xref: /linux/lib/maple_tree.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 /*
68  * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69  * pointers get hashed to arbitrary values.
70  *
71  * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72  * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73  *
74  * Userland doesn't know about %px so also use %p there.
75  */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81 
82 #define MA_ROOT_PARENT 1
83 
84 /*
85  * Maple state flags
86  * * MA_STATE_BULK		- Bulk insert mode
87  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
88  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
89  */
90 #define MA_STATE_BULK		1
91 #define MA_STATE_REBALANCE	2
92 #define MA_STATE_PREALLOC	4
93 
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99 
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 	[maple_dense]		= MAPLE_NODE_SLOTS,
103 	[maple_leaf_64]		= ULONG_MAX,
104 	[maple_range_64]	= ULONG_MAX,
105 	[maple_arange_64]	= ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109 
110 static const unsigned char mt_slots[] = {
111 	[maple_dense]		= MAPLE_NODE_SLOTS,
112 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
113 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
114 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117 
118 static const unsigned char mt_pivots[] = {
119 	[maple_dense]		= 0,
120 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
121 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
122 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125 
126 static const unsigned char mt_min_slots[] = {
127 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
128 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
129 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
130 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133 
134 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
136 
137 struct maple_big_node {
138 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 	union {
140 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 		struct {
142 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 		};
145 	};
146 	unsigned char b_end;
147 	enum maple_type type;
148 };
149 
150 /*
151  * The maple_subtree_state is used to build a tree to replace a segment of an
152  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
153  * dead node and restart on updates.
154  */
155 struct maple_subtree_state {
156 	struct ma_state *orig_l;	/* Original left side of subtree */
157 	struct ma_state *orig_r;	/* Original right side of subtree */
158 	struct ma_state *l;		/* New left side of subtree */
159 	struct ma_state *m;		/* New middle of subtree (rare) */
160 	struct ma_state *r;		/* New right side of subtree */
161 	struct ma_topiary *free;	/* nodes to be freed */
162 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
163 	struct maple_big_node *bn;
164 };
165 
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172 
173 /* Functions */
174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 	return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178 
179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183 
184 static inline void mt_free_one(struct maple_node *node)
185 {
186 	kmem_cache_free(maple_node_cache, node);
187 }
188 
189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193 
194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 	struct maple_node *node = container_of(head, struct maple_node, rcu);
197 
198 	kmem_cache_free(maple_node_cache, node);
199 }
200 
201 /*
202  * ma_free_rcu() - Use rcu callback to free a maple node
203  * @node: The node to free
204  *
205  * The maple tree uses the parent pointer to indicate this node is no longer in
206  * use and will be freed.
207  */
208 static void ma_free_rcu(struct maple_node *node)
209 {
210 	WARN_ON(node->parent != ma_parent_ptr(node));
211 	call_rcu(&node->rcu, mt_free_rcu);
212 }
213 
214 static void mas_set_height(struct ma_state *mas)
215 {
216 	unsigned int new_flags = mas->tree->ma_flags;
217 
218 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 	mas->tree->ma_flags = new_flags;
222 }
223 
224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 	return mt_height(mas->tree);
227 }
228 
229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233 
234 static __always_inline enum maple_type mte_node_type(
235 		const struct maple_enode *entry)
236 {
237 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 		MAPLE_NODE_TYPE_MASK;
239 }
240 
241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 	return type < maple_leaf_64;
244 }
245 
246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 	return type < maple_range_64;
249 }
250 
251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 	return ma_is_leaf(mte_node_type(entry));
254 }
255 
256 /*
257  * We also reserve values with the bottom two bits set to '10' which are
258  * below 4096
259  */
260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 		xa_is_internal(entry);
264 }
265 
266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 	mas->node = MA_ERROR(err);
269 	mas->status = ma_error;
270 }
271 
272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 	return mas->status == ma_root;
275 }
276 
277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 	return mas->status == ma_start;
280 }
281 
282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 	return mas->status == ma_none;
285 }
286 
287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 	return mas->status == ma_pause;
290 }
291 
292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 	return mas->status == ma_overflow;
295 }
296 
297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 	return mas->status == ma_underflow;
300 }
301 
302 static __always_inline struct maple_node *mte_to_node(
303 		const struct maple_enode *entry)
304 {
305 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307 
308 /*
309  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310  * @entry: The maple encoded node
311  *
312  * Return: a maple topiary pointer
313  */
314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 	return (struct maple_topiary *)
317 		((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319 
320 /*
321  * mas_mn() - Get the maple state node.
322  * @mas: The maple state
323  *
324  * Return: the maple node (not encoded - bare pointer).
325  */
326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 	return mte_to_node(mas->node);
329 }
330 
331 /*
332  * mte_set_node_dead() - Set a maple encoded node as dead.
333  * @mn: The maple encoded node.
334  */
335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 	smp_wmb(); /* Needed for RCU */
339 }
340 
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE			0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT		0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL		0x04
347 
348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 					     enum maple_type type)
350 {
351 	return (void *)((unsigned long)node |
352 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354 
355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359 
360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364 
365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369 
370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374 
375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 	return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379 
380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384 
385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 	return ma_is_root(mte_to_node(node));
388 }
389 
390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 	return !mas->min && mas->max == ULONG_MAX;
393 }
394 
395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399 
400 /*
401  * The Parent Pointer
402  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
404  * bit values need an extra bit to store the offset.  This extra bit comes from
405  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
406  * indicate if bit 2 is part of the type or the slot.
407  *
408  * Note types:
409  *  0x??1 = Root
410  *  0x?00 = 16 bit nodes
411  *  0x010 = 32 bit nodes
412  *  0x110 = 64 bit nodes
413  *
414  * Slot size and alignment
415  *  0b??1 : Root
416  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
417  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
418  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
419  */
420 
421 #define MAPLE_PARENT_ROOT		0x01
422 
423 #define MAPLE_PARENT_SLOT_SHIFT		0x03
424 #define MAPLE_PARENT_SLOT_MASK		0xF8
425 
426 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
428 
429 #define MAPLE_PARENT_RANGE64		0x06
430 #define MAPLE_PARENT_RANGE32		0x04
431 #define MAPLE_PARENT_NOT_RANGE16	0x02
432 
433 /*
434  * mte_parent_shift() - Get the parent shift for the slot storage.
435  * @parent: The parent pointer cast as an unsigned long
436  * Return: The shift into that pointer to the star to of the slot
437  */
438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_SHIFT;
443 
444 	return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446 
447 /*
448  * mte_parent_slot_mask() - Get the slot mask for the parent.
449  * @parent: The parent pointer cast as an unsigned long.
450  * Return: The slot mask for that parent.
451  */
452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 	/* Note bit 1 == 0 means 16B */
455 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 		return MAPLE_PARENT_SLOT_MASK;
457 
458 	return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460 
461 /*
462  * mas_parent_type() - Return the maple_type of the parent from the stored
463  * parent type.
464  * @mas: The maple state
465  * @enode: The maple_enode to extract the parent's enum
466  * Return: The node->parent maple_type
467  */
468 static inline
469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 	unsigned long p_type;
472 
473 	p_type = (unsigned long)mte_to_node(enode)->parent;
474 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 		return 0;
476 
477 	p_type &= MAPLE_NODE_MASK;
478 	p_type &= ~mte_parent_slot_mask(p_type);
479 	switch (p_type) {
480 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 		if (mt_is_alloc(mas->tree))
482 			return maple_arange_64;
483 		return maple_range_64;
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  * mas_set_parent() - Set the parent node and encode the slot
491  * @mas: The maple state
492  * @enode: The encoded maple node.
493  * @parent: The encoded maple node that is the parent of @enode.
494  * @slot: The slot that @enode resides in @parent.
495  *
496  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497  * parent type.
498  */
499 static inline
500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 		    const struct maple_enode *parent, unsigned char slot)
502 {
503 	unsigned long val = (unsigned long)parent;
504 	unsigned long shift;
505 	unsigned long type;
506 	enum maple_type p_type = mte_node_type(parent);
507 
508 	MAS_BUG_ON(mas, p_type == maple_dense);
509 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
510 
511 	switch (p_type) {
512 	case maple_range_64:
513 	case maple_arange_64:
514 		shift = MAPLE_PARENT_SLOT_SHIFT;
515 		type = MAPLE_PARENT_RANGE64;
516 		break;
517 	default:
518 	case maple_dense:
519 	case maple_leaf_64:
520 		shift = type = 0;
521 		break;
522 	}
523 
524 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 	val |= (slot << shift) | type;
526 	mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528 
529 /*
530  * mte_parent_slot() - get the parent slot of @enode.
531  * @enode: The encoded maple node.
532  *
533  * Return: The slot in the parent node where @enode resides.
534  */
535 static __always_inline
536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539 
540 	if (unlikely(val & MA_ROOT_PARENT))
541 		return 0;
542 
543 	/*
544 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 	 */
547 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549 
550 /*
551  * mte_parent() - Get the parent of @node.
552  * @enode: The encoded maple node.
553  *
554  * Return: The parent maple node.
555  */
556 static __always_inline
557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 	return (void *)((unsigned long)
560 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562 
563 /*
564  * ma_dead_node() - check if the @enode is dead.
565  * @enode: The encoded maple node
566  *
567  * Return: true if dead, false otherwise.
568  */
569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 	struct maple_node *parent;
572 
573 	/* Do not reorder reads from the node prior to the parent check */
574 	smp_rmb();
575 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 	return (parent == node);
577 }
578 
579 /*
580  * mte_dead_node() - check if the @enode is dead.
581  * @enode: The encoded maple node
582  *
583  * Return: true if dead, false otherwise.
584  */
585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 	struct maple_node *parent, *node;
588 
589 	node = mte_to_node(enode);
590 	/* Do not reorder reads from the node prior to the parent check */
591 	smp_rmb();
592 	parent = mte_parent(enode);
593 	return (parent == node);
594 }
595 
596 /*
597  * mas_allocated() - Get the number of nodes allocated in a maple state.
598  * @mas: The maple state
599  *
600  * The ma_state alloc member is overloaded to hold a pointer to the first
601  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
602  * set, then the alloc contains the number of requested nodes.  If there is an
603  * allocated node, then the total allocated nodes is in that node.
604  *
605  * Return: The total number of nodes allocated
606  */
607 static inline unsigned long mas_allocated(const struct ma_state *mas)
608 {
609 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
610 		return 0;
611 
612 	return mas->alloc->total;
613 }
614 
615 /*
616  * mas_set_alloc_req() - Set the requested number of allocations.
617  * @mas: the maple state
618  * @count: the number of allocations.
619  *
620  * The requested number of allocations is either in the first allocated node,
621  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
622  * no allocated node.  Set the request either in the node or do the necessary
623  * encoding to store in @mas->alloc directly.
624  */
625 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
626 {
627 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
628 		if (!count)
629 			mas->alloc = NULL;
630 		else
631 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
632 		return;
633 	}
634 
635 	mas->alloc->request_count = count;
636 }
637 
638 /*
639  * mas_alloc_req() - get the requested number of allocations.
640  * @mas: The maple state
641  *
642  * The alloc count is either stored directly in @mas, or in
643  * @mas->alloc->request_count if there is at least one node allocated.  Decode
644  * the request count if it's stored directly in @mas->alloc.
645  *
646  * Return: The allocation request count.
647  */
648 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
649 {
650 	if ((unsigned long)mas->alloc & 0x1)
651 		return (unsigned long)(mas->alloc) >> 1;
652 	else if (mas->alloc)
653 		return mas->alloc->request_count;
654 	return 0;
655 }
656 
657 /*
658  * ma_pivots() - Get a pointer to the maple node pivots.
659  * @node: the maple node
660  * @type: the node type
661  *
662  * In the event of a dead node, this array may be %NULL
663  *
664  * Return: A pointer to the maple node pivots
665  */
666 static inline unsigned long *ma_pivots(struct maple_node *node,
667 					   enum maple_type type)
668 {
669 	switch (type) {
670 	case maple_arange_64:
671 		return node->ma64.pivot;
672 	case maple_range_64:
673 	case maple_leaf_64:
674 		return node->mr64.pivot;
675 	case maple_dense:
676 		return NULL;
677 	}
678 	return NULL;
679 }
680 
681 /*
682  * ma_gaps() - Get a pointer to the maple node gaps.
683  * @node: the maple node
684  * @type: the node type
685  *
686  * Return: A pointer to the maple node gaps
687  */
688 static inline unsigned long *ma_gaps(struct maple_node *node,
689 				     enum maple_type type)
690 {
691 	switch (type) {
692 	case maple_arange_64:
693 		return node->ma64.gap;
694 	case maple_range_64:
695 	case maple_leaf_64:
696 	case maple_dense:
697 		return NULL;
698 	}
699 	return NULL;
700 }
701 
702 /*
703  * mas_safe_pivot() - get the pivot at @piv or mas->max.
704  * @mas: The maple state
705  * @pivots: The pointer to the maple node pivots
706  * @piv: The pivot to fetch
707  * @type: The maple node type
708  *
709  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710  * otherwise.
711  */
712 static __always_inline unsigned long
713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 	       unsigned char piv, enum maple_type type)
715 {
716 	if (piv >= mt_pivots[type])
717 		return mas->max;
718 
719 	return pivots[piv];
720 }
721 
722 /*
723  * mas_safe_min() - Return the minimum for a given offset.
724  * @mas: The maple state
725  * @pivots: The pointer to the maple node pivots
726  * @offset: The offset into the pivot array
727  *
728  * Return: The minimum range value that is contained in @offset.
729  */
730 static inline unsigned long
731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 	if (likely(offset))
734 		return pivots[offset - 1] + 1;
735 
736 	return mas->min;
737 }
738 
739 /*
740  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
741  * @mn: The encoded maple node
742  * @piv: The pivot offset
743  * @val: The value of the pivot
744  */
745 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
746 				unsigned long val)
747 {
748 	struct maple_node *node = mte_to_node(mn);
749 	enum maple_type type = mte_node_type(mn);
750 
751 	BUG_ON(piv >= mt_pivots[type]);
752 	switch (type) {
753 	case maple_range_64:
754 	case maple_leaf_64:
755 		node->mr64.pivot[piv] = val;
756 		break;
757 	case maple_arange_64:
758 		node->ma64.pivot[piv] = val;
759 		break;
760 	case maple_dense:
761 		break;
762 	}
763 
764 }
765 
766 /*
767  * ma_slots() - Get a pointer to the maple node slots.
768  * @mn: The maple node
769  * @mt: The maple node type
770  *
771  * Return: A pointer to the maple node slots
772  */
773 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
774 {
775 	switch (mt) {
776 	case maple_arange_64:
777 		return mn->ma64.slot;
778 	case maple_range_64:
779 	case maple_leaf_64:
780 		return mn->mr64.slot;
781 	case maple_dense:
782 		return mn->slot;
783 	}
784 
785 	return NULL;
786 }
787 
788 static inline bool mt_write_locked(const struct maple_tree *mt)
789 {
790 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
791 		lockdep_is_held(&mt->ma_lock);
792 }
793 
794 static __always_inline bool mt_locked(const struct maple_tree *mt)
795 {
796 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
797 		lockdep_is_held(&mt->ma_lock);
798 }
799 
800 static __always_inline void *mt_slot(const struct maple_tree *mt,
801 		void __rcu **slots, unsigned char offset)
802 {
803 	return rcu_dereference_check(slots[offset], mt_locked(mt));
804 }
805 
806 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
807 		void __rcu **slots, unsigned char offset)
808 {
809 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
810 }
811 /*
812  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
813  * @mas: The maple state
814  * @slots: The pointer to the slots
815  * @offset: The offset into the slots array to fetch
816  *
817  * Return: The entry stored in @slots at the @offset.
818  */
819 static __always_inline void *mas_slot_locked(struct ma_state *mas,
820 		void __rcu **slots, unsigned char offset)
821 {
822 	return mt_slot_locked(mas->tree, slots, offset);
823 }
824 
825 /*
826  * mas_slot() - Get the slot value when not holding the maple tree lock.
827  * @mas: The maple state
828  * @slots: The pointer to the slots
829  * @offset: The offset into the slots array to fetch
830  *
831  * Return: The entry stored in @slots at the @offset
832  */
833 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
834 		unsigned char offset)
835 {
836 	return mt_slot(mas->tree, slots, offset);
837 }
838 
839 /*
840  * mas_root() - Get the maple tree root.
841  * @mas: The maple state.
842  *
843  * Return: The pointer to the root of the tree
844  */
845 static __always_inline void *mas_root(struct ma_state *mas)
846 {
847 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
848 }
849 
850 static inline void *mt_root_locked(struct maple_tree *mt)
851 {
852 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
853 }
854 
855 /*
856  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
857  * @mas: The maple state.
858  *
859  * Return: The pointer to the root of the tree
860  */
861 static inline void *mas_root_locked(struct ma_state *mas)
862 {
863 	return mt_root_locked(mas->tree);
864 }
865 
866 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
867 					     enum maple_type mt)
868 {
869 	switch (mt) {
870 	case maple_arange_64:
871 		return &mn->ma64.meta;
872 	default:
873 		return &mn->mr64.meta;
874 	}
875 }
876 
877 /*
878  * ma_set_meta() - Set the metadata information of a node.
879  * @mn: The maple node
880  * @mt: The maple node type
881  * @offset: The offset of the highest sub-gap in this node.
882  * @end: The end of the data in this node.
883  */
884 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
885 			       unsigned char offset, unsigned char end)
886 {
887 	struct maple_metadata *meta = ma_meta(mn, mt);
888 
889 	meta->gap = offset;
890 	meta->end = end;
891 }
892 
893 /*
894  * mt_clear_meta() - clear the metadata information of a node, if it exists
895  * @mt: The maple tree
896  * @mn: The maple node
897  * @type: The maple node type
898  */
899 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
900 				  enum maple_type type)
901 {
902 	struct maple_metadata *meta;
903 	unsigned long *pivots;
904 	void __rcu **slots;
905 	void *next;
906 
907 	switch (type) {
908 	case maple_range_64:
909 		pivots = mn->mr64.pivot;
910 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
911 			slots = mn->mr64.slot;
912 			next = mt_slot_locked(mt, slots,
913 					      MAPLE_RANGE64_SLOTS - 1);
914 			if (unlikely((mte_to_node(next) &&
915 				      mte_node_type(next))))
916 				return; /* no metadata, could be node */
917 		}
918 		fallthrough;
919 	case maple_arange_64:
920 		meta = ma_meta(mn, type);
921 		break;
922 	default:
923 		return;
924 	}
925 
926 	meta->gap = 0;
927 	meta->end = 0;
928 }
929 
930 /*
931  * ma_meta_end() - Get the data end of a node from the metadata
932  * @mn: The maple node
933  * @mt: The maple node type
934  */
935 static inline unsigned char ma_meta_end(struct maple_node *mn,
936 					enum maple_type mt)
937 {
938 	struct maple_metadata *meta = ma_meta(mn, mt);
939 
940 	return meta->end;
941 }
942 
943 /*
944  * ma_meta_gap() - Get the largest gap location of a node from the metadata
945  * @mn: The maple node
946  */
947 static inline unsigned char ma_meta_gap(struct maple_node *mn)
948 {
949 	return mn->ma64.meta.gap;
950 }
951 
952 /*
953  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
954  * @mn: The maple node
955  * @mt: The maple node type
956  * @offset: The location of the largest gap.
957  */
958 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
959 				   unsigned char offset)
960 {
961 
962 	struct maple_metadata *meta = ma_meta(mn, mt);
963 
964 	meta->gap = offset;
965 }
966 
967 /*
968  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
969  * @mat: the ma_topiary, a linked list of dead nodes.
970  * @dead_enode: the node to be marked as dead and added to the tail of the list
971  *
972  * Add the @dead_enode to the linked list in @mat.
973  */
974 static inline void mat_add(struct ma_topiary *mat,
975 			   struct maple_enode *dead_enode)
976 {
977 	mte_set_node_dead(dead_enode);
978 	mte_to_mat(dead_enode)->next = NULL;
979 	if (!mat->tail) {
980 		mat->tail = mat->head = dead_enode;
981 		return;
982 	}
983 
984 	mte_to_mat(mat->tail)->next = dead_enode;
985 	mat->tail = dead_enode;
986 }
987 
988 static void mt_free_walk(struct rcu_head *head);
989 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
990 			    bool free);
991 /*
992  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
993  * @mas: the maple state
994  * @mat: the ma_topiary linked list of dead nodes to free.
995  *
996  * Destroy walk a dead list.
997  */
998 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
999 {
1000 	struct maple_enode *next;
1001 	struct maple_node *node;
1002 	bool in_rcu = mt_in_rcu(mas->tree);
1003 
1004 	while (mat->head) {
1005 		next = mte_to_mat(mat->head)->next;
1006 		node = mte_to_node(mat->head);
1007 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1008 		if (in_rcu)
1009 			call_rcu(&node->rcu, mt_free_walk);
1010 		mat->head = next;
1011 	}
1012 }
1013 /*
1014  * mas_descend() - Descend into the slot stored in the ma_state.
1015  * @mas: the maple state.
1016  *
1017  * Note: Not RCU safe, only use in write side or debug code.
1018  */
1019 static inline void mas_descend(struct ma_state *mas)
1020 {
1021 	enum maple_type type;
1022 	unsigned long *pivots;
1023 	struct maple_node *node;
1024 	void __rcu **slots;
1025 
1026 	node = mas_mn(mas);
1027 	type = mte_node_type(mas->node);
1028 	pivots = ma_pivots(node, type);
1029 	slots = ma_slots(node, type);
1030 
1031 	if (mas->offset)
1032 		mas->min = pivots[mas->offset - 1] + 1;
1033 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1034 	mas->node = mas_slot(mas, slots, mas->offset);
1035 }
1036 
1037 /*
1038  * mte_set_gap() - Set a maple node gap.
1039  * @mn: The encoded maple node
1040  * @gap: The offset of the gap to set
1041  * @val: The gap value
1042  */
1043 static inline void mte_set_gap(const struct maple_enode *mn,
1044 				 unsigned char gap, unsigned long val)
1045 {
1046 	switch (mte_node_type(mn)) {
1047 	default:
1048 		break;
1049 	case maple_arange_64:
1050 		mte_to_node(mn)->ma64.gap[gap] = val;
1051 		break;
1052 	}
1053 }
1054 
1055 /*
1056  * mas_ascend() - Walk up a level of the tree.
1057  * @mas: The maple state
1058  *
1059  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1060  * may cause several levels of walking up to find the correct min and max.
1061  * May find a dead node which will cause a premature return.
1062  * Return: 1 on dead node, 0 otherwise
1063  */
1064 static int mas_ascend(struct ma_state *mas)
1065 {
1066 	struct maple_enode *p_enode; /* parent enode. */
1067 	struct maple_enode *a_enode; /* ancestor enode. */
1068 	struct maple_node *a_node; /* ancestor node. */
1069 	struct maple_node *p_node; /* parent node. */
1070 	unsigned char a_slot;
1071 	enum maple_type a_type;
1072 	unsigned long min, max;
1073 	unsigned long *pivots;
1074 	bool set_max = false, set_min = false;
1075 
1076 	a_node = mas_mn(mas);
1077 	if (ma_is_root(a_node)) {
1078 		mas->offset = 0;
1079 		return 0;
1080 	}
1081 
1082 	p_node = mte_parent(mas->node);
1083 	if (unlikely(a_node == p_node))
1084 		return 1;
1085 
1086 	a_type = mas_parent_type(mas, mas->node);
1087 	mas->offset = mte_parent_slot(mas->node);
1088 	a_enode = mt_mk_node(p_node, a_type);
1089 
1090 	/* Check to make sure all parent information is still accurate */
1091 	if (p_node != mte_parent(mas->node))
1092 		return 1;
1093 
1094 	mas->node = a_enode;
1095 
1096 	if (mte_is_root(a_enode)) {
1097 		mas->max = ULONG_MAX;
1098 		mas->min = 0;
1099 		return 0;
1100 	}
1101 
1102 	min = 0;
1103 	max = ULONG_MAX;
1104 	if (!mas->offset) {
1105 		min = mas->min;
1106 		set_min = true;
1107 	}
1108 
1109 	if (mas->max == ULONG_MAX)
1110 		set_max = true;
1111 
1112 	do {
1113 		p_enode = a_enode;
1114 		a_type = mas_parent_type(mas, p_enode);
1115 		a_node = mte_parent(p_enode);
1116 		a_slot = mte_parent_slot(p_enode);
1117 		a_enode = mt_mk_node(a_node, a_type);
1118 		pivots = ma_pivots(a_node, a_type);
1119 
1120 		if (unlikely(ma_dead_node(a_node)))
1121 			return 1;
1122 
1123 		if (!set_min && a_slot) {
1124 			set_min = true;
1125 			min = pivots[a_slot - 1] + 1;
1126 		}
1127 
1128 		if (!set_max && a_slot < mt_pivots[a_type]) {
1129 			set_max = true;
1130 			max = pivots[a_slot];
1131 		}
1132 
1133 		if (unlikely(ma_dead_node(a_node)))
1134 			return 1;
1135 
1136 		if (unlikely(ma_is_root(a_node)))
1137 			break;
1138 
1139 	} while (!set_min || !set_max);
1140 
1141 	mas->max = max;
1142 	mas->min = min;
1143 	return 0;
1144 }
1145 
1146 /*
1147  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1148  * @mas: The maple state
1149  *
1150  * Return: A pointer to a maple node.
1151  */
1152 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1153 {
1154 	struct maple_alloc *ret, *node = mas->alloc;
1155 	unsigned long total = mas_allocated(mas);
1156 	unsigned int req = mas_alloc_req(mas);
1157 
1158 	/* nothing or a request pending. */
1159 	if (WARN_ON(!total))
1160 		return NULL;
1161 
1162 	if (total == 1) {
1163 		/* single allocation in this ma_state */
1164 		mas->alloc = NULL;
1165 		ret = node;
1166 		goto single_node;
1167 	}
1168 
1169 	if (node->node_count == 1) {
1170 		/* Single allocation in this node. */
1171 		mas->alloc = node->slot[0];
1172 		mas->alloc->total = node->total - 1;
1173 		ret = node;
1174 		goto new_head;
1175 	}
1176 	node->total--;
1177 	ret = node->slot[--node->node_count];
1178 	node->slot[node->node_count] = NULL;
1179 
1180 single_node:
1181 new_head:
1182 	if (req) {
1183 		req++;
1184 		mas_set_alloc_req(mas, req);
1185 	}
1186 
1187 	memset(ret, 0, sizeof(*ret));
1188 	return (struct maple_node *)ret;
1189 }
1190 
1191 /*
1192  * mas_push_node() - Push a node back on the maple state allocation.
1193  * @mas: The maple state
1194  * @used: The used maple node
1195  *
1196  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1197  * requested node count as necessary.
1198  */
1199 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1200 {
1201 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1202 	struct maple_alloc *head = mas->alloc;
1203 	unsigned long count;
1204 	unsigned int requested = mas_alloc_req(mas);
1205 
1206 	count = mas_allocated(mas);
1207 
1208 	reuse->request_count = 0;
1209 	reuse->node_count = 0;
1210 	if (count) {
1211 		if (head->node_count < MAPLE_ALLOC_SLOTS) {
1212 			head->slot[head->node_count++] = reuse;
1213 			head->total++;
1214 			goto done;
1215 		}
1216 		reuse->slot[0] = head;
1217 		reuse->node_count = 1;
1218 	}
1219 
1220 	reuse->total = count + 1;
1221 	mas->alloc = reuse;
1222 done:
1223 	if (requested > 1)
1224 		mas_set_alloc_req(mas, requested - 1);
1225 }
1226 
1227 /*
1228  * mas_alloc_nodes() - Allocate nodes into a maple state
1229  * @mas: The maple state
1230  * @gfp: The GFP Flags
1231  */
1232 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1233 {
1234 	struct maple_alloc *node;
1235 	unsigned long allocated = mas_allocated(mas);
1236 	unsigned int requested = mas_alloc_req(mas);
1237 	unsigned int count;
1238 	void **slots = NULL;
1239 	unsigned int max_req = 0;
1240 
1241 	if (!requested)
1242 		return;
1243 
1244 	mas_set_alloc_req(mas, 0);
1245 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1246 		if (allocated)
1247 			return;
1248 		BUG_ON(!allocated);
1249 		WARN_ON(!allocated);
1250 	}
1251 
1252 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1253 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1254 		if (!node)
1255 			goto nomem_one;
1256 
1257 		if (allocated) {
1258 			node->slot[0] = mas->alloc;
1259 			node->node_count = 1;
1260 		} else {
1261 			node->node_count = 0;
1262 		}
1263 
1264 		mas->alloc = node;
1265 		node->total = ++allocated;
1266 		node->request_count = 0;
1267 		requested--;
1268 	}
1269 
1270 	node = mas->alloc;
1271 	while (requested) {
1272 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1273 		slots = (void **)&node->slot[node->node_count];
1274 		max_req = min(requested, max_req);
1275 		count = mt_alloc_bulk(gfp, max_req, slots);
1276 		if (!count)
1277 			goto nomem_bulk;
1278 
1279 		if (node->node_count == 0) {
1280 			node->slot[0]->node_count = 0;
1281 			node->slot[0]->request_count = 0;
1282 		}
1283 
1284 		node->node_count += count;
1285 		allocated += count;
1286 		/* find a non-full node*/
1287 		do {
1288 			node = node->slot[0];
1289 		} while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1290 		requested -= count;
1291 	}
1292 	mas->alloc->total = allocated;
1293 	return;
1294 
1295 nomem_bulk:
1296 	/* Clean up potential freed allocations on bulk failure */
1297 	memset(slots, 0, max_req * sizeof(unsigned long));
1298 	mas->alloc->total = allocated;
1299 nomem_one:
1300 	mas_set_alloc_req(mas, requested);
1301 	mas_set_err(mas, -ENOMEM);
1302 }
1303 
1304 /*
1305  * mas_free() - Free an encoded maple node
1306  * @mas: The maple state
1307  * @used: The encoded maple node to free.
