parent
2659  * @left - possible parent 1
2660  * @right - possible parent 2
2661  * @slot - the slot the mas->node was placed
2662  * @split - the split location between @left and @right
2663  */
2664 static inline void mas_set_split_parent(struct ma_state *mas,
2665 					struct maple_enode *left,
2666 					struct maple_enode *right,
2667 					unsigned char *slot, unsigned char split)
2668 {
2669 	if (mas_is_none(mas))
2670 		return;
2671 
2672 	if ((*slot) <= split)
2673 		mte_set_parent(mas->node, left, *slot);
2674 	else if (right)
2675 		mte_set_parent(mas->node, right, (*slot) - split - 1);
2676 
2677 	(*slot)++;
2678 }
2679 
2680 /*
2681  * mte_mid_split_check() - Check if the next node passes the mid-split
2682  * @**l: Pointer to left encoded maple node.
2683  * @**m: Pointer to middle encoded maple node.
2684  * @**r: Pointer to right encoded maple node.
2685  * @slot: The offset
2686  * @*split: The split location.
2687  * @mid_split: The middle split.
2688  */
2689 static inline void mte_mid_split_check(struct maple_enode **l,
2690 				       struct maple_enode **r,
2691 				       struct maple_enode *right,
2692 				       unsigned char slot,
2693 				       unsigned char *split,
2694 				       unsigned char mid_split)
2695 {
2696 	if (*r == right)
2697 		return;
2698 
2699 	if (slot < mid_split)
2700 		return;
2701 
2702 	*l = *r;
2703 	*r = right;
2704 	*split = mid_split;
2705 }
2706 
2707 /*
2708  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2709  * is taken from @mast->l.
2710  * @mast - the maple subtree state
2711  * @left - the left node
2712  * @right - the right node
2713  * @split - the split location.
2714  */
2715 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2716 					  struct maple_enode *left,
2717 					  struct maple_enode *middle,
2718 					  struct maple_enode *right,
2719 					  unsigned char split,
2720 					  unsigned char mid_split)
2721 {
2722 	unsigned char slot;
2723 	struct maple_enode *l = left;
2724 	struct maple_enode *r = right;
2725 
2726 	if (mas_is_none(mast->l))
2727 		return;
2728 
2729 	if (middle)
2730 		r = middle;
2731 
2732 	slot = mast->l->offset;
2733 
2734 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2735 	mas_set_split_parent(mast->l, l, r, &slot, split);
2736 
2737 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2738 	mas_set_split_parent(mast->m, l, r, &slot, split);
2739 
2740 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2741 	mas_set_split_parent(mast->r, l, r, &slot, split);
2742 }
2743 
2744 /*
2745  * mas_wmb_replace() - Write memory barrier and replace
2746  * @mas: The maple state
2747  * @free: the maple topiary list of nodes to free
2748  * @destroy: The maple topiary list of nodes to destroy (walk and free)
2749  *
2750  * Updates gap as necessary.
2751  */
2752 static inline void mas_wmb_replace(struct ma_state *mas,
2753 				   struct ma_topiary *free,
2754 				   struct ma_topiary *destroy)
2755 {
2756 	/* All nodes must see old data as dead prior to replacing that data */
2757 	smp_wmb(); /* Needed for RCU */
2758 
2759 	/* Insert the new data in the tree */
2760 	mas_replace(mas, true);
2761 
2762 	if (!mte_is_leaf(mas->node))
2763 		mas_descend_adopt(mas);
2764 
2765 	mas_mat_free(mas, free);
2766 
2767 	if (destroy)
2768 		mas_mat_destroy(mas, destroy);
2769 
2770 	if (mte_is_leaf(mas->node))
2771 		return;
2772 
2773 	mas_update_gap(mas);
2774 }
2775 
2776 /*
2777  * mast_new_root() - Set a new tree root during subtree creation
2778  * @mast: The maple subtree state
2779  * @mas: The maple state
2780  */
2781 static inline void mast_new_root(struct maple_subtree_state *mast,
2782 				 struct ma_state *mas)
2783 {
2784 	mas_mn(mast->l)->parent =
2785 		ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2786 	if (!mte_dead_node(mast->orig_l->node) &&
2787 	    !mte_is_root(mast->orig_l->node)) {
2788 		do {
2789 			mast_ascend_free(mast);
2790 			mast_topiary(mast);
2791 		} while (!mte_is_root(mast->orig_l->node));
2792 	}
2793 	if ((mast->orig_l->node != mas->node) &&
2794 		   (mast->l->depth > mas_mt_height(mas))) {
2795 		mat_add(mast->free, mas->node);
2796 	}
2797 }
2798 
2799 /*
2800  * mast_cp_to_nodes() - Copy data out to nodes.
2801  * @mast: The maple subtree state
2802  * @left: The left encoded maple node
2803  * @middle: The middle encoded maple node
2804  * @right: The right encoded maple node
2805  * @split: The location to split between left and (middle ? middle : right)
2806  * @mid_split: The location to split between middle and right.
2807  */
2808 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2809 	struct maple_enode *left, struct maple_enode *middle,
2810 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2811 {
2812 	bool new_lmax = true;
2813 
2814 	mast->l->node = mte_node_or_none(left);
2815 	mast->m->node = mte_node_or_none(middle);
2816 	mast->r->node = mte_node_or_none(right);
2817 
2818 	mast->l->min = mast->orig_l->min;
2819 	if (split == mast->bn->b_end) {
2820 		mast->l->max = mast->orig_r->max;
2821 		new_lmax = false;
2822 	}
2823 
2824 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2825 
2826 	if (middle) {
2827 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2828 		mast->m->min = mast->bn->pivot[split] + 1;
2829 		split = mid_split;
2830 	}
2831 
2832 	mast->r->max = mast->orig_r->max;
2833 	if (right) {
2834 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2835 		mast->r->min = mast->bn->pivot[split] + 1;
2836 	}
2837 }
2838 
2839 /*
2840  * mast_combine_cp_left - Copy in the original left side of the tree into the
2841  * combined data set in the maple subtree state big node.
2842  * @mast: The maple subtree state
2843  */
2844 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2845 {
2846 	unsigned char l_slot = mast->orig_l->offset;
2847 
2848 	if (!l_slot)
2849 		return;
2850 
2851 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2852 }
2853 
2854 /*
2855  * mast_combine_cp_right: Copy in the original right side of the tree into the
2856  * combined data set in the maple subtree state big node.
2857  * @mast: The maple subtree state
2858  */
2859 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2860 {
2861 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2862 		return;
2863 
2864 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2865 		   mt_slot_count(mast->orig_r->node), mast->bn,
2866 		   mast->bn->b_end);
2867 	mast->orig_r->last = mast->orig_r->max;
2868 }
2869 
2870 /*
2871  * mast_sufficient: Check if the maple subtree state has enough data in the big
2872  * node to create at least one sufficient node
2873  * @mast: the maple subtree state
2874  */
2875 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2876 {
2877 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2878 		return true;
2879 
2880 	return false;
2881 }
2882 
2883 /*
2884  * mast_overflow: Check if there is too much data in the subtree state for a
2885  * single node.
2886  * @mast: The maple subtree state
2887  */
2888 static inline bool mast_overflow(struct maple_subtree_state *mast)
2889 {
2890 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2891 		return true;
2892 
2893 	return false;
2894 }
2895 
2896 static inline void *mtree_range_walk(struct ma_state *mas)
2897 {
2898 	unsigned long *pivots;
2899 	unsigned char offset;
2900 	struct maple_node *node;
2901 	struct maple_enode *next, *last;
2902 	enum maple_type type;
2903 	void __rcu **slots;
2904 	unsigned char end;
2905 	unsigned long max, min;
2906 	unsigned long prev_max, prev_min;
2907 
2908 	next = mas->node;
2909 	min = mas->min;
2910 	max = mas->max;
2911 	do {
2912 		offset = 0;
2913 		last = next;
2914 		node = mte_to_node(next);
2915 		type = mte_node_type(next);
2916 		pivots = ma_pivots(node, type);
2917 		end = ma_data_end(node, type, pivots, max);
2918 		if (unlikely(ma_dead_node(node)))
2919 			goto dead_node;
2920 
2921 		if (pivots[offset] >= mas->index) {
2922 			prev_max = max;
2923 			prev_min = min;
2924 			max = pivots[offset];
2925 			goto next;
2926 		}
2927 
2928 		do {
2929 			offset++;
2930 		} while ((offset < end) && (pivots[offset] < mas->index));
2931 
2932 		prev_min = min;
2933 		min = pivots[offset - 1] + 1;
2934 		prev_max = max;
2935 		if (likely(offset < end && pivots[offset]))
2936 			max = pivots[offset];
2937 
2938 next:
2939 		slots = ma_slots(node, type);
2940 		next = mt_slot(mas->tree, slots, offset);
2941 		if (unlikely(ma_dead_node(node)))
2942 			goto dead_node;
2943 	} while (!ma_is_leaf(type));
2944 
2945 	mas->offset = offset;
2946 	mas->index = min;
2947 	mas->last = max;
2948 	mas->min = prev_min;
2949 	mas->max = prev_max;
2950 	mas->node = last;
2951 	return (void *)next;
2952 
2953 dead_node:
2954 	mas_reset(mas);
2955 	return NULL;
2956 }
2957 
2958 /*
2959  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2960  * @mas: The starting maple state
2961  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2962  * @count: The estimated count of iterations needed.
2963  *
2964  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2965  * is hit.  First @b_node is split into two entries which are inserted into the
2966  * next iteration of the loop.  @b_node is returned populated with the final
2967  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2968  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2969  * to account of what has been copied into the new sub-tree.  The update of
2970  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2971  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2972  * the new sub-tree in case the sub-tree becomes the full tree.
2973  *
2974  * Return: the number of elements in b_node during the last loop.
2975  */
2976 static int mas_spanning_rebalance(struct ma_state *mas,
2977 		struct maple_subtree_state *mast, unsigned char count)
2978 {
2979 	unsigned char split, mid_split;
2980 	unsigned char slot = 0;
2981 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2982 
2983 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2984 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2985 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2986 	MA_TOPIARY(free, mas->tree);
2987 	MA_TOPIARY(destroy, mas->tree);
2988 
2989 	/*
2990 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2991 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2992 	 */
2993 	mast->l = &l_mas;
2994 	mast->m = &m_mas;
2995 	mast->r = &r_mas;
2996 	mast->free = &free;
2997 	mast->destroy = &destroy;
2998 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2999 
3000 	/* Check if this is not root and has sufficient data.  */
3001 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3002 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3003 		mast_spanning_rebalance(mast);
3004 
3005 	mast->orig_l->depth = 0;
3006 
3007 	/*
3008 	 * Each level of the tree is examined and balanced, pushing data to the left or
3009 	 * right, or rebalancing against left or right nodes is employed to avoid
3010 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
3011 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
3012 	 * will have the incorrect parent pointers and currently be in two trees: the
3013 	 * original tree and the partially new tree.  To remedy the parent pointers in
3014 	 * the old tree, the new data is swapped into the active tree and a walk down
3015 	 * the tree is performed and the parent pointers are updated.
3016 	 * See mas_descend_adopt() for more information..
3017 	 */
3018 	while (count--) {
3019 		mast->bn->b_end--;
3020 		mast->bn->type = mte_node_type(mast->orig_l->node);
3021 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3022 					&mid_split, mast->orig_l->min);
3023 		mast_set_split_parents(mast, left, middle, right, split,
3024 				       mid_split);
3025 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3026 
3027 		/*
3028 		 * Copy data from next level in the tree to mast->bn from next
3029 		 * iteration
3030 		 */
3031 		memset(mast->bn, 0, sizeof(struct maple_big_node));
3032 		mast->bn->type = mte_node_type(left);
3033 		mast->orig_l->depth++;
3034 
3035 		/* Root already stored in l->node. */
3036 		if (mas_is_root_limits(mast->l))
3037 			goto new_root;
3038 
3039 		mast_ascend_free(mast);
3040 		mast_combine_cp_left(mast);
3041 		l_mas.offset = mast->bn->b_end;
3042 		mab_set_b_end(mast->bn, &l_mas, left);
3043 		mab_set_b_end(mast->bn, &m_mas, middle);
3044 		mab_set_b_end(mast->bn, &r_mas, right);
3045 
3046 		/* Copy anything necessary out of the right node. */
3047 		mast_combine_cp_right(mast);
3048 		mast_topiary(mast);
3049 		mast->orig_l->last = mast->orig_l->max;
3050 
3051 		if (mast_sufficient(mast))
3052 			continue;
3053 
3054 		if (mast_overflow(mast))
3055 			continue;
3056 
3057 		/* May be a new root stored in mast->bn */
3058 		if (mas_is_root_limits(mast->orig_l))
3059 			break;
3060 
3061 		mast_spanning_rebalance(mast);
3062 
3063 		/* rebalancing from other nodes may require another loop. */
3064 		if (!count)
3065 			count++;
3066 	}
3067 
3068 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3069 				mte_node_type(mast->orig_l->node));
3070 	mast->orig_l->depth++;
3071 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3072 	mte_set_parent(left, l_mas.node, slot);
3073 	if (middle)
3074 		mte_set_parent(middle, l_mas.node, ++slot);
3075 
3076 	if (right)
3077 		mte_set_parent(right, l_mas.node, ++slot);
3078 
3079 	if (mas_is_root_limits(mast->l)) {
3080 new_root:
3081 		mast_new_root(mast, mas);
3082 	} else {
3083 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3084 	}
3085 
3086 	if (!mte_dead_node(mast->orig_l->node))
3087 		mat_add(&free, mast->orig_l->node);
3088 
3089 	mas->depth = mast->orig_l->depth;
3090 	*mast->orig_l = l_mas;
3091 	mte_set_node_dead(mas->node);
3092 
3093 	/* Set up mas for insertion. */
3094 	mast->orig_l->depth = mas->depth;
3095 	mast->orig_l->alloc = mas->alloc;
3096 	*mas = *mast->orig_l;
3097 	mas_wmb_replace(mas, &free, &destroy);
3098 	mtree_range_walk(mas);
3099 	return mast->bn->b_end;
3100 }
3101 
3102 /*
3103  * mas_rebalance() - Rebalance a given node.
3104  * @mas: The maple state
3105  * @b_node: The big maple node.
3106  *
3107  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3108  * Continue upwards until tree is sufficient.
3109  *
3110  * Return: the number of elements in b_node during the last loop.
3111  */
3112 static inline int mas_rebalance(struct ma_state *mas,
3113 				struct maple_big_node *b_node)
3114 {
3115 	char empty_count = mas_mt_height(mas);
3116 	struct maple_subtree_state mast;
3117 	unsigned char shift, b_end = ++b_node->b_end;
3118 
3119 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3120 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3121 
3122 	trace_ma_op(__func__, mas);
3123 
3124 	/*
3125 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3126 	 * against the node to the right if it exists, otherwise the node to the
3127 	 * left of this node is rebalanced against this node.  If rebalancing
3128 	 * causes just one node to be produced instead of two, then the parent
3129 	 * is also examined and rebalanced if it is insufficient.  Every level
3130 	 * tries to combine the data in the same way.  If one node contains the
3131 	 * entire range of the tree, then that node is used as a new root node.
3132 	 */
3133 	mas_node_count(mas, 1 + empty_count * 3);
3134 	if (mas_is_err(mas))
3135 		return 0;
3136 
3137 	mast.orig_l = &l_mas;
3138 	mast.orig_r = &r_mas;
3139 	mast.bn = b_node;
3140 	mast.bn->type = mte_node_type(mas->node);
3141 
3142 	l_mas = r_mas = *mas;
3143 
3144 	if (mas_next_sibling(&r_mas)) {
3145 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3146 		r_mas.last = r_mas.index = r_mas.max;
3147 	} else {
3148 		mas_prev_sibling(&l_mas);
3149 		shift = mas_data_end(&l_mas) + 1;
3150 		mab_shift_right(b_node, shift);
3151 		mas->offset += shift;
3152 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3153 		b_node->b_end = shift + b_end;
3154 		l_mas.index = l_mas.last = l_mas.min;
3155 	}
3156 
3157 	return mas_spanning_rebalance(mas, &mast, empty_count);
3158 }
3159 
3160 /*
3161  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3162  * state.
3163  * @mas: The maple state
3164  * @end: The end of the left-most node.
3165  *
3166  * During a mass-insert event (such as forking), it may be necessary to
3167  * rebalance the left-most node when it is not sufficient.