1308  *
1309  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310  * otherwise.
1311  */
1312 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313 {
1314 	struct maple_node *tmp = mte_to_node(used);
1315 
1316 	if (mt_in_rcu(mas->tree))
1317 		ma_free_rcu(tmp);
1318 	else
1319 		mas_push_node(mas, tmp);
1320 }
1321 
1322 /*
1323  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1324  * if there is not enough nodes.
1325  * @mas: The maple state
1326  * @count: The number of nodes needed
1327  * @gfp: the gfp flags
1328  */
1329 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330 {
1331 	unsigned long allocated = mas_allocated(mas);
1332 
1333 	if (allocated < count) {
1334 		mas_set_alloc_req(mas, count - allocated);
1335 		mas_alloc_nodes(mas, gfp);
1336 	}
1337 }
1338 
1339 /*
1340  * mas_node_count() - Check if enough nodes are allocated and request more if
1341  * there is not enough nodes.
1342  * @mas: The maple state
1343  * @count: The number of nodes needed
1344  *
1345  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346  */
1347 static void mas_node_count(struct ma_state *mas, int count)
1348 {
1349 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350 }
1351 
1352 /*
1353  * mas_start() - Sets up maple state for operations.
1354  * @mas: The maple state.
1355  *
1356  * If mas->status == mas_start, then set the min, max and depth to
1357  * defaults.
1358  *
1359  * Return:
1360  * - If mas->node is an error or not mas_start, return NULL.
1361  * - If it's an empty tree:     NULL & mas->status == ma_none
1362  * - If it's a single entry:    The entry & mas->status == ma_root
1363  * - If it's a tree:            NULL & mas->status == ma_active
1364  */
1365 static inline struct maple_enode *mas_start(struct ma_state *mas)
1366 {
1367 	if (likely(mas_is_start(mas))) {
1368 		struct maple_enode *root;
1369 
1370 		mas->min = 0;
1371 		mas->max = ULONG_MAX;
1372 
1373 retry:
1374 		mas->depth = 0;
1375 		root = mas_root(mas);
1376 		/* Tree with nodes */
1377 		if (likely(xa_is_node(root))) {
1378 			mas->depth = 1;
1379 			mas->status = ma_active;
1380 			mas->node = mte_safe_root(root);
1381 			mas->offset = 0;
1382 			if (mte_dead_node(mas->node))
1383 				goto retry;
1384 
1385 			return NULL;
1386 		}
1387 
1388 		mas->node = NULL;
1389 		/* empty tree */
1390 		if (unlikely(!root)) {
1391 			mas->status = ma_none;
1392 			mas->offset = MAPLE_NODE_SLOTS;
1393 			return NULL;
1394 		}
1395 
1396 		/* Single entry tree */
1397 		mas->status = ma_root;
1398 		mas->offset = MAPLE_NODE_SLOTS;
1399 
1400 		/* Single entry tree. */
1401 		if (mas->index > 0)
1402 			return NULL;
1403 
1404 		return root;
1405 	}
1406 
1407 	return NULL;
1408 }
1409 
1410 /*
1411  * ma_data_end() - Find the end of the data in a node.
1412  * @node: The maple node
1413  * @type: The maple node type
1414  * @pivots: The array of pivots in the node
1415  * @max: The maximum value in the node
1416  *
1417  * Uses metadata to find the end of the data when possible.
1418  * Return: The zero indexed last slot with data (may be null).
1419  */
1420 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1421 		enum maple_type type, unsigned long *pivots, unsigned long max)
1422 {
1423 	unsigned char offset;
1424 
1425 	if (!pivots)
1426 		return 0;
1427 
1428 	if (type == maple_arange_64)
1429 		return ma_meta_end(node, type);
1430 
1431 	offset = mt_pivots[type] - 1;
1432 	if (likely(!pivots[offset]))
1433 		return ma_meta_end(node, type);
1434 
1435 	if (likely(pivots[offset] == max))
1436 		return offset;
1437 
1438 	return mt_pivots[type];
1439 }
1440 
1441 /*
1442  * mas_data_end() - Find the end of the data (slot).
1443  * @mas: the maple state
1444  *
1445  * This method is optimized to check the metadata of a node if the node type
1446  * supports data end metadata.
1447  *
1448  * Return: The zero indexed last slot with data (may be null).
1449  */
1450 static inline unsigned char mas_data_end(struct ma_state *mas)
1451 {
1452 	enum maple_type type;
1453 	struct maple_node *node;
1454 	unsigned char offset;
1455 	unsigned long *pivots;
1456 
1457 	type = mte_node_type(mas->node);
1458 	node = mas_mn(mas);
1459 	if (type == maple_arange_64)
1460 		return ma_meta_end(node, type);
1461 
1462 	pivots = ma_pivots(node, type);
1463 	if (unlikely(ma_dead_node(node)))
1464 		return 0;
1465 
1466 	offset = mt_pivots[type] - 1;
1467 	if (likely(!pivots[offset]))
1468 		return ma_meta_end(node, type);
1469 
1470 	if (likely(pivots[offset] == mas->max))
1471 		return offset;
1472 
1473 	return mt_pivots[type];
1474 }
1475 
1476 /*
1477  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478  * @mas: the maple state
1479  *
1480  * Return: The maximum gap in the leaf.
1481  */
1482 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483 {
1484 	enum maple_type mt;
1485 	unsigned long pstart, gap, max_gap;
1486 	struct maple_node *mn;
1487 	unsigned long *pivots;
1488 	void __rcu **slots;
1489 	unsigned char i;
1490 	unsigned char max_piv;
1491 
1492 	mt = mte_node_type(mas->node);
1493 	mn = mas_mn(mas);
1494 	slots = ma_slots(mn, mt);
1495 	max_gap = 0;
1496 	if (unlikely(ma_is_dense(mt))) {
1497 		gap = 0;
1498 		for (i = 0; i < mt_slots[mt]; i++) {
1499 			if (slots[i]) {
1500 				if (gap > max_gap)
1501 					max_gap = gap;
1502 				gap = 0;
1503 			} else {
1504 				gap++;
1505 			}
1506 		}
1507 		if (gap > max_gap)
1508 			max_gap = gap;
1509 		return max_gap;
1510 	}
1511 
1512 	/*
1513 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 	 * be skipped if there is a gap in slot 0.
1515 	 */
1516 	pivots = ma_pivots(mn, mt);
1517 	if (likely(!slots[0])) {
1518 		max_gap = pivots[0] - mas->min + 1;
1519 		i = 2;
1520 	} else {
1521 		i = 1;
1522 	}
1523 
1524 	/* reduce max_piv as the special case is checked before the loop */
1525 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 	/*
1527 	 * Check end implied pivot which can only be a gap on the right most
1528 	 * node.
1529 	 */
1530 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 		gap = ULONG_MAX - pivots[max_piv];
1532 		if (gap > max_gap)
1533 			max_gap = gap;
1534 
1535 		if (max_gap > pivots[max_piv] - mas->min)
1536 			return max_gap;
1537 	}
1538 
1539 	for (; i <= max_piv; i++) {
1540 		/* data == no gap. */
1541 		if (likely(slots[i]))
1542 			continue;
1543 
1544 		pstart = pivots[i - 1];
1545 		gap = pivots[i] - pstart;
1546 		if (gap > max_gap)
1547 			max_gap = gap;
1548 
1549 		/* There cannot be two gaps in a row. */
1550 		i++;
1551 	}
1552 	return max_gap;
1553 }
1554 
1555 /*
1556  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1557  * @node: The maple node
1558  * @gaps: The pointer to the gaps
1559  * @mt: The maple node type
1560  * @off: Pointer to store the offset location of the gap.
1561  *
1562  * Uses the metadata data end to scan backwards across set gaps.
1563  *
1564  * Return: The maximum gap value
1565  */
1566 static inline unsigned long
1567 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1568 	    unsigned char *off)
1569 {
1570 	unsigned char offset, i;
1571 	unsigned long max_gap = 0;
1572 
1573 	i = offset = ma_meta_end(node, mt);
1574 	do {
1575 		if (gaps[i] > max_gap) {
1576 			max_gap = gaps[i];
1577 			offset = i;
1578 		}
1579 	} while (i--);
1580 
1581 	*off = offset;
1582 	return max_gap;
1583 }
1584 
1585 /*
1586  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1587  * @mas: The maple state.
1588  *
1589  * Return: The gap value.
1590  */
1591 static inline unsigned long mas_max_gap(struct ma_state *mas)
1592 {
1593 	unsigned long *gaps;
1594 	unsigned char offset;
1595 	enum maple_type mt;
1596 	struct maple_node *node;
1597 
1598 	mt = mte_node_type(mas->node);
1599 	if (ma_is_leaf(mt))
1600 		return mas_leaf_max_gap(mas);
1601 
1602 	node = mas_mn(mas);
1603 	MAS_BUG_ON(mas, mt != maple_arange_64);
1604 	offset = ma_meta_gap(node);
1605 	gaps = ma_gaps(node, mt);
1606 	return gaps[offset];
1607 }
1608 
1609 /*
1610  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1611  * @mas: The maple state
1612  * @offset: The gap offset in the parent to set
1613  * @new: The new gap value.
1614  *
1615  * Set the parent gap then continue to set the gap upwards, using the metadata
1616  * of the parent to see if it is necessary to check the node above.
1617  */
1618 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1619 		unsigned long new)
1620 {
1621 	unsigned long meta_gap = 0;
1622 	struct maple_node *pnode;
1623 	struct maple_enode *penode;
1624 	unsigned long *pgaps;
1625 	unsigned char meta_offset;
1626 	enum maple_type pmt;
1627 
1628 	pnode = mte_parent(mas->node);
1629 	pmt = mas_parent_type(mas, mas->node);
1630 	penode = mt_mk_node(pnode, pmt);
1631 	pgaps = ma_gaps(pnode, pmt);
1632 
1633 ascend:
1634 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1635 	meta_offset = ma_meta_gap(pnode);
1636 	meta_gap = pgaps[meta_offset];
1637 
1638 	pgaps[offset] = new;
1639 
1640 	if (meta_gap == new)
1641 		return;
1642 
1643 	if (offset != meta_offset) {
1644 		if (meta_gap > new)
1645 			return;
1646 
1647 		ma_set_meta_gap(pnode, pmt, offset);
1648 	} else if (new < meta_gap) {
1649 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1650 		ma_set_meta_gap(pnode, pmt, meta_offset);
1651 	}
1652 
1653 	if (ma_is_root(pnode))
1654 		return;
1655 
1656 	/* Go to the parent node. */
1657 	pnode = mte_parent(penode);
1658 	pmt = mas_parent_type(mas, penode);
1659 	pgaps = ma_gaps(pnode, pmt);
1660 	offset = mte_parent_slot(penode);
1661 	penode = mt_mk_node(pnode, pmt);
1662 	goto ascend;
1663 }
1664 
1665 /*
1666  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1667  * @mas: the maple state.
1668  */
1669 static inline void mas_update_gap(struct ma_state *mas)
1670 {
1671 	unsigned char pslot;
1672 	unsigned long p_gap;
1673 	unsigned long max_gap;
1674 
1675 	if (!mt_is_alloc(mas->tree))
1676 		return;
1677 
1678 	if (mte_is_root(mas->node))
1679 		return;
1680 
1681 	max_gap = mas_max_gap(mas);
1682 
1683 	pslot = mte_parent_slot(mas->node);
1684 	p_gap = ma_gaps(mte_parent(mas->node),
1685 			mas_parent_type(mas, mas->node))[pslot];
1686 
1687 	if (p_gap != max_gap)
1688 		mas_parent_gap(mas, pslot, max_gap);
1689 }
1690 
1691 /*
1692  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1693  * @parent with the slot encoded.
1694  * @mas: the maple state (for the tree)
1695  * @parent: the maple encoded node containing the children.
1696  */
1697 static inline void mas_adopt_children(struct ma_state *mas,
1698 		struct maple_enode *parent)
1699 {
1700 	enum maple_type type = mte_node_type(parent);
1701 	struct maple_node *node = mte_to_node(parent);
1702 	void __rcu **slots = ma_slots(node, type);
1703 	unsigned long *pivots = ma_pivots(node, type);
1704 	struct maple_enode *child;
1705 	unsigned char offset;
1706 
1707 	offset = ma_data_end(node, type, pivots, mas->max);
1708 	do {
1709 		child = mas_slot_locked(mas, slots, offset);
1710 		mas_set_parent(mas, child, parent, offset);
1711 	} while (offset--);
1712 }
1713 
1714 /*
1715  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1716  * node as dead.
1717  * @mas: the maple state with the new node
1718  * @old_enode: The old maple encoded node to replace.
1719  */
1720 static inline void mas_put_in_tree(struct ma_state *mas,
1721 		struct maple_enode *old_enode)
1722 	__must_hold(mas->tree->ma_lock)
1723 {
1724 	unsigned char offset;
1725 	void __rcu **slots;
1726 
1727 	if (mte_is_root(mas->node)) {
1728 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1729 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1730 		mas_set_height(mas);
1731 	} else {
1732 
1733 		offset = mte_parent_slot(mas->node);
1734 		slots = ma_slots(mte_parent(mas->node),
1735 				 mas_parent_type(mas, mas->node));
1736 		rcu_assign_pointer(slots[offset], mas->node);
1737 	}
1738 
1739 	mte_set_node_dead(old_enode);
1740 }
1741 
1742 /*
1743  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1744  * dead, and freeing it.
1745  * the parent encoding to locate the maple node in the tree.
1746  * @mas: the ma_state with @mas->node pointing to the new node.
1747  * @old_enode: The old maple encoded node.
1748  */
1749 static inline void mas_replace_node(struct ma_state *mas,
1750 		struct maple_enode *old_enode)
1751 	__must_hold(mas->tree->ma_lock)
1752 {
1753 	mas_put_in_tree(mas, old_enode);
1754 	mas_free(mas, old_enode);
1755 }
1756 
1757 /*
1758  * mas_find_child() - Find a child who has the parent @mas->node.
1759  * @mas: the maple state with the parent.
1760  * @child: the maple state to store the child.
1761  */
1762 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1763 	__must_hold(mas->tree->ma_lock)
1764 {
1765 	enum maple_type mt;
1766 	unsigned char offset;
1767 	unsigned char end;
1768 	unsigned long *pivots;
1769 	struct maple_enode *entry;
1770 	struct maple_node *node;
1771 	void __rcu **slots;
1772 
1773 	mt = mte_node_type(mas->node);
1774 	node = mas_mn(mas);
1775 	slots = ma_slots(node, mt);
1776 	pivots = ma_pivots(node, mt);
1777 	end = ma_data_end(node, mt, pivots, mas->max);
1778 	for (offset = mas->offset; offset <= end; offset++) {
1779 		entry = mas_slot_locked(mas, slots, offset);
1780 		if (mte_parent(entry) == node) {
1781 			*child = *mas;
1782 			mas->offset = offset + 1;
1783 			child->offset = offset;
1784 			mas_descend(child);
1785 			child->offset = 0;
1786 			return true;
1787 		}
1788 	}
1789 	return false;
1790 }
1791 
1792 /*
1793  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1794  * old data or set b_node->b_end.
1795  * @b_node: the maple_big_node
1796  * @shift: the shift count
1797  */
1798 static inline void mab_shift_right(struct maple_big_node *b_node,
1799 				 unsigned char shift)
1800 {
1801 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1802 
1803 	memmove(b_node->pivot + shift, b_node->pivot, size);
1804 	memmove(b_node->slot + shift, b_node->slot, size);
1805 	if (b_node->type == maple_arange_64)
1806 		memmove(b_node->gap + shift, b_node->gap, size);
1807 }
1808 
1809 /*
1810  * mab_middle_node() - Check if a middle node is needed (unlikely)
1811  * @b_node: the maple_big_node that contains the data.
1812  * @split: the potential split location
1813  * @slot_count: the size that can be stored in a single node being considered.
1814  *
1815  * Return: true if a middle node is required.
1816  */
1817 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1818 				   unsigned char slot_count)
1819 {
1820 	unsigned char size = b_node->b_end;
1821 
1822 	if (size >= 2 * slot_count)
1823 		return true;
1824 
1825 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1826 		return true;
1827 
1828 	return false;
1829 }
1830 
1831 /*
1832  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1833  * @b_node: the maple_big_node with the data
1834  * @split: the suggested split location
1835  * @slot_count: the number of slots in the node being considered.
1836  *
1837  * Return: the split location.
1838  */
1839 static inline int mab_no_null_split(struct maple_big_node *b_node,
1840 				    unsigned char split, unsigned char slot_count)
1841 {
1842 	if (!b_node->slot[split]) {
1843 		/*
1844 		 * If the split is less than the max slot && the right side will
1845 		 * still be sufficient, then increment the split on NULL.
1846 		 */
1847 		if ((split < slot_count - 1) &&
1848 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1849 			split++;
1850 		else
1851 			split--;
1852 	}
1853 	return split;
1854 }
1855 
1856 /*
1857  * mab_calc_split() - Calculate the split location and if there needs to be two
1858  * splits.
1859  * @mas: The maple state
1860  * @bn: The maple_big_node with the data
1861  * @mid_split: The second split, if required.  0 otherwise.
1862  *
1863  * Return: The first split location.  The middle split is set in @mid_split.
1864  */
1865 static inline int mab_calc_split(struct ma_state *mas,
1866 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1867 {
1868 	unsigned char b_end = bn->b_end;
1869 	int split = b_end / 2; /* Assume equal split. */
1870 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1871 
1872 	/*
1873 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1874 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1875 	 * limitation means that the split of a node must be checked for this condition
1876 	 * and be able to put more data in one direction or the other.
1877 	 */
1878 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1879 		*mid_split = 0;
1880 		split = b_end - mt_min_slots[bn->type];
1881 
1882 		if (!ma_is_leaf(bn->type))
1883 			return split;
1884 
1885 		mas->mas_flags |= MA_STATE_REBALANCE;
1886 		if (!bn->slot[split])
1887 			split--;
1888 		return split;
1889 	}
1890 
1891 	/*
1892 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1893 	 * split scenario.  The 3-way split comes about by means of a store of a range
1894 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1895 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1896 	 * also be located in different parent nodes which are also full.  This can
1897 	 * carry upwards all the way to the root in the worst case.
1898 	 */
1899 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1900 		split = b_end / 3;
1901 		*mid_split = split * 2;
1902 	} else {
1903 		slot_min = mt_min_slots[bn->type];
1904 
1905 		*mid_split = 0;
1906 		/*
1907 		 * Avoid having a range less than the slot count unless it
1908 		 * causes one node to be deficient.
1909 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1910 		 */
1911 		while ((split < slot_count - 1) &&
1912 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1913 		       (b_end - split > slot_min))
1914 			split++;
1915 	}
1916 
1917 	/* Avoid ending a node on a NULL entry */
1918 	split = mab_no_null_split(bn, split, slot_count);
1919 
1920 	if (unlikely(*mid_split))
1921 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1922 
1923 	return split;
1924 }
1925 
1926 /*
1927  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1928  * and set @b_node->b_end to the next free slot.
1929  * @mas: The maple state
1930  * @mas_start: The starting slot to copy
1931  * @mas_end: The end slot to copy (inclusively)
1932  * @b_node: The maple_big_node to place the data
1933  * @mab_start: The starting location in maple_big_node to store the data.
1934  */
1935 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1936 			unsigned char mas_end, struct maple_big_node *b_node,
1937 			unsigned char mab_start)
1938 {
1939 	enum maple_type mt;
1940 	struct maple_node *node;
1941 	void __rcu **slots;
1942 	unsigned long *pivots, *gaps;
1943 	int i = mas_start, j = mab_start;
1944 	unsigned char piv_end;
1945 
1946 	node = mas_mn(mas);
1947 	mt = mte_node_type(mas->node);
1948 	pivots = ma_pivots(node, mt);
1949 	if (!i) {
1950 		b_node->pivot[j] = pivots[i++];
1951 		if (unlikely(i > mas_end))
1952 			goto complete;
1953 		j++;
1954 	}
1955 
1956 	piv_end = min(mas_end, mt_pivots[mt]);
1957 	for (; i < piv_end; i++, j++) {
1958 		b_node->pivot[j] = pivots[i];
1959 		if (unlikely(!b_node->pivot[j]))
1960 			goto complete;
1961 
1962 		if (unlikely(mas->max == b_node->pivot[j]))
1963 			goto complete;
1964 	}
1965 
1966 	b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1967 
1968 complete:
1969 	b_node->b_end = ++j;
1970 	j -= mab_start;
1971 	slots = ma_slots(node, mt);
1972 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1973 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1974 		gaps = ma_gaps(node, mt);
1975 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1976 		       sizeof(unsigned long) * j);
1977 	}
1978 }
1979 
1980 /*
1981  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1982  * @node: The maple node
1983  * @mt: The maple type
1984  * @end: The node end
1985  */
1986 static inline void mas_leaf_set_meta(struct maple_node *node,
1987 		enum maple_type mt, unsigned char end)
1988 {
1989 	if (end < mt_slots[mt] - 1)
1990 		ma_set_meta(node, mt, 0, end);
1991 }
1992 
1993 /*
1994  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1995  * @b_node: the maple_big_node that has the data
1996  * @mab_start: the start location in @b_node.
1997  * @mab_end: The end location in @b_node (inclusively)
1998  * @mas: The maple state with the maple encoded node.
1999  */
2000 static inline void mab_mas_cp(struct maple_big_node *b_node,
2001 			      unsigned char mab_start, unsigned char mab_end,
2002 			      struct ma_state *mas, bool new_max)
2003 {
2004 	int i, j = 0;
2005 	enum maple_type mt = mte_node_type(mas->node);
2006 	struct maple_node *node = mte_to_node(mas->node);
2007 	void __rcu **slots = ma_slots(node, mt);
2008 	unsigned long *pivots = ma_pivots(node, mt);
2009 	unsigned long *gaps = NULL;
2010 	unsigned char end;
2011 
2012 	if (mab_end - mab_start > mt_pivots[mt])
2013 		mab_end--;
2014 
2015 	if (!pivots[mt_pivots[mt] - 1])
2016 		slots[mt_pivots[mt]] = NULL;
2017 
2018 	i = mab_start;
2019 	do {
2020 		pivots[j++] = b_node->pivot[i++];
2021 	} while (i <= mab_end && likely(b_node->pivot[i]));
2022 
2023 	memcpy(slots, b_node->slot + mab_start,
2024 	       sizeof(void *) * (i - mab_start));
2025 
2026 	if (new_max)
2027 		mas->max = b_node->pivot[i - 1];
2028 
2029 	end = j - 1;
2030 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2031 		unsigned long max_gap = 0;
2032 		unsigned char offset = 0;
2033 
2034 		gaps = ma_gaps(node, mt);
2035 		do {
2036 			gaps[--j] = b_node->gap[--i];
2037 			if (gaps[j] > max_gap) {
2038 				offset = j;
2039 				max_gap = gaps[j];
2040 			}
2041 		} while (j);
2042 
2043 		ma_set_meta(node, mt, offset, end);
2044 	} else {
2045 		mas_leaf_set_meta(node, mt, end);
2046 	}
2047 }
2048 
2049 /*
2050  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2051  * @mas: The maple state
2052  * @end: The maple node end
2053  * @mt: The maple node type
2054  */
2055 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2056 				      enum maple_type mt)
2057 {
2058 	if (!(mas->mas_flags & MA_STATE_BULK))
2059 		return;
2060 
2061 	if (mte_is_root(mas->node))
2062 		return;
2063 
2064 	if (end > mt_min_slots[mt]) {
2065 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2066 		return;
2067 	}
2068 }
2069 
2070 /*
2071  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2072  * data from a maple encoded node.
2073  * @wr_mas: the maple write state
2074  * @b_node: the maple_big_node to fill with data
2075  * @offset_end: the offset to end copying
2076  *
2077  * Return: The actual end of the data stored in @b_node
2078  */
2079 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2080 		struct maple_big_node *b_node, unsigned char offset_end)
2081 {
2082 	unsigned char slot;
2083 	unsigned char b_end;
2084 	/* Possible underflow of piv will wrap back to 0 before use. */
2085 	unsigned long piv;
2086 	struct ma_state *mas = wr_mas->mas;
2087 
2088 	b_node->type = wr_mas->type;
2089 	b_end = 0;
2090 	slot = mas->offset;
2091 	if (slot) {
2092 		/* Copy start data up to insert. */
2093 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2094 		b_end = b_node->b_end;
2095 		piv = b_node->pivot[b_end - 1];
2096 	} else
2097 		piv = mas->min - 1;
2098 
2099 	if (piv + 1 < mas->index) {
2100 		/* Handle range starting after old range */
2101 		b_node->slot[b_end] = wr_mas->content;
2102 		if (!wr_mas->content)
2103 			b_node->gap[b_end] = mas->index - 1 - piv;
2104 		b_node->pivot[b_end++] = mas->index - 1;
2105 	}
2106 
2107 	/* Store the new entry. */
2108 	mas->offset = b_end;
2109 	b_node->slot[b_end] = wr_mas->entry;
2110 	b_node->pivot[b_end] = mas->last;
2111 
2112 	/* Appended. */
2113 	if (mas->last >= mas->max)
2114 		goto b_end;
2115 
2116 	/* Handle new range ending before old range ends */
2117 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2118 	if (piv > mas->last) {
2119 		if (piv == ULONG_MAX)
2120 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2121 
2122 		if (offset_end != slot)
2123 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2124 							  offset_end);
2125 
2126 		b_node->slot[++b_end] = wr_mas->content;
2127 		if (!wr_mas->content)
2128 			b_node->gap[b_end] = piv - mas->last + 1;
2129 		b_node->pivot[b_end] = piv;
2130 	}
2131 
2132 	slot = offset_end + 1;
2133 	if (slot > mas->end)
2134 		goto b_end;
2135 
2136 	/* Copy end data to the end of the node. */
2137 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2138 	b_node->b_end--;
2139 	return;
2140 
2141 b_end:
2142 	b_node->b_end = b_end;
2143 }
2144 
2145 /*
2146  * mas_prev_sibling() - Find the previous node with the same parent.
2147  * @mas: the maple state
2148  *
2149  * Return: True if there is a previous sibling, false otherwise.
2150  */
2151 static inline bool mas_prev_sibling(struct ma_state *mas)
2152 {
2153 	unsigned int p_slot = mte_parent_slot(mas->node);
2154 
2155 	/* For root node, p_slot is set to 0 by mte_parent_slot(). */
2156 	if (!p_slot)
2157 		return false;
2158 
2159 	mas_ascend(mas);
2160 	mas->offset = p_slot - 1;
2161 	mas_descend(mas);
2162 	return true;
2163 }
2164 
2165 /*
2166  * mas_next_sibling() - Find the next node with the same parent.
2167  * @mas: the maple state
2168  *
2169  * Return: true if there is a next sibling, false otherwise.