3168  */
3169 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3170 {
3171 	enum maple_type mt = mte_node_type(mas->node);
3172 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3173 	struct maple_enode *eparent;
3174 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3175 	void __rcu **l_slots, **slots;
3176 	unsigned long *l_pivs, *pivs, gap;
3177 	bool in_rcu = mt_in_rcu(mas->tree);
3178 
3179 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3180 
3181 	l_mas = *mas;
3182 	mas_prev_sibling(&l_mas);
3183 
3184 	/* set up node. */
3185 	if (in_rcu) {
3186 		/* Allocate for both left and right as well as parent. */
3187 		mas_node_count(mas, 3);
3188 		if (mas_is_err(mas))
3189 			return;
3190 
3191 		newnode = mas_pop_node(mas);
3192 	} else {
3193 		newnode = &reuse;
3194 	}
3195 
3196 	node = mas_mn(mas);
3197 	newnode->parent = node->parent;
3198 	slots = ma_slots(newnode, mt);
3199 	pivs = ma_pivots(newnode, mt);
3200 	left = mas_mn(&l_mas);
3201 	l_slots = ma_slots(left, mt);
3202 	l_pivs = ma_pivots(left, mt);
3203 	if (!l_slots[split])
3204 		split++;
3205 	tmp = mas_data_end(&l_mas) - split;
3206 
3207 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3208 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3209 	pivs[tmp] = l_mas.max;
3210 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3211 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3212 
3213 	l_mas.max = l_pivs[split];
3214 	mas->min = l_mas.max + 1;
3215 	eparent = mt_mk_node(mte_parent(l_mas.node),
3216 			     mas_parent_enum(&l_mas, l_mas.node));
3217 	tmp += end;
3218 	if (!in_rcu) {
3219 		unsigned char max_p = mt_pivots[mt];
3220 		unsigned char max_s = mt_slots[mt];
3221 
3222 		if (tmp < max_p)
3223 			memset(pivs + tmp, 0,
3224 			       sizeof(unsigned long *) * (max_p - tmp));
3225 
3226 		if (tmp < mt_slots[mt])
3227 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3228 
3229 		memcpy(node, newnode, sizeof(struct maple_node));
3230 		ma_set_meta(node, mt, 0, tmp - 1);
3231 		mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3232 			      l_pivs[split]);
3233 
3234 		/* Remove data from l_pivs. */
3235 		tmp = split + 1;
3236 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3237 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3238 		ma_set_meta(left, mt, 0, split);
3239 
3240 		goto done;
3241 	}
3242 
3243 	/* RCU requires replacing both l_mas, mas, and parent. */
3244 	mas->node = mt_mk_node(newnode, mt);
3245 	ma_set_meta(newnode, mt, 0, tmp);
3246 
3247 	new_left = mas_pop_node(mas);
3248 	new_left->parent = left->parent;
3249 	mt = mte_node_type(l_mas.node);
3250 	slots = ma_slots(new_left, mt);
3251 	pivs = ma_pivots(new_left, mt);
3252 	memcpy(slots, l_slots, sizeof(void *) * split);
3253 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3254 	ma_set_meta(new_left, mt, 0, split);
3255 	l_mas.node = mt_mk_node(new_left, mt);
3256 
3257 	/* replace parent. */
3258 	offset = mte_parent_slot(mas->node);
3259 	mt = mas_parent_enum(&l_mas, l_mas.node);
3260 	parent = mas_pop_node(mas);
3261 	slots = ma_slots(parent, mt);
3262 	pivs = ma_pivots(parent, mt);
3263 	memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3264 	rcu_assign_pointer(slots[offset], mas->node);
3265 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3266 	pivs[offset - 1] = l_mas.max;
3267 	eparent = mt_mk_node(parent, mt);
3268 done:
3269 	gap = mas_leaf_max_gap(mas);
3270 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3271 	gap = mas_leaf_max_gap(&l_mas);
3272 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3273 	mas_ascend(mas);
3274 
3275 	if (in_rcu)
3276 		mas_replace(mas, false);
3277 
3278 	mas_update_gap(mas);
3279 }
3280 
3281 /*
3282  * mas_split_final_node() - Split the final node in a subtree operation.
3283  * @mast: the maple subtree state
3284  * @mas: The maple state
3285  * @height: The height of the tree in case it's a new root.
3286  */
3287 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3288 					struct ma_state *mas, int height)
3289 {
3290 	struct maple_enode *ancestor;
3291 
3292 	if (mte_is_root(mas->node)) {
3293 		if (mt_is_alloc(mas->tree))
3294 			mast->bn->type = maple_arange_64;
3295 		else
3296 			mast->bn->type = maple_range_64;
3297 		mas->depth = height;
3298 	}
3299 	/*
3300 	 * Only a single node is used here, could be root.
3301 	 * The Big_node data should just fit in a single node.
3302 	 */
3303 	ancestor = mas_new_ma_node(mas, mast->bn);
3304 	mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3305 	mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3306 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3307 
3308 	mast->l->node = ancestor;
3309 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3310 	mas->offset = mast->bn->b_end - 1;
3311 	return true;
3312 }
3313 
3314 /*
3315  * mast_fill_bnode() - Copy data into the big node in the subtree state
3316  * @mast: The maple subtree state
3317  * @mas: the maple state
3318  * @skip: The number of entries to skip for new nodes insertion.
3319  */
3320 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3321 					 struct ma_state *mas,
3322 					 unsigned char skip)
3323 {
3324 	bool cp = true;
3325 	struct maple_enode *old = mas->node;
3326 	unsigned char split;
3327 
3328 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3329 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3330 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3331 	mast->bn->b_end = 0;
3332 
3333 	if (mte_is_root(mas->node)) {
3334 		cp = false;
3335 	} else {
3336 		mas_ascend(mas);
3337 		mat_add(mast->free, old);
3338 		mas->offset = mte_parent_slot(mas->node);
3339 	}
3340 
3341 	if (cp && mast->l->offset)
3342 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3343 
3344 	split = mast->bn->b_end;
3345 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3346 	mast->r->offset = mast->bn->b_end;
3347 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3348 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3349 		cp = false;
3350 
3351 	if (cp)
3352 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3353 			   mast->bn, mast->bn->b_end);
3354 
3355 	mast->bn->b_end--;
3356 	mast->bn->type = mte_node_type(mas->node);
3357 }
3358 
3359 /*
3360  * mast_split_data() - Split the data in the subtree state big node into regular
3361  * nodes.
3362  * @mast: The maple subtree state
3363  * @mas: The maple state
3364  * @split: The location to split the big node
3365  */
3366 static inline void mast_split_data(struct maple_subtree_state *mast,
3367 	   struct ma_state *mas, unsigned char split)
3368 {
3369 	unsigned char p_slot;
3370 
3371 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3372 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3373 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3374 	mast->l->offset = mte_parent_slot(mas->node);
3375 	mast->l->max = mast->bn->pivot[split];
3376 	mast->r->min = mast->l->max + 1;
3377 	if (mte_is_leaf(mas->node))
3378 		return;
3379 
3380 	p_slot = mast->orig_l->offset;
3381 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3382 			     &p_slot, split);
3383 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3384 			     &p_slot, split);
3385 }
3386 
3387 /*
3388  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3389  * data to the right or left node if there is room.
3390  * @mas: The maple state
3391  * @height: The current height of the maple state
3392  * @mast: The maple subtree state
3393  * @left: Push left or not.
3394  *
3395  * Keeping the height of the tree low means faster lookups.
3396  *
3397  * Return: True if pushed, false otherwise.
3398  */
3399 static inline bool mas_push_data(struct ma_state *mas, int height,
3400 				 struct maple_subtree_state *mast, bool left)
3401 {
3402 	unsigned char slot_total = mast->bn->b_end;
3403 	unsigned char end, space, split;
3404 
3405 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3406 	tmp_mas = *mas;
3407 	tmp_mas.depth = mast->l->depth;
3408 
3409 	if (left && !mas_prev_sibling(&tmp_mas))
3410 		return false;
3411 	else if (!left && !mas_next_sibling(&tmp_mas))
3412 		return false;
3413 
3414 	end = mas_data_end(&tmp_mas);
3415 	slot_total += end;
3416 	space = 2 * mt_slot_count(mas->node) - 2;
3417 	/* -2 instead of -1 to ensure there isn't a triple split */
3418 	if (ma_is_leaf(mast->bn->type))
3419 		space--;
3420 
3421 	if (mas->max == ULONG_MAX)
3422 		space--;
3423 
3424 	if (slot_total >= space)
3425 		return false;
3426 
3427 	/* Get the data; Fill mast->bn */
3428 	mast->bn->b_end++;
3429 	if (left) {
3430 		mab_shift_right(mast->bn, end + 1);
3431 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3432 		mast->bn->b_end = slot_total + 1;
3433 	} else {
3434 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3435 	}
3436 
3437 	/* Configure mast for splitting of mast->bn */
3438 	split = mt_slots[mast->bn->type] - 2;
3439 	if (left) {
3440 		/*  Switch mas to prev node  */
3441 		mat_add(mast->free, mas->node);
3442 		*mas = tmp_mas;
3443 		/* Start using mast->l for the left side. */
3444 		tmp_mas.node = mast->l->node;
3445 		*mast->l = tmp_mas;
3446 	} else {
3447 		mat_add(mast->free, tmp_mas.node);
3448 		tmp_mas.node = mast->r->node;
3449 		*mast->r = tmp_mas;
3450 		split = slot_total - split;
3451 	}
3452 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3453 	/* Update parent slot for split calculation. */
3454 	if (left)
3455 		mast->orig_l->offset += end + 1;
3456 
3457 	mast_split_data(mast, mas, split);
3458 	mast_fill_bnode(mast, mas, 2);
3459 	mas_split_final_node(mast, mas, height + 1);
3460 	return true;
3461 }
3462 
3463 /*
3464  * mas_split() - Split data that is too big for one node into two.
3465  * @mas: The maple state
3466  * @b_node: The maple big node
3467  * Return: 1 on success, 0 on failure.
3468  */
3469 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3470 {
3471 	struct maple_subtree_state mast;
3472 	int height = 0;
3473 	unsigned char mid_split, split = 0;
3474 
3475 	/*
3476 	 * Splitting is handled differently from any other B-tree; the Maple
3477 	 * Tree splits upwards.  Splitting up means that the split operation
3478 	 * occurs when the walk of the tree hits the leaves and not on the way
3479 	 * down.  The reason for splitting up is that it is impossible to know
3480 	 * how much space will be needed until the leaf is (or leaves are)
3481 	 * reached.  Since overwriting data is allowed and a range could
3482 	 * overwrite more than one range or result in changing one entry into 3
3483 	 * entries, it is impossible to know if a split is required until the
3484 	 * data is examined.
3485 	 *
3486 	 * Splitting is a balancing act between keeping allocations to a minimum
3487 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 	 * for an entry followed by a contraction when the entry is removed.  To
3489 	 * accomplish the balance, there are empty slots remaining in both left
3490 	 * and right nodes after a split.
3491 	 */
3492 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 	MA_TOPIARY(mat, mas->tree);
3497 
3498 	trace_ma_op(__func__, mas);
3499 	mas->depth = mas_mt_height(mas);
3500 	/* Allocation failures will happen early. */
3501 	mas_node_count(mas, 1 + mas->depth * 2);
3502 	if (mas_is_err(mas))
3503 		return 0;
3504 
3505 	mast.l = &l_mas;
3506 	mast.r = &r_mas;
3507 	mast.orig_l = &prev_l_mas;
3508 	mast.orig_r = &prev_r_mas;
3509 	mast.free = &mat;
3510 	mast.bn = b_node;
3511 
3512 	while (height++ <= mas->depth) {
3513 		if (mt_slots[b_node->type] > b_node->b_end) {
3514 			mas_split_final_node(&mast, mas, height);
3515 			break;
3516 		}
3517 
3518 		l_mas = r_mas = *mas;
3519 		l_mas.node = mas_new_ma_node(mas, b_node);
3520 		r_mas.node = mas_new_ma_node(mas, b_node);
3521 		/*
3522 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 		 * left or right node has space to spare.  This is referred to as "pushing left"
3524 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 		 * is a significant savings.
3527 		 */
3528 		/* Try to push left. */
3529 		if (mas_push_data(mas, height, &mast, true))
3530 			break;
3531 
3532 		/* Try to push right. */
3533 		if (mas_push_data(mas, height, &mast, false))
3534 			break;
3535 
3536 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 		mast_split_data(&mast, mas, split);
3538 		/*
3539 		 * Usually correct, mab_mas_cp in the above call overwrites
3540 		 * r->max.
3541 		 */
3542 		mast.r->max = mas->max;
3543 		mast_fill_bnode(&mast, mas, 1);
3544 		prev_l_mas = *mast.l;
3545 		prev_r_mas = *mast.r;
3546 	}
3547 
3548 	/* Set the original node as dead */
3549 	mat_add(mast.free, mas->node);
3550 	mas->node = l_mas.node;
3551 	mas_wmb_replace(mas, mast.free, NULL);
3552 	mtree_range_walk(mas);
3553 	return 1;
3554 }
3555 
3556 /*
3557  * mas_reuse_node() - Reuse the node to store the data.
3558  * @wr_mas: The maple write state
3559  * @bn: The maple big node
3560  * @end: The end of the data.
3561  *
3562  * Will always return false in RCU mode.
3563  *
3564  * Return: True if node was reused, false otherwise.
3565  */
3566 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 			  struct maple_big_node *bn, unsigned char end)
3568 {
3569 	/* Need to be rcu safe. */
3570 	if (mt_in_rcu(wr_mas->mas->tree))
3571 		return false;
3572 
3573 	if (end > bn->b_end) {
3574 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3575 
3576 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3578 	}
3579 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3580 	return true;
3581 }
3582 
3583 /*
3584  * mas_commit_b_node() - Commit the big node into the tree.
3585  * @wr_mas: The maple write state
3586  * @b_node: The maple big node
3587  * @end: The end of the data.
3588  */
3589 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3590 			    struct maple_big_node *b_node, unsigned char end)
3591 {
3592 	struct maple_node *node;
3593 	unsigned char b_end = b_node->b_end;
3594 	enum maple_type b_type = b_node->type;
3595 
3596 	if ((b_end < mt_min_slots[b_type]) &&
3597 	    (!mte_is_root(wr_mas->mas->node)) &&
3598 	    (mas_mt_height(wr_mas->mas) > 1))
3599 		return mas_rebalance(wr_mas->mas, b_node);
3600 
3601 	if (b_end >= mt_slots[b_type])
3602 		return mas_split(wr_mas->mas, b_node);
3603 
3604 	if (mas_reuse_node(wr_mas, b_node, end))
3605 		goto reuse_node;
3606 
3607 	mas_node_count(wr_mas->mas, 1);
3608 	if (mas_is_err(wr_mas->mas))
3609 		return 0;
3610 
3611 	node = mas_pop_node(wr_mas->mas);
3612 	node->parent = mas_mn(wr_mas->mas)->parent;
3613 	wr_mas->mas->node = mt_mk_node(node, b_type);
3614 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3615 	mas_replace(wr_mas->mas, false);
3616 reuse_node:
3617 	mas_update_gap(wr_mas->mas);
3618 	return 1;
3619 }
3620 
3621 /*
3622  * mas_root_expand() - Expand a root to a node
3623  * @mas: The maple state
3624  * @entry: The entry to store into the tree
3625  */
3626 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3627 {
3628 	void *contents = mas_root_locked(mas);
3629 	enum maple_type type = maple_leaf_64;
3630 	struct maple_node *node;
3631 	void __rcu **slots;
3632 	unsigned long *pivots;
3633 	int slot = 0;
3634 
3635 	mas_node_count(mas, 1);
3636 	if (unlikely(mas_is_err(mas)))
3637 		return 0;
3638 
3639 	node = mas_pop_node(mas);
3640 	pivots = ma_pivots(node, type);
3641 	slots = ma_slots(node, type);
3642 	node->parent = ma_parent_ptr(
3643 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 	mas->node = mt_mk_node(node, type);
3645 
3646 	if (mas->index) {
3647 		if (contents) {
3648 			rcu_assign_pointer(slots[slot], contents);
3649 			if (likely(mas->index > 1))
3650 				slot++;
3651 		}
3652 		pivots[slot++] = mas->index - 1;
3653 	}
3654 
3655 	rcu_assign_pointer(slots[slot], entry);
3656 	mas->offset = slot;
3657 	pivots[slot] = mas->last;
3658 	if (mas->last != ULONG_MAX)
3659 		slot++;
3660 	mas->depth = 1;
3661 	mas_set_height(mas);
3662 
3663 	/* swap the new root into the tree */
3664 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3665 	ma_set_meta(node, maple_leaf_64, 0, slot);
3666 	return slot;
3667 }
3668 
3669 static inline void mas_store_root(struct ma_state *mas, void *entry)
3670 {
3671 	if (likely((mas->last != 0) || (mas->index != 0)))
3672 		mas_root_expand(mas, entry);
3673 	else if (((unsigned long) (entry) & 3) == 2)
3674 		mas_root_expand(mas, entry);
3675 	else {
3676 		rcu_assign_pointer(mas->tree->ma_root, entry);
3677 		mas->node = MAS_START;
3678 	}
3679 }
3680 
3681 /*
3682  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3683  * spans the node.
3684  * @mas: The maple state
3685  * @piv: The pivot value being written
3686  * @type: The maple node type
3687  * @entry: The data to write
3688  *
3689  * Spanning writes are writes that start in one node and end in another OR if
3690  * the write of a %NULL will cause the node to end with a %NULL.
3691  *
3692  * Return: True if this is a spanning write, false otherwise.
3693  */
3694 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3695 {
3696 	unsigned long max;
3697 	unsigned long last = wr_mas->mas->last;
3698 	unsigned long piv = wr_mas->r_max;
3699 	enum maple_type type = wr_mas->type;
3700 	void *entry = wr_mas->entry;
3701 
3702 	/* Contained in this pivot */
3703 	if (piv > last)
3704 		return false;
3705 
3706 	max = wr_mas->mas->max;
3707 	if (unlikely(ma_is_leaf(type))) {
3708 		/* Fits in the node, but may span slots. */
3709 		if (last < max)
3710 			return false;
3711 
3712 		/* Writes to the end of the node but not null. */
3713 		if ((last == max) && entry)
3714 			return false;
3715 
3716 		/*
3717 		 * Writing ULONG_MAX is not a spanning write regardless of the
3718 		 * value being written as long as the range fits in the node.
3719 		 */
3720 		if ((last == ULONG_MAX) && (last == max))
3721 			return false;
3722 	} else if (piv == last) {
3723 		if (entry)
3724 			return false;
3725 
3726 		/* Detect spanning store wr walk */
3727 		if (last == ULONG_MAX)
3728 			return false;
3729 	}
3730 
3731 	trace_ma_write(__func__, wr_mas->mas, piv, entry);
3732 
3733 	return true;
3734 }
3735 
3736 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3737 {
3738 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3739 	mas_wr_node_walk(wr_mas);
3740 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3741 }
3742 
3743 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3744 {
3745 	wr_mas->mas->max = wr_mas->r_max;
3746 	wr_mas->mas->min = wr_mas->r_min;
3747 	wr_mas->mas->node = wr_mas->content;
3748 	wr_mas->mas->offset = 0;
3749 	wr_mas->mas->depth++;
3750 }
3751 /*
3752  * mas_wr_walk() - Walk the tree for a write.
3753  * @wr_mas: The maple write state
3754  *
3755  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3756  *
3757  * Return: True if it's contained in a node, false on spanning write.
3758  */
3759 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3760 {
3761 	struct ma_state *mas = wr_mas->mas;
3762 
3763 	while (true) {
3764 		mas_wr_walk_descend(wr_mas);
3765 		if (unlikely(mas_is_span_wr(wr_mas)))
3766 			return false;
3767 
3768 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3769 						  mas->offset);
3770 		if (ma_is_leaf(wr_mas->type))
3771 			return true;
3772 
3773 		mas_wr_walk_traverse(wr_mas);
3774 	}
3775 
3776 	return true;
3777 }
3778 
3779 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3780 {
3781 	struct ma_state *mas = wr_mas->mas;
3782 
3783 	while (true) {
3784 		mas_wr_walk_descend(wr_mas);
3785 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3786 						  mas->offset);
3787 		if (ma_is_leaf(wr_mas->type))
3788 			return true;
3789 		mas_wr_walk_traverse(wr_mas);
3790 
3791 	}
3792 	return true;
3793 }
3794 /*
3795  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3796  * @l_wr_mas: The left maple write state
3797  * @r_wr_mas: The right maple write state
3798  */
3799 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3800 					    struct ma_wr_state *r_wr_mas)
3801 {
3802 	struct ma_state *r_mas = r_wr_mas->mas;
3803 	struct ma_state *l_mas = l_wr_mas->mas;
3804 	unsigned char l_slot;
3805 
3806 	l_slot = l_mas->offset;
3807 	if (!l_wr_mas->content)
3808 		l_mas->index = l_wr_mas->r_min;
3809 
3810 	if ((l_mas->index == l_wr_mas->r_min) &&
3811 		 (l_slot &&
3812 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3813 		if (l_slot > 1)
3814 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3815 		else
3816 			l_mas->index = l_mas->min;
3817 
3818 		l_mas->offset = l_slot - 1;
3819 	}
3820 
3821 	if (!r_wr_mas->content) {
3822 		if (r_mas->last < r_wr_mas->r_max)
3823 			r_mas->last = r_wr_mas->r_max;
3824 		r_mas->offset++;
3825 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3826 	    (r_mas->last < r_mas->max) &&
3827 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3828 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3829 					     r_wr_mas->type, r_mas->offset + 1);
3830 		r_mas->offset++;
3831 	}
3832 }
3833 
3834 static inline void *mas_state_walk(struct ma_state *mas)
3835 {
3836 	void *entry;
3837 
3838 	entry = mas_start(mas);
3839 	if (mas_is_none(mas))
3840 		return NULL;
3841 
3842 	if (mas_is_ptr(mas))
3843 		return entry;
3844 
3845 	return mtree_range_walk(mas);
3846 }
3847 
3848 /*
3849  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3850  * to date.
3851  *
3852  * @mas: The maple state.
3853  *
3854  * Note: Leaves mas in undesirable state.
3855  * Return: The entry for @mas->index or %NULL on dead node.
3856  */
3857 static inline void *mtree_lookup_walk(struct ma_state *mas)
3858 {
3859 	unsigned long *pivots;
3860 	unsigned char offset;
3861 	struct maple_node *node;
3862 	struct maple_enode *next;
3863 	enum maple_type type;
3864 	void __rcu **slots;
3865 	unsigned char end;
3866 	unsigned long max;
3867 
3868 	next = mas->node;
3869 	max = ULONG_MAX;
3870 	do {
3871 		offset = 0;
3872 		node = mte_to_node(next);
3873 		type = mte_node_type(next);
3874 		pivots = ma_pivots(node, type);
3875 		end = ma_data_end(node, type, pivots, max);
3876 		if (unlikely(ma_dead_node(node)))
3877 			goto dead_node;
3878 
3879 		if (pivots[offset] >= mas->index)
3880 			goto next;
3881 
3882 		do {
3883 			offset++;
3884 		} while ((offset < end) && (pivots[offset] < mas->index));
3885 
3886 		if (likely(offset > end))
3887 			max = pivots[offset];
3888 
3889 next:
3890 		slots = ma_slots(node, type);
3891 		next = mt_slot(mas->tree, slots, offset);
3892 		if (unlikely(ma_dead_node(node)))
3893 			goto dead_node;
3894 	} while (!ma_is_leaf(type));
3895 
3896 	return (void *)next;
3897 
3898 dead_node:
3899 	mas_reset(mas);
3900 	return NULL;
3901 }
3902 
3903 /*
3904  * mas_new_root() - Create a new root node that only contains the entry passed
3905  * in.
3906  * @mas: The maple state
3907  * @entry: The entry to store.
3908  *
3909  * Only valid when the index == 0 and the last == ULONG_MAX
3910  *
3911  * Return 0 on error, 1 on success.
3912  */
3913 static inline int mas_new_root(struct ma_state *mas, void *entry)
3914 {
3915 	struct maple_enode *root = mas_root_locked(mas);
3916 	enum maple_type type = maple_leaf_64;
3917 	struct maple_node *node;
3918 	void __rcu **slots;
3919 	unsigned long *pivots;
3920 
3921 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3922 		mas->depth = 0;
3923 		mas_set_height(mas);
3924 		rcu_assign_pointer(mas->tree->ma_root, entry);
3925 		mas->node = MAS_START;
3926 		goto done;
3927 	}
3928 
3929 	mas_node_count(mas, 1);
3930 	if (mas_is_err(mas))
3931 		return 0;
3932 
3933 	node = mas_pop_node(mas);
3934 	pivots = ma_pivots(node, type);
3935 	slots = ma_slots(node, type);
3936 	node->parent = ma_parent_ptr(
3937 		      ((unsigned long)mas->tree | MA_ROOT_PARENT));
3938 	mas->node = mt_mk_node(node, type);
3939 	rcu_assign_pointer(slots[0], entry);
3940 	pivots[0] = mas->last;
3941 	mas->depth = 1;
3942 	mas_set_height(mas);
3943 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3944 
3945 done:
3946 	if (xa_is_node(root))
3947 		mte_destroy_walk(root, mas->tree);
3948 
3949 	return 1;
3950 }
3951 /*
3952  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3953  * and new nodes where necessary, then place the sub-tree in the actual tree.
3954  * Note that mas is expected to point to the node which caused the store to
3955  * span.
3956  * @wr_mas: The maple write state
3957  *
3958  * Return: 0 on error, positive on success.
3959  */
3960 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3961 {
3962 	struct maple_subtree_state mast;
3963 	struct maple_big_node b_node;
3964 	struct ma_state *mas;
3965 	unsigned char height;
3966 
3967 	/* Left and Right side of spanning store */
3968 	MA_STATE(l_mas, NULL, 0, 0);
3969 	MA_STATE(r_mas, NULL, 0, 0);
3970 
3971 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3972 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3973 
3974 	/*
3975 	 * A store operation that spans multiple nodes is called a spanning
3976 	 * store and is handled early in the store call stack by the function
3977 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3978 	 * state is duplicated.  The first maple state walks the left tree path
3979 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3980 	 * The data in the two nodes are combined into a single node, two nodes,
3981 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3982 	 * written to the last entry of a node is considered a spanning store as
3983 	 * a rebalance is required for the operation to complete and an overflow
3984 	 * of data may happen.
3985 	 */
3986 	mas = wr_mas->mas;
3987 	trace_ma_op(__func__, mas);
3988 
3989 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3990 		return mas_new_root(mas, wr_mas->entry);
3991 	/*
3992 	 * Node rebalancing may occur due to this store, so there may be three new
3993 	 * entries per level plus a new root.
3994 	 */
3995 	height = mas_mt_height(mas);
3996 	mas_node_count(mas, 1 + height * 3);
3997 	if (mas_is_err(mas))
3998 		return 0;
3999 
4000 	/*
4001 	 * Set up right side.  Need to get to the next offset after the spanning
4002 	 * store to ensure it's not NULL and to combine both the next node and
4003 	 * the node with the start together.
4004 	 */
4005 	r_mas = *mas;
4006 	/* Avoid overflow, walk to next slot in the tree. */
4007 	if (r_mas.last + 1)
4008 		r_mas.last++;
4009 
4010 	r_mas.index = r_mas.last;
4011 	mas_wr_walk_index(&r_wr_mas);
4012 	r_mas.last = r_mas.index = mas->last;
4013 
4014 	/* Set up left side. */
4015 	l_mas = *mas;
4016 	mas_wr_walk_index(&l_wr_mas);
4017 
4018 	if (!wr_mas->entry) {
4019 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4020 		mas->offset = l_mas.offset;
4021 		mas->index = l_mas.index;
4022 		mas->last = l_mas.last = r_mas.last;
4023 	}
4024 
4025 	/* expanding NULLs may make this cover the entire range */
4026 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
4027 		mas_set_range(mas, 0, ULONG_MAX);
4028 		return mas_new_root(mas, wr_mas->entry);
4029 	}
4030 
4031 	memset(&b_node, 0, sizeof(struct maple_big_node));
4032 	/* Copy l_mas and store the value in b_node. */
4033 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4034 	/* Copy r_mas into b_node. */
4035 	if (r_mas.offset <= r_wr_mas.node_end)
4036 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4037 			   &b_node, b_node.b_end + 1);
4038 	else
4039 		b_node.b_end++;
4040 
4041 	/* Stop spanning searches by searching for just index. */
4042 	l_mas.index = l_mas.last = mas->index;
4043 
4044 	mast.bn = &b_node;
4045 	mast.orig_l = &l_mas;
4046 	mast.orig_r = &r_mas;
4047 	/* Combine l_mas and r_mas and split them up evenly again. */
4048 	return mas_spanning_rebalance(mas, &mast, height + 1);
4049 }
4050 
4051 /*
4052  * mas_wr_node_store() - Attempt to store the value in a node
4053  * @wr_mas: The maple write state
4054  *
4055  * Attempts to reuse the node, but may allocate.
4056  *
4057  * Return: True if stored, false otherwise
4058  */
4059 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4060 {
4061 	struct ma_state *mas = wr_mas->mas;
4062 	void __rcu **dst_slots;
4063 	unsigned long *dst_pivots;
4064 	unsigned char dst_offset;
4065 	unsigned char new_end = wr_mas->node_end;
4066 	unsigned char offset;
4067 	unsigned char node_slots = mt_slots[wr_mas->type];
4068 	struct maple_node reuse, *newnode;
4069 	unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4070 	bool in_rcu = mt_in_rcu(mas->tree);
4071 
4072 	offset = mas->offset;
4073 	if (mas->last == wr_mas->r_max) {
4074 		/* runs right to the end of the node */
4075 		if (mas->last == mas->max)
4076 			new_end = offset;
4077 		/* don't copy this offset */
4078 		wr_mas->offset_end++;
4079 	} else if (mas->last < wr_mas->r_max) {
4080 		/* new range ends in this range */
4081 		if (unlikely(wr_mas->r_max == ULONG_MAX))
4082 			mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4083 
4084 		new_end++;
4085 	} else {
4086 		if (wr_mas->end_piv == mas->last)
4087 			wr_mas->offset_end++;
4088 
4089 		new_end -= wr_mas->offset_end - offset - 1;
4090 	}
4091 
4092 	/* new range starts within a range */
4093 	if (wr_mas->r_min < mas->index)
4094 		new_end++;
4095 
4096 	/* Not enough room */
4097 	if (new_end >= node_slots)
4098 		return false;
4099 
4100 	/* Not enough data. */
4101 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4102 	    !(mas->mas_flags & MA_STATE_BULK))
4103 		return false;
4104 
4105 	/* set up node. */
4106 	if (in_rcu) {
4107 		mas_node_count(mas, 1);
4108 		if (mas_is_err(mas))
4109 			return false;
4110 
4111 		newnode = mas_pop_node(mas);
4112 	} else {
4113 		memset(&reuse, 0, sizeof(struct maple_node));
4114 		newnode = &reuse;
4115 	}
4116 
4117 	newnode->parent = mas_mn(mas)->parent;
4118 	dst_pivots = ma_pivots(newnode, wr_mas->type);
4119 	dst_slots = ma_slots(newnode, wr_mas->type);
4120 	/* Copy from start to insert point */
4121 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4122 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4123 	dst_offset = offset;
4124 
4125 	/* Handle insert of new range starting after old range */
4126 	if (wr_mas->r_min < mas->index) {
4127 		mas->offset++;
4128 		rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4129 		dst_pivots[dst_offset++] = mas->index - 1;
4130 	}
4131 
4132 	/* Store the new entry and range end. */
4133 	if (dst_offset < max_piv)
4134 		dst_pivots[dst_offset] = mas->last;
4135 	mas->offset = dst_offset;
4136 	rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4137 
4138 	/*
4139 	 * this range wrote to the end of the node or it overwrote the rest of
4140 	 * the data
4141 	 */
4142 	if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4143 		new_end = dst_offset;
4144 		goto done;
4145 	}
4146 
4147 	dst_offset++;
4148 	/* Copy to the end of node if necessary. */
4149 	copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4150 	memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4151 	       sizeof(void *) * copy_size);
4152 	if (dst_offset < max_piv) {
4153 		if (copy_size > max_piv - dst_offset)
4154 			copy_size = max_piv - dst_offset;
4155 
4156 		memcpy(dst_pivots + dst_offset,
4157 		       wr_mas->pivots + wr_mas->offset_end,
4158 		       sizeof(unsigned long) * copy_size);
4159 	}
4160 
4161 	if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4162 		dst_pivots[new_end] = mas->max;
4163 
4164 done:
4165 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4166 	if (in_rcu) {
4167 		mas->node = mt_mk_node(newnode, wr_mas->type);
4168 		mas_replace(mas, false);
4169 	} else {
4170 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4171 	}
4172 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4173 	mas_update_gap(mas);
4174 	return true;
4175 }
4176 
4177 /*
4178  * mas_wr_slot_store: Attempt to store a value in a slot.
4179  * @wr_mas: the maple write state
4180  *
4181  * Return: True if stored, false otherwise
4182  */
4183 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4184 {
4185 	struct ma_state *mas = wr_mas->mas;
4186 	unsigned long lmax; /* Logical max. */
4187 	unsigned char offset = mas->offset;
4188 
4189 	if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4190 				  (offset != wr_mas->node_end)))
4191 		return false;
4192 
4193 	if (offset == wr_mas->node_end - 1)
4194 		lmax = mas->max;
4195 	else
4196 		lmax = wr_mas->pivots[offset + 1];
4197 
4198 	/* going to overwrite too many slots. */
4199 	if (lmax < mas->last)
4200 		return false;
4201 
4202 	if (wr_mas->r_min == mas->index) {
4203 		/* overwriting two or more ranges with one. */
4204 		if (lmax == mas->last)
4205 			return false;
4206 
4207 		/* Overwriting all of offset and a portion of offset + 1. */
4208 		rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4209 		wr_mas->pivots[offset] = mas->last;
4210 		goto done;
4211 	}
4212 
4213 	/* Doesn't end on the next range end. */
4214 	if (lmax != mas->last)
4215 		return false;
4216 
4217 	/* Overwriting a portion of offset and all of offset + 1 */
4218 	if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4219 	    (wr_mas->entry || wr_mas->pivots[offset + 1]))
4220 		wr_mas->pivots[offset + 1] = mas->last;
4221 
4222 	rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4223 	wr_mas->pivots[offset] = mas->index - 1;
4224 	mas->offset++; /* Keep mas accurate. */
4225 
4226 done:
4227 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4228 	mas_update_gap(mas);
4229 	return true;
4230 }
4231 
4232 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4233 {
4234 	while ((wr_mas->mas->last > wr_mas->end_piv) &&
4235 	       (wr_mas->offset_end < wr_mas->node_end))
4236 		wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4237 
4238 	if (wr_mas->mas->last > wr_mas->end_piv)
4239 		wr_mas->end_piv = wr_mas->mas->max;
4240 }
4241 
4242 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4243 {
4244 	struct ma_state *mas = wr_mas->mas;
4245 
4246 	if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4247 		mas->last = wr_mas->end_piv;
4248 
4249 	/* Check next slot(s) if we are overwriting the end */
4250 	if ((mas->last == wr_mas->end_piv) &&
4251 	    (wr_mas->node_end != wr_mas->offset_end) &&
4252 	    !wr_mas->slots[wr_mas->offset_end + 1]) {
4253 		wr_mas->offset_end++;
4254 		if (wr_mas->offset_end == wr_mas->node_end)
4255 			mas->last = mas->max;
4256 		else
4257 			mas->last = wr_mas->pivots[wr_mas->offset_end];
4258 		wr_mas->end_piv = mas->last;
4259 	}
4260 
4261 	if (!wr_mas->content) {
4262 		/* If this one is null, the next and prev are not */
4263 		mas->index = wr_mas->r_min;
4264 	} else {
4265 		/* Check prev slot if we are overwriting the start */
4266 		if (mas->index == wr_mas->r_min && mas->offset &&
4267 		    !wr_mas->slots[mas->offset - 1]) {
4268 			mas->offset--;
4269 			wr_mas->r_min = mas->index =
4270 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4271 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4272 		}
4273 	}
4274 }
4275 
4276 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4277 {
4278 	unsigned char end = wr_mas->node_end;
4279 	unsigned char new_end = end + 1;
4280 	struct ma_state *mas = wr_mas->mas;
4281 	unsigned char node_pivots = mt_pivots[wr_mas->type];
4282 
4283 	if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4284 		if (new_end < node_pivots)
4285 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4286 
4287 		if (new_end < node_pivots)
4288 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4289 
4290 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4291 		mas->offset = new_end;
4292 		wr_mas->pivots[end] = mas->index - 1;
4293 
4294 		return true;
4295 	}
4296 
4297 	if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4298 		if (new_end < node_pivots)
4299 			wr_mas->pivots[new_end] = wr_mas->pivots[end];
4300 
4301 		rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4302 		if (new_end < node_pivots)
4303 			ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4304 
4305 		wr_mas->pivots[end] = mas->last;
4306 		rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4307 		return true;
4308 	}
4309 
4310 	return false;
4311 }
4312 
4313 /*
4314  * mas_wr_bnode() - Slow path for a modification.