2170  */
2171 static inline bool mas_next_sibling(struct ma_state *mas)
2172 {
2173 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2174 
2175 	if (mte_is_root(mas->node))
2176 		return false;
2177 
2178 	parent = *mas;
2179 	mas_ascend(&parent);
2180 	parent.offset = mte_parent_slot(mas->node) + 1;
2181 	if (parent.offset > mas_data_end(&parent))
2182 		return false;
2183 
2184 	*mas = parent;
2185 	mas_descend(mas);
2186 	return true;
2187 }
2188 
2189 /*
2190  * mas_node_or_none() - Set the enode and state.
2191  * @mas: the maple state
2192  * @enode: The encoded maple node.
2193  *
2194  * Set the node to the enode and the status.
2195  */
2196 static inline void mas_node_or_none(struct ma_state *mas,
2197 		struct maple_enode *enode)
2198 {
2199 	if (enode) {
2200 		mas->node = enode;
2201 		mas->status = ma_active;
2202 	} else {
2203 		mas->node = NULL;
2204 		mas->status = ma_none;
2205 	}
2206 }
2207 
2208 /*
2209  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2210  *                      If @mas->index cannot be found within the containing
2211  *                      node, we traverse to the last entry in the node.
2212  * @wr_mas: The maple write state
2213  *
2214  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2215  */
2216 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2217 {
2218 	struct ma_state *mas = wr_mas->mas;
2219 	unsigned char count, offset;
2220 
2221 	if (unlikely(ma_is_dense(wr_mas->type))) {
2222 		wr_mas->r_max = wr_mas->r_min = mas->index;
2223 		mas->offset = mas->index = mas->min;
2224 		return;
2225 	}
2226 
2227 	wr_mas->node = mas_mn(wr_mas->mas);
2228 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2229 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2230 				       wr_mas->pivots, mas->max);
2231 	offset = mas->offset;
2232 
2233 	while (offset < count && mas->index > wr_mas->pivots[offset])
2234 		offset++;
2235 
2236 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2237 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2238 	wr_mas->offset_end = mas->offset = offset;
2239 }
2240 
2241 /*
2242  * mast_rebalance_next() - Rebalance against the next node
2243  * @mast: The maple subtree state
2244  */
2245 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2246 {
2247 	unsigned char b_end = mast->bn->b_end;
2248 
2249 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2250 		   mast->bn, b_end);
2251 	mast->orig_r->last = mast->orig_r->max;
2252 }
2253 
2254 /*
2255  * mast_rebalance_prev() - Rebalance against the previous node
2256  * @mast: The maple subtree state
2257  */
2258 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2259 {
2260 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2261 	unsigned char b_end = mast->bn->b_end;
2262 
2263 	mab_shift_right(mast->bn, end);
2264 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2265 	mast->l->min = mast->orig_l->min;
2266 	mast->orig_l->index = mast->orig_l->min;
2267 	mast->bn->b_end = end + b_end;
2268 	mast->l->offset += end;
2269 }
2270 
2271 /*
2272  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2273  * the node to the right.  Checking the nodes to the right then the left at each
2274  * level upwards until root is reached.
2275  * Data is copied into the @mast->bn.
2276  * @mast: The maple_subtree_state.
2277  */
2278 static inline
2279 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2280 {
2281 	struct ma_state r_tmp = *mast->orig_r;
2282 	struct ma_state l_tmp = *mast->orig_l;
2283 	unsigned char depth = 0;
2284 
2285 	do {
2286 		mas_ascend(mast->orig_r);
2287 		mas_ascend(mast->orig_l);
2288 		depth++;
2289 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2290 			mast->orig_r->offset++;
2291 			do {
2292 				mas_descend(mast->orig_r);
2293 				mast->orig_r->offset = 0;
2294 			} while (--depth);
2295 
2296 			mast_rebalance_next(mast);
2297 			*mast->orig_l = l_tmp;
2298 			return true;
2299 		} else if (mast->orig_l->offset != 0) {
2300 			mast->orig_l->offset--;
2301 			do {
2302 				mas_descend(mast->orig_l);
2303 				mast->orig_l->offset =
2304 					mas_data_end(mast->orig_l);
2305 			} while (--depth);
2306 
2307 			mast_rebalance_prev(mast);
2308 			*mast->orig_r = r_tmp;
2309 			return true;
2310 		}
2311 	} while (!mte_is_root(mast->orig_r->node));
2312 
2313 	*mast->orig_r = r_tmp;
2314 	*mast->orig_l = l_tmp;
2315 	return false;
2316 }
2317 
2318 /*
2319  * mast_ascend() - Ascend the original left and right maple states.
2320  * @mast: the maple subtree state.
2321  *
2322  * Ascend the original left and right sides.  Set the offsets to point to the
2323  * data already in the new tree (@mast->l and @mast->r).
2324  */
2325 static inline void mast_ascend(struct maple_subtree_state *mast)
2326 {
2327 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2328 	mas_ascend(mast->orig_l);
2329 	mas_ascend(mast->orig_r);
2330 
2331 	mast->orig_r->offset = 0;
2332 	mast->orig_r->index = mast->r->max;
2333 	/* last should be larger than or equal to index */
2334 	if (mast->orig_r->last < mast->orig_r->index)
2335 		mast->orig_r->last = mast->orig_r->index;
2336 
2337 	wr_mas.type = mte_node_type(mast->orig_r->node);
2338 	mas_wr_node_walk(&wr_mas);
2339 	/* Set up the left side of things */
2340 	mast->orig_l->offset = 0;
2341 	mast->orig_l->index = mast->l->min;
2342 	wr_mas.mas = mast->orig_l;
2343 	wr_mas.type = mte_node_type(mast->orig_l->node);
2344 	mas_wr_node_walk(&wr_mas);
2345 
2346 	mast->bn->type = wr_mas.type;
2347 }
2348 
2349 /*
2350  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2351  * @mas: the maple state with the allocations.
2352  * @b_node: the maple_big_node with the type encoding.
2353  *
2354  * Use the node type from the maple_big_node to allocate a new node from the
2355  * ma_state.  This function exists mainly for code readability.
2356  *
2357  * Return: A new maple encoded node
2358  */
2359 static inline struct maple_enode
2360 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2361 {
2362 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2363 }
2364 
2365 /*
2366  * mas_mab_to_node() - Set up right and middle nodes
2367  *
2368  * @mas: the maple state that contains the allocations.
2369  * @b_node: the node which contains the data.
2370  * @left: The pointer which will have the left node
2371  * @right: The pointer which may have the right node
2372  * @middle: the pointer which may have the middle node (rare)
2373  * @mid_split: the split location for the middle node
2374  *
2375  * Return: the split of left.
2376  */
2377 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2378 	struct maple_big_node *b_node, struct maple_enode **left,
2379 	struct maple_enode **right, struct maple_enode **middle,
2380 	unsigned char *mid_split, unsigned long min)
2381 {
2382 	unsigned char split = 0;
2383 	unsigned char slot_count = mt_slots[b_node->type];
2384 
2385 	*left = mas_new_ma_node(mas, b_node);
2386 	*right = NULL;
2387 	*middle = NULL;
2388 	*mid_split = 0;
2389 
2390 	if (b_node->b_end < slot_count) {
2391 		split = b_node->b_end;
2392 	} else {
2393 		split = mab_calc_split(mas, b_node, mid_split, min);
2394 		*right = mas_new_ma_node(mas, b_node);
2395 	}
2396 
2397 	if (*mid_split)
2398 		*middle = mas_new_ma_node(mas, b_node);
2399 
2400 	return split;
2401 
2402 }
2403 
2404 /*
2405  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2406  * pointer.
2407  * @b_node: the big node to add the entry
2408  * @mas: the maple state to get the pivot (mas->max)
2409  * @entry: the entry to add, if NULL nothing happens.
2410  */
2411 static inline void mab_set_b_end(struct maple_big_node *b_node,
2412 				 struct ma_state *mas,
2413 				 void *entry)
2414 {
2415 	if (!entry)
2416 		return;
2417 
2418 	b_node->slot[b_node->b_end] = entry;
2419 	if (mt_is_alloc(mas->tree))
2420 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2421 	b_node->pivot[b_node->b_end++] = mas->max;
2422 }
2423 
2424 /*
2425  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2426  * of @mas->node to either @left or @right, depending on @slot and @split
2427  *
2428  * @mas: the maple state with the node that needs a parent
2429  * @left: possible parent 1
2430  * @right: possible parent 2
2431  * @slot: the slot the mas->node was placed
2432  * @split: the split location between @left and @right
2433  */
2434 static inline void mas_set_split_parent(struct ma_state *mas,
2435 					struct maple_enode *left,
2436 					struct maple_enode *right,
2437 					unsigned char *slot, unsigned char split)
2438 {
2439 	if (mas_is_none(mas))
2440 		return;
2441 
2442 	if ((*slot) <= split)
2443 		mas_set_parent(mas, mas->node, left, *slot);
2444 	else if (right)
2445 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2446 
2447 	(*slot)++;
2448 }
2449 
2450 /*
2451  * mte_mid_split_check() - Check if the next node passes the mid-split
2452  * @l: Pointer to left encoded maple node.
2453  * @m: Pointer to middle encoded maple node.
2454  * @r: Pointer to right encoded maple node.
2455  * @slot: The offset
2456  * @split: The split location.
2457  * @mid_split: The middle split.
2458  */
2459 static inline void mte_mid_split_check(struct maple_enode **l,
2460 				       struct maple_enode **r,
2461 				       struct maple_enode *right,
2462 				       unsigned char slot,
2463 				       unsigned char *split,
2464 				       unsigned char mid_split)
2465 {
2466 	if (*r == right)
2467 		return;
2468 
2469 	if (slot < mid_split)
2470 		return;
2471 
2472 	*l = *r;
2473 	*r = right;
2474 	*split = mid_split;
2475 }
2476 
2477 /*
2478  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2479  * is taken from @mast->l.
2480  * @mast: the maple subtree state
2481  * @left: the left node
2482  * @right: the right node
2483  * @split: the split location.
2484  */
2485 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2486 					  struct maple_enode *left,
2487 					  struct maple_enode *middle,
2488 					  struct maple_enode *right,
2489 					  unsigned char split,
2490 					  unsigned char mid_split)
2491 {
2492 	unsigned char slot;
2493 	struct maple_enode *l = left;
2494 	struct maple_enode *r = right;
2495 
2496 	if (mas_is_none(mast->l))
2497 		return;
2498 
2499 	if (middle)
2500 		r = middle;
2501 
2502 	slot = mast->l->offset;
2503 
2504 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2505 	mas_set_split_parent(mast->l, l, r, &slot, split);
2506 
2507 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2508 	mas_set_split_parent(mast->m, l, r, &slot, split);
2509 
2510 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2511 	mas_set_split_parent(mast->r, l, r, &slot, split);
2512 }
2513 
2514 /*
2515  * mas_topiary_node() - Dispose of a single node
2516  * @mas: The maple state for pushing nodes
2517  * @in_rcu: If the tree is in rcu mode
2518  *
2519  * The node will either be RCU freed or pushed back on the maple state.
2520  */
2521 static inline void mas_topiary_node(struct ma_state *mas,
2522 		struct ma_state *tmp_mas, bool in_rcu)
2523 {
2524 	struct maple_node *tmp;
2525 	struct maple_enode *enode;
2526 
2527 	if (mas_is_none(tmp_mas))
2528 		return;
2529 
2530 	enode = tmp_mas->node;
2531 	tmp = mte_to_node(enode);
2532 	mte_set_node_dead(enode);
2533 	if (in_rcu)
2534 		ma_free_rcu(tmp);
2535 	else
2536 		mas_push_node(mas, tmp);
2537 }
2538 
2539 /*
2540  * mas_topiary_replace() - Replace the data with new data, then repair the
2541  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2542  * the dead subtrees and topiary the nodes that are no longer of use.
2543  *
2544  * The new tree will have up to three children with the correct parent.  Keep
2545  * track of the new entries as they need to be followed to find the next level
2546  * of new entries.
2547  *
2548  * The old tree will have up to three children with the old parent.  Keep track
2549  * of the old entries as they may have more nodes below replaced.  Nodes within
2550  * [index, last] are dead subtrees, others need to be freed and followed.
2551  *
2552  * @mas: The maple state pointing at the new data
2553  * @old_enode: The maple encoded node being replaced
2554  *
2555  */
2556 static inline void mas_topiary_replace(struct ma_state *mas,
2557 		struct maple_enode *old_enode)
2558 {
2559 	struct ma_state tmp[3], tmp_next[3];
2560 	MA_TOPIARY(subtrees, mas->tree);
2561 	bool in_rcu;
2562 	int i, n;
2563 
2564 	/* Place data in tree & then mark node as old */
2565 	mas_put_in_tree(mas, old_enode);
2566 
2567 	/* Update the parent pointers in the tree */
2568 	tmp[0] = *mas;
2569 	tmp[0].offset = 0;
2570 	tmp[1].status = ma_none;
2571 	tmp[2].status = ma_none;
2572 	while (!mte_is_leaf(tmp[0].node)) {
2573 		n = 0;
2574 		for (i = 0; i < 3; i++) {
2575 			if (mas_is_none(&tmp[i]))
2576 				continue;
2577 
2578 			while (n < 3) {
2579 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2580 					break;
2581 				n++;
2582 			}
2583 
2584 			mas_adopt_children(&tmp[i], tmp[i].node);
2585 		}
2586 
2587 		if (MAS_WARN_ON(mas, n == 0))
2588 			break;
2589 
2590 		while (n < 3)
2591 			tmp_next[n++].status = ma_none;
2592 
2593 		for (i = 0; i < 3; i++)
2594 			tmp[i] = tmp_next[i];
2595 	}
2596 
2597 	/* Collect the old nodes that need to be discarded */
2598 	if (mte_is_leaf(old_enode))
2599 		return mas_free(mas, old_enode);
2600 
2601 	tmp[0] = *mas;
2602 	tmp[0].offset = 0;
2603 	tmp[0].node = old_enode;
2604 	tmp[1].status = ma_none;
2605 	tmp[2].status = ma_none;
2606 	in_rcu = mt_in_rcu(mas->tree);
2607 	do {
2608 		n = 0;
2609 		for (i = 0; i < 3; i++) {
2610 			if (mas_is_none(&tmp[i]))
2611 				continue;
2612 
2613 			while (n < 3) {
2614 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2615 					break;
2616 
2617 				if ((tmp_next[n].min >= tmp_next->index) &&
2618 				    (tmp_next[n].max <= tmp_next->last)) {
2619 					mat_add(&subtrees, tmp_next[n].node);
2620 					tmp_next[n].status = ma_none;
2621 				} else {
2622 					n++;
2623 				}
2624 			}
2625 		}
2626 
2627 		if (MAS_WARN_ON(mas, n == 0))
2628 			break;
2629 
2630 		while (n < 3)
2631 			tmp_next[n++].status = ma_none;
2632 
2633 		for (i = 0; i < 3; i++) {
2634 			mas_topiary_node(mas, &tmp[i], in_rcu);
2635 			tmp[i] = tmp_next[i];
2636 		}
2637 	} while (!mte_is_leaf(tmp[0].node));
2638 
2639 	for (i = 0; i < 3; i++)
2640 		mas_topiary_node(mas, &tmp[i], in_rcu);
2641 
2642 	mas_mat_destroy(mas, &subtrees);
2643 }
2644 
2645 /*
2646  * mas_wmb_replace() - Write memory barrier and replace
2647  * @mas: The maple state
2648  * @old_enode: The old maple encoded node that is being replaced.
2649  *
2650  * Updates gap as necessary.
2651  */
2652 static inline void mas_wmb_replace(struct ma_state *mas,
2653 		struct maple_enode *old_enode)
2654 {
2655 	/* Insert the new data in the tree */
2656 	mas_topiary_replace(mas, old_enode);
2657 
2658 	if (mte_is_leaf(mas->node))
2659 		return;
2660 
2661 	mas_update_gap(mas);
2662 }
2663 
2664 /*
2665  * mast_cp_to_nodes() - Copy data out to nodes.
2666  * @mast: The maple subtree state
2667  * @left: The left encoded maple node
2668  * @middle: The middle encoded maple node
2669  * @right: The right encoded maple node
2670  * @split: The location to split between left and (middle ? middle : right)
2671  * @mid_split: The location to split between middle and right.
2672  */
2673 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2674 	struct maple_enode *left, struct maple_enode *middle,
2675 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2676 {
2677 	bool new_lmax = true;
2678 
2679 	mas_node_or_none(mast->l, left);
2680 	mas_node_or_none(mast->m, middle);
2681 	mas_node_or_none(mast->r, right);
2682 
2683 	mast->l->min = mast->orig_l->min;
2684 	if (split == mast->bn->b_end) {
2685 		mast->l->max = mast->orig_r->max;
2686 		new_lmax = false;
2687 	}
2688 
2689 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2690 
2691 	if (middle) {
2692 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2693 		mast->m->min = mast->bn->pivot[split] + 1;
2694 		split = mid_split;
2695 	}
2696 
2697 	mast->r->max = mast->orig_r->max;
2698 	if (right) {
2699 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2700 		mast->r->min = mast->bn->pivot[split] + 1;
2701 	}
2702 }
2703 
2704 /*
2705  * mast_combine_cp_left - Copy in the original left side of the tree into the
2706  * combined data set in the maple subtree state big node.
2707  * @mast: The maple subtree state
2708  */
2709 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2710 {
2711 	unsigned char l_slot = mast->orig_l->offset;
2712 
2713 	if (!l_slot)
2714 		return;
2715 
2716 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2717 }
2718 
2719 /*
2720  * mast_combine_cp_right: Copy in the original right side of the tree into the
2721  * combined data set in the maple subtree state big node.
2722  * @mast: The maple subtree state
2723  */
2724 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2725 {
2726 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2727 		return;
2728 
2729 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2730 		   mt_slot_count(mast->orig_r->node), mast->bn,
2731 		   mast->bn->b_end);
2732 	mast->orig_r->last = mast->orig_r->max;
2733 }
2734 
2735 /*
2736  * mast_sufficient: Check if the maple subtree state has enough data in the big
2737  * node to create at least one sufficient node
2738  * @mast: the maple subtree state
2739  */
2740 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2741 {
2742 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2743 		return true;
2744 
2745 	return false;
2746 }
2747 
2748 /*
2749  * mast_overflow: Check if there is too much data in the subtree state for a
2750  * single node.
2751  * @mast: The maple subtree state
2752  */
2753 static inline bool mast_overflow(struct maple_subtree_state *mast)
2754 {
2755 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2756 		return true;
2757 
2758 	return false;
2759 }
2760 
2761 static inline void *mtree_range_walk(struct ma_state *mas)
2762 {
2763 	unsigned long *pivots;
2764 	unsigned char offset;
2765 	struct maple_node *node;
2766 	struct maple_enode *next, *last;
2767 	enum maple_type type;
2768 	void __rcu **slots;
2769 	unsigned char end;
2770 	unsigned long max, min;
2771 	unsigned long prev_max, prev_min;
2772 
2773 	next = mas->node;
2774 	min = mas->min;
2775 	max = mas->max;
2776 	do {
2777 		last = next;
2778 		node = mte_to_node(next);
2779 		type = mte_node_type(next);
2780 		pivots = ma_pivots(node, type);
2781 		end = ma_data_end(node, type, pivots, max);
2782 		prev_min = min;
2783 		prev_max = max;
2784 		if (pivots[0] >= mas->index) {
2785 			offset = 0;
2786 			max = pivots[0];
2787 			goto next;
2788 		}
2789 
2790 		offset = 1;
2791 		while (offset < end) {
2792 			if (pivots[offset] >= mas->index) {
2793 				max = pivots[offset];
2794 				break;
2795 			}
2796 			offset++;
2797 		}
2798 
2799 		min = pivots[offset - 1] + 1;
2800 next:
2801 		slots = ma_slots(node, type);
2802 		next = mt_slot(mas->tree, slots, offset);
2803 		if (unlikely(ma_dead_node(node)))
2804 			goto dead_node;
2805 	} while (!ma_is_leaf(type));
2806 
2807 	mas->end = end;
2808 	mas->offset = offset;
2809 	mas->index = min;
2810 	mas->last = max;
2811 	mas->min = prev_min;
2812 	mas->max = prev_max;
2813 	mas->node = last;
2814 	return (void *)next;
2815 
2816 dead_node:
2817 	mas_reset(mas);
2818 	return NULL;
2819 }
2820 
2821 /*
2822  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2823  * @mas: The starting maple state
2824  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2825  * @count: The estimated count of iterations needed.
2826  *
2827  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2828  * is hit.  First @b_node is split into two entries which are inserted into the
2829  * next iteration of the loop.  @b_node is returned populated with the final
2830  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2831  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2832  * to account of what has been copied into the new sub-tree.  The update of
2833  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2834  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2835  * the new sub-tree in case the sub-tree becomes the full tree.
2836  */
2837 static void mas_spanning_rebalance(struct ma_state *mas,
2838 		struct maple_subtree_state *mast, unsigned char count)
2839 {
2840 	unsigned char split, mid_split;
2841 	unsigned char slot = 0;
2842 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2843 	struct maple_enode *old_enode;
2844 
2845 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2846 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2847 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2848 
2849 	/*
2850 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2851 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2852 	 */
2853 	mast->l = &l_mas;
2854 	mast->m = &m_mas;
2855 	mast->r = &r_mas;
2856 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2857 
2858 	/* Check if this is not root and has sufficient data.  */
2859 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2860 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2861 		mast_spanning_rebalance(mast);
2862 
2863 	l_mas.depth = 0;
2864 
2865 	/*
2866 	 * Each level of the tree is examined and balanced, pushing data to the left or
2867 	 * right, or rebalancing against left or right nodes is employed to avoid
2868 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2869 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2870 	 * will have the incorrect parent pointers and currently be in two trees: the
2871 	 * original tree and the partially new tree.  To remedy the parent pointers in
2872 	 * the old tree, the new data is swapped into the active tree and a walk down
2873 	 * the tree is performed and the parent pointers are updated.
2874 	 * See mas_topiary_replace() for more information.
2875 	 */
2876 	while (count--) {
2877 		mast->bn->b_end--;
2878 		mast->bn->type = mte_node_type(mast->orig_l->node);
2879 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2880 					&mid_split, mast->orig_l->min);
2881 		mast_set_split_parents(mast, left, middle, right, split,
2882 				       mid_split);
2883 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2884 
2885 		/*
2886 		 * Copy data from next level in the tree to mast->bn from next
2887 		 * iteration
2888 		 */
2889 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2890 		mast->bn->type = mte_node_type(left);
2891 		l_mas.depth++;
2892 
2893 		/* Root already stored in l->node. */
2894 		if (mas_is_root_limits(mast->l))
2895 			goto new_root;
2896 
2897 		mast_ascend(mast);
2898 		mast_combine_cp_left(mast);
2899 		l_mas.offset = mast->bn->b_end;
2900 		mab_set_b_end(mast->bn, &l_mas, left);
2901 		mab_set_b_end(mast->bn, &m_mas, middle);
2902 		mab_set_b_end(mast->bn, &r_mas, right);
2903 
2904 		/* Copy anything necessary out of the right node. */
2905 		mast_combine_cp_right(mast);
2906 		mast->orig_l->last = mast->orig_l->max;
2907 
2908 		if (mast_sufficient(mast))
2909 			continue;
2910 
2911 		if (mast_overflow(mast))
2912 			continue;
2913 
2914 		/* May be a new root stored in mast->bn */
2915 		if (mas_is_root_limits(mast->orig_l))
2916 			break;
2917 
2918 		mast_spanning_rebalance(mast);
2919 
2920 		/* rebalancing from other nodes may require another loop. */
2921 		if (!count)
2922 			count++;
2923 	}
2924 
2925 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2926 				mte_node_type(mast->orig_l->node));
2927 	l_mas.depth++;
2928 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2929 	mas_set_parent(mas, left, l_mas.node, slot);
2930 	if (middle)
2931 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2932 
2933 	if (right)
2934 		mas_set_parent(mas, right, l_mas.node, ++slot);
2935 
2936 	if (mas_is_root_limits(mast->l)) {
2937 new_root:
2938 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2939 		while (!mte_is_root(mast->orig_l->node))
2940 			mast_ascend(mast);
2941 	} else {
2942 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2943 	}
2944 
2945 	old_enode = mast->orig_l->node;
2946 	mas->depth = l_mas.depth;
2947 	mas->node = l_mas.node;
2948 	mas->min = l_mas.min;
2949 	mas->max = l_mas.max;
2950 	mas->offset = l_mas.offset;
2951 	mas_wmb_replace(mas, old_enode);
2952 	mtree_range_walk(mas);
2953 	return;
2954 }
2955 
2956 /*
2957  * mas_rebalance() - Rebalance a given node.
2958  * @mas: The maple state
2959  * @b_node: The big maple node.
2960  *
2961  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2962  * Continue upwards until tree is sufficient.
2963  */
2964 static inline void mas_rebalance(struct ma_state *mas,
2965 				struct maple_big_node *b_node)
2966 {
2967 	char empty_count = mas_mt_height(mas);
2968 	struct maple_subtree_state mast;
2969 	unsigned char shift, b_end = ++b_node->b_end;
2970 
2971 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2972 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2973 
2974 	trace_ma_op(__func__, mas);
2975 
2976 	/*
2977 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2978 	 * against the node to the right if it exists, otherwise the node to the
2979 	 * left of this node is rebalanced against this node.  If rebalancing
2980 	 * causes just one node to be produced instead of two, then the parent
2981 	 * is also examined and rebalanced if it is insufficient.  Every level
2982 	 * tries to combine the data in the same way.  If one node contains the
2983 	 * entire range of the tree, then that node is used as a new root node.
2984 	 */
2985 
2986 	mast.orig_l = &l_mas;
2987 	mast.orig_r = &r_mas;
2988 	mast.bn = b_node;
2989 	mast.bn->type = mte_node_type(mas->node);
2990 
2991 	l_mas = r_mas = *mas;
2992 
2993 	if (mas_next_sibling(&r_mas)) {
2994 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2995 		r_mas.last = r_mas.index = r_mas.max;
2996 	} else {
2997 		mas_prev_sibling(&l_mas);
2998 		shift = mas_data_end(&l_mas) + 1;
2999 		mab_shift_right(b_node, shift);
3000 		mas->offset += shift;
3001 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3002 		b_node->b_end = shift + b_end;
3003 		l_mas.index = l_mas.last = l_mas.min;
3004 	}
3005 
3006 	return mas_spanning_rebalance(mas, &mast, empty_count);
3007 }
3008 
3009 /*
3010  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3011  * state.
3012  * @mas: The maple state
3013  * @end: The end of the left-most node.
3014  *
3015  * During a mass-insert event (such as forking), it may be necessary to
3016  * rebalance the left-most node when it is not sufficient.