4315  * @wr_mas: The write maple state
4316  *
4317  * This is where split, rebalance end up.
4318  */
4319 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4320 {
4321 	struct maple_big_node b_node;
4322 
4323 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4324 	memset(&b_node, 0, sizeof(struct maple_big_node));
4325 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4326 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4327 }
4328 
4329 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4330 {
4331 	unsigned char node_slots;
4332 	unsigned char node_size;
4333 	struct ma_state *mas = wr_mas->mas;
4334 
4335 	/* Direct replacement */
4336 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4337 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4338 		if (!!wr_mas->entry ^ !!wr_mas->content)
4339 			mas_update_gap(mas);
4340 		return;
4341 	}
4342 
4343 	/* Attempt to append */
4344 	node_slots = mt_slots[wr_mas->type];
4345 	node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4346 	if (mas->max == ULONG_MAX)
4347 		node_size++;
4348 
4349 	/* slot and node store will not fit, go to the slow path */
4350 	if (unlikely(node_size >= node_slots))
4351 		goto slow_path;
4352 
4353 	if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4354 	    (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4355 		if (!wr_mas->content || !wr_mas->entry)
4356 			mas_update_gap(mas);
4357 		return;
4358 	}
4359 
4360 	if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4361 		return;
4362 	else if (mas_wr_node_store(wr_mas))
4363 		return;
4364 
4365 	if (mas_is_err(mas))
4366 		return;
4367 
4368 slow_path:
4369 	mas_wr_bnode(wr_mas);
4370 }
4371 
4372 /*
4373  * mas_wr_store_entry() - Internal call to store a value
4374  * @mas: The maple state
4375  * @entry: The entry to store.
4376  *
4377  * Return: The contents that was stored at the index.
4378  */
4379 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4380 {
4381 	struct ma_state *mas = wr_mas->mas;
4382 
4383 	wr_mas->content = mas_start(mas);
4384 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4385 		mas_store_root(mas, wr_mas->entry);
4386 		return wr_mas->content;
4387 	}
4388 
4389 	if (unlikely(!mas_wr_walk(wr_mas))) {
4390 		mas_wr_spanning_store(wr_mas);
4391 		return wr_mas->content;
4392 	}
4393 
4394 	/* At this point, we are at the leaf node that needs to be altered. */
4395 	wr_mas->end_piv = wr_mas->r_max;
4396 	mas_wr_end_piv(wr_mas);
4397 
4398 	if (!wr_mas->entry)
4399 		mas_wr_extend_null(wr_mas);
4400 
4401 	/* New root for a single pointer */
4402 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4403 		mas_new_root(mas, wr_mas->entry);
4404 		return wr_mas->content;
4405 	}
4406 
4407 	mas_wr_modify(wr_mas);
4408 	return wr_mas->content;
4409 }
4410 
4411 /**
4412  * mas_insert() - Internal call to insert a value
4413  * @mas: The maple state
4414  * @entry: The entry to store
4415  *
4416  * Return: %NULL or the contents that already exists at the requested index
4417  * otherwise.  The maple state needs to be checked for error conditions.
4418  */
4419 static inline void *mas_insert(struct ma_state *mas, void *entry)
4420 {
4421 	MA_WR_STATE(wr_mas, mas, entry);
4422 
4423 	/*
4424 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4425 	 * tree.  If the insert fits exactly into an existing gap with a value
4426 	 * of NULL, then the slot only needs to be written with the new value.
4427 	 * If the range being inserted is adjacent to another range, then only a
4428 	 * single pivot needs to be inserted (as well as writing the entry).  If
4429 	 * the new range is within a gap but does not touch any other ranges,
4430 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4431 	 * usual, the entry must be written.  Most operations require a new node
4432 	 * to be allocated and replace an existing node to ensure RCU safety,
4433 	 * when in RCU mode.  The exception to requiring a newly allocated node
4434 	 * is when inserting at the end of a node (appending).  When done
4435 	 * carefully, appending can reuse the node in place.
4436 	 */
4437 	wr_mas.content = mas_start(mas);
4438 	if (wr_mas.content)
4439 		goto exists;
4440 
4441 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4442 		mas_store_root(mas, entry);
4443 		return NULL;
4444 	}
4445 
4446 	/* spanning writes always overwrite something */
4447 	if (!mas_wr_walk(&wr_mas))
4448 		goto exists;
4449 
4450 	/* At this point, we are at the leaf node that needs to be altered. */
4451 	wr_mas.offset_end = mas->offset;
4452 	wr_mas.end_piv = wr_mas.r_max;
4453 
4454 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4455 		goto exists;
4456 
4457 	if (!entry)
4458 		return NULL;
4459 
4460 	mas_wr_modify(&wr_mas);
4461 	return wr_mas.content;
4462 
4463 exists:
4464 	mas_set_err(mas, -EEXIST);
4465 	return wr_mas.content;
4466 
4467 }
4468 
4469 /*
4470  * mas_prev_node() - Find the prev non-null entry at the same level in the
4471  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4472  * @mas: The maple state
4473  * @min: The lower limit to search
4474  *
4475  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4476  * Return: 1 if the node is dead, 0 otherwise.
4477  */
4478 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4479 {
4480 	enum maple_type mt;
4481 	int offset, level;
4482 	void __rcu **slots;
4483 	struct maple_node *node;
4484 	struct maple_enode *enode;
4485 	unsigned long *pivots;
4486 
4487 	if (mas_is_none(mas))
4488 		return 0;
4489 
4490 	level = 0;
4491 	do {
4492 		node = mas_mn(mas);
4493 		if (ma_is_root(node))
4494 			goto no_entry;
4495 
4496 		/* Walk up. */
4497 		if (unlikely(mas_ascend(mas)))
4498 			return 1;
4499 		offset = mas->offset;
4500 		level++;
4501 	} while (!offset);
4502 
4503 	offset--;
4504 	mt = mte_node_type(mas->node);
4505 	node = mas_mn(mas);
4506 	slots = ma_slots(node, mt);
4507 	pivots = ma_pivots(node, mt);
4508 	mas->max = pivots[offset];
4509 	if (offset)
4510 		mas->min = pivots[offset - 1] + 1;
4511 	if (unlikely(ma_dead_node(node)))
4512 		return 1;
4513 
4514 	if (mas->max < min)
4515 		goto no_entry_min;
4516 
4517 	while (level > 1) {
4518 		level--;
4519 		enode = mas_slot(mas, slots, offset);
4520 		if (unlikely(ma_dead_node(node)))
4521 			return 1;
4522 
4523 		mas->node = enode;
4524 		mt = mte_node_type(mas->node);
4525 		node = mas_mn(mas);
4526 		slots = ma_slots(node, mt);
4527 		pivots = ma_pivots(node, mt);
4528 		offset = ma_data_end(node, mt, pivots, mas->max);
4529 		if (offset)
4530 			mas->min = pivots[offset - 1] + 1;
4531 
4532 		if (offset < mt_pivots[mt])
4533 			mas->max = pivots[offset];
4534 
4535 		if (mas->max < min)
4536 			goto no_entry;
4537 	}
4538 
4539 	mas->node = mas_slot(mas, slots, offset);
4540 	if (unlikely(ma_dead_node(node)))
4541 		return 1;
4542 
4543 	mas->offset = mas_data_end(mas);
4544 	if (unlikely(mte_dead_node(mas->node)))
4545 		return 1;
4546 
4547 	return 0;
4548 
4549 no_entry_min:
4550 	mas->offset = offset;
4551 	if (offset)
4552 		mas->min = pivots[offset - 1] + 1;
4553 no_entry:
4554 	if (unlikely(ma_dead_node(node)))
4555 		return 1;
4556 
4557 	mas->node = MAS_NONE;
4558 	return 0;
4559 }
4560 
4561 /*
4562  * mas_next_node() - Get the next node at the same level in the tree.
4563  * @mas: The maple state
4564  * @max: The maximum pivot value to check.
4565  *
4566  * The next value will be mas->node[mas->offset] or MAS_NONE.
4567  * Return: 1 on dead node, 0 otherwise.
4568  */
4569 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4570 				unsigned long max)
4571 {
4572 	unsigned long min, pivot;
4573 	unsigned long *pivots;
4574 	struct maple_enode *enode;
4575 	int level = 0;
4576 	unsigned char offset;
4577 	enum maple_type mt;
4578 	void __rcu **slots;
4579 
4580 	if (mas->max >= max)
4581 		goto no_entry;
4582 
4583 	level = 0;
4584 	do {
4585 		if (ma_is_root(node))
4586 			goto no_entry;
4587 
4588 		min = mas->max + 1;
4589 		if (min > max)
4590 			goto no_entry;
4591 
4592 		if (unlikely(mas_ascend(mas)))
4593 			return 1;
4594 
4595 		offset = mas->offset;
4596 		level++;
4597 		node = mas_mn(mas);
4598 		mt = mte_node_type(mas->node);
4599 		pivots = ma_pivots(node, mt);
4600 	} while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4601 
4602 	slots = ma_slots(node, mt);
4603 	pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4604 	while (unlikely(level > 1)) {
4605 		/* Descend, if necessary */
4606 		enode = mas_slot(mas, slots, offset);
4607 		if (unlikely(ma_dead_node(node)))
4608 			return 1;
4609 
4610 		mas->node = enode;
4611 		level--;
4612 		node = mas_mn(mas);
4613 		mt = mte_node_type(mas->node);
4614 		slots = ma_slots(node, mt);
4615 		pivots = ma_pivots(node, mt);
4616 		offset = 0;
4617 		pivot = pivots[0];
4618 	}
4619 
4620 	enode = mas_slot(mas, slots, offset);
4621 	if (unlikely(ma_dead_node(node)))
4622 		return 1;
4623 
4624 	mas->node = enode;
4625 	mas->min = min;
4626 	mas->max = pivot;
4627 	return 0;
4628 
4629 no_entry:
4630 	if (unlikely(ma_dead_node(node)))
4631 		return 1;
4632 
4633 	mas->node = MAS_NONE;
4634 	return 0;
4635 }
4636 
4637 /*
4638  * mas_next_nentry() - Get the next node entry
4639  * @mas: The maple state
4640  * @max: The maximum value to check
4641  * @*range_start: Pointer to store the start of the range.
4642  *
4643  * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4644  * pivot of the entry.
4645  *
4646  * Return: The next entry, %NULL otherwise
4647  */
4648 static inline void *mas_next_nentry(struct ma_state *mas,
4649 	    struct maple_node *node, unsigned long max, enum maple_type type)
4650 {
4651 	unsigned char count;
4652 	unsigned long pivot;
4653 	unsigned long *pivots;
4654 	void __rcu **slots;
4655 	void *entry;
4656 
4657 	if (mas->last == mas->max) {
4658 		mas->index = mas->max;
4659 		return NULL;
4660 	}
4661 
4662 	pivots = ma_pivots(node, type);
4663 	slots = ma_slots(node, type);
4664 	mas->index = mas_safe_min(mas, pivots, mas->offset);
4665 	count = ma_data_end(node, type, pivots, mas->max);
4666 	if (ma_dead_node(node))
4667 		return NULL;
4668 
4669 	if (mas->index > max)
4670 		return NULL;
4671 
4672 	if (mas->offset > count)
4673 		return NULL;
4674 
4675 	while (mas->offset < count) {
4676 		pivot = pivots[mas->offset];
4677 		entry = mas_slot(mas, slots, mas->offset);
4678 		if (ma_dead_node(node))
4679 			return NULL;
4680 
4681 		if (entry)
4682 			goto found;
4683 
4684 		if (pivot >= max)
4685 			return NULL;
4686 
4687 		mas->index = pivot + 1;
4688 		mas->offset++;
4689 	}
4690 
4691 	if (mas->index > mas->max) {
4692 		mas->index = mas->last;
4693 		return NULL;
4694 	}
4695 
4696 	pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4697 	entry = mas_slot(mas, slots, mas->offset);
4698 	if (ma_dead_node(node))
4699 		return NULL;
4700 
4701 	if (!pivot)
4702 		return NULL;
4703 
4704 	if (!entry)
4705 		return NULL;
4706 
4707 found:
4708 	mas->last = pivot;
4709 	return entry;
4710 }
4711 
4712 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4713 {
4714 retry:
4715 	mas_set(mas, index);
4716 	mas_state_walk(mas);
4717 	if (mas_is_start(mas))
4718 		goto retry;
4719 }
4720 
4721 /*
4722  * mas_next_entry() - Internal function to get the next entry.
4723  * @mas: The maple state
4724  * @limit: The maximum range start.
4725  *
4726  * Set the @mas->node to the next entry and the range_start to
4727  * the beginning value for the entry.  Does not check beyond @limit.
4728  * Sets @mas->index and @mas->last to the limit if it is hit.
4729  * Restarts on dead nodes.
4730  *
4731  * Return: the next entry or %NULL.
4732  */
4733 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4734 {
4735 	void *entry = NULL;
4736 	struct maple_enode *prev_node;
4737 	struct maple_node *node;
4738 	unsigned char offset;
4739 	unsigned long last;
4740 	enum maple_type mt;
4741 
4742 	if (mas->index > limit) {
4743 		mas->index = mas->last = limit;
4744 		mas_pause(mas);
4745 		return NULL;
4746 	}
4747 	last = mas->last;
4748 retry:
4749 	offset = mas->offset;
4750 	prev_node = mas->node;
4751 	node = mas_mn(mas);
4752 	mt = mte_node_type(mas->node);
4753 	mas->offset++;
4754 	if (unlikely(mas->offset >= mt_slots[mt])) {
4755 		mas->offset = mt_slots[mt] - 1;
4756 		goto next_node;
4757 	}
4758 
4759 	while (!mas_is_none(mas)) {
4760 		entry = mas_next_nentry(mas, node, limit, mt);
4761 		if (unlikely(ma_dead_node(node))) {
4762 			mas_rewalk(mas, last);
4763 			goto retry;
4764 		}
4765 
4766 		if (likely(entry))
4767 			return entry;
4768 
4769 		if (unlikely((mas->index > limit)))
4770 			break;
4771 
4772 next_node:
4773 		prev_node = mas->node;
4774 		offset = mas->offset;
4775 		if (unlikely(mas_next_node(mas, node, limit))) {
4776 			mas_rewalk(mas, last);
4777 			goto retry;
4778 		}
4779 		mas->offset = 0;
4780 		node = mas_mn(mas);
4781 		mt = mte_node_type(mas->node);
4782 	}
4783 
4784 	mas->index = mas->last = limit;
4785 	mas->offset = offset;
4786 	mas->node = prev_node;
4787 	return NULL;
4788 }
4789 
4790 /*
4791  * mas_prev_nentry() - Get the previous node entry.
4792  * @mas: The maple state.
4793  * @limit: The lower limit to check for a value.
4794  *
4795  * Return: the entry, %NULL otherwise.
4796  */
4797 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4798 				    unsigned long index)
4799 {
4800 	unsigned long pivot, min;
4801 	unsigned char offset;
4802 	struct maple_node *mn;
4803 	enum maple_type mt;
4804 	unsigned long *pivots;
4805 	void __rcu **slots;
4806 	void *entry;
4807 
4808 retry:
4809 	if (!mas->offset)
4810 		return NULL;
4811 
4812 	mn = mas_mn(mas);
4813 	mt = mte_node_type(mas->node);
4814 	offset = mas->offset - 1;
4815 	if (offset >= mt_slots[mt])
4816 		offset = mt_slots[mt] - 1;
4817 
4818 	slots = ma_slots(mn, mt);
4819 	pivots = ma_pivots(mn, mt);
4820 	if (offset == mt_pivots[mt])
4821 		pivot = mas->max;
4822 	else
4823 		pivot = pivots[offset];
4824 
4825 	if (unlikely(ma_dead_node(mn))) {
4826 		mas_rewalk(mas, index);
4827 		goto retry;
4828 	}
4829 
4830 	while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4831 	       !pivot))
4832 		pivot = pivots[--offset];
4833 
4834 	min = mas_safe_min(mas, pivots, offset);
4835 	entry = mas_slot(mas, slots, offset);
4836 	if (unlikely(ma_dead_node(mn))) {
4837 		mas_rewalk(mas, index);
4838 		goto retry;
4839 	}
4840 
4841 	if (likely(entry)) {
4842 		mas->offset = offset;
4843 		mas->last = pivot;
4844 		mas->index = min;
4845 	}
4846 	return entry;
4847 }
4848 
4849 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4850 {
4851 	void *entry;
4852 
4853 	if (mas->index < min) {
4854 		mas->index = mas->last = min;
4855 		mas->node = MAS_NONE;
4856 		return NULL;
4857 	}
4858 retry:
4859 	while (likely(!mas_is_none(mas))) {
4860 		entry = mas_prev_nentry(mas, min, mas->index);
4861 		if (unlikely(mas->last < min))
4862 			goto not_found;
4863 
4864 		if (likely(entry))
4865 			return entry;
4866 
4867 		if (unlikely(mas_prev_node(mas, min))) {
4868 			mas_rewalk(mas, mas->index);
4869 			goto retry;
4870 		}
4871 
4872 		mas->offset++;
4873 	}
4874 
4875 	mas->offset--;
4876 not_found:
4877 	mas->index = mas->last = min;
4878 	return NULL;
4879 }
4880 
4881 /*
4882  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4883  * highest gap address of a given size in a given node and descend.
4884  * @mas: The maple state
4885  * @size: The needed size.
4886  *
4887  * Return: True if found in a leaf, false otherwise.
4888  *
4889  */
4890 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4891 {
4892 	enum maple_type type = mte_node_type(mas->node);
4893 	struct maple_node *node = mas_mn(mas);
4894 	unsigned long *pivots, *gaps;
4895 	void __rcu **slots;
4896 	unsigned long gap = 0;
4897 	unsigned long max, min;
4898 	unsigned char offset;
4899 
4900 	if (unlikely(mas_is_err(mas)))
4901 		return true;
4902 
4903 	if (ma_is_dense(type)) {
4904 		/* dense nodes. */
4905 		mas->offset = (unsigned char)(mas->index - mas->min);
4906 		return true;
4907 	}
4908 
4909 	pivots = ma_pivots(node, type);
4910 	slots = ma_slots(node, type);
4911 	gaps = ma_gaps(node, type);
4912 	offset = mas->offset;
4913 	min = mas_safe_min(mas, pivots, offset);
4914 	/* Skip out of bounds. */
4915 	while (mas->last < min)
4916 		min = mas_safe_min(mas, pivots, --offset);
4917 
4918 	max = mas_safe_pivot(mas, pivots, offset, type);
4919 	while (mas->index <= max) {
4920 		gap = 0;
4921 		if (gaps)
4922 			gap = gaps[offset];
4923 		else if (!mas_slot(mas, slots, offset))
4924 			gap = max - min + 1;
4925 
4926 		if (gap) {
4927 			if ((size <= gap) && (size <= mas->last - min + 1))
4928 				break;
4929 
4930 			if (!gaps) {
4931 				/* Skip the next slot, it cannot be a gap. */
4932 				if (offset < 2)
4933 					goto ascend;
4934 
4935 				offset -= 2;
4936 				max = pivots[offset];
4937 				min = mas_safe_min(mas, pivots, offset);
4938 				continue;
4939 			}
4940 		}
4941 
4942 		if (!offset)
4943 			goto ascend;
4944 
4945 		offset--;
4946 		max = min - 1;
4947 		min = mas_safe_min(mas, pivots, offset);
4948 	}
4949 
4950 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4951 		goto no_space;
4952 
4953 	if (unlikely(ma_is_leaf(type))) {
4954 		mas->offset = offset;
4955 		mas->min = min;
4956 		mas->max = min + gap - 1;
4957 		return true;
4958 	}
4959 
4960 	/* descend, only happens under lock. */
4961 	mas->node = mas_slot(mas, slots, offset);
4962 	mas->min = min;
4963 	mas->max = max;
4964 	mas->offset = mas_data_end(mas);
4965 	return false;
4966 
4967 ascend:
4968 	if (!mte_is_root(mas->node))
4969 		return false;
4970 
4971 no_space:
4972 	mas_set_err(mas, -EBUSY);
4973 	return false;
4974 }
4975 
4976 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4977 {
4978 	enum maple_type type = mte_node_type(mas->node);
4979 	unsigned long pivot, min, gap = 0;
4980 	unsigned char offset;
4981 	unsigned long *gaps;
4982 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4983 	void __rcu **slots = ma_slots(mas_mn(mas), type);
4984 	bool found = false;
4985 
4986 	if (ma_is_dense(type)) {
4987 		mas->offset = (unsigned char)(mas->index - mas->min);
4988 		return true;
4989 	}
4990 
4991 	gaps = ma_gaps(mte_to_node(mas->node), type);
4992 	offset = mas->offset;
4993 	min = mas_safe_min(mas, pivots, offset);
4994 	for (; offset < mt_slots[type]; offset++) {
4995 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4996 		if (offset && !pivot)
4997 			break;
4998 
4999 		/* Not within lower bounds */
5000 		if (mas->index > pivot)
5001 			goto next_slot;
5002 
5003 		if (gaps)
5004 			gap = gaps[offset];
5005 		else if (!mas_slot(mas, slots, offset))
5006 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5007 		else
5008 			goto next_slot;
5009 
5010 		if (gap >= size) {
5011 			if (ma_is_leaf(type)) {
5012 				found = true;
5013 				goto done;
5014 			}
5015 			if (mas->index <= pivot) {
5016 				mas->node = mas_slot(mas, slots, offset);
5017 				mas->min = min;
5018 				mas->max = pivot;
5019 				offset = 0;
5020 				break;
5021 			}
5022 		}
5023 next_slot:
5024 		min = pivot + 1;
5025 		if (mas->last <= pivot) {
5026 			mas_set_err(mas, -EBUSY);
5027 			return true;
5028 		}
5029 	}
5030 
5031 	if (mte_is_root(mas->node))
5032 		found = true;
5033 done:
5034 	mas->offset = offset;
5035 	return found;
5036 }
5037 
5038 /**
5039  * mas_walk() - Search for @mas->index in the tree.
5040  * @mas: The maple state.
5041  *
5042  * mas->index and mas->last will be set to the range if there is a value.  If
5043  * mas->node is MAS_NONE, reset to MAS_START.
5044  *
5045  * Return: the entry at the location or %NULL.
5046  */
5047 void *mas_walk(struct ma_state *mas)
5048 {
5049 	void *entry;
5050 
5051 retry:
5052 	entry = mas_state_walk(mas);
5053 	if (mas_is_start(mas))
5054 		goto retry;
5055 
5056 	if (mas_is_ptr(mas)) {
5057 		if (!mas->index) {
5058 			mas->last = 0;
5059 		} else {
5060 			mas->index = 1;
5061 			mas->last = ULONG_MAX;
5062 		}
5063 		return entry;
5064 	}
5065 
5066 	if (mas_is_none(mas)) {
5067 		mas->index = 0;
5068 		mas->last = ULONG_MAX;
5069 	}
5070 
5071 	return entry;
5072 }
5073 EXPORT_SYMBOL_GPL(mas_walk);
5074 
5075 static inline bool mas_rewind_node(struct ma_state *mas)
5076 {
5077 	unsigned char slot;
5078 
5079 	do {
5080 		if (mte_is_root(mas->node)) {
5081 			slot = mas->offset;
5082 			if (!slot)
5083 				return false;
5084 		} else {
5085 			mas_ascend(mas);
5086 			slot = mas->offset;
5087 		}
5088 	} while (!slot);
5089 
5090 	mas->offset = --slot;
5091 	return true;
5092 }
5093 
5094 /*
5095  * mas_skip_node() - Internal function.  Skip over a node.
5096  * @mas: The maple state.
5097  *
5098  * Return: true if there is another node, false otherwise.
5099  */
5100 static inline bool mas_skip_node(struct ma_state *mas)
5101 {
5102 	if (mas_is_err(mas))
5103 		return false;
5104 
5105 	do {
5106 		if (mte_is_root(mas->node)) {
5107 			if (mas->offset >= mas_data_end(mas)) {
5108 				mas_set_err(mas, -EBUSY);
5109 				return false;
5110 			}
5111 		} else {
5112 			mas_ascend(mas);
5113 		}
5114 	} while (mas->offset >= mas_data_end(mas));
5115 
5116 	mas->offset++;
5117 	return true;
5118 }
5119 
5120 /*
5121  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5122  * @size
5123  * @mas: The maple state
5124  * @size: The size of the gap required
5125  *
5126  * Search between @mas->index and @mas->last for a gap of @size.
5127  */
5128 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5129 {
5130 	struct maple_enode *last = NULL;
5131 
5132 	/*
5133 	 * There are 4 options:
5134 	 * go to child (descend)
5135 	 * go back to parent (ascend)
5136 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5137 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5138 	 */
5139 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5140 		if (last == mas->node)
5141 			mas_skip_node(mas);
5142 		else
5143 			last = mas->node;
5144 	}
5145 }
5146 
5147 /*
5148  * mas_fill_gap() - Fill a located gap with @entry.
5149  * @mas: The maple state
5150  * @entry: The value to store
5151  * @slot: The offset into the node to store the @entry
5152  * @size: The size of the entry
5153  * @index: The start location
5154  */
5155 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5156 		unsigned char slot, unsigned long size, unsigned long *index)
5157 {
5158 	MA_WR_STATE(wr_mas, mas, entry);
5159 	unsigned char pslot = mte_parent_slot(mas->node);
5160 	struct maple_enode *mn = mas->node;
5161 	unsigned long *pivots;
5162 	enum maple_type ptype;
5163 	/*
5164 	 * mas->index is the start address for the search
5165 	 *  which may no longer be needed.
5166 	 * mas->last is the end address for the search
5167 	 */
5168 
5169 	*index = mas->index;
5170 	mas->last = mas->index + size - 1;
5171 
5172 	/*
5173 	 * It is possible that using mas->max and mas->min to correctly
5174 	 * calculate the index and last will cause an issue in the gap
5175 	 * calculation, so fix the ma_state here
5176 	 */
5177 	mas_ascend(mas);
5178 	ptype = mte_node_type(mas->node);
5179 	pivots = ma_pivots(mas_mn(mas), ptype);
5180 	mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5181 	mas->min = mas_safe_min(mas, pivots, pslot);
5182 	mas->node = mn;
5183 	mas->offset = slot;
5184 	mas_wr_store_entry(&wr_mas);
5185 }
5186 
5187 /*
5188  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5189  * searching for a gap in an empty tree.
5190  * @mas: The maple state
5191  * @min: the minimum range
5192  * @max: The maximum range
5193  * @size: The size of the gap
5194  * @fwd: Searching forward or back
5195  */
5196 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5197 				unsigned long max, unsigned long size, bool fwd)
5198 {
5199 	unsigned long start = 0;
5200 
5201 	if (!unlikely(mas_is_none(mas)))
5202 		start++;
5203 	/* mas_is_ptr */
5204 
5205 	if (start < min)
5206 		start = min;
5207 
5208 	if (fwd) {
5209 		mas->index = start;
5210 		mas->last = start + size - 1;
5211 		return;
5212 	}
5213 
5214 	mas->index = max;
5215 }
5216 
5217 /*
5218  * mas_empty_area() - Get the lowest address within the range that is
5219  * sufficient for the size requested.
5220  * @mas: The maple state
5221  * @min: The lowest value of the range
5222  * @max: The highest value of the range
5223  * @size: The size needed
5224  */
5225 int mas_empty_area(struct ma_state *mas, unsigned long min,
5226 		unsigned long max, unsigned long size)
5227 {
5228 	unsigned char offset;
5229 	unsigned long *pivots;
5230 	enum maple_type mt;
5231 
5232 	if (mas_is_start(mas))
5233 		mas_start(mas);
5234 	else if (mas->offset >= 2)
5235 		mas->offset -= 2;
5236 	else if (!mas_skip_node(mas))
5237 		return -EBUSY;
5238 
5239 	/* Empty set */
5240 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5241 		mas_sparse_area(mas, min, max, size, true);
5242 		return 0;
5243 	}
5244 
5245 	/* The start of the window can only be within these values */
5246 	mas->index = min;
5247 	mas->last = max;
5248 	mas_awalk(mas, size);
5249 
5250 	if (unlikely(mas_is_err(mas)))
5251 		return xa_err(mas->node);
5252 
5253 	offset = mas->offset;
5254 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5255 		return -EBUSY;
5256 
5257 	mt = mte_node_type(mas->node);
5258 	pivots = ma_pivots(mas_mn(mas), mt);
5259 	if (offset)
5260 		mas->min = pivots[offset - 1] + 1;
5261 
5262 	if (offset < mt_pivots[mt])
5263 		mas->max = pivots[offset];
5264 
5265 	if (mas->index < mas->min)
5266 		mas->index = mas->min;
5267 
5268 	mas->last = mas->index + size - 1;
5269 	return 0;
5270 }
5271 EXPORT_SYMBOL_GPL(mas_empty_area);
5272 
5273 /*
5274  * mas_empty_area_rev() - Get the highest address within the range that is
5275  * sufficient for the size requested.
5276  * @mas: The maple state
5277  * @min: The lowest value of the range
5278  * @max: The highest value of the range
5279  * @size: The size needed
5280  */
5281 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5282 		unsigned long max, unsigned long size)
5283 {
5284 	struct maple_enode *last = mas->node;
5285 
5286 	if (mas_is_start(mas)) {
5287 		mas_start(mas);
5288 		mas->offset = mas_data_end(mas);
5289 	} else if (mas->offset >= 2) {
5290 		mas->offset -= 2;
5291 	} else if (!mas_rewind_node(mas)) {
5292 		return -EBUSY;
5293 	}
5294 
5295 	/* Empty set. */
5296 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5297 		mas_sparse_area(mas, min, max, size, false);
5298 		return 0;
5299 	}
5300 
5301 	/* The start of the window can only be within these values. */
5302 	mas->index = min;
5303 	mas->last = max;
5304 
5305 	while (!mas_rev_awalk(mas, size)) {
5306 		if (last == mas->node) {
5307 			if (!mas_rewind_node(mas))
5308 				return -EBUSY;
5309 		} else {
5310 			last = mas->node;
5311 		}
5312 	}
5313 
5314 	if (mas_is_err(mas))
5315 		return xa_err(mas->node);
5316 
5317 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5318 		return -EBUSY;
5319 
5320 	/*
5321 	 * mas_rev_awalk() has set mas->min and mas->max to the gap values.  If
5322 	 * the maximum is outside the window we are searching, then use the last
5323 	 * location in the search.
5324 	 * mas->max and mas->min is the range of the gap.
5325 	 * mas->index and mas->last are currently set to the search range.
5326 	 */
5327 
5328 	/* Trim the upper limit to the max. */
5329 	if (mas->max <= mas->last)
5330 		mas->last = mas->max;
5331 
5332 	mas->index = mas->last - size + 1;
5333 	return 0;
5334 }
5335 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5336 
5337 static inline int mas_alloc(struct ma_state *mas, void *entry,
5338 		unsigned long size, unsigned long *index)
5339 {
5340 	unsigned long min;
5341 
5342 	mas_start(mas);
5343 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
5344 		mas_root_expand(mas, entry);
5345 		if (mas_is_err(mas))
5346 			return xa_err(mas->node);
5347 
5348 		if (!mas->index)
5349 			return mte_pivot(mas->node, 0);
5350 		return mte_pivot(mas->node, 1);
5351 	}
5352 
5353 	/* Must be walking a tree. */
5354 	mas_awalk(mas, size);
5355 	if (mas_is_err(mas))
5356 		return xa_err(mas->node);
5357 
5358 	if (mas->offset == MAPLE_NODE_SLOTS)
5359 		goto no_gap;
5360 
5361 	/*
5362 	 * At this point, mas->node points to the right node and we have an
5363 	 * offset that has a sufficient gap.
5364 	 */
5365 	min = mas->min;
5366 	if (mas->offset)
5367 		min = mte_pivot(mas->node, mas->offset - 1) + 1;
5368 
5369 	if (mas->index < min)
5370 		mas->index = min;
5371 
5372 	mas_fill_gap(mas, entry, mas->offset, size, index);
5373 	return 0;
5374 
5375 no_gap:
5376 	return -EBUSY;
5377 }
5378 
5379 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5380 				unsigned long max, void *entry,
5381 				unsigned long size, unsigned long *index)
5382 {
5383 	int ret = 0;
5384 
5385 	ret = mas_empty_area_rev(mas, min, max, size);
5386 	if (ret)
5387 		return ret;
5388 
5389 	if (mas_is_err(mas))
5390 		return xa_err(mas->node);
5391 
5392 	if (mas->offset == MAPLE_NODE_SLOTS)
5393 		goto no_gap;
5394 
5395 	mas_fill_gap(mas, entry, mas->offset, size, index);
5396 	return 0;
5397 
5398 no_gap:
5399 	return -EBUSY;
5400 }
5401 
5402 /*
5403  * mas_dead_leaves() - Mark all leaves of a node as dead.
5404  * @mas: The maple state
5405  * @slots: Pointer to the slot array
5406  *
5407  * Must hold the write lock.
5408  *
5409  * Return: The number of leaves marked as dead.