3017  */
3018 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3019 {
3020 	enum maple_type mt = mte_node_type(mas->node);
3021 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3022 	struct maple_enode *eparent, *old_eparent;
3023 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3024 	void __rcu **l_slots, **slots;
3025 	unsigned long *l_pivs, *pivs, gap;
3026 	bool in_rcu = mt_in_rcu(mas->tree);
3027 
3028 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029 
3030 	l_mas = *mas;
3031 	mas_prev_sibling(&l_mas);
3032 
3033 	/* set up node. */
3034 	if (in_rcu) {
3035 		newnode = mas_pop_node(mas);
3036 	} else {
3037 		newnode = &reuse;
3038 	}
3039 
3040 	node = mas_mn(mas);
3041 	newnode->parent = node->parent;
3042 	slots = ma_slots(newnode, mt);
3043 	pivs = ma_pivots(newnode, mt);
3044 	left = mas_mn(&l_mas);
3045 	l_slots = ma_slots(left, mt);
3046 	l_pivs = ma_pivots(left, mt);
3047 	if (!l_slots[split])
3048 		split++;
3049 	tmp = mas_data_end(&l_mas) - split;
3050 
3051 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 	pivs[tmp] = l_mas.max;
3054 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056 
3057 	l_mas.max = l_pivs[split];
3058 	mas->min = l_mas.max + 1;
3059 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3060 			     mas_parent_type(&l_mas, l_mas.node));
3061 	tmp += end;
3062 	if (!in_rcu) {
3063 		unsigned char max_p = mt_pivots[mt];
3064 		unsigned char max_s = mt_slots[mt];
3065 
3066 		if (tmp < max_p)
3067 			memset(pivs + tmp, 0,
3068 			       sizeof(unsigned long) * (max_p - tmp));
3069 
3070 		if (tmp < mt_slots[mt])
3071 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072 
3073 		memcpy(node, newnode, sizeof(struct maple_node));
3074 		ma_set_meta(node, mt, 0, tmp - 1);
3075 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3076 			      l_pivs[split]);
3077 
3078 		/* Remove data from l_pivs. */
3079 		tmp = split + 1;
3080 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 		ma_set_meta(left, mt, 0, split);
3083 		eparent = old_eparent;
3084 
3085 		goto done;
3086 	}
3087 
3088 	/* RCU requires replacing both l_mas, mas, and parent. */
3089 	mas->node = mt_mk_node(newnode, mt);
3090 	ma_set_meta(newnode, mt, 0, tmp);
3091 
3092 	new_left = mas_pop_node(mas);
3093 	new_left->parent = left->parent;
3094 	mt = mte_node_type(l_mas.node);
3095 	slots = ma_slots(new_left, mt);
3096 	pivs = ma_pivots(new_left, mt);
3097 	memcpy(slots, l_slots, sizeof(void *) * split);
3098 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 	ma_set_meta(new_left, mt, 0, split);
3100 	l_mas.node = mt_mk_node(new_left, mt);
3101 
3102 	/* replace parent. */
3103 	offset = mte_parent_slot(mas->node);
3104 	mt = mas_parent_type(&l_mas, l_mas.node);
3105 	parent = mas_pop_node(mas);
3106 	slots = ma_slots(parent, mt);
3107 	pivs = ma_pivots(parent, mt);
3108 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3109 	rcu_assign_pointer(slots[offset], mas->node);
3110 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 	pivs[offset - 1] = l_mas.max;
3112 	eparent = mt_mk_node(parent, mt);
3113 done:
3114 	gap = mas_leaf_max_gap(mas);
3115 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 	gap = mas_leaf_max_gap(&l_mas);
3117 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 	mas_ascend(mas);
3119 
3120 	if (in_rcu) {
3121 		mas_replace_node(mas, old_eparent);
3122 		mas_adopt_children(mas, mas->node);
3123 	}
3124 
3125 	mas_update_gap(mas);
3126 }
3127 
3128 /*
3129  * mas_split_final_node() - Split the final node in a subtree operation.
3130  * @mast: the maple subtree state
3131  * @mas: The maple state
3132  * @height: The height of the tree in case it's a new root.
3133  */
3134 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3135 					struct ma_state *mas, int height)
3136 {
3137 	struct maple_enode *ancestor;
3138 
3139 	if (mte_is_root(mas->node)) {
3140 		if (mt_is_alloc(mas->tree))
3141 			mast->bn->type = maple_arange_64;
3142 		else
3143 			mast->bn->type = maple_range_64;
3144 		mas->depth = height;
3145 	}
3146 	/*
3147 	 * Only a single node is used here, could be root.
3148 	 * The Big_node data should just fit in a single node.
3149 	 */
3150 	ancestor = mas_new_ma_node(mas, mast->bn);
3151 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3152 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3153 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3154 
3155 	mast->l->node = ancestor;
3156 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3157 	mas->offset = mast->bn->b_end - 1;
3158 }
3159 
3160 /*
3161  * mast_fill_bnode() - Copy data into the big node in the subtree state
3162  * @mast: The maple subtree state
3163  * @mas: the maple state
3164  * @skip: The number of entries to skip for new nodes insertion.
3165  */
3166 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3167 					 struct ma_state *mas,
3168 					 unsigned char skip)
3169 {
3170 	bool cp = true;
3171 	unsigned char split;
3172 
3173 	memset(mast->bn, 0, sizeof(struct maple_big_node));
3174 
3175 	if (mte_is_root(mas->node)) {
3176 		cp = false;
3177 	} else {
3178 		mas_ascend(mas);
3179 		mas->offset = mte_parent_slot(mas->node);
3180 	}
3181 
3182 	if (cp && mast->l->offset)
3183 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3184 
3185 	split = mast->bn->b_end;
3186 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3187 	mast->r->offset = mast->bn->b_end;
3188 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3189 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3190 		cp = false;
3191 
3192 	if (cp)
3193 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3194 			   mast->bn, mast->bn->b_end);
3195 
3196 	mast->bn->b_end--;
3197 	mast->bn->type = mte_node_type(mas->node);
3198 }
3199 
3200 /*
3201  * mast_split_data() - Split the data in the subtree state big node into regular
3202  * nodes.
3203  * @mast: The maple subtree state
3204  * @mas: The maple state
3205  * @split: The location to split the big node
3206  */
3207 static inline void mast_split_data(struct maple_subtree_state *mast,
3208 	   struct ma_state *mas, unsigned char split)
3209 {
3210 	unsigned char p_slot;
3211 
3212 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3213 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3214 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3215 	mast->l->offset = mte_parent_slot(mas->node);
3216 	mast->l->max = mast->bn->pivot[split];
3217 	mast->r->min = mast->l->max + 1;
3218 	if (mte_is_leaf(mas->node))
3219 		return;
3220 
3221 	p_slot = mast->orig_l->offset;
3222 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3223 			     &p_slot, split);
3224 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3225 			     &p_slot, split);
3226 }
3227 
3228 /*
3229  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3230  * data to the right or left node if there is room.
3231  * @mas: The maple state
3232  * @height: The current height of the maple state
3233  * @mast: The maple subtree state
3234  * @left: Push left or not.
3235  *
3236  * Keeping the height of the tree low means faster lookups.
3237  *
3238  * Return: True if pushed, false otherwise.
3239  */
3240 static inline bool mas_push_data(struct ma_state *mas, int height,
3241 				 struct maple_subtree_state *mast, bool left)
3242 {
3243 	unsigned char slot_total = mast->bn->b_end;
3244 	unsigned char end, space, split;
3245 
3246 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3247 	tmp_mas = *mas;
3248 	tmp_mas.depth = mast->l->depth;
3249 
3250 	if (left && !mas_prev_sibling(&tmp_mas))
3251 		return false;
3252 	else if (!left && !mas_next_sibling(&tmp_mas))
3253 		return false;
3254 
3255 	end = mas_data_end(&tmp_mas);
3256 	slot_total += end;
3257 	space = 2 * mt_slot_count(mas->node) - 2;
3258 	/* -2 instead of -1 to ensure there isn't a triple split */
3259 	if (ma_is_leaf(mast->bn->type))
3260 		space--;
3261 
3262 	if (mas->max == ULONG_MAX)
3263 		space--;
3264 
3265 	if (slot_total >= space)
3266 		return false;
3267 
3268 	/* Get the data; Fill mast->bn */
3269 	mast->bn->b_end++;
3270 	if (left) {
3271 		mab_shift_right(mast->bn, end + 1);
3272 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3273 		mast->bn->b_end = slot_total + 1;
3274 	} else {
3275 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3276 	}
3277 
3278 	/* Configure mast for splitting of mast->bn */
3279 	split = mt_slots[mast->bn->type] - 2;
3280 	if (left) {
3281 		/*  Switch mas to prev node  */
3282 		*mas = tmp_mas;
3283 		/* Start using mast->l for the left side. */
3284 		tmp_mas.node = mast->l->node;
3285 		*mast->l = tmp_mas;
3286 	} else {
3287 		tmp_mas.node = mast->r->node;
3288 		*mast->r = tmp_mas;
3289 		split = slot_total - split;
3290 	}
3291 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3292 	/* Update parent slot for split calculation. */
3293 	if (left)
3294 		mast->orig_l->offset += end + 1;
3295 
3296 	mast_split_data(mast, mas, split);
3297 	mast_fill_bnode(mast, mas, 2);
3298 	mas_split_final_node(mast, mas, height + 1);
3299 	return true;
3300 }
3301 
3302 /*
3303  * mas_split() - Split data that is too big for one node into two.
3304  * @mas: The maple state
3305  * @b_node: The maple big node
3306  */
3307 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3308 {
3309 	struct maple_subtree_state mast;
3310 	int height = 0;
3311 	unsigned char mid_split, split = 0;
3312 	struct maple_enode *old;
3313 
3314 	/*
3315 	 * Splitting is handled differently from any other B-tree; the Maple
3316 	 * Tree splits upwards.  Splitting up means that the split operation
3317 	 * occurs when the walk of the tree hits the leaves and not on the way
3318 	 * down.  The reason for splitting up is that it is impossible to know
3319 	 * how much space will be needed until the leaf is (or leaves are)
3320 	 * reached.  Since overwriting data is allowed and a range could
3321 	 * overwrite more than one range or result in changing one entry into 3
3322 	 * entries, it is impossible to know if a split is required until the
3323 	 * data is examined.
3324 	 *
3325 	 * Splitting is a balancing act between keeping allocations to a minimum
3326 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3327 	 * for an entry followed by a contraction when the entry is removed.  To
3328 	 * accomplish the balance, there are empty slots remaining in both left
3329 	 * and right nodes after a split.
3330 	 */
3331 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3332 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3333 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3334 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3335 
3336 	trace_ma_op(__func__, mas);
3337 	mas->depth = mas_mt_height(mas);
3338 
3339 	mast.l = &l_mas;
3340 	mast.r = &r_mas;
3341 	mast.orig_l = &prev_l_mas;
3342 	mast.orig_r = &prev_r_mas;
3343 	mast.bn = b_node;
3344 
3345 	while (height++ <= mas->depth) {
3346 		if (mt_slots[b_node->type] > b_node->b_end) {
3347 			mas_split_final_node(&mast, mas, height);
3348 			break;
3349 		}
3350 
3351 		l_mas = r_mas = *mas;
3352 		l_mas.node = mas_new_ma_node(mas, b_node);
3353 		r_mas.node = mas_new_ma_node(mas, b_node);
3354 		/*
3355 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3356 		 * left or right node has space to spare.  This is referred to as "pushing left"
3357 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3358 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3359 		 * is a significant savings.
3360 		 */
3361 		/* Try to push left. */
3362 		if (mas_push_data(mas, height, &mast, true))
3363 			break;
3364 		/* Try to push right. */
3365 		if (mas_push_data(mas, height, &mast, false))
3366 			break;
3367 
3368 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3369 		mast_split_data(&mast, mas, split);
3370 		/*
3371 		 * Usually correct, mab_mas_cp in the above call overwrites
3372 		 * r->max.
3373 		 */
3374 		mast.r->max = mas->max;
3375 		mast_fill_bnode(&mast, mas, 1);
3376 		prev_l_mas = *mast.l;
3377 		prev_r_mas = *mast.r;
3378 	}
3379 
3380 	/* Set the original node as dead */
3381 	old = mas->node;
3382 	mas->node = l_mas.node;
3383 	mas_wmb_replace(mas, old);
3384 	mtree_range_walk(mas);
3385 	return;
3386 }
3387 
3388 /*
3389  * mas_commit_b_node() - Commit the big node into the tree.
3390  * @wr_mas: The maple write state
3391  * @b_node: The maple big node
3392  */
3393 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3394 			    struct maple_big_node *b_node)
3395 {
3396 	enum store_type type = wr_mas->mas->store_type;
3397 
3398 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3399 
3400 	if (type == wr_rebalance)
3401 		return mas_rebalance(wr_mas->mas, b_node);
3402 
3403 	return mas_split(wr_mas->mas, b_node);
3404 }
3405 
3406 /*
3407  * mas_root_expand() - Expand a root to a node
3408  * @mas: The maple state
3409  * @entry: The entry to store into the tree
3410  */
3411 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3412 {
3413 	void *contents = mas_root_locked(mas);
3414 	enum maple_type type = maple_leaf_64;
3415 	struct maple_node *node;
3416 	void __rcu **slots;
3417 	unsigned long *pivots;
3418 	int slot = 0;
3419 
3420 	node = mas_pop_node(mas);
3421 	pivots = ma_pivots(node, type);
3422 	slots = ma_slots(node, type);
3423 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3424 	mas->node = mt_mk_node(node, type);
3425 	mas->status = ma_active;
3426 
3427 	if (mas->index) {
3428 		if (contents) {
3429 			rcu_assign_pointer(slots[slot], contents);
3430 			if (likely(mas->index > 1))
3431 				slot++;
3432 		}
3433 		pivots[slot++] = mas->index - 1;
3434 	}
3435 
3436 	rcu_assign_pointer(slots[slot], entry);
3437 	mas->offset = slot;
3438 	pivots[slot] = mas->last;
3439 	if (mas->last != ULONG_MAX)
3440 		pivots[++slot] = ULONG_MAX;
3441 
3442 	mas->depth = 1;
3443 	mas_set_height(mas);
3444 	ma_set_meta(node, maple_leaf_64, 0, slot);
3445 	/* swap the new root into the tree */
3446 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3447 	return;
3448 }
3449 
3450 /*
3451  * mas_store_root() - Storing value into root.
3452  * @mas: The maple state
3453  * @entry: The entry to store.
3454  *
3455  * There is no root node now and we are storing a value into the root - this
3456  * function either assigns the pointer or expands into a node.
3457  */
3458 static inline void mas_store_root(struct ma_state *mas, void *entry)
3459 {
3460 	if (!entry) {
3461 		if (!mas->index)
3462 			rcu_assign_pointer(mas->tree->ma_root, NULL);
3463 	} else if (likely((mas->last != 0) || (mas->index != 0)))
3464 		mas_root_expand(mas, entry);
3465 	else if (((unsigned long) (entry) & 3) == 2)
3466 		mas_root_expand(mas, entry);
3467 	else {
3468 		rcu_assign_pointer(mas->tree->ma_root, entry);
3469 		mas->status = ma_start;
3470 	}
3471 }
3472 
3473 /*
3474  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3475  * spans the node.
3476  * @wr_mas: The maple write state
3477  *
3478  * Spanning writes are writes that start in one node and end in another OR if
3479  * the write of a %NULL will cause the node to end with a %NULL.
3480  *
3481  * Return: True if this is a spanning write, false otherwise.
3482  */
3483 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3484 {
3485 	unsigned long max = wr_mas->r_max;
3486 	unsigned long last = wr_mas->mas->last;
3487 	enum maple_type type = wr_mas->type;
3488 	void *entry = wr_mas->entry;
3489 
3490 	/* Contained in this pivot, fast path */
3491 	if (last < max)
3492 		return false;
3493 
3494 	if (ma_is_leaf(type)) {
3495 		max = wr_mas->mas->max;
3496 		if (last < max)
3497 			return false;
3498 	}
3499 
3500 	if (last == max) {
3501 		/*
3502 		 * The last entry of leaf node cannot be NULL unless it is the
3503 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3504 		 */
3505 		if (entry || last == ULONG_MAX)
3506 			return false;
3507 	}
3508 
3509 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3510 	return true;
3511 }
3512 
3513 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3514 {
3515 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3516 	mas_wr_node_walk(wr_mas);
3517 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3518 }
3519 
3520 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3521 {
3522 	wr_mas->mas->max = wr_mas->r_max;
3523 	wr_mas->mas->min = wr_mas->r_min;
3524 	wr_mas->mas->node = wr_mas->content;
3525 	wr_mas->mas->offset = 0;
3526 	wr_mas->mas->depth++;
3527 }
3528 /*
3529  * mas_wr_walk() - Walk the tree for a write.
3530  * @wr_mas: The maple write state
3531  *
3532  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3533  *
3534  * Return: True if it's contained in a node, false on spanning write.
3535  */
3536 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3537 {
3538 	struct ma_state *mas = wr_mas->mas;
3539 
3540 	while (true) {
3541 		mas_wr_walk_descend(wr_mas);
3542 		if (unlikely(mas_is_span_wr(wr_mas)))
3543 			return false;
3544 
3545 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3546 						  mas->offset);
3547 		if (ma_is_leaf(wr_mas->type))
3548 			return true;
3549 
3550 		mas_wr_walk_traverse(wr_mas);
3551 	}
3552 
3553 	return true;
3554 }
3555 
3556 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3557 {
3558 	struct ma_state *mas = wr_mas->mas;
3559 
3560 	while (true) {
3561 		mas_wr_walk_descend(wr_mas);
3562 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3563 						  mas->offset);
3564 		if (ma_is_leaf(wr_mas->type))
3565 			return;
3566 		mas_wr_walk_traverse(wr_mas);
3567 	}
3568 }
3569 /*
3570  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3571  * @l_wr_mas: The left maple write state
3572  * @r_wr_mas: The right maple write state
3573  */
3574 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3575 					    struct ma_wr_state *r_wr_mas)
3576 {
3577 	struct ma_state *r_mas = r_wr_mas->mas;
3578 	struct ma_state *l_mas = l_wr_mas->mas;
3579 	unsigned char l_slot;
3580 
3581 	l_slot = l_mas->offset;
3582 	if (!l_wr_mas->content)
3583 		l_mas->index = l_wr_mas->r_min;
3584 
3585 	if ((l_mas->index == l_wr_mas->r_min) &&
3586 		 (l_slot &&
3587 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3588 		if (l_slot > 1)
3589 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3590 		else
3591 			l_mas->index = l_mas->min;
3592 
3593 		l_mas->offset = l_slot - 1;
3594 	}
3595 
3596 	if (!r_wr_mas->content) {
3597 		if (r_mas->last < r_wr_mas->r_max)
3598 			r_mas->last = r_wr_mas->r_max;
3599 		r_mas->offset++;
3600 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3601 	    (r_mas->last < r_mas->max) &&
3602 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3603 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3604 					     r_wr_mas->type, r_mas->offset + 1);
3605 		r_mas->offset++;
3606 	}
3607 }
3608 
3609 static inline void *mas_state_walk(struct ma_state *mas)
3610 {
3611 	void *entry;
3612 
3613 	entry = mas_start(mas);
3614 	if (mas_is_none(mas))
3615 		return NULL;
3616 
3617 	if (mas_is_ptr(mas))
3618 		return entry;
3619 
3620 	return mtree_range_walk(mas);
3621 }
3622 
3623 /*
3624  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3625  * to date.
3626  *
3627  * @mas: The maple state.
3628  *
3629  * Note: Leaves mas in undesirable state.
3630  * Return: The entry for @mas->index or %NULL on dead node.
3631  */
3632 static inline void *mtree_lookup_walk(struct ma_state *mas)
3633 {
3634 	unsigned long *pivots;
3635 	unsigned char offset;
3636 	struct maple_node *node;
3637 	struct maple_enode *next;
3638 	enum maple_type type;
3639 	void __rcu **slots;
3640 	unsigned char end;
3641 
3642 	next = mas->node;
3643 	do {
3644 		node = mte_to_node(next);
3645 		type = mte_node_type(next);
3646 		pivots = ma_pivots(node, type);
3647 		end = mt_pivots[type];
3648 		offset = 0;
3649 		do {
3650 			if (pivots[offset] >= mas->index)
3651 				break;
3652 		} while (++offset < end);
3653 
3654 		slots = ma_slots(node, type);
3655 		next = mt_slot(mas->tree, slots, offset);
3656 		if (unlikely(ma_dead_node(node)))
3657 			goto dead_node;
3658 	} while (!ma_is_leaf(type));
3659 
3660 	return (void *)next;
3661 
3662 dead_node:
3663 	mas_reset(mas);
3664 	return NULL;
3665 }
3666 
3667 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3668 /*
3669  * mas_new_root() - Create a new root node that only contains the entry passed
3670  * in.
3671  * @mas: The maple state
3672  * @entry: The entry to store.
3673  *
3674  * Only valid when the index == 0 and the last == ULONG_MAX
3675  */
3676 static inline void mas_new_root(struct ma_state *mas, void *entry)
3677 {
3678 	struct maple_enode *root = mas_root_locked(mas);
3679 	enum maple_type type = maple_leaf_64;
3680 	struct maple_node *node;
3681 	void __rcu **slots;
3682 	unsigned long *pivots;
3683 
3684 	WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3685 
3686 	if (!entry) {
3687 		mas->depth = 0;
3688 		mas_set_height(mas);
3689 		rcu_assign_pointer(mas->tree->ma_root, entry);
3690 		mas->status = ma_start;
3691 		goto done;
3692 	}
3693 
3694 	node = mas_pop_node(mas);
3695 	pivots = ma_pivots(node, type);
3696 	slots = ma_slots(node, type);
3697 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3698 	mas->node = mt_mk_node(node, type);
3699 	mas->status = ma_active;
3700 	rcu_assign_pointer(slots[0], entry);
3701 	pivots[0] = mas->last;
3702 	mas->depth = 1;
3703 	mas_set_height(mas);
3704 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3705 
3706 done:
3707 	if (xa_is_node(root))
3708 		mte_destroy_walk(root, mas->tree);
3709 
3710 	return;
3711 }
3712 /*
3713  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3714  * and new nodes where necessary, then place the sub-tree in the actual tree.
3715  * Note that mas is expected to point to the node which caused the store to
3716  * span.
3717  * @wr_mas: The maple write state
3718  */
3719 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3720 {
3721 	struct maple_subtree_state mast;
3722 	struct maple_big_node b_node;
3723 	struct ma_state *mas;
3724 	unsigned char height;
3725 
3726 	/* Left and Right side of spanning store */
3727 	MA_STATE(l_mas, NULL, 0, 0);
3728 	MA_STATE(r_mas, NULL, 0, 0);
3729 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3730 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3731 
3732 	/*
3733 	 * A store operation that spans multiple nodes is called a spanning
3734 	 * store and is handled early in the store call stack by the function
3735 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3736 	 * state is duplicated.  The first maple state walks the left tree path
3737 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3738 	 * The data in the two nodes are combined into a single node, two nodes,
3739 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3740 	 * written to the last entry of a node is considered a spanning store as
3741 	 * a rebalance is required for the operation to complete and an overflow
3742 	 * of data may happen.
3743 	 */
3744 	mas = wr_mas->mas;
3745 	trace_ma_op(__func__, mas);
3746 
3747 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3748 		return mas_new_root(mas, wr_mas->entry);
3749 	/*
3750 	 * Node rebalancing may occur due to this store, so there may be three new
3751 	 * entries per level plus a new root.
3752 	 */
3753 	height = mas_mt_height(mas);
3754 
3755 	/*
3756 	 * Set up right side.  Need to get to the next offset after the spanning
3757 	 * store to ensure it's not NULL and to combine both the next node and
3758 	 * the node with the start together.
3759 	 */
3760 	r_mas = *mas;
3761 	/* Avoid overflow, walk to next slot in the tree. */
3762 	if (r_mas.last + 1)
3763 		r_mas.last++;
3764 
3765 	r_mas.index = r_mas.last;
3766 	mas_wr_walk_index(&r_wr_mas);
3767 	r_mas.last = r_mas.index = mas->last;
3768 
3769 	/* Set up left side. */
3770 	l_mas = *mas;
3771 	mas_wr_walk_index(&l_wr_mas);
3772 
3773 	if (!wr_mas->entry) {
3774 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3775 		mas->offset = l_mas.offset;
3776 		mas->index = l_mas.index;
3777 		mas->last = l_mas.last = r_mas.last;
3778 	}
3779 
3780 	/* expanding NULLs may make this cover the entire range */
3781 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3782 		mas_set_range(mas, 0, ULONG_MAX);
3783 		return mas_new_root(mas, wr_mas->entry);
3784 	}
3785 
3786 	memset(&b_node, 0, sizeof(struct maple_big_node));
3787 	/* Copy l_mas and store the value in b_node. */
3788 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3789 	/* Copy r_mas into b_node if there is anything to copy. */
3790 	if (r_mas.max > r_mas.last)
3791 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3792 			   &b_node, b_node.b_end + 1);
3793 	else
3794 		b_node.b_end++;
3795 
3796 	/* Stop spanning searches by searching for just index. */
3797 	l_mas.index = l_mas.last = mas->index;
3798 
3799 	mast.bn = &b_node;
3800 	mast.orig_l = &l_mas;
3801 	mast.orig_r = &r_mas;
3802 	/* Combine l_mas and r_mas and split them up evenly again. */
3803 	return mas_spanning_rebalance(mas, &mast, height + 1);
3804 }
3805 
3806 /*
3807  * mas_wr_node_store() - Attempt to store the value in a node
3808  * @wr_mas: The maple write state
3809  *
3810  * Attempts to reuse the node, but may allocate.
3811  */
3812 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3813 				     unsigned char new_end)
3814 {
3815 	struct ma_state *mas = wr_mas->mas;
3816 	void __rcu **dst_slots;
3817 	unsigned long *dst_pivots;
3818 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3819 	struct maple_node reuse, *newnode;
3820 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3821 	bool in_rcu = mt_in_rcu(mas->tree);
3822 
3823 	if (mas->last == wr_mas->end_piv)
3824 		offset_end++; /* don't copy this offset */
3825 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3826 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3827 
3828 	/* set up node. */
3829 	if (in_rcu) {
3830 		newnode = mas_pop_node(mas);
3831 	} else {
3832 		memset(&reuse, 0, sizeof(struct maple_node));
3833 		newnode = &reuse;
3834 	}
3835 
3836 	newnode->parent = mas_mn(mas)->parent;
3837 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3838 	dst_slots = ma_slots(newnode, wr_mas->type);
3839 	/* Copy from start to insert point */
3840 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3841 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3842 
3843 	/* Handle insert of new range starting after old range */
3844 	if (wr_mas->r_min < mas->index) {
3845 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3846 		dst_pivots[mas->offset++] = mas->index - 1;
3847 	}
3848 
3849 	/* Store the new entry and range end. */
3850 	if (mas->offset < node_pivots)
3851 		dst_pivots[mas->offset] = mas->last;
3852 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3853 
3854 	/*
3855 	 * this range wrote to the end of the node or it overwrote the rest of
3856 	 * the data
3857 	 */
3858 	if (offset_end > mas->end)
3859 		goto done;
3860 
3861 	dst_offset = mas->offset + 1;
3862 	/* Copy to the end of node if necessary. */
3863 	copy_size = mas->end - offset_end + 1;
3864 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3865 	       sizeof(void *) * copy_size);
3866 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3867 	       sizeof(unsigned long) * (copy_size - 1));
3868 
3869 	if (new_end < node_pivots)
3870 		dst_pivots[new_end] = mas->max;
3871 
3872 done:
3873 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3874 	if (in_rcu) {
3875 		struct maple_enode *old_enode = mas->node;
3876 
3877 		mas->node = mt_mk_node(newnode, wr_mas->type);
3878 		mas_replace_node(mas, old_enode);
3879 	} else {
3880 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3881 	}
3882 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3883 	mas_update_gap(mas);
3884 	mas->end = new_end;
3885 	return;
3886 }
3887 
3888 /*
3889  * mas_wr_slot_store: Attempt to store a value in a slot.
3890  * @wr_mas: the maple write state
3891  */
3892 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3893 {
3894 	struct ma_state *mas = wr_mas->mas;
3895 	unsigned char offset = mas->offset;
3896 	void __rcu **slots = wr_mas->slots;
3897 	bool gap = false;
3898 
3899 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3900 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3901 
3902 	if (wr_mas->offset_end - offset == 1) {
3903 		if (mas->index == wr_mas->r_min) {
3904 			/* Overwriting the range and a part of the next one */
3905 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3906 			wr_mas->pivots[offset] = mas->last;
3907 		} else {
3908 			/* Overwriting a part of the range and the next one */
3909 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3910 			wr_mas->pivots[offset] = mas->index - 1;
3911 			mas->offset++; /* Keep mas accurate. */
3912 		}
3913 	} else {
3914 		WARN_ON_ONCE(mt_in_rcu(mas->tree));
3915 		/*
3916 		 * Expand the range, only partially overwriting the previous and
3917 		 * next ranges
3918 		 */
3919 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3920 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3921 		wr_mas->pivots[offset] = mas->index - 1;
3922 		wr_mas->pivots[offset + 1] = mas->last;
3923 		mas->offset++; /* Keep mas accurate. */
3924 	}
3925 
3926 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3927 	/*
3928 	 * Only update gap when the new entry is empty or there is an empty
3929 	 * entry in the original two ranges.