5410  */
5411 static inline
5412 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5413 {
5414 	struct maple_node *node;
5415 	enum maple_type type;
5416 	void *entry;
5417 	int offset;
5418 
5419 	for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5420 		entry = mas_slot_locked(mas, slots, offset);
5421 		type = mte_node_type(entry);
5422 		node = mte_to_node(entry);
5423 		/* Use both node and type to catch LE & BE metadata */
5424 		if (!node || !type)
5425 			break;
5426 
5427 		mte_set_node_dead(entry);
5428 		smp_wmb(); /* Needed for RCU */
5429 		node->type = type;
5430 		rcu_assign_pointer(slots[offset], node);
5431 	}
5432 
5433 	return offset;
5434 }
5435 
5436 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5437 {
5438 	struct maple_node *node, *next;
5439 	void __rcu **slots = NULL;
5440 
5441 	next = mas_mn(mas);
5442 	do {
5443 		mas->node = ma_enode_ptr(next);
5444 		node = mas_mn(mas);
5445 		slots = ma_slots(node, node->type);
5446 		next = mas_slot_locked(mas, slots, offset);
5447 		offset = 0;
5448 	} while (!ma_is_leaf(next->type));
5449 
5450 	return slots;
5451 }
5452 
5453 static void mt_free_walk(struct rcu_head *head)
5454 {
5455 	void __rcu **slots;
5456 	struct maple_node *node, *start;
5457 	struct maple_tree mt;
5458 	unsigned char offset;
5459 	enum maple_type type;
5460 	MA_STATE(mas, &mt, 0, 0);
5461 
5462 	node = container_of(head, struct maple_node, rcu);
5463 
5464 	if (ma_is_leaf(node->type))
5465 		goto free_leaf;
5466 
5467 	mt_init_flags(&mt, node->ma_flags);
5468 	mas_lock(&mas);
5469 	start = node;
5470 	mas.node = mt_mk_node(node, node->type);
5471 	slots = mas_dead_walk(&mas, 0);
5472 	node = mas_mn(&mas);
5473 	do {
5474 		mt_free_bulk(node->slot_len, slots);
5475 		offset = node->parent_slot + 1;
5476 		mas.node = node->piv_parent;
5477 		if (mas_mn(&mas) == node)
5478 			goto start_slots_free;
5479 
5480 		type = mte_node_type(mas.node);
5481 		slots = ma_slots(mte_to_node(mas.node), type);
5482 		if ((offset < mt_slots[type]) && (slots[offset]))
5483 			slots = mas_dead_walk(&mas, offset);
5484 
5485 		node = mas_mn(&mas);
5486 	} while ((node != start) || (node->slot_len < offset));
5487 
5488 	slots = ma_slots(node, node->type);
5489 	mt_free_bulk(node->slot_len, slots);
5490 
5491 start_slots_free:
5492 	mas_unlock(&mas);
5493 free_leaf:
5494 	mt_free_rcu(&node->rcu);
5495 }
5496 
5497 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5498 			struct maple_enode *prev, unsigned char offset)
5499 {
5500 	struct maple_node *node;
5501 	struct maple_enode *next = mas->node;
5502 	void __rcu **slots = NULL;
5503 
5504 	do {
5505 		mas->node = next;
5506 		node = mas_mn(mas);
5507 		slots = ma_slots(node, mte_node_type(mas->node));
5508 		next = mas_slot_locked(mas, slots, 0);
5509 		if ((mte_dead_node(next)))
5510 			next = mas_slot_locked(mas, slots, 1);
5511 
5512 		mte_set_node_dead(mas->node);
5513 		node->type = mte_node_type(mas->node);
5514 		node->piv_parent = prev;
5515 		node->parent_slot = offset;
5516 		offset = 0;
5517 		prev = mas->node;
5518 	} while (!mte_is_leaf(next));
5519 
5520 	return slots;
5521 }
5522 
5523 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5524 			    bool free)
5525 {
5526 	void __rcu **slots;
5527 	struct maple_node *node = mte_to_node(enode);
5528 	struct maple_enode *start;
5529 	struct maple_tree mt;
5530 
5531 	MA_STATE(mas, &mt, 0, 0);
5532 
5533 	if (mte_is_leaf(enode))
5534 		goto free_leaf;
5535 
5536 	mt_init_flags(&mt, ma_flags);
5537 	mas_lock(&mas);
5538 
5539 	mas.node = start = enode;
5540 	slots = mas_destroy_descend(&mas, start, 0);
5541 	node = mas_mn(&mas);
5542 	do {
5543 		enum maple_type type;
5544 		unsigned char offset;
5545 		struct maple_enode *parent, *tmp;
5546 
5547 		node->slot_len = mas_dead_leaves(&mas, slots);
5548 		if (free)
5549 			mt_free_bulk(node->slot_len, slots);
5550 		offset = node->parent_slot + 1;
5551 		mas.node = node->piv_parent;
5552 		if (mas_mn(&mas) == node)
5553 			goto start_slots_free;
5554 
5555 		type = mte_node_type(mas.node);
5556 		slots = ma_slots(mte_to_node(mas.node), type);
5557 		if (offset >= mt_slots[type])
5558 			goto next;
5559 
5560 		tmp = mas_slot_locked(&mas, slots, offset);
5561 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5562 			parent = mas.node;
5563 			mas.node = tmp;
5564 			slots = mas_destroy_descend(&mas, parent, offset);
5565 		}
5566 next:
5567 		node = mas_mn(&mas);
5568 	} while (start != mas.node);
5569 
5570 	node = mas_mn(&mas);
5571 	node->slot_len = mas_dead_leaves(&mas, slots);
5572 	if (free)
5573 		mt_free_bulk(node->slot_len, slots);
5574 
5575 start_slots_free:
5576 	mas_unlock(&mas);
5577 
5578 free_leaf:
5579 	if (free)
5580 		mt_free_rcu(&node->rcu);
5581 }
5582 
5583 /*
5584  * mte_destroy_walk() - Free a tree or sub-tree.
5585  * @enode: the encoded maple node (maple_enode) to start
5586  * @mt: the tree to free - needed for node types.
5587  *
5588  * Must hold the write lock.
5589  */
5590 static inline void mte_destroy_walk(struct maple_enode *enode,
5591 				    struct maple_tree *mt)
5592 {
5593 	struct maple_node *node = mte_to_node(enode);
5594 
5595 	if (mt_in_rcu(mt)) {
5596 		mt_destroy_walk(enode, mt->ma_flags, false);
5597 		call_rcu(&node->rcu, mt_free_walk);
5598 	} else {
5599 		mt_destroy_walk(enode, mt->ma_flags, true);
5600 	}
5601 }
5602 
5603 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5604 {
5605 	if (unlikely(mas_is_paused(wr_mas->mas)))
5606 		mas_reset(wr_mas->mas);
5607 
5608 	if (!mas_is_start(wr_mas->mas)) {
5609 		if (mas_is_none(wr_mas->mas)) {
5610 			mas_reset(wr_mas->mas);
5611 		} else {
5612 			wr_mas->r_max = wr_mas->mas->max;
5613 			wr_mas->type = mte_node_type(wr_mas->mas->node);
5614 			if (mas_is_span_wr(wr_mas))
5615 				mas_reset(wr_mas->mas);
5616 		}
5617 	}
5618 }
5619 
5620 /* Interface */
5621 
5622 /**
5623  * mas_store() - Store an @entry.
5624  * @mas: The maple state.
5625  * @entry: The entry to store.
5626  *
5627  * The @mas->index and @mas->last is used to set the range for the @entry.
5628  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5629  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5630  *
5631  * Return: the first entry between mas->index and mas->last or %NULL.
5632  */
5633 void *mas_store(struct ma_state *mas, void *entry)
5634 {
5635 	MA_WR_STATE(wr_mas, mas, entry);
5636 
5637 	trace_ma_write(__func__, mas, 0, entry);
5638 #ifdef CONFIG_DEBUG_MAPLE_TREE
5639 	if (mas->index > mas->last)
5640 		pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5641 	MT_BUG_ON(mas->tree, mas->index > mas->last);
5642 	if (mas->index > mas->last) {
5643 		mas_set_err(mas, -EINVAL);
5644 		return NULL;
5645 	}
5646 
5647 #endif
5648 
5649 	/*
5650 	 * Storing is the same operation as insert with the added caveat that it
5651 	 * can overwrite entries.  Although this seems simple enough, one may
5652 	 * want to examine what happens if a single store operation was to
5653 	 * overwrite multiple entries within a self-balancing B-Tree.
5654 	 */
5655 	mas_wr_store_setup(&wr_mas);
5656 	mas_wr_store_entry(&wr_mas);
5657 	return wr_mas.content;
5658 }
5659 EXPORT_SYMBOL_GPL(mas_store);
5660 
5661 /**
5662  * mas_store_gfp() - Store a value into the tree.
5663  * @mas: The maple state
5664  * @entry: The entry to store
5665  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5666  *
5667  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5668  * be allocated.
5669  */
5670 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5671 {
5672 	MA_WR_STATE(wr_mas, mas, entry);
5673 
5674 	mas_wr_store_setup(&wr_mas);
5675 	trace_ma_write(__func__, mas, 0, entry);
5676 retry:
5677 	mas_wr_store_entry(&wr_mas);
5678 	if (unlikely(mas_nomem(mas, gfp)))
5679 		goto retry;
5680 
5681 	if (unlikely(mas_is_err(mas)))
5682 		return xa_err(mas->node);
5683 
5684 	return 0;
5685 }
5686 EXPORT_SYMBOL_GPL(mas_store_gfp);
5687 
5688 /**
5689  * mas_store_prealloc() - Store a value into the tree using memory
5690  * preallocated in the maple state.
5691  * @mas: The maple state
5692  * @entry: The entry to store.
5693  */
5694 void mas_store_prealloc(struct ma_state *mas, void *entry)
5695 {
5696 	MA_WR_STATE(wr_mas, mas, entry);
5697 
5698 	mas_wr_store_setup(&wr_mas);
5699 	trace_ma_write(__func__, mas, 0, entry);
5700 	mas_wr_store_entry(&wr_mas);
5701 	BUG_ON(mas_is_err(mas));
5702 	mas_destroy(mas);
5703 }
5704 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5705 
5706 /**
5707  * mas_preallocate() - Preallocate enough nodes for a store operation
5708  * @mas: The maple state
5709  * @gfp: The GFP_FLAGS to use for allocations.
5710  *
5711  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5712  */
5713 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5714 {
5715 	int ret;
5716 
5717 	mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5718 	mas->mas_flags |= MA_STATE_PREALLOC;
5719 	if (likely(!mas_is_err(mas)))
5720 		return 0;
5721 
5722 	mas_set_alloc_req(mas, 0);
5723 	ret = xa_err(mas->node);
5724 	mas_reset(mas);
5725 	mas_destroy(mas);
5726 	mas_reset(mas);
5727 	return ret;
5728 }
5729 
5730 /*
5731  * mas_destroy() - destroy a maple state.
5732  * @mas: The maple state
5733  *
5734  * Upon completion, check the left-most node and rebalance against the node to
5735  * the right if necessary.  Frees any allocated nodes associated with this maple
5736  * state.
5737  */
5738 void mas_destroy(struct ma_state *mas)
5739 {
5740 	struct maple_alloc *node;
5741 	unsigned long total;
5742 
5743 	/*
5744 	 * When using mas_for_each() to insert an expected number of elements,
5745 	 * it is possible that the number inserted is less than the expected
5746 	 * number.  To fix an invalid final node, a check is performed here to
5747 	 * rebalance the previous node with the final node.
5748 	 */
5749 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5750 		unsigned char end;
5751 
5752 		if (mas_is_start(mas))
5753 			mas_start(mas);
5754 
5755 		mtree_range_walk(mas);
5756 		end = mas_data_end(mas) + 1;
5757 		if (end < mt_min_slot_count(mas->node) - 1)
5758 			mas_destroy_rebalance(mas, end);
5759 
5760 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5761 	}
5762 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5763 
5764 	total = mas_allocated(mas);
5765 	while (total) {
5766 		node = mas->alloc;
5767 		mas->alloc = node->slot[0];
5768 		if (node->node_count > 1) {
5769 			size_t count = node->node_count - 1;
5770 
5771 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5772 			total -= count;
5773 		}
5774 		kmem_cache_free(maple_node_cache, node);
5775 		total--;
5776 	}
5777 
5778 	mas->alloc = NULL;
5779 }
5780 EXPORT_SYMBOL_GPL(mas_destroy);
5781 
5782 /*
5783  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5784  * @mas: The maple state
5785  * @nr_entries: The number of expected entries.
5786  *
5787  * This will attempt to pre-allocate enough nodes to store the expected number
5788  * of entries.  The allocations will occur using the bulk allocator interface
5789  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5790  * to ensure any unused nodes are freed.
5791  *
5792  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5793  */
5794 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5795 {
5796 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5797 	struct maple_enode *enode = mas->node;
5798 	int nr_nodes;
5799 	int ret;
5800 
5801 	/*
5802 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5803 	 * forking a process and duplicating the VMAs from one tree to a new
5804 	 * tree.  When such a situation arises, it is known that the new tree is
5805 	 * not going to be used until the entire tree is populated.  For
5806 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5807 	 * This allows for optimistic splitting that favours the left and reuse
5808 	 * of nodes during the operation.
5809 	 */
5810 
5811 	/* Optimize splitting for bulk insert in-order */
5812 	mas->mas_flags |= MA_STATE_BULK;
5813 
5814 	/*
5815 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5816 	 * If this is wrong, it just means allocation can happen during
5817 	 * insertion of entries.
5818 	 */
5819 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5820 	if (!mt_is_alloc(mas->tree))
5821 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5822 
5823 	/* Leaves; reduce slots to keep space for expansion */
5824 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5825 	/* Internal nodes */
5826 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5827 	/* Add working room for split (2 nodes) + new parents */
5828 	mas_node_count(mas, nr_nodes + 3);
5829 
5830 	/* Detect if allocations run out */
5831 	mas->mas_flags |= MA_STATE_PREALLOC;
5832 
5833 	if (!mas_is_err(mas))
5834 		return 0;
5835 
5836 	ret = xa_err(mas->node);
5837 	mas->node = enode;
5838 	mas_destroy(mas);
5839 	return ret;
5840 
5841 }
5842 EXPORT_SYMBOL_GPL(mas_expected_entries);
5843 
5844 /**
5845  * mas_next() - Get the next entry.
5846  * @mas: The maple state
5847  * @max: The maximum index to check.
5848  *
5849  * Returns the next entry after @mas->index.
5850  * Must hold rcu_read_lock or the write lock.
5851  * Can return the zero entry.
5852  *
5853  * Return: The next entry or %NULL
5854  */
5855 void *mas_next(struct ma_state *mas, unsigned long max)
5856 {
5857 	if (mas_is_none(mas) || mas_is_paused(mas))
5858 		mas->node = MAS_START;
5859 
5860 	if (mas_is_start(mas))
5861 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5862 
5863 	if (mas_is_ptr(mas)) {
5864 		if (!mas->index) {
5865 			mas->index = 1;
5866 			mas->last = ULONG_MAX;
5867 		}
5868 		return NULL;
5869 	}
5870 
5871 	if (mas->last == ULONG_MAX)
5872 		return NULL;
5873 
5874 	/* Retries on dead nodes handled by mas_next_entry */
5875 	return mas_next_entry(mas, max);
5876 }
5877 EXPORT_SYMBOL_GPL(mas_next);
5878 
5879 /**
5880  * mt_next() - get the next value in the maple tree
5881  * @mt: The maple tree
5882  * @index: The start index
5883  * @max: The maximum index to check
5884  *
5885  * Return: The entry at @index or higher, or %NULL if nothing is found.
5886  */
5887 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5888 {
5889 	void *entry = NULL;
5890 	MA_STATE(mas, mt, index, index);
5891 
5892 	rcu_read_lock();
5893 	entry = mas_next(&mas, max);
5894 	rcu_read_unlock();
5895 	return entry;
5896 }
5897 EXPORT_SYMBOL_GPL(mt_next);
5898 
5899 /**
5900  * mas_prev() - Get the previous entry
5901  * @mas: The maple state
5902  * @min: The minimum value to check.
5903  *
5904  * Must hold rcu_read_lock or the write lock.
5905  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5906  * searchable nodes.
5907  *
5908  * Return: the previous value or %NULL.
5909  */
5910 void *mas_prev(struct ma_state *mas, unsigned long min)
5911 {
5912 	if (!mas->index) {
5913 		/* Nothing comes before 0 */
5914 		mas->last = 0;
5915 		mas->node = MAS_NONE;
5916 		return NULL;
5917 	}
5918 
5919 	if (unlikely(mas_is_ptr(mas)))
5920 		return NULL;
5921 
5922 	if (mas_is_none(mas) || mas_is_paused(mas))
5923 		mas->node = MAS_START;
5924 
5925 	if (mas_is_start(mas)) {
5926 		mas_walk(mas);
5927 		if (!mas->index)
5928 			return NULL;
5929 	}
5930 
5931 	if (mas_is_ptr(mas)) {
5932 		if (!mas->index) {
5933 			mas->last = 0;
5934 			return NULL;
5935 		}
5936 
5937 		mas->index = mas->last = 0;
5938 		return mas_root_locked(mas);
5939 	}
5940 	return mas_prev_entry(mas, min);
5941 }
5942 EXPORT_SYMBOL_GPL(mas_prev);
5943 
5944 /**
5945  * mt_prev() - get the previous value in the maple tree
5946  * @mt: The maple tree
5947  * @index: The start index
5948  * @min: The minimum index to check
5949  *
5950  * Return: The entry at @index or lower, or %NULL if nothing is found.
5951  */
5952 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5953 {
5954 	void *entry = NULL;
5955 	MA_STATE(mas, mt, index, index);
5956 
5957 	rcu_read_lock();
5958 	entry = mas_prev(&mas, min);
5959 	rcu_read_unlock();
5960 	return entry;
5961 }
5962 EXPORT_SYMBOL_GPL(mt_prev);
5963 
5964 /**
5965  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5966  * @mas: The maple state to pause
5967  *
5968  * Some users need to pause a walk and drop the lock they're holding in
5969  * order to yield to a higher priority thread or carry out an operation
5970  * on an entry.  Those users should call this function before they drop
5971  * the lock.  It resets the @mas to be suitable for the next iteration
5972  * of the loop after the user has reacquired the lock.  If most entries
5973  * found during a walk require you to call mas_pause(), the mt_for_each()
5974  * iterator may be more appropriate.
5975  *
5976  */
5977 void mas_pause(struct ma_state *mas)
5978 {
5979 	mas->node = MAS_PAUSE;
5980 }
5981 EXPORT_SYMBOL_GPL(mas_pause);
5982 
5983 /**
5984  * mas_find() - On the first call, find the entry at or after mas->index up to
5985  * %max.  Otherwise, find the entry after mas->index.
5986  * @mas: The maple state
5987  * @max: The maximum value to check.
5988  *
5989  * Must hold rcu_read_lock or the write lock.
5990  * If an entry exists, last and index are updated accordingly.
5991  * May set @mas->node to MAS_NONE.
5992  *
5993  * Return: The entry or %NULL.