3930 	 */
3931 	if (!wr_mas->entry || gap)
3932 		mas_update_gap(mas);
3933 
3934 	return;
3935 }
3936 
3937 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3938 {
3939 	struct ma_state *mas = wr_mas->mas;
3940 
3941 	if (!wr_mas->slots[wr_mas->offset_end]) {
3942 		/* If this one is null, the next and prev are not */
3943 		mas->last = wr_mas->end_piv;
3944 	} else {
3945 		/* Check next slot(s) if we are overwriting the end */
3946 		if ((mas->last == wr_mas->end_piv) &&
3947 		    (mas->end != wr_mas->offset_end) &&
3948 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3949 			wr_mas->offset_end++;
3950 			if (wr_mas->offset_end == mas->end)
3951 				mas->last = mas->max;
3952 			else
3953 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3954 			wr_mas->end_piv = mas->last;
3955 		}
3956 	}
3957 
3958 	if (!wr_mas->content) {
3959 		/* If this one is null, the next and prev are not */
3960 		mas->index = wr_mas->r_min;
3961 	} else {
3962 		/* Check prev slot if we are overwriting the start */
3963 		if (mas->index == wr_mas->r_min && mas->offset &&
3964 		    !wr_mas->slots[mas->offset - 1]) {
3965 			mas->offset--;
3966 			wr_mas->r_min = mas->index =
3967 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3968 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3969 		}
3970 	}
3971 }
3972 
3973 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3974 {
3975 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3976 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3977 		wr_mas->offset_end++;
3978 
3979 	if (wr_mas->offset_end < wr_mas->mas->end)
3980 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3981 	else
3982 		wr_mas->end_piv = wr_mas->mas->max;
3983 }
3984 
3985 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3986 {
3987 	struct ma_state *mas = wr_mas->mas;
3988 	unsigned char new_end = mas->end + 2;
3989 
3990 	new_end -= wr_mas->offset_end - mas->offset;
3991 	if (wr_mas->r_min == mas->index)
3992 		new_end--;
3993 
3994 	if (wr_mas->end_piv == mas->last)
3995 		new_end--;
3996 
3997 	return new_end;
3998 }
3999 
4000 /*
4001  * mas_wr_append: Attempt to append
4002  * @wr_mas: the maple write state
4003  * @new_end: The end of the node after the modification
4004  *
4005  * This is currently unsafe in rcu mode since the end of the node may be cached
4006  * by readers while the node contents may be updated which could result in
4007  * inaccurate information.
4008  */
4009 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
4010 		unsigned char new_end)
4011 {
4012 	struct ma_state *mas = wr_mas->mas;
4013 	void __rcu **slots;
4014 	unsigned char end = mas->end;
4015 
4016 	if (new_end < mt_pivots[wr_mas->type]) {
4017 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4018 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4019 	}
4020 
4021 	slots = wr_mas->slots;
4022 	if (new_end == end + 1) {
4023 		if (mas->last == wr_mas->r_max) {
4024 			/* Append to end of range */
4025 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4026 			wr_mas->pivots[end] = mas->index - 1;
4027 			mas->offset = new_end;
4028 		} else {
4029 			/* Append to start of range */
4030 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4031 			wr_mas->pivots[end] = mas->last;
4032 			rcu_assign_pointer(slots[end], wr_mas->entry);
4033 		}
4034 	} else {
4035 		/* Append to the range without touching any boundaries. */
4036 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4037 		wr_mas->pivots[end + 1] = mas->last;
4038 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4039 		wr_mas->pivots[end] = mas->index - 1;
4040 		mas->offset = end + 1;
4041 	}
4042 
4043 	if (!wr_mas->content || !wr_mas->entry)
4044 		mas_update_gap(mas);
4045 
4046 	mas->end = new_end;
4047 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4048 	return;
4049 }
4050 
4051 /*
4052  * mas_wr_bnode() - Slow path for a modification.
4053  * @wr_mas: The write maple state
4054  *
4055  * This is where split, rebalance end up.
4056  */
4057 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4058 {
4059 	struct maple_big_node b_node;
4060 
4061 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4062 	memset(&b_node, 0, sizeof(struct maple_big_node));
4063 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4064 	mas_commit_b_node(wr_mas, &b_node);
4065 }
4066 
4067 /*
4068  * mas_wr_store_entry() - Internal call to store a value
4069  * @wr_mas: The maple write state
4070  */
4071 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4072 {
4073 	struct ma_state *mas = wr_mas->mas;
4074 	unsigned char new_end = mas_wr_new_end(wr_mas);
4075 
4076 	switch (mas->store_type) {
4077 	case wr_invalid:
4078 		MT_BUG_ON(mas->tree, 1);
4079 		return;
4080 	case wr_new_root:
4081 		mas_new_root(mas, wr_mas->entry);
4082 		break;
4083 	case wr_store_root:
4084 		mas_store_root(mas, wr_mas->entry);
4085 		break;
4086 	case wr_exact_fit:
4087 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4088 		if (!!wr_mas->entry ^ !!wr_mas->content)
4089 			mas_update_gap(mas);
4090 		break;
4091 	case wr_append:
4092 		mas_wr_append(wr_mas, new_end);
4093 		break;
4094 	case wr_slot_store:
4095 		mas_wr_slot_store(wr_mas);
4096 		break;
4097 	case wr_node_store:
4098 		mas_wr_node_store(wr_mas, new_end);
4099 		break;
4100 	case wr_spanning_store:
4101 		mas_wr_spanning_store(wr_mas);
4102 		break;
4103 	case wr_split_store:
4104 	case wr_rebalance:
4105 		mas_wr_bnode(wr_mas);
4106 		break;
4107 	}
4108 
4109 	return;
4110 }
4111 
4112 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4113 {
4114 	struct ma_state *mas = wr_mas->mas;
4115 
4116 	if (!mas_is_active(mas)) {
4117 		if (mas_is_start(mas))
4118 			goto set_content;
4119 
4120 		if (unlikely(mas_is_paused(mas)))
4121 			goto reset;
4122 
4123 		if (unlikely(mas_is_none(mas)))
4124 			goto reset;
4125 
4126 		if (unlikely(mas_is_overflow(mas)))
4127 			goto reset;
4128 
4129 		if (unlikely(mas_is_underflow(mas)))
4130 			goto reset;
4131 	}
4132 
4133 	/*
4134 	 * A less strict version of mas_is_span_wr() where we allow spanning
4135 	 * writes within this node.  This is to stop partial walks in
4136 	 * mas_prealloc() from being reset.
4137 	 */
4138 	if (mas->last > mas->max)
4139 		goto reset;
4140 
4141 	if (wr_mas->entry)
4142 		goto set_content;
4143 
4144 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4145 		goto reset;
4146 
4147 	goto set_content;
4148 
4149 reset:
4150 	mas_reset(mas);
4151 set_content:
4152 	wr_mas->content = mas_start(mas);
4153 }
4154 
4155 /**
4156  * mas_prealloc_calc() - Calculate number of nodes needed for a
4157  * given store oepration
4158  * @mas: The maple state
4159  * @entry: The entry to store into the tree
4160  *
4161  * Return: Number of nodes required for preallocation.
4162  */
4163 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4164 {
4165 	int ret = mas_mt_height(mas) * 3 + 1;
4166 
4167 	switch (mas->store_type) {
4168 	case wr_invalid:
4169 		WARN_ON_ONCE(1);
4170 		break;
4171 	case wr_new_root:
4172 		ret = 1;
4173 		break;
4174 	case wr_store_root:
4175 		if (likely((mas->last != 0) || (mas->index != 0)))
4176 			ret = 1;
4177 		else if (((unsigned long) (entry) & 3) == 2)
4178 			ret = 1;
4179 		else
4180 			ret = 0;
4181 		break;
4182 	case wr_spanning_store:
4183 		ret =  mas_mt_height(mas) * 3 + 1;
4184 		break;
4185 	case wr_split_store:
4186 		ret =  mas_mt_height(mas) * 2 + 1;
4187 		break;
4188 	case wr_rebalance:
4189 		ret =  mas_mt_height(mas) * 2 - 1;
4190 		break;
4191 	case wr_node_store:
4192 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4193 		break;
4194 	case wr_append:
4195 	case wr_exact_fit:
4196 	case wr_slot_store:
4197 		ret = 0;
4198 	}
4199 
4200 	return ret;
4201 }
4202 
4203 /*
4204  * mas_wr_store_type() - Determine the store type for a given
4205  * store operation.
4206  * @wr_mas: The maple write state
4207  *
4208  * Return: the type of store needed for the operation
4209  */
4210 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4211 {
4212 	struct ma_state *mas = wr_mas->mas;
4213 	unsigned char new_end;
4214 
4215 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4216 		return wr_store_root;
4217 
4218 	if (unlikely(!mas_wr_walk(wr_mas)))
4219 		return wr_spanning_store;
4220 
4221 	/* At this point, we are at the leaf node that needs to be altered. */
4222 	mas_wr_end_piv(wr_mas);
4223 	if (!wr_mas->entry)
4224 		mas_wr_extend_null(wr_mas);
4225 
4226 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4227 		return wr_exact_fit;
4228 
4229 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4230 		return wr_new_root;
4231 
4232 	new_end = mas_wr_new_end(wr_mas);
4233 	/* Potential spanning rebalance collapsing a node */
4234 	if (new_end < mt_min_slots[wr_mas->type]) {
4235 		if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4236 			return  wr_rebalance;
4237 		return wr_node_store;
4238 	}
4239 
4240 	if (new_end >= mt_slots[wr_mas->type])
4241 		return wr_split_store;
4242 
4243 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4244 		return wr_append;
4245 
4246 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4247 		(wr_mas->offset_end - mas->offset == 1)))
4248 		return wr_slot_store;
4249 
4250 	return wr_node_store;
4251 }
4252 
4253 /**
4254  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4255  * @wr_mas: The maple write state
4256  * @entry: The entry that will be stored
4257  *
4258  */
4259 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4260 {
4261 	struct ma_state *mas = wr_mas->mas;
4262 	int request;
4263 
4264 	mas_wr_prealloc_setup(wr_mas);
4265 	mas->store_type = mas_wr_store_type(wr_mas);
4266 	request = mas_prealloc_calc(mas, entry);
4267 	if (!request)
4268 		return;
4269 
4270 	mas_node_count(mas, request);
4271 }
4272 
4273 /**
4274  * mas_insert() - Internal call to insert a value
4275  * @mas: The maple state
4276  * @entry: The entry to store
4277  *
4278  * Return: %NULL or the contents that already exists at the requested index
4279  * otherwise.  The maple state needs to be checked for error conditions.
4280  */
4281 static inline void *mas_insert(struct ma_state *mas, void *entry)
4282 {
4283 	MA_WR_STATE(wr_mas, mas, entry);
4284 
4285 	/*
4286 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 	 * tree.  If the insert fits exactly into an existing gap with a value
4288 	 * of NULL, then the slot only needs to be written with the new value.
4289 	 * If the range being inserted is adjacent to another range, then only a
4290 	 * single pivot needs to be inserted (as well as writing the entry).  If
4291 	 * the new range is within a gap but does not touch any other ranges,
4292 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4293 	 * usual, the entry must be written.  Most operations require a new node
4294 	 * to be allocated and replace an existing node to ensure RCU safety,
4295 	 * when in RCU mode.  The exception to requiring a newly allocated node
4296 	 * is when inserting at the end of a node (appending).  When done
4297 	 * carefully, appending can reuse the node in place.
4298 	 */
4299 	wr_mas.content = mas_start(mas);
4300 	if (wr_mas.content)
4301 		goto exists;
4302 
4303 	mas_wr_preallocate(&wr_mas, entry);
4304 	if (mas_is_err(mas))
4305 		return NULL;
4306 
4307 	/* spanning writes always overwrite something */
4308 	if (mas->store_type == wr_spanning_store)
4309 		goto exists;
4310 
4311 	/* At this point, we are at the leaf node that needs to be altered. */
4312 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4313 		wr_mas.offset_end = mas->offset;
4314 		wr_mas.end_piv = wr_mas.r_max;
4315 
4316 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 			goto exists;
4318 	}
4319 
4320 	mas_wr_store_entry(&wr_mas);
4321 	return wr_mas.content;
4322 
4323 exists:
4324 	mas_set_err(mas, -EEXIST);
4325 	return wr_mas.content;
4326 
4327 }
4328 
4329 /**
4330  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4331  * @mas: The maple state.
4332  * @startp: Pointer to ID.
4333  * @range_lo: Lower bound of range to search.
4334  * @range_hi: Upper bound of range to search.
4335  * @entry: The entry to store.
4336  * @next: Pointer to next ID to allocate.
4337  * @gfp: The GFP_FLAGS to use for allocations.
4338  *
4339  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4340  * allocation succeeded after wrapping, or -EBUSY if there are no
4341  * free entries.
4342  */
4343 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4344 		void *entry, unsigned long range_lo, unsigned long range_hi,
4345 		unsigned long *next, gfp_t gfp)
4346 {
4347 	unsigned long min = range_lo;
4348 	int ret = 0;
4349 
4350 	range_lo = max(min, *next);
4351 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4352 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4353 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4354 		ret = 1;
4355 	}
4356 	if (ret < 0 && range_lo > min) {
4357 		ret = mas_empty_area(mas, min, range_hi, 1);
4358 		if (ret == 0)
4359 			ret = 1;
4360 	}
4361 	if (ret < 0)
4362 		return ret;
4363 
4364 	do {
4365 		mas_insert(mas, entry);
4366 	} while (mas_nomem(mas, gfp));
4367 	if (mas_is_err(mas))
4368 		return xa_err(mas->node);
4369 
4370 	*startp = mas->index;
4371 	*next = *startp + 1;
4372 	if (*next == 0)
4373 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4374 
4375 	mas_destroy(mas);
4376 	return ret;
4377 }
4378 EXPORT_SYMBOL(mas_alloc_cyclic);
4379 
4380 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4381 {
4382 retry:
4383 	mas_set(mas, index);
4384 	mas_state_walk(mas);
4385 	if (mas_is_start(mas))
4386 		goto retry;
4387 }
4388 
4389 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4390 		struct maple_node *node, const unsigned long index)
4391 {
4392 	if (unlikely(ma_dead_node(node))) {
4393 		mas_rewalk(mas, index);
4394 		return true;
4395 	}
4396 	return false;
4397 }
4398 
4399 /*
4400  * mas_prev_node() - Find the prev non-null entry at the same level in the
4401  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4402  * ma_none.
4403  * @mas: The maple state
4404  * @min: The lower limit to search
4405  *
4406  * The prev node value will be mas->node[mas->offset] or the status will be
4407  * ma_none.
4408  * Return: 1 if the node is dead, 0 otherwise.
4409  */
4410 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4411 {
4412 	enum maple_type mt;
4413 	int offset, level;
4414 	void __rcu **slots;
4415 	struct maple_node *node;
4416 	unsigned long *pivots;
4417 	unsigned long max;
4418 
4419 	node = mas_mn(mas);
4420 	if (!mas->min)
4421 		goto no_entry;
4422 
4423 	max = mas->min - 1;
4424 	if (max < min)
4425 		goto no_entry;
4426 
4427 	level = 0;
4428 	do {
4429 		if (ma_is_root(node))
4430 			goto no_entry;
4431 
4432 		/* Walk up. */
4433 		if (unlikely(mas_ascend(mas)))
4434 			return 1;
4435 		offset = mas->offset;
4436 		level++;
4437 		node = mas_mn(mas);
4438 	} while (!offset);
4439 
4440 	offset--;
4441 	mt = mte_node_type(mas->node);
4442 	while (level > 1) {
4443 		level--;
4444 		slots = ma_slots(node, mt);
4445 		mas->node = mas_slot(mas, slots, offset);
4446 		if (unlikely(ma_dead_node(node)))
4447 			return 1;
4448 
4449 		mt = mte_node_type(mas->node);
4450 		node = mas_mn(mas);
4451 		pivots = ma_pivots(node, mt);
4452 		offset = ma_data_end(node, mt, pivots, max);
4453 		if (unlikely(ma_dead_node(node)))
4454 			return 1;
4455 	}
4456 
4457 	slots = ma_slots(node, mt);
4458 	mas->node = mas_slot(mas, slots, offset);
4459 	pivots = ma_pivots(node, mt);
4460 	if (unlikely(ma_dead_node(node)))
4461 		return 1;
4462 
4463 	if (likely(offset))
4464 		mas->min = pivots[offset - 1] + 1;
4465 	mas->max = max;
4466 	mas->offset = mas_data_end(mas);
4467 	if (unlikely(mte_dead_node(mas->node)))
4468 		return 1;
4469 
4470 	mas->end = mas->offset;
4471 	return 0;
4472 
4473 no_entry:
4474 	if (unlikely(ma_dead_node(node)))
4475 		return 1;
4476 
4477 	mas->status = ma_underflow;
4478 	return 0;
4479 }
4480 
4481 /*
4482  * mas_prev_slot() - Get the entry in the previous slot
4483  *
4484  * @mas: The maple state
4485  * @min: The minimum starting range
4486  * @empty: Can be empty
4487  *
4488  * Return: The entry in the previous slot which is possibly NULL
4489  */
4490 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4491 {
4492 	void *entry;
4493 	void __rcu **slots;
4494 	unsigned long pivot;
4495 	enum maple_type type;
4496 	unsigned long *pivots;
4497 	struct maple_node *node;
4498 	unsigned long save_point = mas->index;
4499 
4500 retry:
4501 	node = mas_mn(mas);
4502 	type = mte_node_type(mas->node);
4503 	pivots = ma_pivots(node, type);
4504 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4505 		goto retry;
4506 
4507 	if (mas->min <= min) {
4508 		pivot = mas_safe_min(mas, pivots, mas->offset);
4509 
4510 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4511 			goto retry;
4512 
4513 		if (pivot <= min)
4514 			goto underflow;
4515 	}
4516 
4517 again:
4518 	if (likely(mas->offset)) {
4519 		mas->offset--;
4520 		mas->last = mas->index - 1;
4521 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4522 	} else  {
4523 		if (mas->index <= min)
4524 			goto underflow;
4525 
4526 		if (mas_prev_node(mas, min)) {
4527 			mas_rewalk(mas, save_point);
4528 			goto retry;
4529 		}
4530 
4531 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4532 			return NULL;
4533 
4534 		mas->last = mas->max;
4535 		node = mas_mn(mas);
4536 		type = mte_node_type(mas->node);
4537 		pivots = ma_pivots(node, type);
4538 		mas->index = pivots[mas->offset - 1] + 1;
4539 	}
4540 
4541 	slots = ma_slots(node, type);
4542 	entry = mas_slot(mas, slots, mas->offset);
4543 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4544 		goto retry;
4545 
4546 
4547 	if (likely(entry))
4548 		return entry;
4549 
4550 	if (!empty) {
4551 		if (mas->index <= min) {
4552 			mas->status = ma_underflow;
4553 			return NULL;
4554 		}
4555 
4556 		goto again;
4557 	}
4558 
4559 	return entry;
4560 
4561 underflow:
4562 	mas->status = ma_underflow;
4563 	return NULL;
4564 }
4565 
4566 /*
4567  * mas_next_node() - Get the next node at the same level in the tree.
4568  * @mas: The maple state
4569  * @node: The maple node
4570  * @max: The maximum pivot value to check.
4571  *
4572  * The next value will be mas->node[mas->offset] or the status will have
4573  * overflowed.
4574  * Return: 1 on dead node, 0 otherwise.
4575  */
4576 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4577 		unsigned long max)
4578 {
4579 	unsigned long min;
4580 	unsigned long *pivots;
4581 	struct maple_enode *enode;
4582 	struct maple_node *tmp;
4583 	int level = 0;
4584 	unsigned char node_end;
4585 	enum maple_type mt;
4586 	void __rcu **slots;
4587 
4588 	if (mas->max >= max)
4589 		goto overflow;
4590 
4591 	min = mas->max + 1;
4592 	level = 0;
4593 	do {
4594 		if (ma_is_root(node))
4595 			goto overflow;
4596 
4597 		/* Walk up. */
4598 		if (unlikely(mas_ascend(mas)))
4599 			return 1;
4600 
4601 		level++;
4602 		node = mas_mn(mas);
4603 		mt = mte_node_type(mas->node);
4604 		pivots = ma_pivots(node, mt);
4605 		node_end = ma_data_end(node, mt, pivots, mas->max);
4606 		if (unlikely(ma_dead_node(node)))
4607 			return 1;
4608 
4609 	} while (unlikely(mas->offset == node_end));
4610 
4611 	slots = ma_slots(node, mt);
4612 	mas->offset++;
4613 	enode = mas_slot(mas, slots, mas->offset);
4614 	if (unlikely(ma_dead_node(node)))
4615 		return 1;
4616 
4617 	if (level > 1)
4618 		mas->offset = 0;
4619 
4620 	while (unlikely(level > 1)) {
4621 		level--;
4622 		mas->node = enode;
4623 		node = mas_mn(mas);
4624 		mt = mte_node_type(mas->node);
4625 		slots = ma_slots(node, mt);
4626 		enode = mas_slot(mas, slots, 0);
4627 		if (unlikely(ma_dead_node(node)))
4628 			return 1;
4629 	}
4630 
4631 	if (!mas->offset)
4632 		pivots = ma_pivots(node, mt);
4633 
4634 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4635 	tmp = mte_to_node(enode);
4636 	mt = mte_node_type(enode);
4637 	pivots = ma_pivots(tmp, mt);
4638 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4639 	if (unlikely(ma_dead_node(node)))
4640 		return 1;
4641 
4642 	mas->node = enode;
4643 	mas->min = min;
4644 	return 0;
4645 
4646 overflow:
4647 	if (unlikely(ma_dead_node(node)))
4648 		return 1;
4649 
4650 	mas->status = ma_overflow;
4651 	return 0;
4652 }
4653 
4654 /*
4655  * mas_next_slot() - Get the entry in the next slot
4656  *
4657  * @mas: The maple state
4658  * @max: The maximum starting range
4659  * @empty: Can be empty
4660  *
4661  * Return: The entry in the next slot which is possibly NULL
4662  */
4663 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4664 {
4665 	void __rcu **slots;
4666 	unsigned long *pivots;
4667 	unsigned long pivot;
4668 	enum maple_type type;
4669 	struct maple_node *node;
4670 	unsigned long save_point = mas->last;
4671 	void *entry;
4672 
4673 retry:
4674 	node = mas_mn(mas);
4675 	type = mte_node_type(mas->node);
4676 	pivots = ma_pivots(node, type);
4677 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4678 		goto retry;
4679 
4680 	if (mas->max >= max) {
4681 		if (likely(mas->offset < mas->end))
4682 			pivot = pivots[mas->offset];
4683 		else
4684 			pivot = mas->max;
4685 
4686 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4687 			goto retry;
4688 
4689 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4690 			mas->status = ma_overflow;
4691 			return NULL;
4692 		}
4693 	}
4694 
4695 	if (likely(mas->offset < mas->end)) {
4696 		mas->index = pivots[mas->offset] + 1;
4697 again:
4698 		mas->offset++;
4699 		if (likely(mas->offset < mas->end))
4700 			mas->last = pivots[mas->offset];
4701 		else
4702 			mas->last = mas->max;
4703 	} else  {
4704 		if (mas->last >= max) {
4705 			mas->status = ma_overflow;
4706 			return NULL;
4707 		}
4708 
4709 		if (mas_next_node(mas, node, max)) {
4710 			mas_rewalk(mas, save_point);
4711 			goto retry;
4712 		}
4713 
4714 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4715 			return NULL;
4716 
4717 		mas->offset = 0;
4718 		mas->index = mas->min;
4719 		node = mas_mn(mas);
4720 		type = mte_node_type(mas->node);
4721 		pivots = ma_pivots(node, type);
4722 		mas->last = pivots[0];
4723 	}
4724 
4725 	slots = ma_slots(node, type);
4726 	entry = mt_slot(mas->tree, slots, mas->offset);
4727 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4728 		goto retry;
4729 
4730 	if (entry)
4731 		return entry;
4732 
4733 
4734 	if (!empty) {
4735 		if (mas->last >= max) {
4736 			mas->status = ma_overflow;
4737 			return NULL;
4738 		}
4739 
4740 		mas->index = mas->last + 1;
4741 		goto again;
4742 	}
4743 
4744 	return entry;
4745 }
4746 
4747 /*
4748  * mas_next_entry() - Internal function to get the next entry.
4749  * @mas: The maple state
4750  * @limit: The maximum range start.
4751  *
4752  * Set the @mas->node to the next entry and the range_start to
4753  * the beginning value for the entry.  Does not check beyond @limit.
4754  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4755  * @mas->last on overflow.
4756  * Restarts on dead nodes.
4757  *
4758  * Return: the next entry or %NULL.
4759  */
4760 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4761 {
4762 	if (mas->last >= limit) {
4763 		mas->status = ma_overflow;
4764 		return NULL;
4765 	}
4766 
4767 	return mas_next_slot(mas, limit, false);
4768 }
4769 
4770 /*
4771  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4772  * highest gap address of a given size in a given node and descend.
4773  * @mas: The maple state
4774  * @size: The needed size.
4775  *
4776  * Return: True if found in a leaf, false otherwise.
4777  *
4778  */
4779 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4780 		unsigned long *gap_min, unsigned long *gap_max)
4781 {
4782 	enum maple_type type = mte_node_type(mas->node);
4783 	struct maple_node *node = mas_mn(mas);
4784 	unsigned long *pivots, *gaps;
4785 	void __rcu **slots;
4786 	unsigned long gap = 0;
4787 	unsigned long max, min;
4788 	unsigned char offset;
4789 
4790 	if (unlikely(mas_is_err(mas)))
4791 		return true;
4792 
4793 	if (ma_is_dense(type)) {
4794 		/* dense nodes. */
4795 		mas->offset = (unsigned char)(mas->index - mas->min);
4796 		return true;
4797 	}
4798 
4799 	pivots = ma_pivots(node, type);
4800 	slots = ma_slots(node, type);
4801 	gaps = ma_gaps(node, type);
4802 	offset = mas->offset;
4803 	min = mas_safe_min(mas, pivots, offset);
4804 	/* Skip out of bounds. */
4805 	while (mas->last < min)
4806 		min = mas_safe_min(mas, pivots, --offset);
4807 
4808 	max = mas_safe_pivot(mas, pivots, offset, type);
4809 	while (mas->index <= max) {
4810 		gap = 0;
4811 		if (gaps)
4812 			gap = gaps[offset];
4813 		else if (!mas_slot(mas, slots, offset))
4814 			gap = max - min + 1;
4815 
4816 		if (gap) {
4817 			if ((size <= gap) && (size <= mas->last - min + 1))
4818 				break;
4819 
4820 			if (!gaps) {
4821 				/* Skip the next slot, it cannot be a gap. */
4822 				if (offset < 2)
4823 					goto ascend;
4824 
4825 				offset -= 2;
4826 				max = pivots[offset];
4827 				min = mas_safe_min(mas, pivots, offset);
4828 				continue;
4829 			}
4830 		}
4831 
4832 		if (!offset)
4833 			goto ascend;
4834 
4835 		offset--;
4836 		max = min - 1;
4837 		min = mas_safe_min(mas, pivots, offset);
4838 	}
4839 
4840 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4841 		goto no_space;
4842 
4843 	if (unlikely(ma_is_leaf(type))) {
4844 		mas->offset = offset;
4845 		*gap_min = min;
4846 		*gap_max = min + gap - 1;
4847 		return true;
4848 	}
4849 
4850 	/* descend, only happens under lock. */
4851 	mas->node = mas_slot(mas, slots, offset);
4852 	mas->min = min;
4853 	mas->max = max;
4854 	mas->offset = mas_data_end(mas);
4855 	return false;
4856 
4857 ascend:
4858 	if (!mte_is_root(mas->node))
4859 		return false;
4860 
4861 no_space:
4862 	mas_set_err(mas, -EBUSY);
4863 	return false;
4864 }
4865 
4866 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4867 {
4868 	enum maple_type type = mte_node_type(mas->node);
4869 	unsigned long pivot, min, gap = 0;
4870 	unsigned char offset, data_end;
4871 	unsigned long *gaps, *pivots;
4872 	void __rcu **slots;
4873 	struct maple_node *node;
4874 	bool found = false;
4875 
4876 	if (ma_is_dense(type)) {
4877 		mas->offset = (unsigned char)(mas->index - mas->min);
4878 		return true;
4879 	}
4880 
4881 	node = mas_mn(mas);
4882 	pivots = ma_pivots(node, type);
4883 	slots = ma_slots(node, type);
4884 	gaps = ma_gaps(node, type);
4885 	offset = mas->offset;
4886 	min = mas_safe_min(mas, pivots, offset);
4887 	data_end = ma_data_end(node, type, pivots, mas->max);
4888 	for (; offset <= data_end; offset++) {
4889 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4890 
4891 		/* Not within lower bounds */
4892 		if (mas->index > pivot)
4893 			goto next_slot;
4894 
4895 		if (gaps)
4896 			gap = gaps[offset];
4897 		else if (!mas_slot(mas, slots, offset))
4898 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4899 		else
4900 			goto next_slot;
4901 
4902 		if (gap >= size) {
4903 			if (ma_is_leaf(type)) {
4904 				found = true;
4905 				goto done;
4906 			}
4907 			if (mas->index <= pivot) {
4908 				mas->node = mas_slot(mas, slots, offset);
4909 				mas->min = min;
4910 				mas->max = pivot;
4911 				offset = 0;
4912 				break;
4913 			}
4914 		}
4915 next_slot:
4916 		min = pivot + 1;
4917 		if (mas->last <= pivot) {
4918 			mas_set_err(mas, -EBUSY);
4919 			return true;
4920 		}
4921 	}
4922 
4923 	if (mte_is_root(mas->node))
4924 		found = true;
4925 done:
4926 	mas->offset = offset;
4927 	return found;
4928 }
4929 
4930 /**
4931  * mas_walk() - Search for @mas->index in the tree.