5994  */
5995 void *mas_find(struct ma_state *mas, unsigned long max)
5996 {
5997 	if (unlikely(mas_is_paused(mas))) {
5998 		if (unlikely(mas->last == ULONG_MAX)) {
5999 			mas->node = MAS_NONE;
6000 			return NULL;
6001 		}
6002 		mas->node = MAS_START;
6003 		mas->index = ++mas->last;
6004 	}
6005 
6006 	if (unlikely(mas_is_none(mas)))
6007 		mas->node = MAS_START;
6008 
6009 	if (unlikely(mas_is_start(mas))) {
6010 		/* First run or continue */
6011 		void *entry;
6012 
6013 		if (mas->index > max)
6014 			return NULL;
6015 
6016 		entry = mas_walk(mas);
6017 		if (entry)
6018 			return entry;
6019 	}
6020 
6021 	if (unlikely(!mas_searchable(mas)))
6022 		return NULL;
6023 
6024 	/* Retries on dead nodes handled by mas_next_entry */
6025 	return mas_next_entry(mas, max);
6026 }
6027 EXPORT_SYMBOL_GPL(mas_find);
6028 
6029 /**
6030  * mas_find_rev: On the first call, find the first non-null entry at or below
6031  * mas->index down to %min.  Otherwise find the first non-null entry below
6032  * mas->index down to %min.
6033  * @mas: The maple state
6034  * @min: The minimum value to check.
6035  *
6036  * Must hold rcu_read_lock or the write lock.
6037  * If an entry exists, last and index are updated accordingly.
6038  * May set @mas->node to MAS_NONE.
6039  *
6040  * Return: The entry or %NULL.
6041  */
6042 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6043 {
6044 	if (unlikely(mas_is_paused(mas))) {
6045 		if (unlikely(mas->last == ULONG_MAX)) {
6046 			mas->node = MAS_NONE;
6047 			return NULL;
6048 		}
6049 		mas->node = MAS_START;
6050 		mas->last = --mas->index;
6051 	}
6052 
6053 	if (unlikely(mas_is_start(mas))) {
6054 		/* First run or continue */
6055 		void *entry;
6056 
6057 		if (mas->index < min)
6058 			return NULL;
6059 
6060 		entry = mas_walk(mas);
6061 		if (entry)
6062 			return entry;
6063 	}
6064 
6065 	if (unlikely(!mas_searchable(mas)))
6066 		return NULL;
6067 
6068 	if (mas->index < min)
6069 		return NULL;
6070 
6071 	/* Retries on dead nodes handled by mas_prev_entry */
6072 	return mas_prev_entry(mas, min);
6073 }
6074 EXPORT_SYMBOL_GPL(mas_find_rev);
6075 
6076 /**
6077  * mas_erase() - Find the range in which index resides and erase the entire
6078  * range.
6079  * @mas: The maple state
6080  *
6081  * Must hold the write lock.
6082  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6083  * erases that range.
6084  *
6085  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6086  */
6087 void *mas_erase(struct ma_state *mas)
6088 {
6089 	void *entry;
6090 	MA_WR_STATE(wr_mas, mas, NULL);
6091 
6092 	if (mas_is_none(mas) || mas_is_paused(mas))
6093 		mas->node = MAS_START;
6094 
6095 	/* Retry unnecessary when holding the write lock. */
6096 	entry = mas_state_walk(mas);
6097 	if (!entry)
6098 		return NULL;
6099 
6100 write_retry:
6101 	/* Must reset to ensure spanning writes of last slot are detected */
6102 	mas_reset(mas);
6103 	mas_wr_store_setup(&wr_mas);
6104 	mas_wr_store_entry(&wr_mas);
6105 	if (mas_nomem(mas, GFP_KERNEL))
6106 		goto write_retry;
6107 
6108 	return entry;
6109 }
6110 EXPORT_SYMBOL_GPL(mas_erase);
6111 
6112 /**
6113  * mas_nomem() - Check if there was an error allocating and do the allocation
6114  * if necessary If there are allocations, then free them.
6115  * @mas: The maple state
6116  * @gfp: The GFP_FLAGS to use for allocations
6117  * Return: true on allocation, false otherwise.
6118  */
6119 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6120 	__must_hold(mas->tree->lock)
6121 {
6122 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6123 		mas_destroy(mas);
6124 		return false;
6125 	}
6126 
6127 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6128 		mtree_unlock(mas->tree);
6129 		mas_alloc_nodes(mas, gfp);
6130 		mtree_lock(mas->tree);
6131 	} else {
6132 		mas_alloc_nodes(mas, gfp);
6133 	}
6134 
6135 	if (!mas_allocated(mas))
6136 		return false;
6137 
6138 	mas->node = MAS_START;
6139 	return true;
6140 }
6141 
6142 void __init maple_tree_init(void)
6143 {
6144 	maple_node_cache = kmem_cache_create("maple_node",
6145 			sizeof(struct maple_node), sizeof(struct maple_node),
6146 			SLAB_PANIC, NULL);
6147 }
6148 
6149 /**
6150  * mtree_load() - Load a value stored in a maple tree
6151  * @mt: The maple tree
6152  * @index: The index to load
6153  *
6154  * Return: the entry or %NULL
6155  */
6156 void *mtree_load(struct maple_tree *mt, unsigned long index)
6157 {
6158 	MA_STATE(mas, mt, index, index);
6159 	void *entry;
6160 
6161 	trace_ma_read(__func__, &mas);
6162 	rcu_read_lock();
6163 retry:
6164 	entry = mas_start(&mas);
6165 	if (unlikely(mas_is_none(&mas)))
6166 		goto unlock;
6167 
6168 	if (unlikely(mas_is_ptr(&mas))) {
6169 		if (index)
6170 			entry = NULL;
6171 
6172 		goto unlock;
6173 	}
6174 
6175 	entry = mtree_lookup_walk(&mas);
6176 	if (!entry && unlikely(mas_is_start(&mas)))
6177 		goto retry;
6178 unlock:
6179 	rcu_read_unlock();
6180 	if (xa_is_zero(entry))
6181 		return NULL;
6182 
6183 	return entry;
6184 }
6185 EXPORT_SYMBOL(mtree_load);
6186 
6187 /**
6188  * mtree_store_range() - Store an entry at a given range.
6189  * @mt: The maple tree
6190  * @index: The start of the range
6191  * @last: The end of the range
6192  * @entry: The entry to store
6193  * @gfp: The GFP_FLAGS to use for allocations
6194  *
6195  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6196  * be allocated.
6197  */
6198 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6199 		unsigned long last, void *entry, gfp_t gfp)
6200 {
6201 	MA_STATE(mas, mt, index, last);
6202 	MA_WR_STATE(wr_mas, &mas, entry);
6203 
6204 	trace_ma_write(__func__, &mas, 0, entry);
6205 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6206 		return -EINVAL;
6207 
6208 	if (index > last)
6209 		return -EINVAL;
6210 
6211 	mtree_lock(mt);
6212 retry:
6213 	mas_wr_store_entry(&wr_mas);
6214 	if (mas_nomem(&mas, gfp))
6215 		goto retry;
6216 
6217 	mtree_unlock(mt);
6218 	if (mas_is_err(&mas))
6219 		return xa_err(mas.node);
6220 
6221 	return 0;
6222 }
6223 EXPORT_SYMBOL(mtree_store_range);
6224 
6225 /**
6226  * mtree_store() - Store an entry at a given index.
6227  * @mt: The maple tree
6228  * @index: The index to store the value
6229  * @entry: The entry to store
6230  * @gfp: The GFP_FLAGS to use for allocations
6231  *
6232  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6233  * be allocated.
6234  */
6235 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6236 		 gfp_t gfp)
6237 {
6238 	return mtree_store_range(mt, index, index, entry, gfp);
6239 }
6240 EXPORT_SYMBOL(mtree_store);
6241 
6242 /**
6243  * mtree_insert_range() - Insert an entry at a give range if there is no value.
6244  * @mt: The maple tree
6245  * @first: The start of the range
6246  * @last: The end of the range
6247  * @entry: The entry to store
6248  * @gfp: The GFP_FLAGS to use for allocations.
6249  *
6250  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6251  * request, -ENOMEM if memory could not be allocated.
6252  */
6253 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6254 		unsigned long last, void *entry, gfp_t gfp)
6255 {
6256 	MA_STATE(ms, mt, first, last);
6257 
6258 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6259 		return -EINVAL;
6260 
6261 	if (first > last)
6262 		return -EINVAL;
6263 
6264 	mtree_lock(mt);
6265 retry:
6266 	mas_insert(&ms, entry);
6267 	if (mas_nomem(&ms, gfp))
6268 		goto retry;
6269 
6270 	mtree_unlock(mt);
6271 	if (mas_is_err(&ms))
6272 		return xa_err(ms.node);
6273 
6274 	return 0;
6275 }
6276 EXPORT_SYMBOL(mtree_insert_range);
6277 
6278 /**
6279  * mtree_insert() - Insert an entry at a give index if there is no value.
6280  * @mt: The maple tree
6281  * @index : The index to store the value
6282  * @entry: The entry to store
6283  * @gfp: The FGP_FLAGS to use for allocations.
6284  *
6285  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6286  * request, -ENOMEM if memory could not be allocated.
6287  */
6288 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6289 		 gfp_t gfp)
6290 {
6291 	return mtree_insert_range(mt, index, index, entry, gfp);
6292 }
6293 EXPORT_SYMBOL(mtree_insert);
6294 
6295 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6296 		void *entry, unsigned long size, unsigned long min,
6297 		unsigned long max, gfp_t gfp)
6298 {
6299 	int ret = 0;
6300 
6301 	MA_STATE(mas, mt, min, max - size);
6302 	if (!mt_is_alloc(mt))
6303 		return -EINVAL;
6304 
6305 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6306 		return -EINVAL;
6307 
6308 	if (min > max)
6309 		return -EINVAL;
6310 
6311 	if (max < size)
6312 		return -EINVAL;
6313 
6314 	if (!size)
6315 		return -EINVAL;
6316 
6317 	mtree_lock(mt);
6318 retry:
6319 	mas.offset = 0;
6320 	mas.index = min;
6321 	mas.last = max - size;
6322 	ret = mas_alloc(&mas, entry, size, startp);
6323 	if (mas_nomem(&mas, gfp))
6324 		goto retry;
6325 
6326 	mtree_unlock(mt);
6327 	return ret;
6328 }
6329 EXPORT_SYMBOL(mtree_alloc_range);
6330 
6331 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6332 		void *entry, unsigned long size, unsigned long min,
6333 		unsigned long max, gfp_t gfp)
6334 {
6335 	int ret = 0;
6336 
6337 	MA_STATE(mas, mt, min, max - size);
6338 	if (!mt_is_alloc(mt))
6339 		return -EINVAL;
6340 
6341 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6342 		return -EINVAL;
6343 
6344 	if (min >= max)
6345 		return -EINVAL;
6346 
6347 	if (max < size - 1)
6348 		return -EINVAL;
6349 
6350 	if (!size)
6351 		return -EINVAL;
6352 
6353 	mtree_lock(mt);
6354 retry:
6355 	ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6356 	if (mas_nomem(&mas, gfp))
6357 		goto retry;
6358 
6359 	mtree_unlock(mt);
6360 	return ret;
6361 }
6362 EXPORT_SYMBOL(mtree_alloc_rrange);
6363 
6364 /**
6365  * mtree_erase() - Find an index and erase the entire range.
6366  * @mt: The maple tree
6367  * @index: The index to erase
6368  *
6369  * Erasing is the same as a walk to an entry then a store of a NULL to that
6370  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6371  *
6372  * Return: The entry stored at the @index or %NULL
6373  */
6374 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6375 {
6376 	void *entry = NULL;
6377 
6378 	MA_STATE(mas, mt, index, index);
6379 	trace_ma_op(__func__, &mas);
6380 
6381 	mtree_lock(mt);
6382 	entry = mas_erase(&mas);
6383 	mtree_unlock(mt);
6384 
6385 	return entry;
6386 }
6387 EXPORT_SYMBOL(mtree_erase);
6388 
6389 /**
6390  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6391  * @mt: The maple tree
6392  *
6393  * Note: Does not handle locking.
6394  */
6395 void __mt_destroy(struct maple_tree *mt)
6396 {
6397 	void *root = mt_root_locked(mt);
6398 
6399 	rcu_assign_pointer(mt->ma_root, NULL);
6400 	if (xa_is_node(root))
6401 		mte_destroy_walk(root, mt);
6402 
6403 	mt->ma_flags = 0;
6404 }
6405 EXPORT_SYMBOL_GPL(__mt_destroy);
6406 
6407 /**
6408  * mtree_destroy() - Destroy a maple tree
6409  * @mt: The maple tree
6410  *
6411  * Frees all resources used by the tree.  Handles locking.
6412  */
6413 void mtree_destroy(struct maple_tree *mt)
6414 {
6415 	mtree_lock(mt);
6416 	__mt_destroy(mt);
6417 	mtree_unlock(mt);
6418 }
6419 EXPORT_SYMBOL(mtree_destroy);
6420 
6421 /**
6422  * mt_find() - Search from the start up until an entry is found.
6423  * @mt: The maple tree
6424  * @index: Pointer which contains the start location of the search
6425  * @max: The maximum value to check
6426  *
6427  * Handles locking.  @index will be incremented to one beyond the range.
6428  *
6429  * Return: The entry at or after the @index or %NULL
6430  */
6431 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6432 {
6433 	MA_STATE(mas, mt, *index, *index);
6434 	void *entry;
6435 #ifdef CONFIG_DEBUG_MAPLE_TREE
6436 	unsigned long copy = *index;
6437 #endif
6438 
6439 	trace_ma_read(__func__, &mas);
6440 
6441 	if ((*index) > max)
6442 		return NULL;
6443 
6444 	rcu_read_lock();
6445 retry:
6446 	entry = mas_state_walk(&mas);
6447 	if (mas_is_start(&mas))
6448 		goto retry;
6449 
6450 	if (unlikely(xa_is_zero(entry)))
6451 		entry = NULL;
6452 
6453 	if (entry)
6454 		goto unlock;
6455 
6456 	while (mas_searchable(&mas) && (mas.index < max)) {
6457 		entry = mas_next_entry(&mas, max);
6458 		if (likely(entry && !xa_is_zero(entry)))
6459 			break;
6460 	}
6461 
6462 	if (unlikely(xa_is_zero(entry)))
6463 		entry = NULL;
6464 unlock:
6465 	rcu_read_unlock();
6466 	if (likely(entry)) {
6467 		*index = mas.last + 1;
6468 #ifdef CONFIG_DEBUG_MAPLE_TREE
6469 		if ((*index) && (*index) <= copy)
6470 			pr_err("index not increased! %lx <= %lx\n",
6471 			       *index, copy);
6472 		MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6473 #endif
6474 	}
6475 
6476 	return entry;
6477 }
6478 EXPORT_SYMBOL(mt_find);
6479 
6480 /**
6481  * mt_find_after() - Search from the start up until an entry is found.
6482  * @mt: The maple tree
6483  * @index: Pointer which contains the start location of the search
6484  * @max: The maximum value to check
6485  *
6486  * Handles locking, detects wrapping on index == 0
6487  *
6488  * Return: The entry at or after the @index or %NULL
6489  */
6490 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6491 		    unsigned long max)
6492 {
6493 	if (!(*index))
6494 		return NULL;
6495 
6496 	return mt_find(mt, index, max);
6497 }
6498 EXPORT_SYMBOL(mt_find_after);
6499 
6500 #ifdef CONFIG_DEBUG_MAPLE_TREE
6501 atomic_t maple_tree_tests_run;
6502 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6503 atomic_t maple_tree_tests_passed;
6504 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6505 
6506 #ifndef __KERNEL__
6507 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6508 void mt_set_non_kernel(unsigned int val)
6509 {
6510 	kmem_cache_set_non_kernel(maple_node_cache, val);
6511 }
6512 
6513 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6514 unsigned long mt_get_alloc_size(void)
6515 {
6516 	return kmem_cache_get_alloc(maple_node_cache);
6517 }
6518 
6519 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6520 void mt_zero_nr_tallocated(void)
6521 {
6522 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6523 }
6524 
6525 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6526 unsigned int mt_nr_tallocated(void)
6527 {
6528 	return kmem_cache_nr_tallocated(maple_node_cache);
6529 }
6530 
6531 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6532 unsigned int mt_nr_allocated(void)
6533 {
6534 	return kmem_cache_nr_allocated(maple_node_cache);
6535 }
6536 
6537 /*
6538  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6539  * @mas: The maple state
6540  * @index: The index to restore in @mas.
6541  *
6542  * Used in test code.
6543  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6544  */
6545 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6546 {
6547 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6548 		return 0;
6549 
6550 	if (likely(!mte_dead_node(mas->node)))
6551 		return 0;
6552 
6553 	mas_rewalk(mas, index);
6554 	return 1;
6555 }
6556 
6557 void mt_cache_shrink(void)
6558 {
6559 }
6560 #else
6561 /*
6562  * mt_cache_shrink() - For testing, don't use this.
6563  *
6564  * Certain testcases can trigger an OOM when combined with other memory
6565  * debugging configuration options.  This function is used to reduce the
6566  * possibility of an out of memory even due to kmem_cache objects remaining
6567  * around for longer than usual.
6568  */
6569 void mt_cache_shrink(void)
6570 {
6571 	kmem_cache_shrink(maple_node_cache);
6572 
6573 }
6574 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6575 
6576 #endif /* not defined __KERNEL__ */
6577 /*
6578  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6579  * @mas: The maple state
6580  * @offset: The offset into the slot array to fetch.
6581  *
6582  * Return: The entry stored at @offset.