4932  * @mas: The maple state.
4933  *
4934  * mas->index and mas->last will be set to the range if there is a value.  If
4935  * mas->status is ma_none, reset to ma_start
4936  *
4937  * Return: the entry at the location or %NULL.
4938  */
4939 void *mas_walk(struct ma_state *mas)
4940 {
4941 	void *entry;
4942 
4943 	if (!mas_is_active(mas) || !mas_is_start(mas))
4944 		mas->status = ma_start;
4945 retry:
4946 	entry = mas_state_walk(mas);
4947 	if (mas_is_start(mas)) {
4948 		goto retry;
4949 	} else if (mas_is_none(mas)) {
4950 		mas->index = 0;
4951 		mas->last = ULONG_MAX;
4952 	} else if (mas_is_ptr(mas)) {
4953 		if (!mas->index) {
4954 			mas->last = 0;
4955 			return entry;
4956 		}
4957 
4958 		mas->index = 1;
4959 		mas->last = ULONG_MAX;
4960 		mas->status = ma_none;
4961 		return NULL;
4962 	}
4963 
4964 	return entry;
4965 }
4966 EXPORT_SYMBOL_GPL(mas_walk);
4967 
4968 static inline bool mas_rewind_node(struct ma_state *mas)
4969 {
4970 	unsigned char slot;
4971 
4972 	do {
4973 		if (mte_is_root(mas->node)) {
4974 			slot = mas->offset;
4975 			if (!slot)
4976 				return false;
4977 		} else {
4978 			mas_ascend(mas);
4979 			slot = mas->offset;
4980 		}
4981 	} while (!slot);
4982 
4983 	mas->offset = --slot;
4984 	return true;
4985 }
4986 
4987 /*
4988  * mas_skip_node() - Internal function.  Skip over a node.
4989  * @mas: The maple state.
4990  *
4991  * Return: true if there is another node, false otherwise.
4992  */
4993 static inline bool mas_skip_node(struct ma_state *mas)
4994 {
4995 	if (mas_is_err(mas))
4996 		return false;
4997 
4998 	do {
4999 		if (mte_is_root(mas->node)) {
5000 			if (mas->offset >= mas_data_end(mas)) {
5001 				mas_set_err(mas, -EBUSY);
5002 				return false;
5003 			}
5004 		} else {
5005 			mas_ascend(mas);
5006 		}
5007 	} while (mas->offset >= mas_data_end(mas));
5008 
5009 	mas->offset++;
5010 	return true;
5011 }
5012 
5013 /*
5014  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5015  * @size
5016  * @mas: The maple state
5017  * @size: The size of the gap required
5018  *
5019  * Search between @mas->index and @mas->last for a gap of @size.
5020  */
5021 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5022 {
5023 	struct maple_enode *last = NULL;
5024 
5025 	/*
5026 	 * There are 4 options:
5027 	 * go to child (descend)
5028 	 * go back to parent (ascend)
5029 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5030 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5031 	 */
5032 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5033 		if (last == mas->node)
5034 			mas_skip_node(mas);
5035 		else
5036 			last = mas->node;
5037 	}
5038 }
5039 
5040 /*
5041  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5042  * searching for a gap in an empty tree.
5043  * @mas: The maple state
5044  * @min: the minimum range
5045  * @max: The maximum range
5046  * @size: The size of the gap
5047  * @fwd: Searching forward or back
5048  */
5049 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5050 				unsigned long max, unsigned long size, bool fwd)
5051 {
5052 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5053 		min++;
5054 		/*
5055 		 * At this time, min is increased, we need to recheck whether
5056 		 * the size is satisfied.
5057 		 */
5058 		if (min > max || max - min + 1 < size)
5059 			return -EBUSY;
5060 	}
5061 	/* mas_is_ptr */
5062 
5063 	if (fwd) {
5064 		mas->index = min;
5065 		mas->last = min + size - 1;
5066 	} else {
5067 		mas->last = max;
5068 		mas->index = max - size + 1;
5069 	}
5070 	return 0;
5071 }
5072 
5073 /*
5074  * mas_empty_area() - Get the lowest address within the range that is
5075  * sufficient for the size requested.
5076  * @mas: The maple state
5077  * @min: The lowest value of the range
5078  * @max: The highest value of the range
5079  * @size: The size needed
5080  */
5081 int mas_empty_area(struct ma_state *mas, unsigned long min,
5082 		unsigned long max, unsigned long size)
5083 {
5084 	unsigned char offset;
5085 	unsigned long *pivots;
5086 	enum maple_type mt;
5087 	struct maple_node *node;
5088 
5089 	if (min > max)
5090 		return -EINVAL;
5091 
5092 	if (size == 0 || max - min < size - 1)
5093 		return -EINVAL;
5094 
5095 	if (mas_is_start(mas))
5096 		mas_start(mas);
5097 	else if (mas->offset >= 2)
5098 		mas->offset -= 2;
5099 	else if (!mas_skip_node(mas))
5100 		return -EBUSY;
5101 
5102 	/* Empty set */
5103 	if (mas_is_none(mas) || mas_is_ptr(mas))
5104 		return mas_sparse_area(mas, min, max, size, true);
5105 
5106 	/* The start of the window can only be within these values */
5107 	mas->index = min;
5108 	mas->last = max;
5109 	mas_awalk(mas, size);
5110 
5111 	if (unlikely(mas_is_err(mas)))
5112 		return xa_err(mas->node);
5113 
5114 	offset = mas->offset;
5115 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5116 		return -EBUSY;
5117 
5118 	node = mas_mn(mas);
5119 	mt = mte_node_type(mas->node);
5120 	pivots = ma_pivots(node, mt);
5121 	min = mas_safe_min(mas, pivots, offset);
5122 	if (mas->index < min)
5123 		mas->index = min;
5124 	mas->last = mas->index + size - 1;
5125 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5126 	return 0;
5127 }
5128 EXPORT_SYMBOL_GPL(mas_empty_area);
5129 
5130 /*
5131  * mas_empty_area_rev() - Get the highest address within the range that is
5132  * sufficient for the size requested.
5133  * @mas: The maple state
5134  * @min: The lowest value of the range
5135  * @max: The highest value of the range
5136  * @size: The size needed
5137  */
5138 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5139 		unsigned long max, unsigned long size)
5140 {
5141 	struct maple_enode *last = mas->node;
5142 
5143 	if (min > max)
5144 		return -EINVAL;
5145 
5146 	if (size == 0 || max - min < size - 1)
5147 		return -EINVAL;
5148 
5149 	if (mas_is_start(mas))
5150 		mas_start(mas);
5151 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5152 		return -EBUSY;
5153 
5154 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5155 		return mas_sparse_area(mas, min, max, size, false);
5156 	else if (mas->offset >= 2)
5157 		mas->offset -= 2;
5158 	else
5159 		mas->offset = mas_data_end(mas);
5160 
5161 
5162 	/* The start of the window can only be within these values. */
5163 	mas->index = min;
5164 	mas->last = max;
5165 
5166 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5167 		if (last == mas->node) {
5168 			if (!mas_rewind_node(mas))
5169 				return -EBUSY;
5170 		} else {
5171 			last = mas->node;
5172 		}
5173 	}
5174 
5175 	if (mas_is_err(mas))
5176 		return xa_err(mas->node);
5177 
5178 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5179 		return -EBUSY;
5180 
5181 	/* Trim the upper limit to the max. */
5182 	if (max < mas->last)
5183 		mas->last = max;
5184 
5185 	mas->index = mas->last - size + 1;
5186 	mas->end = mas_data_end(mas);
5187 	return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5190 
5191 /*
5192  * mte_dead_leaves() - Mark all leaves of a node as dead.
5193  * @enode: the encoded node
5194  * @mt: the maple tree
5195  * @slots: Pointer to the slot array
5196  *
5197  * Must hold the write lock.
5198  *
5199  * Return: The number of leaves marked as dead.
5200  */
5201 static inline
5202 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5203 			      void __rcu **slots)
5204 {
5205 	struct maple_node *node;
5206 	enum maple_type type;
5207 	void *entry;
5208 	int offset;
5209 
5210 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5211 		entry = mt_slot(mt, slots, offset);
5212 		type = mte_node_type(entry);
5213 		node = mte_to_node(entry);
5214 		/* Use both node and type to catch LE & BE metadata */
5215 		if (!node || !type)
5216 			break;
5217 
5218 		mte_set_node_dead(entry);
5219 		node->type = type;
5220 		rcu_assign_pointer(slots[offset], node);
5221 	}
5222 
5223 	return offset;
5224 }
5225 
5226 /**
5227  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5228  * @enode: The maple encoded node
5229  * @offset: The starting offset
5230  *
5231  * Note: This can only be used from the RCU callback context.
5232  */
5233 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5234 {
5235 	struct maple_node *node, *next;
5236 	void __rcu **slots = NULL;
5237 
5238 	next = mte_to_node(*enode);
5239 	do {
5240 		*enode = ma_enode_ptr(next);
5241 		node = mte_to_node(*enode);
5242 		slots = ma_slots(node, node->type);
5243 		next = rcu_dereference_protected(slots[offset],
5244 					lock_is_held(&rcu_callback_map));
5245 		offset = 0;
5246 	} while (!ma_is_leaf(next->type));
5247 
5248 	return slots;
5249 }
5250 
5251 /**
5252  * mt_free_walk() - Walk & free a tree in the RCU callback context
5253  * @head: The RCU head that's within the node.
5254  *
5255  * Note: This can only be used from the RCU callback context.
5256  */
5257 static void mt_free_walk(struct rcu_head *head)
5258 {
5259 	void __rcu **slots;
5260 	struct maple_node *node, *start;
5261 	struct maple_enode *enode;
5262 	unsigned char offset;
5263 	enum maple_type type;
5264 
5265 	node = container_of(head, struct maple_node, rcu);
5266 
5267 	if (ma_is_leaf(node->type))
5268 		goto free_leaf;
5269 
5270 	start = node;
5271 	enode = mt_mk_node(node, node->type);
5272 	slots = mte_dead_walk(&enode, 0);
5273 	node = mte_to_node(enode);
5274 	do {
5275 		mt_free_bulk(node->slot_len, slots);
5276 		offset = node->parent_slot + 1;
5277 		enode = node->piv_parent;
5278 		if (mte_to_node(enode) == node)
5279 			goto free_leaf;
5280 
5281 		type = mte_node_type(enode);
5282 		slots = ma_slots(mte_to_node(enode), type);
5283 		if ((offset < mt_slots[type]) &&
5284 		    rcu_dereference_protected(slots[offset],
5285 					      lock_is_held(&rcu_callback_map)))
5286 			slots = mte_dead_walk(&enode, offset);
5287 		node = mte_to_node(enode);
5288 	} while ((node != start) || (node->slot_len < offset));
5289 
5290 	slots = ma_slots(node, node->type);
5291 	mt_free_bulk(node->slot_len, slots);
5292 
5293 free_leaf:
5294 	mt_free_rcu(&node->rcu);
5295 }
5296 
5297 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5298 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5299 {
5300 	struct maple_node *node;
5301 	struct maple_enode *next = *enode;
5302 	void __rcu **slots = NULL;
5303 	enum maple_type type;
5304 	unsigned char next_offset = 0;
5305 
5306 	do {
5307 		*enode = next;
5308 		node = mte_to_node(*enode);
5309 		type = mte_node_type(*enode);
5310 		slots = ma_slots(node, type);
5311 		next = mt_slot_locked(mt, slots, next_offset);
5312 		if ((mte_dead_node(next)))
5313 			next = mt_slot_locked(mt, slots, ++next_offset);
5314 
5315 		mte_set_node_dead(*enode);
5316 		node->type = type;
5317 		node->piv_parent = prev;
5318 		node->parent_slot = offset;
5319 		offset = next_offset;
5320 		next_offset = 0;
5321 		prev = *enode;
5322 	} while (!mte_is_leaf(next));
5323 
5324 	return slots;
5325 }
5326 
5327 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5328 			    bool free)
5329 {
5330 	void __rcu **slots;
5331 	struct maple_node *node = mte_to_node(enode);
5332 	struct maple_enode *start;
5333 
5334 	if (mte_is_leaf(enode)) {
5335 		node->type = mte_node_type(enode);
5336 		goto free_leaf;
5337 	}
5338 
5339 	start = enode;
5340 	slots = mte_destroy_descend(&enode, mt, start, 0);
5341 	node = mte_to_node(enode); // Updated in the above call.
5342 	do {
5343 		enum maple_type type;
5344 		unsigned char offset;
5345 		struct maple_enode *parent, *tmp;
5346 
5347 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5348 		if (free)
5349 			mt_free_bulk(node->slot_len, slots);
5350 		offset = node->parent_slot + 1;
5351 		enode = node->piv_parent;
5352 		if (mte_to_node(enode) == node)
5353 			goto free_leaf;
5354 
5355 		type = mte_node_type(enode);
5356 		slots = ma_slots(mte_to_node(enode), type);
5357 		if (offset >= mt_slots[type])
5358 			goto next;
5359 
5360 		tmp = mt_slot_locked(mt, slots, offset);
5361 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5362 			parent = enode;
5363 			enode = tmp;
5364 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5365 		}
5366 next:
5367 		node = mte_to_node(enode);
5368 	} while (start != enode);
5369 
5370 	node = mte_to_node(enode);
5371 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5372 	if (free)
5373 		mt_free_bulk(node->slot_len, slots);
5374 
5375 free_leaf:
5376 	if (free)
5377 		mt_free_rcu(&node->rcu);
5378 	else
5379 		mt_clear_meta(mt, node, node->type);
5380 }
5381 
5382 /*
5383  * mte_destroy_walk() - Free a tree or sub-tree.
5384  * @enode: the encoded maple node (maple_enode) to start
5385  * @mt: the tree to free - needed for node types.
5386  *
5387  * Must hold the write lock.
5388  */
5389 static inline void mte_destroy_walk(struct maple_enode *enode,
5390 				    struct maple_tree *mt)
5391 {
5392 	struct maple_node *node = mte_to_node(enode);
5393 
5394 	if (mt_in_rcu(mt)) {
5395 		mt_destroy_walk(enode, mt, false);
5396 		call_rcu(&node->rcu, mt_free_walk);
5397 	} else {
5398 		mt_destroy_walk(enode, mt, true);
5399 	}
5400 }
5401 /* Interface */
5402 
5403 /**
5404  * mas_store() - Store an @entry.
5405  * @mas: The maple state.
5406  * @entry: The entry to store.
5407  *
5408  * The @mas->index and @mas->last is used to set the range for the @entry.
5409  *
5410  * Return: the first entry between mas->index and mas->last or %NULL.
5411  */
5412 void *mas_store(struct ma_state *mas, void *entry)
5413 {
5414 	int request;
5415 	MA_WR_STATE(wr_mas, mas, entry);
5416 
5417 	trace_ma_write(__func__, mas, 0, entry);
5418 #ifdef CONFIG_DEBUG_MAPLE_TREE
5419 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5420 		pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5421 		       entry);
5422 
5423 	if (mas->index > mas->last) {
5424 		mas_set_err(mas, -EINVAL);
5425 		return NULL;
5426 	}
5427 
5428 #endif
5429 
5430 	/*
5431 	 * Storing is the same operation as insert with the added caveat that it
5432 	 * can overwrite entries.  Although this seems simple enough, one may
5433 	 * want to examine what happens if a single store operation was to
5434 	 * overwrite multiple entries within a self-balancing B-Tree.
5435 	 */
5436 	mas_wr_prealloc_setup(&wr_mas);
5437 	mas->store_type = mas_wr_store_type(&wr_mas);
5438 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5439 		mas_wr_store_entry(&wr_mas);
5440 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5441 		return wr_mas.content;
5442 	}
5443 
5444 	request = mas_prealloc_calc(mas, entry);
5445 	if (!request)
5446 		goto store;
5447 
5448 	mas_node_count(mas, request);
5449 	if (mas_is_err(mas))
5450 		return NULL;
5451 
5452 store:
5453 	mas_wr_store_entry(&wr_mas);
5454 	mas_destroy(mas);
5455 	return wr_mas.content;
5456 }
5457 EXPORT_SYMBOL_GPL(mas_store);
5458 
5459 /**
5460  * mas_store_gfp() - Store a value into the tree.
5461  * @mas: The maple state
5462  * @entry: The entry to store
5463  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5464  *
5465  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5466  * be allocated.
5467  */
5468 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5469 {
5470 	unsigned long index = mas->index;
5471 	unsigned long last = mas->last;
5472 	MA_WR_STATE(wr_mas, mas, entry);
5473 	int ret = 0;
5474 
5475 retry:
5476 	mas_wr_preallocate(&wr_mas, entry);
5477 	if (unlikely(mas_nomem(mas, gfp))) {
5478 		if (!entry)
5479 			__mas_set_range(mas, index, last);
5480 		goto retry;
5481 	}
5482 
5483 	if (mas_is_err(mas)) {
5484 		ret = xa_err(mas->node);
5485 		goto out;
5486 	}
5487 
5488 	mas_wr_store_entry(&wr_mas);
5489 out:
5490 	mas_destroy(mas);
5491 	return ret;
5492 }
5493 EXPORT_SYMBOL_GPL(mas_store_gfp);
5494 
5495 /**
5496  * mas_store_prealloc() - Store a value into the tree using memory
5497  * preallocated in the maple state.
5498  * @mas: The maple state
5499  * @entry: The entry to store.
5500  */
5501 void mas_store_prealloc(struct ma_state *mas, void *entry)
5502 {
5503 	MA_WR_STATE(wr_mas, mas, entry);
5504 
5505 	if (mas->store_type == wr_store_root) {
5506 		mas_wr_prealloc_setup(&wr_mas);
5507 		goto store;
5508 	}
5509 
5510 	mas_wr_walk_descend(&wr_mas);
5511 	if (mas->store_type != wr_spanning_store) {
5512 		/* set wr_mas->content to current slot */
5513 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5514 		mas_wr_end_piv(&wr_mas);
5515 	}
5516 
5517 store:
5518 	trace_ma_write(__func__, mas, 0, entry);
5519 	mas_wr_store_entry(&wr_mas);
5520 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5521 	mas_destroy(mas);
5522 }
5523 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5524 
5525 /**
5526  * mas_preallocate() - Preallocate enough nodes for a store operation
5527  * @mas: The maple state
5528  * @entry: The entry that will be stored
5529  * @gfp: The GFP_FLAGS to use for allocations.
5530  *
5531  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5532  */
5533 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5534 {
5535 	MA_WR_STATE(wr_mas, mas, entry);
5536 	int ret = 0;
5537 	int request;
5538 
5539 	mas_wr_prealloc_setup(&wr_mas);
5540 	mas->store_type = mas_wr_store_type(&wr_mas);
5541 	request = mas_prealloc_calc(mas, entry);
5542 	if (!request)
5543 		return ret;
5544 
5545 	mas_node_count_gfp(mas, request, gfp);
5546 	if (mas_is_err(mas)) {
5547 		mas_set_alloc_req(mas, 0);
5548 		ret = xa_err(mas->node);
5549 		mas_destroy(mas);
5550 		mas_reset(mas);
5551 		return ret;
5552 	}
5553 
5554 	mas->mas_flags |= MA_STATE_PREALLOC;
5555 	return ret;
5556 }
5557 EXPORT_SYMBOL_GPL(mas_preallocate);
5558 
5559 /*
5560  * mas_destroy() - destroy a maple state.
5561  * @mas: The maple state
5562  *
5563  * Upon completion, check the left-most node and rebalance against the node to
5564  * the right if necessary.  Frees any allocated nodes associated with this maple
5565  * state.
5566  */
5567 void mas_destroy(struct ma_state *mas)
5568 {
5569 	struct maple_alloc *node;
5570 	unsigned long total;
5571 
5572 	/*
5573 	 * When using mas_for_each() to insert an expected number of elements,
5574 	 * it is possible that the number inserted is less than the expected
5575 	 * number.  To fix an invalid final node, a check is performed here to
5576 	 * rebalance the previous node with the final node.
5577 	 */
5578 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5579 		unsigned char end;
5580 		if (mas_is_err(mas))
5581 			mas_reset(mas);
5582 		mas_start(mas);
5583 		mtree_range_walk(mas);
5584 		end = mas->end + 1;
5585 		if (end < mt_min_slot_count(mas->node) - 1)
5586 			mas_destroy_rebalance(mas, end);
5587 
5588 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5589 	}
5590 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5591 
5592 	total = mas_allocated(mas);
5593 	while (total) {
5594 		node = mas->alloc;
5595 		mas->alloc = node->slot[0];
5596 		if (node->node_count > 1) {
5597 			size_t count = node->node_count - 1;
5598 
5599 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5600 			total -= count;
5601 		}
5602 		mt_free_one(ma_mnode_ptr(node));
5603 		total--;
5604 	}
5605 
5606 	mas->alloc = NULL;
5607 }
5608 EXPORT_SYMBOL_GPL(mas_destroy);
5609 
5610 /*
5611  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5612  * @mas: The maple state
5613  * @nr_entries: The number of expected entries.
5614  *
5615  * This will attempt to pre-allocate enough nodes to store the expected number
5616  * of entries.  The allocations will occur using the bulk allocator interface
5617  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5618  * to ensure any unused nodes are freed.
5619  *
5620  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5621  */
5622 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5623 {
5624 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5625 	struct maple_enode *enode = mas->node;
5626 	int nr_nodes;
5627 	int ret;
5628 
5629 	/*
5630 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5631 	 * forking a process and duplicating the VMAs from one tree to a new
5632 	 * tree.  When such a situation arises, it is known that the new tree is
5633 	 * not going to be used until the entire tree is populated.  For
5634 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5635 	 * This allows for optimistic splitting that favours the left and reuse
5636 	 * of nodes during the operation.
5637 	 */
5638 
5639 	/* Optimize splitting for bulk insert in-order */
5640 	mas->mas_flags |= MA_STATE_BULK;
5641 
5642 	/*
5643 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5644 	 * If this is wrong, it just means allocation can happen during
5645 	 * insertion of entries.
5646 	 */
5647 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5648 	if (!mt_is_alloc(mas->tree))
5649 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5650 
5651 	/* Leaves; reduce slots to keep space for expansion */
5652 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5653 	/* Internal nodes */
5654 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5655 	/* Add working room for split (2 nodes) + new parents */
5656 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5657 
5658 	/* Detect if allocations run out */
5659 	mas->mas_flags |= MA_STATE_PREALLOC;
5660 
5661 	if (!mas_is_err(mas))
5662 		return 0;
5663 
5664 	ret = xa_err(mas->node);
5665 	mas->node = enode;
5666 	mas_destroy(mas);
5667 	return ret;
5668 
5669 }
5670 EXPORT_SYMBOL_GPL(mas_expected_entries);
5671 
5672 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5673 		void **entry)
5674 {
5675 	bool was_none = mas_is_none(mas);
5676 
5677 	if (unlikely(mas->last >= max)) {
5678 		mas->status = ma_overflow;
5679 		return true;
5680 	}
5681 
5682 	switch (mas->status) {
5683 	case ma_active:
5684 		return false;
5685 	case ma_none:
5686 		fallthrough;
5687 	case ma_pause:
5688 		mas->status = ma_start;
5689 		fallthrough;
5690 	case ma_start:
5691 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5692 		break;
5693 	case ma_overflow:
5694 		/* Overflowed before, but the max changed */
5695 		mas->status = ma_active;
5696 		break;
5697 	case ma_underflow:
5698 		/* The user expects the mas to be one before where it is */
5699 		mas->status = ma_active;
5700 		*entry = mas_walk(mas);
5701 		if (*entry)
5702 			return true;
5703 		break;
5704 	case ma_root:
5705 		break;
5706 	case ma_error:
5707 		return true;
5708 	}
5709 
5710 	if (likely(mas_is_active(mas))) /* Fast path */
5711 		return false;
5712 
5713 	if (mas_is_ptr(mas)) {
5714 		*entry = NULL;
5715 		if (was_none && mas->index == 0) {
5716 			mas->index = mas->last = 0;
5717 			return true;
5718 		}
5719 		mas->index = 1;
5720 		mas->last = ULONG_MAX;
5721 		mas->status = ma_none;
5722 		return true;
5723 	}
5724 
5725 	if (mas_is_none(mas))
5726 		return true;
5727 
5728 	return false;
5729 }
5730 
5731 /**
5732  * mas_next() - Get the next entry.
5733  * @mas: The maple state
5734  * @max: The maximum index to check.
5735  *
5736  * Returns the next entry after @mas->index.
5737  * Must hold rcu_read_lock or the write lock.
5738  * Can return the zero entry.
5739  *
5740  * Return: The next entry or %NULL
5741  */
5742 void *mas_next(struct ma_state *mas, unsigned long max)
5743 {
5744 	void *entry = NULL;
5745 
5746 	if (mas_next_setup(mas, max, &entry))
5747 		return entry;
5748 
5749 	/* Retries on dead nodes handled by mas_next_slot */
5750 	return mas_next_slot(mas, max, false);
5751 }
5752 EXPORT_SYMBOL_GPL(mas_next);
5753 
5754 /**
5755  * mas_next_range() - Advance the maple state to the next range
5756  * @mas: The maple state
5757  * @max: The maximum index to check.
5758  *
5759  * Sets @mas->index and @mas->last to the range.
5760  * Must hold rcu_read_lock or the write lock.
5761  * Can return the zero entry.
5762  *
5763  * Return: The next entry or %NULL
5764  */
5765 void *mas_next_range(struct ma_state *mas, unsigned long max)
5766 {
5767 	void *entry = NULL;
5768 
5769 	if (mas_next_setup(mas, max, &entry))
5770 		return entry;
5771 
5772 	/* Retries on dead nodes handled by mas_next_slot */
5773 	return mas_next_slot(mas, max, true);
5774 }
5775 EXPORT_SYMBOL_GPL(mas_next_range);
5776 
5777 /**
5778  * mt_next() - get the next value in the maple tree
5779  * @mt: The maple tree
5780  * @index: The start index
5781  * @max: The maximum index to check
5782  *
5783  * Takes RCU read lock internally to protect the search, which does not
5784  * protect the returned pointer after dropping RCU read lock.
5785  * See also: Documentation/core-api/maple_tree.rst
5786  *
5787  * Return: The entry higher than @index or %NULL if nothing is found.
5788  */
5789 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5790 {
5791 	void *entry = NULL;
5792 	MA_STATE(mas, mt, index, index);
5793 
5794 	rcu_read_lock();
5795 	entry = mas_next(&mas, max);
5796 	rcu_read_unlock();
5797 	return entry;
5798 }
5799 EXPORT_SYMBOL_GPL(mt_next);
5800 
5801 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5802 {
5803 	if (unlikely(mas->index <= min)) {
5804 		mas->status = ma_underflow;
5805 		return true;
5806 	}
5807 
5808 	switch (mas->status) {
5809 	case ma_active:
5810 		return false;
5811 	case ma_start:
5812 		break;
5813 	case ma_none:
5814 		fallthrough;
5815 	case ma_pause:
5816 		mas->status = ma_start;
5817 		break;
5818 	case ma_underflow:
5819 		/* underflowed before but the min changed */
5820 		mas->status = ma_active;
5821 		break;
5822 	case ma_overflow:
5823 		/* User expects mas to be one after where it is */
5824 		mas->status = ma_active;
5825 		*entry = mas_walk(mas);
5826 		if (*entry)
5827 			return true;
5828 		break;
5829 	case ma_root:
5830 		break;
5831 	case ma_error:
5832 		return true;
5833 	}
5834 
5835 	if (mas_is_start(mas))
5836 		mas_walk(mas);
5837 
5838 	if (unlikely(mas_is_ptr(mas))) {
5839 		if (!mas->index) {
5840 			mas->status = ma_none;
5841 			return true;
5842 		}
5843 		mas->index = mas->last = 0;
5844 		*entry = mas_root(mas);
5845 		return true;
5846 	}
5847 
5848 	if (mas_is_none(mas)) {
5849 		if (mas->index) {
5850 			/* Walked to out-of-range pointer? */
5851 			mas->index = mas->last = 0;
5852 			mas->status = ma_root;
5853 			*entry = mas_root(mas);
5854 			return true;
5855 		}
5856 		return true;
5857 	}
5858 
5859 	return false;
5860 }
5861 
5862 /**
5863  * mas_prev() - Get the previous entry
5864  * @mas: The maple state
5865  * @min: The minimum value to check.