6583  */
6584 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6585 		unsigned char offset)
6586 {
6587 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6588 			offset);
6589 }
6590 
6591 
6592 /*
6593  * mas_first_entry() - Go the first leaf and find the first entry.
6594  * @mas: the maple state.
6595  * @limit: the maximum index to check.
6596  * @*r_start: Pointer to set to the range start.
6597  *
6598  * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6599  *
6600  * Return: The first entry or MAS_NONE.
6601  */
6602 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6603 		unsigned long limit, enum maple_type mt)
6604 
6605 {
6606 	unsigned long max;
6607 	unsigned long *pivots;
6608 	void __rcu **slots;
6609 	void *entry = NULL;
6610 
6611 	mas->index = mas->min;
6612 	if (mas->index > limit)
6613 		goto none;
6614 
6615 	max = mas->max;
6616 	mas->offset = 0;
6617 	while (likely(!ma_is_leaf(mt))) {
6618 		MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6619 		slots = ma_slots(mn, mt);
6620 		pivots = ma_pivots(mn, mt);
6621 		max = pivots[0];
6622 		entry = mas_slot(mas, slots, 0);
6623 		if (unlikely(ma_dead_node(mn)))
6624 			return NULL;
6625 		mas->node = entry;
6626 		mn = mas_mn(mas);
6627 		mt = mte_node_type(mas->node);
6628 	}
6629 	MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6630 
6631 	mas->max = max;
6632 	slots = ma_slots(mn, mt);
6633 	entry = mas_slot(mas, slots, 0);
6634 	if (unlikely(ma_dead_node(mn)))
6635 		return NULL;
6636 
6637 	/* Slot 0 or 1 must be set */
6638 	if (mas->index > limit)
6639 		goto none;
6640 
6641 	if (likely(entry))
6642 		return entry;
6643 
6644 	pivots = ma_pivots(mn, mt);
6645 	mas->index = pivots[0] + 1;
6646 	mas->offset = 1;
6647 	entry = mas_slot(mas, slots, 1);
6648 	if (unlikely(ma_dead_node(mn)))
6649 		return NULL;
6650 
6651 	if (mas->index > limit)
6652 		goto none;
6653 
6654 	if (likely(entry))
6655 		return entry;
6656 
6657 none:
6658 	if (likely(!ma_dead_node(mn)))
6659 		mas->node = MAS_NONE;
6660 	return NULL;
6661 }
6662 
6663 /* Depth first search, post-order */
6664 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6665 {
6666 
6667 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6668 	unsigned long p_min, p_max;
6669 
6670 	mas_next_node(mas, mas_mn(mas), max);
6671 	if (!mas_is_none(mas))
6672 		return;
6673 
6674 	if (mte_is_root(mn))
6675 		return;
6676 
6677 	mas->node = mn;
6678 	mas_ascend(mas);
6679 	while (mas->node != MAS_NONE) {
6680 		p = mas->node;
6681 		p_min = mas->min;
6682 		p_max = mas->max;
6683 		mas_prev_node(mas, 0);
6684 	}
6685 
6686 	if (p == MAS_NONE)
6687 		return;
6688 
6689 	mas->node = p;
6690 	mas->max = p_max;
6691 	mas->min = p_min;
6692 }
6693 
6694 /* Tree validations */
6695 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6696 		unsigned long min, unsigned long max, unsigned int depth);
6697 static void mt_dump_range(unsigned long min, unsigned long max,
6698 			  unsigned int depth)
6699 {
6700 	static const char spaces[] = "                                ";
6701 
6702 	if (min == max)
6703 		pr_info("%.*s%lu: ", depth * 2, spaces, min);
6704 	else
6705 		pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6706 }
6707 
6708 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6709 			  unsigned int depth)
6710 {
6711 	mt_dump_range(min, max, depth);
6712 
6713 	if (xa_is_value(entry))
6714 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6715 				xa_to_value(entry), entry);
6716 	else if (xa_is_zero(entry))
6717 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
6718 	else if (mt_is_reserved(entry))
6719 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6720 	else
6721 		pr_cont("%p\n", entry);
6722 }
6723 
6724 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6725 			unsigned long min, unsigned long max, unsigned int depth)
6726 {
6727 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6728 	bool leaf = mte_is_leaf(entry);
6729 	unsigned long first = min;
6730 	int i;
6731 
6732 	pr_cont(" contents: ");
6733 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6734 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6735 	pr_cont("%p\n", node->slot[i]);
6736 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6737 		unsigned long last = max;
6738 
6739 		if (i < (MAPLE_RANGE64_SLOTS - 1))
6740 			last = node->pivot[i];
6741 		else if (!node->slot[i] && max != mt_node_max(entry))
6742 			break;
6743 		if (last == 0 && i > 0)
6744 			break;
6745 		if (leaf)
6746 			mt_dump_entry(mt_slot(mt, node->slot, i),
6747 					first, last, depth + 1);
6748 		else if (node->slot[i])
6749 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6750 					first, last, depth + 1);
6751 
6752 		if (last == max)
6753 			break;
6754 		if (last > max) {
6755 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6756 					node, last, max, i);
6757 			break;
6758 		}
6759 		first = last + 1;
6760 	}
6761 }
6762 
6763 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6764 			unsigned long min, unsigned long max, unsigned int depth)
6765 {
6766 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6767 	bool leaf = mte_is_leaf(entry);
6768 	unsigned long first = min;
6769 	int i;
6770 
6771 	pr_cont(" contents: ");
6772 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6773 		pr_cont("%lu ", node->gap[i]);
6774 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6775 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6776 		pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6777 	pr_cont("%p\n", node->slot[i]);
6778 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6779 		unsigned long last = max;
6780 
6781 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
6782 			last = node->pivot[i];
6783 		else if (!node->slot[i])
6784 			break;
6785 		if (last == 0 && i > 0)
6786 			break;
6787 		if (leaf)
6788 			mt_dump_entry(mt_slot(mt, node->slot, i),
6789 					first, last, depth + 1);
6790 		else if (node->slot[i])
6791 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
6792 					first, last, depth + 1);
6793 
6794 		if (last == max)
6795 			break;
6796 		if (last > max) {
6797 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6798 					node, last, max, i);
6799 			break;
6800 		}
6801 		first = last + 1;
6802 	}
6803 }
6804 
6805 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6806 		unsigned long min, unsigned long max, unsigned int depth)
6807 {
6808 	struct maple_node *node = mte_to_node(entry);
6809 	unsigned int type = mte_node_type(entry);
6810 	unsigned int i;
6811 
6812 	mt_dump_range(min, max, depth);
6813 
6814 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6815 			node ? node->parent : NULL);
6816 	switch (type) {
6817 	case maple_dense:
6818 		pr_cont("\n");
6819 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6820 			if (min + i > max)
6821 				pr_cont("OUT OF RANGE: ");
6822 			mt_dump_entry(mt_slot(mt, node->slot, i),
6823 					min + i, min + i, depth);
6824 		}
6825 		break;
6826 	case maple_leaf_64:
6827 	case maple_range_64:
6828 		mt_dump_range64(mt, entry, min, max, depth);
6829 		break;
6830 	case maple_arange_64:
6831 		mt_dump_arange64(mt, entry, min, max, depth);
6832 		break;
6833 
6834 	default:
6835 		pr_cont(" UNKNOWN TYPE\n");
6836 	}
6837 }
6838 
6839 void mt_dump(const struct maple_tree *mt)
6840 {
6841 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6842 
6843 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6844 		 mt, mt->ma_flags, mt_height(mt), entry);
6845 	if (!xa_is_node(entry))
6846 		mt_dump_entry(entry, 0, 0, 0);
6847 	else if (entry)
6848 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6849 }
6850 EXPORT_SYMBOL_GPL(mt_dump);
6851 
6852 /*
6853  * Calculate the maximum gap in a node and check if that's what is reported in
6854  * the parent (unless root).
6855  */
6856 static void mas_validate_gaps(struct ma_state *mas)
6857 {
6858 	struct maple_enode *mte = mas->node;
6859 	struct maple_node *p_mn;
6860 	unsigned long gap = 0, max_gap = 0;
6861 	unsigned long p_end, p_start = mas->min;
6862 	unsigned char p_slot;
6863 	unsigned long *gaps = NULL;
6864 	unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6865 	int i;
6866 
6867 	if (ma_is_dense(mte_node_type(mte))) {
6868 		for (i = 0; i < mt_slot_count(mte); i++) {
6869 			if (mas_get_slot(mas, i)) {
6870 				if (gap > max_gap)
6871 					max_gap = gap;
6872 				gap = 0;
6873 				continue;
6874 			}
6875 			gap++;
6876 		}
6877 		goto counted;
6878 	}
6879 
6880 	gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6881 	for (i = 0; i < mt_slot_count(mte); i++) {
6882 		p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6883 
6884 		if (!gaps) {
6885 			if (mas_get_slot(mas, i)) {
6886 				gap = 0;
6887 				goto not_empty;
6888 			}
6889 
6890 			gap += p_end - p_start + 1;
6891 		} else {
6892 			void *entry = mas_get_slot(mas, i);
6893 
6894 			gap = gaps[i];
6895 			if (!entry) {
6896 				if (gap != p_end - p_start + 1) {
6897 					pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6898 						mas_mn(mas), i,
6899 						mas_get_slot(mas, i), gap,
6900 						p_end, p_start);
6901 					mt_dump(mas->tree);
6902 
6903 					MT_BUG_ON(mas->tree,
6904 						gap != p_end - p_start + 1);
6905 				}
6906 			} else {
6907 				if (gap > p_end - p_start + 1) {
6908 					pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6909 					mas_mn(mas), i, gap, p_end, p_start,
6910 					p_end - p_start + 1);
6911 					MT_BUG_ON(mas->tree,
6912 						gap > p_end - p_start + 1);
6913 				}
6914 			}
6915 		}
6916 
6917 		if (gap > max_gap)
6918 			max_gap = gap;
6919 not_empty:
6920 		p_start = p_end + 1;
6921 		if (p_end >= mas->max)
6922 			break;
6923 	}
6924 
6925 counted:
6926 	if (mte_is_root(mte))
6927 		return;
6928 
6929 	p_slot = mte_parent_slot(mas->node);
6930 	p_mn = mte_parent(mte);
6931 	MT_BUG_ON(mas->tree, max_gap > mas->max);
6932 	if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6933 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6934 		mt_dump(mas->tree);
6935 	}
6936 
6937 	MT_BUG_ON(mas->tree,
6938 		  ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6939 }
6940 
6941 static void mas_validate_parent_slot(struct ma_state *mas)
6942 {
6943 	struct maple_node *parent;
6944 	struct maple_enode *node;
6945 	enum maple_type p_type = mas_parent_enum(mas, mas->node);
6946 	unsigned char p_slot = mte_parent_slot(mas->node);
6947 	void __rcu **slots;
6948 	int i;
6949 
6950 	if (mte_is_root(mas->node))
6951 		return;
6952 
6953 	parent = mte_parent(mas->node);
6954 	slots = ma_slots(parent, p_type);
6955 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6956 
6957 	/* Check prev/next parent slot for duplicate node entry */
6958 
6959 	for (i = 0; i < mt_slots[p_type]; i++) {
6960 		node = mas_slot(mas, slots, i);
6961 		if (i == p_slot) {
6962 			if (node != mas->node)
6963 				pr_err("parent %p[%u] does not have %p\n",
6964 					parent, i, mas_mn(mas));
6965 			MT_BUG_ON(mas->tree, node != mas->node);
6966 		} else if (node == mas->node) {
6967 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6968 			       mas_mn(mas), parent, i, p_slot);
6969 			MT_BUG_ON(mas->tree, node == mas->node);
6970 		}
6971 	}
6972 }
6973 
6974 static void mas_validate_child_slot(struct ma_state *mas)
6975 {
6976 	enum maple_type type = mte_node_type(mas->node);
6977 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6978 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6979 	struct maple_enode *child;
6980 	unsigned char i;
6981 
6982 	if (mte_is_leaf(mas->node))
6983 		return;
6984 
6985 	for (i = 0; i < mt_slots[type]; i++) {
6986 		child = mas_slot(mas, slots, i);
6987 		if (!pivots[i] || pivots[i] == mas->max)
6988 			break;
6989 
6990 		if (!child)
6991 			break;
6992 
6993 		if (mte_parent_slot(child) != i) {
6994 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6995 			       mas_mn(mas), i, mte_to_node(child),
6996 			       mte_parent_slot(child));
6997 			MT_BUG_ON(mas->tree, 1);
6998 		}
6999 
7000 		if (mte_parent(child) != mte_to_node(mas->node)) {
7001 			pr_err("child %p has parent %p not %p\n",
7002 			       mte_to_node(child), mte_parent(child),
7003 			       mte_to_node(mas->node));
7004 			MT_BUG_ON(mas->tree, 1);
7005 		}
7006 	}
7007 }
7008 
7009 /*
7010  * Validate all pivots are within mas->min and mas->max.
7011  */
7012 static void mas_validate_limits(struct ma_state *mas)
7013 {
7014 	int i;
7015 	unsigned long prev_piv = 0;
7016 	enum maple_type type = mte_node_type(mas->node);
7017 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7018 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7019 
7020 	/* all limits are fine here. */
7021 	if (mte_is_root(mas->node))
7022 		return;
7023 
7024 	for (i = 0; i < mt_slots[type]; i++) {
7025 		unsigned long piv;
7026 
7027 		piv = mas_safe_pivot(mas, pivots, i, type);
7028 
7029 		if (!piv && (i != 0))
7030 			break;
7031 
7032 		if (!mte_is_leaf(mas->node)) {
7033 			void *entry = mas_slot(mas, slots, i);
7034 
7035 			if (!entry)
7036 				pr_err("%p[%u] cannot be null\n",
7037 				       mas_mn(mas), i);
7038 
7039 			MT_BUG_ON(mas->tree, !entry);
7040 		}
7041 
7042 		if (prev_piv > piv) {
7043 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7044 				mas_mn(mas), i, piv, prev_piv);
7045 			MT_BUG_ON(mas->tree, piv < prev_piv);
7046 		}
7047 
7048 		if (piv < mas->min) {
7049 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7050 				piv, mas->min);
7051 			MT_BUG_ON(mas->tree, piv < mas->min);
7052 		}
7053 		if (piv > mas->max) {
7054 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7055 				piv, mas->max);
7056 			MT_BUG_ON(mas->tree, piv > mas->max);
7057 		}
7058 		prev_piv = piv;
7059 		if (piv == mas->max)
7060 			break;
7061 	}
7062 	for (i += 1; i < mt_slots[type]; i++) {
7063 		void *entry = mas_slot(mas, slots, i);
7064 
7065 		if (entry && (i != mt_slots[type] - 1)) {
7066 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7067 			       i, entry);
7068 			MT_BUG_ON(mas->tree, entry != NULL);
7069 		}
7070 
7071 		if (i < mt_pivots[type]) {
7072 			unsigned long piv = pivots[i];
7073 
7074 			if (!piv)
7075 				continue;
7076 
7077 			pr_err("%p[%u] should not have piv %lu\n",
7078 			       mas_mn(mas), i, piv);
7079 			MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7080 		}
7081 	}
7082 }
7083 
7084 static void mt_validate_nulls(struct maple_tree *mt)
7085 {
7086 	void *entry, *last = (void *)1;
7087 	unsigned char offset = 0;
7088 	void __rcu **slots;
7089 	MA_STATE(mas, mt, 0, 0);
7090 
7091 	mas_start(&mas);
7092 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7093 		return;
7094 
7095 	while (!mte_is_leaf(mas.node))
7096 		mas_descend(&mas);
7097 
7098 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7099 	do {
7100 		entry = mas_slot(&mas, slots, offset);
7101 		if (!last && !entry) {
7102 			pr_err("Sequential nulls end at %p[%u]\n",
7103 				mas_mn(&mas), offset);
7104 		}
7105 		MT_BUG_ON(mt, !last && !entry);
7106 		last = entry;
7107 		if (offset == mas_data_end(&mas)) {
7108 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7109 			if (mas_is_none(&mas))
7110 				return;
7111 			offset = 0;
7112 			slots = ma_slots(mte_to_node(mas.node),
7113 					 mte_node_type(mas.node));
7114 		} else {
7115 			offset++;
7116 		}
7117 
7118 	} while (!mas_is_none(&mas));
7119 }
7120 
7121 /*
7122  * validate a maple tree by checking:
7123  * 1. The limits (pivots are within mas->min to mas->max)
7124  * 2. The gap is correctly set in the parents
7125  */
7126 void mt_validate(struct maple_tree *mt)
7127 {
7128 	unsigned char end;
7129 
7130 	MA_STATE(mas, mt, 0, 0);
7131 	rcu_read_lock();
7132 	mas_start(&mas);
7133 	if (!mas_searchable(&mas))
7134 		goto done;
7135 
7136 	mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7137 	while (!mas_is_none(&mas)) {
7138 		MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7139 		if (!mte_is_root(mas.node)) {
7140 			end = mas_data_end(&mas);
7141 			if ((end < mt_min_slot_count(mas.node)) &&
7142 			    (mas.max != ULONG_MAX)) {
7143 				pr_err("Invalid size %u of %p\n", end,
7144 				mas_mn(&mas));
7145 				MT_BUG_ON(mas.tree, 1);
7146 			}
7147 
7148 		}
7149 		mas_validate_parent_slot(&mas);
7150 		mas_validate_child_slot(&mas);
7151 		mas_validate_limits(&mas);
7152 		if (mt_is_alloc(mt))
7153 			mas_validate_gaps(&mas);
7154 		mas_dfs_postorder(&mas, ULONG_MAX);
7155 	}
7156 	mt_validate_nulls(mt);
7157 done:
7158 	rcu_read_unlock();
7159 
7160 }
7161 EXPORT_SYMBOL_GPL(mt_validate);
7162 
7163 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7164