5866  *
5867  * Must hold rcu_read_lock or the write lock.
5868  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5869  * searchable nodes.
5870  *
5871  * Return: the previous value or %NULL.
5872  */
5873 void *mas_prev(struct ma_state *mas, unsigned long min)
5874 {
5875 	void *entry = NULL;
5876 
5877 	if (mas_prev_setup(mas, min, &entry))
5878 		return entry;
5879 
5880 	return mas_prev_slot(mas, min, false);
5881 }
5882 EXPORT_SYMBOL_GPL(mas_prev);
5883 
5884 /**
5885  * mas_prev_range() - Advance to the previous range
5886  * @mas: The maple state
5887  * @min: The minimum value to check.
5888  *
5889  * Sets @mas->index and @mas->last to the range.
5890  * Must hold rcu_read_lock or the write lock.
5891  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5892  * searchable nodes.
5893  *
5894  * Return: the previous value or %NULL.
5895  */
5896 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5897 {
5898 	void *entry = NULL;
5899 
5900 	if (mas_prev_setup(mas, min, &entry))
5901 		return entry;
5902 
5903 	return mas_prev_slot(mas, min, true);
5904 }
5905 EXPORT_SYMBOL_GPL(mas_prev_range);
5906 
5907 /**
5908  * mt_prev() - get the previous value in the maple tree
5909  * @mt: The maple tree
5910  * @index: The start index
5911  * @min: The minimum index to check
5912  *
5913  * Takes RCU read lock internally to protect the search, which does not
5914  * protect the returned pointer after dropping RCU read lock.
5915  * See also: Documentation/core-api/maple_tree.rst
5916  *
5917  * Return: The entry before @index or %NULL if nothing is found.
5918  */
5919 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5920 {
5921 	void *entry = NULL;
5922 	MA_STATE(mas, mt, index, index);
5923 
5924 	rcu_read_lock();
5925 	entry = mas_prev(&mas, min);
5926 	rcu_read_unlock();
5927 	return entry;
5928 }
5929 EXPORT_SYMBOL_GPL(mt_prev);
5930 
5931 /**
5932  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5933  * @mas: The maple state to pause
5934  *
5935  * Some users need to pause a walk and drop the lock they're holding in
5936  * order to yield to a higher priority thread or carry out an operation
5937  * on an entry.  Those users should call this function before they drop
5938  * the lock.  It resets the @mas to be suitable for the next iteration
5939  * of the loop after the user has reacquired the lock.  If most entries
5940  * found during a walk require you to call mas_pause(), the mt_for_each()
5941  * iterator may be more appropriate.
5942  *
5943  */
5944 void mas_pause(struct ma_state *mas)
5945 {
5946 	mas->status = ma_pause;
5947 	mas->node = NULL;
5948 }
5949 EXPORT_SYMBOL_GPL(mas_pause);
5950 
5951 /**
5952  * mas_find_setup() - Internal function to set up mas_find*().
5953  * @mas: The maple state
5954  * @max: The maximum index
5955  * @entry: Pointer to the entry
5956  *
5957  * Returns: True if entry is the answer, false otherwise.
5958  */
5959 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5960 {
5961 	switch (mas->status) {
5962 	case ma_active:
5963 		if (mas->last < max)
5964 			return false;
5965 		return true;
5966 	case ma_start:
5967 		break;
5968 	case ma_pause:
5969 		if (unlikely(mas->last >= max))
5970 			return true;
5971 
5972 		mas->index = ++mas->last;
5973 		mas->status = ma_start;
5974 		break;
5975 	case ma_none:
5976 		if (unlikely(mas->last >= max))
5977 			return true;
5978 
5979 		mas->index = mas->last;
5980 		mas->status = ma_start;
5981 		break;
5982 	case ma_underflow:
5983 		/* mas is pointing at entry before unable to go lower */
5984 		if (unlikely(mas->index >= max)) {
5985 			mas->status = ma_overflow;
5986 			return true;
5987 		}
5988 
5989 		mas->status = ma_active;
5990 		*entry = mas_walk(mas);
5991 		if (*entry)
5992 			return true;
5993 		break;
5994 	case ma_overflow:
5995 		if (unlikely(mas->last >= max))
5996 			return true;
5997 
5998 		mas->status = ma_active;
5999 		*entry = mas_walk(mas);
6000 		if (*entry)
6001 			return true;
6002 		break;
6003 	case ma_root:
6004 		break;
6005 	case ma_error:
6006 		return true;
6007 	}
6008 
6009 	if (mas_is_start(mas)) {
6010 		/* First run or continue */
6011 		if (mas->index > max)
6012 			return true;
6013 
6014 		*entry = mas_walk(mas);
6015 		if (*entry)
6016 			return true;
6017 
6018 	}
6019 
6020 	if (unlikely(mas_is_ptr(mas)))
6021 		goto ptr_out_of_range;
6022 
6023 	if (unlikely(mas_is_none(mas)))
6024 		return true;
6025 
6026 	if (mas->index == max)
6027 		return true;
6028 
6029 	return false;
6030 
6031 ptr_out_of_range:
6032 	mas->status = ma_none;
6033 	mas->index = 1;
6034 	mas->last = ULONG_MAX;
6035 	return true;
6036 }
6037 
6038 /**
6039  * mas_find() - On the first call, find the entry at or after mas->index up to
6040  * %max.  Otherwise, find the entry after mas->index.
6041  * @mas: The maple state
6042  * @max: The maximum value to check.
6043  *
6044  * Must hold rcu_read_lock or the write lock.
6045  * If an entry exists, last and index are updated accordingly.
6046  * May set @mas->status to ma_overflow.
6047  *
6048  * Return: The entry or %NULL.
6049  */
6050 void *mas_find(struct ma_state *mas, unsigned long max)
6051 {
6052 	void *entry = NULL;
6053 
6054 	if (mas_find_setup(mas, max, &entry))
6055 		return entry;
6056 
6057 	/* Retries on dead nodes handled by mas_next_slot */
6058 	entry = mas_next_slot(mas, max, false);
6059 	/* Ignore overflow */
6060 	mas->status = ma_active;
6061 	return entry;
6062 }
6063 EXPORT_SYMBOL_GPL(mas_find);
6064 
6065 /**
6066  * mas_find_range() - On the first call, find the entry at or after
6067  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6068  * @mas: The maple state
6069  * @max: The maximum value to check.
6070  *
6071  * Must hold rcu_read_lock or the write lock.
6072  * If an entry exists, last and index are updated accordingly.
6073  * May set @mas->status to ma_overflow.
6074  *
6075  * Return: The entry or %NULL.
6076  */
6077 void *mas_find_range(struct ma_state *mas, unsigned long max)
6078 {
6079 	void *entry = NULL;
6080 
6081 	if (mas_find_setup(mas, max, &entry))
6082 		return entry;
6083 
6084 	/* Retries on dead nodes handled by mas_next_slot */
6085 	return mas_next_slot(mas, max, true);
6086 }
6087 EXPORT_SYMBOL_GPL(mas_find_range);
6088 
6089 /**
6090  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6091  * @mas: The maple state
6092  * @min: The minimum index
6093  * @entry: Pointer to the entry
6094  *
6095  * Returns: True if entry is the answer, false otherwise.
6096  */
6097 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6098 		void **entry)
6099 {
6100 
6101 	switch (mas->status) {
6102 	case ma_active:
6103 		goto active;
6104 	case ma_start:
6105 		break;
6106 	case ma_pause:
6107 		if (unlikely(mas->index <= min)) {
6108 			mas->status = ma_underflow;
6109 			return true;
6110 		}
6111 		mas->last = --mas->index;
6112 		mas->status = ma_start;
6113 		break;
6114 	case ma_none:
6115 		if (mas->index <= min)
6116 			goto none;
6117 
6118 		mas->last = mas->index;
6119 		mas->status = ma_start;
6120 		break;
6121 	case ma_overflow: /* user expects the mas to be one after where it is */
6122 		if (unlikely(mas->index <= min)) {
6123 			mas->status = ma_underflow;
6124 			return true;
6125 		}
6126 
6127 		mas->status = ma_active;
6128 		break;
6129 	case ma_underflow: /* user expects the mas to be one before where it is */
6130 		if (unlikely(mas->index <= min))
6131 			return true;
6132 
6133 		mas->status = ma_active;
6134 		break;
6135 	case ma_root:
6136 		break;
6137 	case ma_error:
6138 		return true;
6139 	}
6140 
6141 	if (mas_is_start(mas)) {
6142 		/* First run or continue */
6143 		if (mas->index < min)
6144 			return true;
6145 
6146 		*entry = mas_walk(mas);
6147 		if (*entry)
6148 			return true;
6149 	}
6150 
6151 	if (unlikely(mas_is_ptr(mas)))
6152 		goto none;
6153 
6154 	if (unlikely(mas_is_none(mas))) {
6155 		/*
6156 		 * Walked to the location, and there was nothing so the previous
6157 		 * location is 0.
6158 		 */
6159 		mas->last = mas->index = 0;
6160 		mas->status = ma_root;
6161 		*entry = mas_root(mas);
6162 		return true;
6163 	}
6164 
6165 active:
6166 	if (mas->index < min)
6167 		return true;
6168 
6169 	return false;
6170 
6171 none:
6172 	mas->status = ma_none;
6173 	return true;
6174 }
6175 
6176 /**
6177  * mas_find_rev: On the first call, find the first non-null entry at or below
6178  * mas->index down to %min.  Otherwise find the first non-null entry below
6179  * mas->index down to %min.
6180  * @mas: The maple state
6181  * @min: The minimum value to check.
6182  *
6183  * Must hold rcu_read_lock or the write lock.
6184  * If an entry exists, last and index are updated accordingly.
6185  * May set @mas->status to ma_underflow.
6186  *
6187  * Return: The entry or %NULL.
6188  */
6189 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6190 {
6191 	void *entry = NULL;
6192 
6193 	if (mas_find_rev_setup(mas, min, &entry))
6194 		return entry;
6195 
6196 	/* Retries on dead nodes handled by mas_prev_slot */
6197 	return mas_prev_slot(mas, min, false);
6198 
6199 }
6200 EXPORT_SYMBOL_GPL(mas_find_rev);
6201 
6202 /**
6203  * mas_find_range_rev: On the first call, find the first non-null entry at or
6204  * below mas->index down to %min.  Otherwise advance to the previous slot after
6205  * mas->index down to %min.
6206  * @mas: The maple state
6207  * @min: The minimum value to check.
6208  *
6209  * Must hold rcu_read_lock or the write lock.
6210  * If an entry exists, last and index are updated accordingly.
6211  * May set @mas->status to ma_underflow.
6212  *
6213  * Return: The entry or %NULL.
6214  */
6215 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6216 {
6217 	void *entry = NULL;
6218 
6219 	if (mas_find_rev_setup(mas, min, &entry))
6220 		return entry;
6221 
6222 	/* Retries on dead nodes handled by mas_prev_slot */
6223 	return mas_prev_slot(mas, min, true);
6224 }
6225 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6226 
6227 /**
6228  * mas_erase() - Find the range in which index resides and erase the entire
6229  * range.
6230  * @mas: The maple state
6231  *
6232  * Must hold the write lock.
6233  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6234  * erases that range.
6235  *
6236  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6237  */
6238 void *mas_erase(struct ma_state *mas)
6239 {
6240 	void *entry;
6241 	unsigned long index = mas->index;
6242 	MA_WR_STATE(wr_mas, mas, NULL);
6243 
6244 	if (!mas_is_active(mas) || !mas_is_start(mas))
6245 		mas->status = ma_start;
6246 
6247 write_retry:
6248 	entry = mas_state_walk(mas);
6249 	if (!entry)
6250 		return NULL;
6251 
6252 	/* Must reset to ensure spanning writes of last slot are detected */
6253 	mas_reset(mas);
6254 	mas_wr_preallocate(&wr_mas, NULL);
6255 	if (mas_nomem(mas, GFP_KERNEL)) {
6256 		/* in case the range of entry changed when unlocked */
6257 		mas->index = mas->last = index;
6258 		goto write_retry;
6259 	}
6260 
6261 	if (mas_is_err(mas))
6262 		goto out;
6263 
6264 	mas_wr_store_entry(&wr_mas);
6265 out:
6266 	mas_destroy(mas);
6267 	return entry;
6268 }
6269 EXPORT_SYMBOL_GPL(mas_erase);
6270 
6271 /**
6272  * mas_nomem() - Check if there was an error allocating and do the allocation
6273  * if necessary If there are allocations, then free them.
6274  * @mas: The maple state
6275  * @gfp: The GFP_FLAGS to use for allocations
6276  * Return: true on allocation, false otherwise.
6277  */
6278 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6279 	__must_hold(mas->tree->ma_lock)
6280 {
6281 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6282 		return false;
6283 
6284 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6285 		mtree_unlock(mas->tree);
6286 		mas_alloc_nodes(mas, gfp);
6287 		mtree_lock(mas->tree);
6288 	} else {
6289 		mas_alloc_nodes(mas, gfp);
6290 	}
6291 
6292 	if (!mas_allocated(mas))
6293 		return false;
6294 
6295 	mas->status = ma_start;
6296 	return true;
6297 }
6298 
6299 void __init maple_tree_init(void)
6300 {
6301 	maple_node_cache = kmem_cache_create("maple_node",
6302 			sizeof(struct maple_node), sizeof(struct maple_node),
6303 			SLAB_PANIC, NULL);
6304 }
6305 
6306 /**
6307  * mtree_load() - Load a value stored in a maple tree
6308  * @mt: The maple tree
6309  * @index: The index to load
6310  *
6311  * Return: the entry or %NULL
6312  */
6313 void *mtree_load(struct maple_tree *mt, unsigned long index)
6314 {
6315 	MA_STATE(mas, mt, index, index);
6316 	void *entry;
6317 
6318 	trace_ma_read(__func__, &mas);
6319 	rcu_read_lock();
6320 retry:
6321 	entry = mas_start(&mas);
6322 	if (unlikely(mas_is_none(&mas)))
6323 		goto unlock;
6324 
6325 	if (unlikely(mas_is_ptr(&mas))) {
6326 		if (index)
6327 			entry = NULL;
6328 
6329 		goto unlock;
6330 	}
6331 
6332 	entry = mtree_lookup_walk(&mas);
6333 	if (!entry && unlikely(mas_is_start(&mas)))
6334 		goto retry;
6335 unlock:
6336 	rcu_read_unlock();
6337 	if (xa_is_zero(entry))
6338 		return NULL;
6339 
6340 	return entry;
6341 }
6342 EXPORT_SYMBOL(mtree_load);
6343 
6344 /**
6345  * mtree_store_range() - Store an entry at a given range.
6346  * @mt: The maple tree
6347  * @index: The start of the range
6348  * @last: The end of the range
6349  * @entry: The entry to store
6350  * @gfp: The GFP_FLAGS to use for allocations
6351  *
6352  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6353  * be allocated.
6354  */
6355 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6356 		unsigned long last, void *entry, gfp_t gfp)
6357 {
6358 	MA_STATE(mas, mt, index, last);
6359 	int ret = 0;
6360 
6361 	trace_ma_write(__func__, &mas, 0, entry);
6362 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6363 		return -EINVAL;
6364 
6365 	if (index > last)
6366 		return -EINVAL;
6367 
6368 	mtree_lock(mt);
6369 	ret = mas_store_gfp(&mas, entry, gfp);
6370 	mtree_unlock(mt);
6371 
6372 	return ret;
6373 }
6374 EXPORT_SYMBOL(mtree_store_range);
6375 
6376 /**
6377  * mtree_store() - Store an entry at a given index.
6378  * @mt: The maple tree
6379  * @index: The index to store the value
6380  * @entry: The entry to store
6381  * @gfp: The GFP_FLAGS to use for allocations
6382  *
6383  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6384  * be allocated.
6385  */
6386 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6387 		 gfp_t gfp)
6388 {
6389 	return mtree_store_range(mt, index, index, entry, gfp);
6390 }
6391 EXPORT_SYMBOL(mtree_store);
6392 
6393 /**
6394  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6395  * @mt: The maple tree
6396  * @first: The start of the range
6397  * @last: The end of the range
6398  * @entry: The entry to store
6399  * @gfp: The GFP_FLAGS to use for allocations.
6400  *
6401  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6402  * request, -ENOMEM if memory could not be allocated.
6403  */
6404 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6405 		unsigned long last, void *entry, gfp_t gfp)
6406 {
6407 	MA_STATE(ms, mt, first, last);
6408 	int ret = 0;
6409 
6410 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6411 		return -EINVAL;
6412 
6413 	if (first > last)
6414 		return -EINVAL;
6415 
6416 	mtree_lock(mt);
6417 retry:
6418 	mas_insert(&ms, entry);
6419 	if (mas_nomem(&ms, gfp))
6420 		goto retry;
6421 
6422 	mtree_unlock(mt);
6423 	if (mas_is_err(&ms))
6424 		ret = xa_err(ms.node);
6425 
6426 	mas_destroy(&ms);
6427 	return ret;
6428 }
6429 EXPORT_SYMBOL(mtree_insert_range);
6430 
6431 /**
6432  * mtree_insert() - Insert an entry at a given index if there is no value.
6433  * @mt: The maple tree
6434  * @index : The index to store the value
6435  * @entry: The entry to store
6436  * @gfp: The GFP_FLAGS to use for allocations.
6437  *
6438  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6439  * request, -ENOMEM if memory could not be allocated.
6440  */
6441 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6442 		 gfp_t gfp)
6443 {
6444 	return mtree_insert_range(mt, index, index, entry, gfp);
6445 }
6446 EXPORT_SYMBOL(mtree_insert);
6447 
6448 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6449 		void *entry, unsigned long size, unsigned long min,
6450 		unsigned long max, gfp_t gfp)
6451 {
6452 	int ret = 0;
6453 
6454 	MA_STATE(mas, mt, 0, 0);
6455 	if (!mt_is_alloc(mt))
6456 		return -EINVAL;
6457 
6458 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6459 		return -EINVAL;
6460 
6461 	mtree_lock(mt);
6462 retry:
6463 	ret = mas_empty_area(&mas, min, max, size);
6464 	if (ret)
6465 		goto unlock;
6466 
6467 	mas_insert(&mas, entry);
6468 	/*
6469 	 * mas_nomem() may release the lock, causing the allocated area
6470 	 * to be unavailable, so try to allocate a free area again.
6471 	 */
6472 	if (mas_nomem(&mas, gfp))
6473 		goto retry;
6474 
6475 	if (mas_is_err(&mas))
6476 		ret = xa_err(mas.node);
6477 	else
6478 		*startp = mas.index;
6479 
6480 unlock:
6481 	mtree_unlock(mt);
6482 	mas_destroy(&mas);
6483 	return ret;
6484 }
6485 EXPORT_SYMBOL(mtree_alloc_range);
6486 
6487 /**
6488  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6489  * @mt: The maple tree.
6490  * @startp: Pointer to ID.
6491  * @range_lo: Lower bound of range to search.
6492  * @range_hi: Upper bound of range to search.
6493  * @entry: The entry to store.
6494  * @next: Pointer to next ID to allocate.
6495  * @gfp: The GFP_FLAGS to use for allocations.
6496  *
6497  * Finds an empty entry in @mt after @next, stores the new index into
6498  * the @id pointer, stores the entry at that index, then updates @next.
6499  *
6500  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6501  *
6502  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6503  * the @gfp flags permit.
6504  *
6505  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6506  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6507  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6508  * free entries.
6509  */
6510 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6511 		void *entry, unsigned long range_lo, unsigned long range_hi,
6512 		unsigned long *next, gfp_t gfp)
6513 {
6514 	int ret;
6515 
6516 	MA_STATE(mas, mt, 0, 0);
6517 
6518 	if (!mt_is_alloc(mt))
6519 		return -EINVAL;
6520 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6521 		return -EINVAL;
6522 	mtree_lock(mt);
6523 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6524 			       next, gfp);
6525 	mtree_unlock(mt);
6526 	return ret;
6527 }
6528 EXPORT_SYMBOL(mtree_alloc_cyclic);
6529 
6530 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6531 		void *entry, unsigned long size, unsigned long min,
6532 		unsigned long max, gfp_t gfp)
6533 {
6534 	int ret = 0;
6535 
6536 	MA_STATE(mas, mt, 0, 0);
6537 	if (!mt_is_alloc(mt))
6538 		return -EINVAL;
6539 
6540 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6541 		return -EINVAL;
6542 
6543 	mtree_lock(mt);
6544 retry:
6545 	ret = mas_empty_area_rev(&mas, min, max, size);
6546 	if (ret)
6547 		goto unlock;
6548 
6549 	mas_insert(&mas, entry);
6550 	/*
6551 	 * mas_nomem() may release the lock, causing the allocated area
6552 	 * to be unavailable, so try to allocate a free area again.
6553 	 */
6554 	if (mas_nomem(&mas, gfp))
6555 		goto retry;
6556 
6557 	if (mas_is_err(&mas))
6558 		ret = xa_err(mas.node);
6559 	else
6560 		*startp = mas.index;
6561 
6562 unlock:
6563 	mtree_unlock(mt);
6564 	mas_destroy(&mas);
6565 	return ret;
6566 }
6567 EXPORT_SYMBOL(mtree_alloc_rrange);
6568 
6569 /**
6570  * mtree_erase() - Find an index and erase the entire range.
6571  * @mt: The maple tree
6572  * @index: The index to erase
6573  *
6574  * Erasing is the same as a walk to an entry then a store of a NULL to that
6575  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6576  *
6577  * Return: The entry stored at the @index or %NULL
6578  */
6579 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6580 {
6581 	void *entry = NULL;
6582 
6583 	MA_STATE(mas, mt, index, index);
6584 	trace_ma_op(__func__, &mas);
6585 
6586 	mtree_lock(mt);
6587 	entry = mas_erase(&mas);
6588 	mtree_unlock(mt);
6589 
6590 	return entry;
6591 }
6592 EXPORT_SYMBOL(mtree_erase);
6593 
6594 /*
6595  * mas_dup_free() - Free an incomplete duplication of a tree.
6596  * @mas: The maple state of a incomplete tree.
6597  *
6598  * The parameter @mas->node passed in indicates that the allocation failed on
6599  * this node. This function frees all nodes starting from @mas->node in the
6600  * reverse order of mas_dup_build(). There is no need to hold the source tree
6601  * lock at this time.
6602  */
6603 static void mas_dup_free(struct ma_state *mas)
6604 {
6605 	struct maple_node *node;
6606 	enum maple_type type;
6607 	void __rcu **slots;
6608 	unsigned char count, i;
6609 
6610 	/* Maybe the first node allocation failed. */
6611 	if (mas_is_none(mas))
6612 		return;
6613 
6614 	while (!mte_is_root(mas->node)) {
6615 		mas_ascend(mas);
6616 		if (mas->offset) {
6617 			mas->offset--;
6618 			do {
6619 				mas_descend(mas);
6620 				mas->offset = mas_data_end(mas);
6621 			} while (!mte_is_leaf(mas->node));
6622 
6623 			mas_ascend(mas);
6624 		}
6625 
6626 		node = mte_to_node(mas->node);
6627 		type = mte_node_type(mas->node);
6628 		slots = ma_slots(node, type);
6629 		count = mas_data_end(mas) + 1;
6630 		for (i = 0; i < count; i++)
6631 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6632 		mt_free_bulk(count, slots);
6633 	}
6634 
6635 	node = mte_to_node(mas->node);
6636 	mt_free_one(node);
6637 }
6638 
6639 /*
6640  * mas_copy_node() - Copy a maple node and replace the parent.
6641  * @mas: The maple state of source tree.
6642  * @new_mas: The maple state of new tree.
6643  * @parent: The parent of the new node.
6644  *
6645  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6646  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6647  */
6648 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6649 		struct maple_pnode *parent)
6650 {
6651 	struct maple_node *node = mte_to_node(mas->node);
6652 	struct maple_node *new_node = mte_to_node(new_mas->node);
6653 	unsigned long val;
6654 
6655 	/* Copy the node completely. */
6656 	memcpy(new_node, node, sizeof(struct maple_node));
6657 	/* Update the parent node pointer. */
6658 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6659 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6660 }
6661 
6662 /*
6663  * mas_dup_alloc() - Allocate child nodes for a maple node.
6664  * @mas: The maple state of source tree.
6665  * @new_mas: The maple state of new tree.
6666  * @gfp: The GFP_FLAGS to use for allocations.
6667  *
6668  * This function allocates child nodes for @new_mas->node during the duplication
6669  * process. If memory allocation fails, @mas is set to -ENOMEM.
6670  */
6671 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6672 		gfp_t gfp)
6673 {
6674 	struct maple_node *node = mte_to_node(mas->node);
6675 	struct maple_node *new_node = mte_to_node(new_mas->node);
6676 	enum maple_type type;
6677 	unsigned char request, count, i;
6678 	void __rcu **slots;
6679 	void __rcu **new_slots;
6680 	unsigned long val;
6681 
6682 	/* Allocate memory for child nodes. */
6683 	type = mte_node_type(mas->node);
6684 	new_slots = ma_slots(new_node, type);
6685 	request = mas_data_end(mas) + 1;
6686 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6687 	if (unlikely(count < request)) {
6688 		memset(new_slots, 0, request * sizeof(void *));
6689 		mas_set_err(mas, -ENOMEM);
6690 		return;
6691 	}
6692 
6693 	/* Restore node type information in slots. */
6694 	slots = ma_slots(node, type);
6695 	for (i = 0; i < count; i++) {
6696 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6697 		val &= MAPLE_NODE_MASK;
6698 		((unsigned long *)new_slots)[i] |= val;
6699 	}
6700 }
6701 
6702 /*
6703  * mas_dup_build() - Build a new maple tree from a source tree
6704  * @mas: The maple state of source tree, need to be in MAS_START state.
6705  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6706  * @gfp: The GFP_FLAGS to use for allocations.
6707  *
6708  * This function builds a new tree in DFS preorder. If the memory allocation
6709  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6710  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6711  *
6712  * Note that the attributes of the two trees need to be exactly the same, and the
6713  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6714  */
6715 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6716 		gfp_t gfp)
6717 {
6718 	struct maple_node *node;
6719 	struct maple_pnode *parent = NULL;
6720 	struct maple_enode *root;
6721 	enum maple_type type;
6722 
6723 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6724 	    unlikely(!mtree_empty(new_mas->tree))) {
6725 		mas_set_err(mas, -EINVAL);
6726 		return;
6727 	}
6728 
6729 	root = mas_start(mas);
6730 	if (mas_is_ptr(mas) || mas_is_none(mas))
6731 		goto set_new_tree;
6732 
6733 	node = mt_alloc_one(gfp);
6734 	if (!node) {
6735 		new_mas->status = ma_none;
6736 		mas_set_err(mas, -ENOMEM);
6737 		return;
6738 	}
6739 
6740 	type = mte_node_type(mas->node);
6741 	root = mt_mk_node(node, type);
6742 	new_mas->node = root;
6743 	new_mas->min = 0;
6744 	new_mas->max = ULONG_MAX;
6745 	root = mte_mk_root(root);
6746 	while (1) {
6747 		mas_copy_node(mas, new_mas, parent);
6748 		if (!mte_is_leaf(mas->node)) {
6749 			/* Only allocate child nodes for non-leaf nodes. */
6750 			mas_dup_alloc(mas, new_mas, gfp);
6751 			if (unlikely(mas_is_err(mas)))
6752 				return;
6753 		} else {
6754 			/*
6755 			 * This is the last leaf node and duplication is
6756 			 * completed.
6757 			 */
6758 			if (mas->max == ULONG_MAX)
6759 				goto done;
6760 
6761 			/* This is not the last leaf node and needs to go up. */
6762 			do {
6763 				mas_ascend(mas);
6764 				mas_ascend(new_mas);
6765 			} while (mas->offset == mas_data_end(mas));
6766 
6767 			/* Move to the next subtree. */
6768 			mas->offset++;
6769 			new_mas->offset++;
6770 		}
6771 
6772 		mas_descend(mas);
6773 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6774 		mas_descend(new_mas);
6775 		mas->offset = 0;
6776 		new_mas->offset = 0;
6777 	}
6778 done:
6779 	/* Specially handle the parent of the root node. */
6780 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6781 set_new_tree:
6782 	/* Make them the same height */
6783 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6784 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6785 }
6786 
6787 /**
6788  * __mt_dup(): Duplicate an entire maple tree
6789  * @mt: The source maple tree
6790  * @new: The new maple tree
6791  * @gfp: The GFP_FLAGS to use for allocations
6792  *
6793  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6794  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6795  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6796  * source node except for all the addresses stored in it. It will be faster than
6797  * traversing all elements in the source tree and inserting them one by one into
6798  * the new tree.
6799  * The user needs to ensure that the attributes of the source tree and the new
6800  * tree are the same, and the new tree needs to be an empty tree, otherwise
6801  * -EINVAL will be returned.
6802  * Note that the user needs to manually lock the source tree and the new tree.
6803  *
6804  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6805  * the attributes of the two trees are different or the new tree is not an empty
6806  * tree.
6807  */
6808 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6809 {
6810 	int ret = 0;
6811 	MA_STATE(mas, mt, 0, 0);
6812 	MA_STATE(new_mas, new, 0, 0);
6813 
6814 	mas_dup_build(&mas, &new_mas, gfp);
6815 	if (unlikely(mas_is_err(&mas))) {
6816 		ret = xa_err(mas.node);
6817 		if (ret == -ENOMEM)
6818 			mas_dup_free(&new_mas);
6819 	}
6820 
6821 	return ret;
6822 }
6823 EXPORT_SYMBOL(__mt_dup);
6824 
6825 /**
6826  * mtree_dup(): Duplicate an entire maple tree
6827  * @mt: The source maple tree
6828  * @new: The new maple tree
6829  * @gfp: The GFP_FLAGS to use for allocations
6830  *
6831  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6832  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6833  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6834  * source node except for all the addresses stored in it. It will be faster than
6835  * traversing all elements in the source tree and inserting them one by one into
6836  * the new tree.
6837  * The user needs to ensure that the attributes of the source tree and the new
6838  * tree are the same, and the new tree needs to be an empty tree, otherwise
6839  * -EINVAL will be returned.
6840  *
6841  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6842  * the attributes of the two trees are different or the new tree is not an empty
6843  * tree.
6844  */
6845 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6846 {
6847 	int ret = 0;
6848 	MA_STATE(mas, mt, 0, 0);
6849 	MA_STATE(new_mas, new, 0, 0);
6850 
6851 	mas_lock(&new_mas);
6852 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6853 	mas_dup_build(&mas, &new_mas, gfp);
6854 	mas_unlock(&mas);
6855 	if (unlikely(mas_is_err(&mas))) {
6856 		ret = xa_err(mas.node);
6857 		if (ret == -ENOMEM)
6858 			mas_dup_free(&new_mas);
6859 	}
6860 
6861 	mas_unlock(&new_mas);
6862 	return ret;
6863 }
6864 EXPORT_SYMBOL(mtree_dup);
6865 
6866 /**
6867  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6868  * @mt: The maple tree
6869  *
6870  * Note: Does not handle locking.
6871  */
6872 void __mt_destroy(struct maple_tree *mt)
6873 {
6874 	void *root = mt_root_locked(mt);
6875 
6876 	rcu_assign_pointer(mt->ma_root, NULL);
6877 	if (xa_is_node(root))
6878 		mte_destroy_walk(root, mt);
6879 
6880 	mt->ma_flags = mt_attr(mt);
6881 }
6882 EXPORT_SYMBOL_GPL(__mt_destroy);
6883 
6884 /**
6885  * mtree_destroy() - Destroy a maple tree
6886  * @mt: The maple tree
6887  *
6888  * Frees all resources used by the tree.  Handles locking.
6889  */
6890 void mtree_destroy(struct maple_tree *mt)
6891 {
6892 	mtree_lock(mt);
6893 	__mt_destroy(mt);
6894 	mtree_unlock(mt);
6895 }
6896 EXPORT_SYMBOL(mtree_destroy);
6897 
6898 /**
6899  * mt_find() - Search from the start up until an entry is found.
6900  * @mt: The maple tree
6901  * @index: Pointer which contains the start location of the search
6902  * @max: The maximum value of the search range
6903  *
6904  * Takes RCU read lock internally to protect the search, which does not
6905  * protect the returned pointer after dropping RCU read lock.
6906  * See also: Documentation/core-api/maple_tree.rst
6907  *
6908  * In case that an entry is found @index is updated to point to the next
6909  * possible entry independent whether the found entry is occupying a
6910  * single index or a range if indices.
6911  *
6912  * Return: The entry at or after the @index or %NULL
6913  */
6914 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6915 {
6916 	MA_STATE(mas, mt, *index, *index);
6917 	void *entry;
6918 #ifdef CONFIG_DEBUG_MAPLE_TREE
6919 	unsigned long copy = *index;
6920 #endif
6921 
6922 	trace_ma_read(__func__, &mas);
6923 
6924 	if ((*index) > max)
6925 		return NULL;
6926 
6927 	rcu_read_lock();
6928 retry:
6929 	entry = mas_state_walk(&mas);
6930 	if (mas_is_start(&mas))
6931 		goto retry;
6932 
6933 	if (unlikely(xa_is_zero(entry)))
6934 		entry = NULL;
6935 
6936 	if (entry)
6937 		goto unlock;
6938 
6939 	while (mas_is_active(&mas) && (mas.last < max)) {
6940 		entry = mas_next_entry(&mas, max);
6941 		if (likely(entry && !xa_is_zero(entry)))
6942 			break;
6943 	}
6944 
6945 	if (unlikely(xa_is_zero(entry)))
6946 		entry = NULL;
6947 unlock:
6948 	rcu_read_unlock();
6949 	if (likely(entry)) {
6950 		*index = mas.last + 1;
6951 #ifdef CONFIG_DEBUG_MAPLE_TREE
6952 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6953 			pr_err("index not increased! %lx <= %lx\n",
6954 			       *index, copy);
6955 #endif
6956 	}
6957 
6958 	return entry;
6959 }
6960 EXPORT_SYMBOL(mt_find);
6961 
6962 /**
6963  * mt_find_after() - Search from the start up until an entry is found.
6964  * @mt: The maple tree
6965  * @index: Pointer which contains the start location of the search
6966  * @max: The maximum value to check
6967  *
6968  * Same as mt_find() except that it checks @index for 0 before
6969  * searching. If @index == 0, the search is aborted. This covers a wrap
6970  * around of @index to 0 in an iterator loop.
6971  *
6972  * Return: The entry at or after the @index or %NULL
6973  */
6974 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6975 		    unsigned long max)
6976 {
6977 	if (!(*index))
6978 		return NULL;
6979 
6980 	return mt_find(mt, index, max);
6981 }
6982 EXPORT_SYMBOL(mt_find_after);
6983 
6984 #ifdef CONFIG_DEBUG_MAPLE_TREE
6985 atomic_t maple_tree_tests_run;
6986 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6987 atomic_t maple_tree_tests_passed;
6988 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6989 
6990 #ifndef __KERNEL__
6991 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6992 void mt_set_non_kernel(unsigned int val)
6993 {
6994 	kmem_cache_set_non_kernel(maple_node_cache, val);
6995 }
6996 
6997 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6998 		void (*callback)(void *));
6999 void mt_set_callback(void (*callback)(void *))
7000 {
7001 	kmem_cache_set_callback(maple_node_cache, callback);
7002 }
7003 
7004 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
7005 void mt_set_private(void *private)
7006 {
7007 	kmem_cache_set_private(maple_node_cache, private);
7008 }
7009 
7010 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7011 unsigned long mt_get_alloc_size(void)
7012 {
7013 	return kmem_cache_get_alloc(maple_node_cache);
7014 }
7015 
7016 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7017 void mt_zero_nr_tallocated(void)
7018 {
7019 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7020 }
7021 
7022 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7023 unsigned int mt_nr_tallocated(void)
7024 {
7025 	return kmem_cache_nr_tallocated(maple_node_cache);
7026 }
7027 
7028 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7029 unsigned int mt_nr_allocated(void)
7030 {
7031 	return kmem_cache_nr_allocated(maple_node_cache);
7032 }
7033 
7034 void mt_cache_shrink(void)
7035 {
7036 }
7037 #else
7038 /*
7039  * mt_cache_shrink() - For testing, don't use this.
7040  *
7041  * Certain testcases can trigger an OOM when combined with other memory
7042  * debugging configuration options.  This function is used to reduce the
7043  * possibility of an out of memory even due to kmem_cache objects remaining
7044  * around for longer than usual.
7045  */
7046 void mt_cache_shrink(void)
7047 {
7048 	kmem_cache_shrink(maple_node_cache);
7049 
7050 }
7051 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7052 
7053 #endif /* not defined __KERNEL__ */
7054 /*
7055  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7056  * @mas: The maple state
7057  * @offset: The offset into the slot array to fetch.
7058  *
7059  * Return: The entry stored at @offset.
7060  */
7061 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7062 		unsigned char offset)
7063 {
7064 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7065 			offset);
7066 }
7067 
7068 /* Depth first search, post-order */
7069 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7070 {
7071 
7072 	struct maple_enode *p, *mn = mas->node;
7073 	unsigned long p_min, p_max;
7074 
7075 	mas_next_node(mas, mas_mn(mas), max);
7076 	if (!mas_is_overflow(mas))
7077 		return;
7078 
7079 	if (mte_is_root(mn))
7080 		return;
7081 
7082 	mas->node = mn;
7083 	mas_ascend(mas);
7084 	do {
7085 		p = mas->node;
7086 		p_min = mas->min;
7087 		p_max = mas->max;
7088 		mas_prev_node(mas, 0);
7089 	} while (!mas_is_underflow(mas));
7090 
7091 	mas->node = p;
7092 	mas->max = p_max;
7093 	mas->min = p_min;
7094 }
7095 
7096 /* Tree validations */
7097 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7098 		unsigned long min, unsigned long max, unsigned int depth,
7099 		enum mt_dump_format format);
7100 static void mt_dump_range(unsigned long min, unsigned long max,
7101 			  unsigned int depth, enum mt_dump_format format)
7102 {
7103 	static const char spaces[] = "                                ";
7104 
7105 	switch(format) {
7106 	case mt_dump_hex:
7107 		if (min == max)
7108 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7109 		else
7110 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7111 		break;
7112 	case mt_dump_dec:
7113 		if (min == max)
7114 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7115 		else
7116 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7117 	}
7118 }
7119 
7120 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7121 			  unsigned int depth, enum mt_dump_format format)
7122 {
7123 	mt_dump_range(min, max, depth, format);
7124 
7125 	if (xa_is_value(entry))
7126 		pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7127 			xa_to_value(entry), entry);
7128 	else if (xa_is_zero(entry))
7129 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7130 	else if (mt_is_reserved(entry))
7131 		pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7132 	else
7133 		pr_cont(PTR_FMT "\n", entry);
7134 }
7135 
7136 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7137 		unsigned long min, unsigned long max, unsigned int depth,
7138 		enum mt_dump_format format)
7139 {
7140 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7141 	bool leaf = mte_is_leaf(entry);
7142 	unsigned long first = min;
7143 	int i;
7144 
7145 	pr_cont(" contents: ");
7146 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7147 		switch(format) {
7148 		case mt_dump_hex:
7149 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7150 			break;
7151 		case mt_dump_dec:
7152 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7153 		}
7154 	}
7155 	pr_cont(PTR_FMT "\n", node->slot[i]);
7156 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7157 		unsigned long last = max;
7158 
7159 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7160 			last = node->pivot[i];
7161 		else if (!node->slot[i] && max != mt_node_max(entry))
7162 			break;
7163 		if (last == 0 && i > 0)
7164 			break;
7165 		if (leaf)
7166 			mt_dump_entry(mt_slot(mt, node->slot, i),
7167 					first, last, depth + 1, format);
7168 		else if (node->slot[i])
7169 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7170 					first, last, depth + 1, format);
7171 
7172 		if (last == max)
7173 			break;
7174 		if (last > max) {
7175 			switch(format) {
7176 			case mt_dump_hex:
7177 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7178 					node, last, max, i);
7179 				break;
7180 			case mt_dump_dec:
7181 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7182 					node, last, max, i);
7183 			}
7184 		}
7185 		first = last + 1;
7186 	}
7187 }
7188 
7189 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7190 	unsigned long min, unsigned long max, unsigned int depth,
7191 	enum mt_dump_format format)
7192 {
7193 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7194 	unsigned long first = min;
7195 	int i;
7196 
7197 	pr_cont(" contents: ");
7198 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7199 		switch (format) {
7200 		case mt_dump_hex:
7201 			pr_cont("%lx ", node->gap[i]);
7202 			break;
7203 		case mt_dump_dec:
7204 			pr_cont("%lu ", node->gap[i]);
7205 		}
7206 	}
7207 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7208 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7209 		switch (format) {
7210 		case mt_dump_hex:
7211 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7212 			break;
7213 		case mt_dump_dec:
7214 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7215 		}
7216 	}
7217 	pr_cont(PTR_FMT "\n", node->slot[i]);
7218 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7219 		unsigned long last = max;
7220 
7221 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7222 			last = node->pivot[i];
7223 		else if (!node->slot[i])
7224 			break;
7225 		if (last == 0 && i > 0)
7226 			break;
7227 		if (node->slot[i])
7228 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7229 					first, last, depth + 1, format);
7230 
7231 		if (last == max)
7232 			break;
7233 		if (last > max) {
7234 			switch(format) {
7235 			case mt_dump_hex:
7236 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7237 					node, last, max, i);
7238 				break;
7239 			case mt_dump_dec:
7240 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7241 					node, last, max, i);
7242 			}
7243 		}
7244 		first = last + 1;
7245 	}
7246 }
7247 
7248 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7249 		unsigned long min, unsigned long max, unsigned int depth,
7250 		enum mt_dump_format format)
7251 {
7252 	struct maple_node *node = mte_to_node(entry);
7253 	unsigned int type = mte_node_type(entry);
7254 	unsigned int i;
7255 
7256 	mt_dump_range(min, max, depth, format);
7257 
7258 	pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7259 		depth, type, node ? node->parent : NULL);
7260 	switch (type) {
7261 	case maple_dense:
7262 		pr_cont("\n");
7263 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7264 			if (min + i > max)
7265 				pr_cont("OUT OF RANGE: ");
7266 			mt_dump_entry(mt_slot(mt, node->slot, i),
7267 					min + i, min + i, depth, format);
7268 		}
7269 		break;
7270 	case maple_leaf_64:
7271 	case maple_range_64:
7272 		mt_dump_range64(mt, entry, min, max, depth, format);
7273 		break;
7274 	case maple_arange_64:
7275 		mt_dump_arange64(mt, entry, min, max, depth, format);
7276 		break;
7277 
7278 	default:
7279 		pr_cont(" UNKNOWN TYPE\n");
7280 	}
7281 }
7282 
7283 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7284 {
7285 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7286 
7287 	pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7288 		 mt, mt->ma_flags, mt_height(mt), entry);
7289 	if (xa_is_node(entry))
7290 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7291 	else if (entry)
7292 		mt_dump_entry(entry, 0, 0, 0, format);
7293 	else
7294 		pr_info("(empty)\n");
7295 }
7296 EXPORT_SYMBOL_GPL(mt_dump);
7297 
7298 /*
7299  * Calculate the maximum gap in a node and check if that's what is reported in
7300  * the parent (unless root).
7301  */
7302 static void mas_validate_gaps(struct ma_state *mas)
7303 {
7304 	struct maple_enode *mte = mas->node;
7305 	struct maple_node *p_mn, *node = mte_to_node(mte);
7306 	enum maple_type mt = mte_node_type(mas->node);
7307 	unsigned long gap = 0, max_gap = 0;
7308 	unsigned long p_end, p_start = mas->min;
7309 	unsigned char p_slot, offset;
7310 	unsigned long *gaps = NULL;
7311 	unsigned long *pivots = ma_pivots(node, mt);
7312 	unsigned int i;
7313 
7314 	if (ma_is_dense(mt)) {
7315 		for (i = 0; i < mt_slot_count(mte); i++) {
7316 			if (mas_get_slot(mas, i)) {
7317 				if (gap > max_gap)
7318 					max_gap = gap;
7319 				gap = 0;
7320 				continue;
7321 			}
7322 			gap++;
7323 		}
7324 		goto counted;
7325 	}
7326 
7327 	gaps = ma_gaps(node, mt);
7328 	for (i = 0; i < mt_slot_count(mte); i++) {
7329 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7330 
7331 		if (!gaps) {
7332 			if (!mas_get_slot(mas, i))
7333 				gap = p_end - p_start + 1;
7334 		} else {
7335 			void *entry = mas_get_slot(mas, i);
7336 
7337 			gap = gaps[i];
7338 			MT_BUG_ON(mas->tree, !entry);
7339 
7340 			if (gap > p_end - p_start + 1) {
7341 				pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7342 				       mas_mn(mas), i, gap, p_end, p_start,
7343 				       p_end - p_start + 1);
7344 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7345 			}
7346 		}
7347 
7348 		if (gap > max_gap)
7349 			max_gap = gap;
7350 
7351 		p_start = p_end + 1;
7352 		if (p_end >= mas->max)
7353 			break;
7354 	}
7355 
7356 counted:
7357 	if (mt == maple_arange_64) {
7358 		MT_BUG_ON(mas->tree, !gaps);
7359 		offset = ma_meta_gap(node);
7360 		if (offset > i) {
7361 			pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7362 			MT_BUG_ON(mas->tree, 1);
7363 		}
7364 
7365 		if (gaps[offset] != max_gap) {
7366 			pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7367 			       node, offset, max_gap);
7368 			MT_BUG_ON(mas->tree, 1);
7369 		}
7370 
7371 		for (i++ ; i < mt_slot_count(mte); i++) {
7372 			if (gaps[i] != 0) {
7373 				pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7374 				       node, i);
7375 				MT_BUG_ON(mas->tree, 1);
7376 			}
7377 		}
7378 	}
7379 
7380 	if (mte_is_root(mte))
7381 		return;
7382 
7383 	p_slot = mte_parent_slot(mas->node);
7384 	p_mn = mte_parent(mte);
7385 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7386 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7387 		pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7388 		mt_dump(mas->tree, mt_dump_hex);
7389 		MT_BUG_ON(mas->tree, 1);
7390 	}
7391 }
7392 
7393 static void mas_validate_parent_slot(struct ma_state *mas)
7394 {
7395 	struct maple_node *parent;
7396 	struct maple_enode *node;
7397 	enum maple_type p_type;
7398 	unsigned char p_slot;
7399 	void __rcu **slots;
7400 	int i;
7401 
7402 	if (mte_is_root(mas->node))
7403 		return;
7404 
7405 	p_slot = mte_parent_slot(mas->node);
7406 	p_type = mas_parent_type(mas, mas->node);
7407 	parent = mte_parent(mas->node);
7408 	slots = ma_slots(parent, p_type);
7409 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7410 
7411 	/* Check prev/next parent slot for duplicate node entry */
7412 
7413 	for (i = 0; i < mt_slots[p_type]; i++) {
7414 		node = mas_slot(mas, slots, i);
7415 		if (i == p_slot) {
7416 			if (node != mas->node)
7417 				pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7418 					parent, i, mas_mn(mas));
7419 			MT_BUG_ON(mas->tree, node != mas->node);
7420 		} else if (node == mas->node) {
7421 			pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7422 			       mas_mn(mas), parent, i, p_slot);
7423 			MT_BUG_ON(mas->tree, node == mas->node);
7424 		}
7425 	}
7426 }
7427 
7428 static void mas_validate_child_slot(struct ma_state *mas)
7429 {
7430 	enum maple_type type = mte_node_type(mas->node);
7431 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7432 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7433 	struct maple_enode *child;
7434 	unsigned char i;
7435 
7436 	if (mte_is_leaf(mas->node))
7437 		return;
7438 
7439 	for (i = 0; i < mt_slots[type]; i++) {
7440 		child = mas_slot(mas, slots, i);
7441 
7442 		if (!child) {
7443 			pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7444 			       mas_mn(mas), i);
7445 			MT_BUG_ON(mas->tree, 1);
7446 		}
7447 
7448 		if (mte_parent_slot(child) != i) {
7449 			pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7450 			       mas_mn(mas), i, mte_to_node(child),
7451 			       mte_parent_slot(child));
7452 			MT_BUG_ON(mas->tree, 1);
7453 		}
7454 
7455 		if (mte_parent(child) != mte_to_node(mas->node)) {
7456 			pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7457 			       mte_to_node(child), mte_parent(child),
7458 			       mte_to_node(mas->node));
7459 			MT_BUG_ON(mas->tree, 1);
7460 		}
7461 
7462 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7463 			break;
7464 	}
7465 }
7466 
7467 /*
7468  * Validate all pivots are within mas->min and mas->max, check metadata ends
7469  * where the maximum ends and ensure there is no slots or pivots set outside of
7470  * the end of the data.
7471  */
7472 static void mas_validate_limits(struct ma_state *mas)
7473 {
7474 	int i;
7475 	unsigned long prev_piv = 0;
7476 	enum maple_type type = mte_node_type(mas->node);
7477 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7478 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7479 
7480 	for (i = 0; i < mt_slots[type]; i++) {
7481 		unsigned long piv;
7482 
7483 		piv = mas_safe_pivot(mas, pivots, i, type);
7484 
7485 		if (!piv && (i != 0)) {
7486 			pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7487 			       mas_mn(mas), i);
7488 			MAS_WARN_ON(mas, 1);
7489 		}
7490 
7491 		if (prev_piv > piv) {
7492 			pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7493 				mas_mn(mas), i, piv, prev_piv);
7494 			MAS_WARN_ON(mas, piv < prev_piv);
7495 		}
7496 
7497 		if (piv < mas->min) {
7498 			pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7499 				piv, mas->min);
7500 			MAS_WARN_ON(mas, piv < mas->min);
7501 		}
7502 		if (piv > mas->max) {
7503 			pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7504 				piv, mas->max);
7505 			MAS_WARN_ON(mas, piv > mas->max);
7506 		}
7507 		prev_piv = piv;
7508 		if (piv == mas->max)
7509 			break;
7510 	}
7511 
7512 	if (mas_data_end(mas) != i) {
7513 		pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7514 		       mas_mn(mas), mas_data_end(mas), i);
7515 		MT_BUG_ON(mas->tree, 1);
7516 	}
7517 
7518 	for (i += 1; i < mt_slots[type]; i++) {
7519 		void *entry = mas_slot(mas, slots, i);
7520 
7521 		if (entry && (i != mt_slots[type] - 1)) {
7522 			pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7523 			       mas_mn(mas), i, entry);
7524 			MT_BUG_ON(mas->tree, entry != NULL);
7525 		}
7526 
7527 		if (i < mt_pivots[type]) {
7528 			unsigned long piv = pivots[i];
7529 
7530 			if (!piv)
7531 				continue;
7532 
7533 			pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7534 			       mas_mn(mas), i, piv);
7535 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7536 		}
7537 	}
7538 }
7539 
7540 static void mt_validate_nulls(struct maple_tree *mt)
7541 {
7542 	void *entry, *last = (void *)1;
7543 	unsigned char offset = 0;
7544 	void __rcu **slots;
7545 	MA_STATE(mas, mt, 0, 0);
7546 
7547 	mas_start(&mas);
7548 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7549 		return;
7550 
7551 	while (!mte_is_leaf(mas.node))
7552 		mas_descend(&mas);
7553 
7554 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7555 	do {
7556 		entry = mas_slot(&mas, slots, offset);
7557 		if (!last && !entry) {
7558 			pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7559 				mas_mn(&mas), offset);
7560 		}
7561 		MT_BUG_ON(mt, !last && !entry);
7562 		last = entry;
7563 		if (offset == mas_data_end(&mas)) {
7564 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7565 			if (mas_is_overflow(&mas))
7566 				return;
7567 			offset = 0;
7568 			slots = ma_slots(mte_to_node(mas.node),
7569 					 mte_node_type(mas.node));
7570 		} else {
7571 			offset++;
7572 		}
7573 
7574 	} while (!mas_is_overflow(&mas));
7575 }
7576 
7577 /*
7578  * validate a maple tree by checking:
7579  * 1. The limits (pivots are within mas->min to mas->max)
7580  * 2. The gap is correctly set in the parents
7581  */
7582 void mt_validate(struct maple_tree *mt)
7583 	__must_hold(mas->tree->ma_lock)
7584 {
7585 	unsigned char end;
7586 
7587 	MA_STATE(mas, mt, 0, 0);
7588 	mas_start(&mas);
7589 	if (!mas_is_active(&mas))
7590 		return;
7591 
7592 	while (!mte_is_leaf(mas.node))
7593 		mas_descend(&mas);
7594 
7595 	while (!mas_is_overflow(&mas)) {
7596 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7597 		end = mas_data_end(&mas);
7598 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7599 				(mas.max != ULONG_MAX))) {
7600 			pr_err("Invalid size %u of " PTR_FMT "\n",
7601 			       end, mas_mn(&mas));
7602 		}
7603 
7604 		mas_validate_parent_slot(&mas);
7605 		mas_validate_limits(&mas);
7606 		mas_validate_child_slot(&mas);
7607 		if (mt_is_alloc(mt))
7608 			mas_validate_gaps(&mas);
7609 		mas_dfs_postorder(&mas, ULONG_MAX);
7610 	}
7611 	mt_validate_nulls(mt);
7612 }
7613 EXPORT_SYMBOL_GPL(mt_validate);
7614 
7615 void mas_dump(const struct ma_state *mas)
7616 {
7617 	pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7618 	       mas->tree, mas->node);
7619 	switch (mas->status) {
7620 	case ma_active:
7621 		pr_err("(ma_active)");
7622 		break;
7623 	case ma_none:
7624 		pr_err("(ma_none)");
7625 		break;
7626 	case ma_root:
7627 		pr_err("(ma_root)");
7628 		break;
7629 	case ma_start:
7630 		pr_err("(ma_start) ");
7631 		break;
7632 	case ma_pause:
7633 		pr_err("(ma_pause) ");
7634 		break;
7635 	case ma_overflow:
7636 		pr_err("(ma_overflow) ");
7637 		break;
7638 	case ma_underflow:
7639 		pr_err("(ma_underflow) ");
7640 		break;
7641 	case ma_error:
7642 		pr_err("(ma_error) ");
7643 		break;
7644 	}
7645 
7646 	pr_err("Store Type: ");
7647 	switch (mas->store_type) {
7648 	case wr_invalid:
7649 		pr_err("invalid store type\n");
7650 		break;
7651 	case wr_new_root:
7652 		pr_err("new_root\n");
7653 		break;
7654 	case wr_store_root:
7655 		pr_err("store_root\n");
7656 		break;
7657 	case wr_exact_fit:
7658 		pr_err("exact_fit\n");
7659 		break;
7660 	case wr_split_store:
7661 		pr_err("split_store\n");
7662 		break;
7663 	case wr_slot_store:
7664 		pr_err("slot_store\n");
7665 		break;
7666 	case wr_append:
7667 		pr_err("append\n");
7668 		break;
7669 	case wr_node_store:
7670 		pr_err("node_store\n");
7671 		break;
7672 	case wr_spanning_store:
7673 		pr_err("spanning_store\n");
7674 		break;
7675 	case wr_rebalance:
7676 		pr_err("rebalance\n");
7677 		break;
7678 	}
7679 
7680 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7681 	       mas->index, mas->last);
7682 	pr_err("     min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7683 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7684 	if (mas->index > mas->last)
7685 		pr_err("Check index & last\n");
7686 }
7687 EXPORT_SYMBOL_GPL(mas_dump);
7688 
7689 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7690 {
7691 	pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7692 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7693 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7694 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7695 	       wr_mas->end_piv);
7696 }
7697 EXPORT_SYMBOL_GPL(mas_wr_dump);
7698 
7699 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7700